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1. The area of research of this grant was the study of a novel
method of extracting sea height information - the sample functions,
generally - from SAR complex data, a method that was suggested by a fun-
damental SAR ocean imaging model for gravity waves(l], that showed that
information about the long wave is present in the SAR complex data, espe-
cially its phase. The initial study [2],[3], mainly supported by earlier
NASA and ONR grants and partially supported at the publication stage by
the present grant, employed an ad hoc, albeit quite reasonable, phase
demodulation algorithm followed by linear regression and filtering: only
the latter two steps incorporated a priori information that might be
available. A relatively simplified simuilation indicated that, among other
possible limitations, the finite bandwidth of the SAR system imposed the
apparently most serious limitation. A preliminary application to
SEASAT-SAR complex imagery was encouraging. This work has been reported
to the community, formally and informally [2],[3],[4],[6]. It was evident
that a priori information about the long wave, at a minimum, if incor-
porated into a "more sophisticated" phase demodulation structure - i.e.,
at an earlier point in the algorithm, ocould conceivably mitigate this

bandwidth limitation.

2. The work on this grant began by directly addressing the following
central problem: given the SAR complex data of the sea, modeled as
described above, and received along with thermal noise, what is the opti-
mal (minimum mean-square error) estimator (a conditional expectation,
then) of the long wave structure and what is its performance? while such
an estimator is generally very difficult to find and, when found, imple-

ment, nevertheless we have done so for this problem! The significance of



such an answer is simply that it gives the best possible performance wha-
tever deleterious effects may be modelled - finite bandwidth, thermal
noise, random phase, etc.

(a) 1n particular, it has been found that this optimal estimator is
able to overcome, to a considerable degree, the bandwidth limitation
encountered by the earlier-posed, ad hoc, sub-optimal estimator. The
optimal estimator is able to dc this because it incorporates in its struc-
ture the a priori knowledge available). This estimation structure can be
quite flexibly adaptive (at the cost of increased computation), is
realized as an efficient, recursive calculation - e.g., as inferred from
the SAR image, and, generally speaking, seems practical.

While we will defer detailed discussion tu a forthcoming article [8],
we call attention to the simulation shown in Fig. 1. The complex image
was (randomly) generated using our model of the SAR complex image of the
sea and was processed by the optimal estimation structure to produce an
estimate of the height of a sinusoidal long wave - of known phase and
wavenumber, as could be separately estimatd from the SAR image, e.g. the
long wave shape is shown in Figure 1 and the resulting mean-square error,
and its sample average, for 50 simulation runs is shown in Figure 2. The
wavenumber spectrum generated by the SAR ocean-sensing mechanism is
several times greater than the SAR bandwidth but the performance is very
good! !

(Also shown for reference is the Cramer-Rao lower bound when the height is
an unknown parameter: in the simulation it was assumed to be a Rayleigh
random variable with an a priori known variance.)

(b) The above-discussed optimal model has, in the main, been ela-

borated so far assuming a stationary scene. Actually, it may well turn
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out that the assumption was not especially limiting in view of analysis
concerning the image model nature. Under reasonable conditions (e.g., an
I~band SAR with not too fine a resolution and typical sea parameters)

(i) the small wave structure part that can influence the SAR image is more
concerted than dispersive in its action, and (ii) an appropriate focus
adjustment can "irender the long wave stationary". Then, with‘. some
details, the SAR imaging model reduces to that used in the above-discussed
height estimation study.

(The observation (ii) is a well-known controversy in this community
and .2 have had a fairly general proof that the focus adjustment is deter-
mined by the long wave's phase velocity for some time., The experimental
"test" of this focus parameter dependence, proposed at an APL workshop
last October was, as reported at a MARSEN workshop at JPL in January, in
each instance supportive of our SAR model: that is, that the dependence is

on the long wave's phase velocity.)

(c) In considering the practical implementation of this optimal
estimator, it was noted that a significant saving in computation can be
achieved by generating the short wave ensemble by a so-called "chaotic
dynamical" process - rather than the "conventional" (e.g., Markov) random
process models. Such an observation is of much wider consequence and an
initial publication has been prepared [7]. Besides its potential com-
putational advantage [8], such "chaotic” models of the sea surface are
known to arise naturally as solutions to the nonlinear hydrodynamical
equations and, hence, may be precisely the kind of models needed.

(d) The nature of the short wave ensemble plays a critical role:
its presence is necessary for receipt of backscattered energy at typical

intermediate incidence angles; at small incidence angles a quasi-specular



be kscatter from the long wave can be more significant. The structure of
an optimal height estimator, and its performance depends upon the sta-
tistical nature - e.g., "coherence length" - of the short wave ensemble
and on the backscatter mode as determined by the incidence angle. A simu-
lation of the estimation algorithm - and the SAR image - in a study would
be very informative, as would be eventual comparison with the data forth-
coming from the SIR-B experiment, offering data at various incidence
angles.

(e) The algorithm was simulated through numerical simulation of the
optimal estimation algorithm to estsablish, as completely as possible, its
accuracy, flexibility, and practicality; The attempt to apply the
algorithm to SEASAT-SAR data, as supplied by NASA JPL and/or ERIM, was
only partially accomplished: despite repeated requests to both, only a
limited amount of data was obtained fram ERIM: see [8], included in this
report.

3. The following publications, presentations, and discussions -
accamplished and prospective - have been done during the Grant period.

(It is likely that the topic of [8] will produce several publications -

as, eog-' [7]0)

I. Journal, book, and proceedings publications supported by the Grant:
(1) "The SAR image of short gravity waves on a long gravity wave",
in Proceedings of a Symposium on Wave Dynamics and Radio
Probing of the Ocean Surface, O. M. Phillips and K. Hasselman,
Eds., Plenum Press (in press). (Partial support of revision
and manuscripct preparation; also supported by earlier NASA
grant.)



(2) "A sea surface height estimator using synthetic aperture radar
complex imagery", IEEE Trans. Ocean Engineering, April 1983.
(Partial support for revision and manuscript preparation; also
supported by earlier NASA grant.)

(3) "A sea surface height estimator using SAR complex imagery",
Proceedings of Oceans '82 Conference, Washington, DC September
1982, (Partial support for travel and manuscript preparation;

also supported by earlier NASA grant.)

II. Workshop participation related to grant:

(4) "A novel SAR spectral estimation algorithm", presented at
SEASAT-SAR Workshop on Ocean Wave Spectra, Johns Hopkins Applied
Physics Laboratory, October, 1982,

(5) ONR Workshop on SAR Ocean Imaging Applications, Johns Hopkins
Applied Physics Laboratory, December, 1982.

(6) NASA MARSEN Workshop on SAR Ocean Imaging Theory and Experiment,
Cal. Tech. JPL, Jan., 1983.

(7) "Optimal estimation with chaotic dynamics", Proceedings of the
1983 Conference on Information Sciences and Systems, Johns

Hopkins University, March, 1983.

III. Publications in process:
(8) "A Fundamental Model and Efficient Inference for SAR Ocean
Imagery", being revised for publication in IEEE Jo. Oceanic
Ergrg.
Enclosed are a reprint of [7] and a preprint of [8].
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SUMMARY

Recently deepening understanding of nonlinear dynamical systems has
revealed an interesting aspect of their possibly complicated behavior -
their so-called 'chactic’', seemingly random, evolution. The observation
of such an evolution leads naturally to the problem of estimating aspects
of such systems, a problem area of increasing importance as the use of
such models spreads into many sciences.

While the evolution of chacotic systems can be very complex, it is the
result of iterating a nonrandom mapping of a (possibly random) initial
state: optimal estimation structures can thereby simplify, relative to
conventional random evolutions, possibly to practicality in specific
instances.

This last remark is of additional significance since, in pract:ice, it
is often true that only quite limited knowledge is available for model
construction - e.g., a correlation function: the 'orbits' of a chactic
dynamical model may well have a suitable sample-path correlation.

Typically, the evolution of such chaotic dynamical systems is indexed
by a 'chaos parameter': both the gross and detailed nature of the evolu-
tion can depend upon its precise value. Thus a computationally simple
dynamical model is capable, under parametric control, of generating a
diversity of 'sample functions'. Of ocourse, the obverse is that, first,



care must be taken in applying such models and, second, the performance of
estimation schemes may also sensitively depend upon the value of the chaos
parameter,

The formalation of a recursive estimation problem, in discrete time,
using Markov and chaotic descriptions is contrasted. Then a simple para-
meter esitimation problem is noted in which the more gencral role of cer-
tain orbit functionals appears. Next a more complicated nonlinear
filtering problem - arising, e.g., in an ocean remote sensing system ~ is
discussed. Finally, the 'identification' of the chaos parameter itself is
studied, assuming an a priori distribution. Gonerally conditicnal espec-
tation estimators are considered with the assistance of numerical

camputation.
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. Abstract

Nonlinear mappings that can axhibit
“chaotic," seemingly random, evolution have
.appral as models of dynamical systems. Their
‘det+. ministic evolution, vis-a-vis Markov evolu-
‘tions, can result in much simpler optimal
detection and estimation algorithas. The varia-
ition of a "chaos" parameter (u) can result in
tdiverse evolutions, suggesting a simple but rich
source of model varfations. For the specific
‘sapping examined here, this latter possibility
is problematic due to the extreme sensitivity
‘on u of the evolution in the "chaotic regime.”

1. Introduction

|

: Recent deepening understanding of nonlinear
‘systems has revealed an interesting aspect of
their possibly complicated behavior - their so-
called “chaotic," seeringly random, evolution.
'The observation of such an evolution leads
naturally to the problem of making inferences
‘regarding aspects of such evolutions, a problem
;increasing in importance with the spreading
-study of such wodels in many scientific areas.

While the evolution of such a system can be
very complicated indeed in detail, in one respect
it is simple, evolving &s sn iterated, nonrandom
mapping on a given initial state. Optimal algor~
ithms for inference - detection and estimation -
‘can be computationally quite feasible.

This observation and the remark that, in
practice it is often true that only quite limited
knowledge - e.g., a covariance function - is
available for model construction, leads to the
idea that a nonlinear, "chaotic" model might
provide evolutions with suitable properties.

Such chaotic dynamical models may be indexed
by a “chaos" parameter: both the gross and
‘detailed nature of the evolution may depend
.dramatically upon its precise numerical value.
7hus & relatively simple dynamical model can be
capable of generating a diversity of evolutions,
under a simple parametric control. Paradoxically,
icareful considesation would be required in a
;practical application. Also, the performance of
‘optimal inference algorithms may depend sensitiv-
ely on this parameter. Both matters will be
addressed here.

2. Markov and Chaotic Inference Models

(a) Consider a discrete time, nonlinear
system evolving in accordance with the dynamical
aodel

x(k+1)=f[x(K), w(k)], ke0,1,..., )

-
Elelelrch sugported by NASA Grant NAGW-387.

wvhere {w(k)) is a sequence-of mutually indepen-
dent random variables ("r.v.s"). The evolution
(1) 1s observed as

y(‘--)':(x(k)ov(k)]o k=0,1,..., (2)

where {v(k)} is a sequence of mutually independ-
ent r.v.s, the random processes {w(k)} and
{v(k)} being independent. (f and g are real
functions of two real arguments.)
Taking up, e.g., the filtering problem - an

ptimal estimation of x(k) given the observation
y{k) 2 (y(0),...,y(k)), the knowledge sufficient
for estimating x(k) in accordance with common
optimality criteria-e.g., minimizing the estim-
ate's mean-square error ("MSE") - is given by
the a posteirori distribution of x(k) given
y(k), denotad p(x(k)| y(k)]. (We assume density
functions ("d.f."s) exist in every case.) It is
well-known that the evolution of this a poster-
ifori d.f. 18 governed by the recursion

SE(k+1,k)dx(k) s (3a)
TF(k+1,K)dx (k) dx (k+1)

o[x(k+1)|y(k+l)]=

where

Fi+l,k)Zp [y (k1) px(k+1)] p[x(k+1) |xk)]
plx(} T W1, (3b)

It is also well-known that this recursion is,
generally, very difficult to specify in detail
and implement as a feasible computation. The
pinimum MSE estimator ("M-MSE-E") of x(k), given
y(k), is then

x(k[K) = Sx(K)o{x (k) |¥(k)Jdx (k) Ge)

where P{x(k)|;(k)] 15 computed recursively by
(32).

(b) Alternatively, consider the evolution of
a possibly "chaotic' nonlinear system defined by

x(k+1)-fu[x(k)],k-O.l,....x(O)'xo. %)

where x, 1s an initial state andu is a ("chaos")
parametér; x, and/or u may be random variable~
("r.v."s). 8onditioned upon any such random-ess,
if present, (4) describes a nonrandom evolution
that, when replacing (1) as a Gynamical model,
results in a great simplification of (3), namely

plx(k+1) |§ (1) ] = (5a)

175 1y Get1) Qb)) 16 e et £ " (x ) NG () ax

ffG(ki‘l):dxodp
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where (sb)
G() 20 [y (k) x (k)= (xg) 1G(k-1) ,6(O)=p (Do (4)

Here x(k)-fk(: ) 1s the k-th fterate of f ,
- w0 M
fu(x°)=x°.
Thus, ®.g.. the N-MSE-E of x(k), given y(k),
(5¢)

is

A k

R(k|k)=sSE | (x)G(R) dxydu/SIG(Kk)dxpdu.
A variety of related inference problems can

be posed, sll simplifying grveatly as a consequ-
ence of the simplification of the joint d.f.:

I e ek
'o[y(k).x(k\u]-toa[y(i)Ix(iﬂ-
1

k ] {5d)
11 6{:(1)-fu(k°))' D(xo)p(u)-

i=

(c) The model (4) can result in far less
calculation than the model (1). Suppose x(k [k)
at keky is required: (3c) requires 4ka integra-
tion; in contrast, (5¢c) requires only 4. 1If
x(k) in model (1) is a vector of dimension N,
the integ:ations required are, resp., 4kaN and 4.
. This latter comparison is of interest if, in

such a case, (4) can, .n scme sense, adequately
replace (1) as a model.

(d) For the specific numerical calculations
here we choose the mapping

fu(x)il-ulz » xef-1,11,ue0,2}; (6)

it 18 representative of a well-studied class of
mappings that are (1) continuous, (11) of one
saximun (at x=0), (1i1) monotone decreasing with

¢ increasing |x|, and (iv) of a certain convexity
in the derivative af|3x£1]. The general nature
of the "orbits” {x(k)=f (x;), k>0} 1s suggested
by Fig. 1 where {x(k), k=580 to 600) 1s plocted
versus u. Viewing it, some of the following
facts are agreeable.

!
f Pig. 1-The iterates (500 to 600) of (6).
1 For sufficiently saall values of u, the
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orbits, for almost all xg, approach a "final"
value x(=), s fixed point of the mapping f,. As
v is increased sufficiently, a "bifurcation"”
occurs, the orbit then, for almost all xg,
approaching a stable, periodic visit go two
values, fixed points of the mapping iu. As
increases, further bifurcations occur on an
increasingly finer scsle, until u = 1.40155...
is reached, where a quite different behavior is
encountered.

There an aperiodic motion on a set of
(Lebesque) measure 0 occurs; the orbits of almogt
sll x; are attracted to this set, and the orbits
initially "close” remain close (for almost all
xp) - an ergodic, but not mixiny, evolution.

When pw2, the orbits are also almost all
aperiodic, but range over the entire fnterval
[-1,1]: an invariant measure, absolutely contin-
uous with respect to Li>esque measure, exists
and its form is known [2]. Orbits initially
close almost surely do not remain close-an
ergodic and mixing evolution. (Incidentally, the
points x»0,21/2,21 sre easily directly seen to
be exceptional points-as a numerical analysis
may well inadvertently discover!)

It is not known 1f other types of evolution
occur: in fact, the dynamics of this model are
not fully understood, though a great deal is
known [1]. The following facts are helpful in
orienting and evaluating numeri:zal analysis
(1) £ has either cne or no stable, periocdic
orbit (11) If f has a stable, periodic
oribit, then the orbgts of almost all xg are
attracted to it and, specifically, xg=0 is so
attracted.

3. A simple estimation problem

A typical question that arises concerning
the nonlinear model (4) occurs in the following
simple estimation problem. Suppose that xg ind
u are known a priori and that (2) is specialized
to

y(k)=a x(k)+v(k), k=0,1,..., )

where & 1s an unknown parameter to be estimated,
having data v(k). Suppose further that the
{v(k)} are identically dis%ributed normal r.v.s.
with mean 0 and variance V<.

Then it is easy to show that the maximum
likelihood estimator,

" k 1 I 2
B0 Ty eg1/ T (5,6 ). (8a)

is efficient- that 1s, it is unbiased and of
error variance equal to the Cremer-Rao lower
bound, namely
k
ECEG0-a1 20 V2 (et a1 2r (8v)
im0 ¥
Therefore, of special interest is the average
along the orbit,

. =1 i 2 .
Vikixqeu)E 150 [fu(xo)] . (8¢)



ertain “standard" questions arise: s.g., for
Ihr.o k, does V(k;x.,u) depend upon x, and/or u?
For the model ?6). V(k;x ) is Qntly num-

erically calculated. The rnglt can be expected
to be infl d by two ph : first, &
number of iterstions msy be required before the
orbit arrives on the “attractor" (assuming it
exists) and, second, & very large number of iter-
ations may be required to achieve ‘“stable’
nvcu;c value over the attractor. 7The first
offect is noticesble but here ninimized by summ-
ing from the 100th iteration on. A sum over the
;subsequent 100 iterations resulted in an  orbit
average V apparently independent of xg for trial
ivalues of u =.4,.8, and 1.2: see Fig. 2 where
xq%(0,0.05,...,1). Further calcule.-ion over
1,000 (vice 100) iterations resulted in indepen-

calculation over 5,00v fterations resulted in a
stable value of V, independent of x.

Pi; 2-The orbit average V of (8c) versus Xy with
u as paraseter

4. Chacs Parameter Estimation

i

Taking up the "chaotic" dynamicsl model (4)
and the nbservation model (6),(7) - with a=l1, the
M~MSE-E u(k) of u, given data ¥(k), 1s, by (5),

L R(k)s Sup[Y(K) Julo(uddu/fo(F(k) [ulo()du  (9a)

where (9

_1 k

oIy (k) [ul= ey exp‘z—lz- T {y(i)-f (xo)] %),
The sums are efficiently, recurs:vely calculated.
! The dynamical, observation. and optimal
estimator equations wvere numericaliy simulated
and some vesults are shown in Fi,. 3, fory ¢
(0.33,1,1.46,1.76), all with x =0. Referring to
Fig. 1, che rate of convergencg for v €(0.33,1,
1 76) iatuitively corresponds to the "distinct-
{iveness” of these u values; the quite rapid
sconvelgence for u=1.46 in the chaotic region is
mfomtivo. . T'ne (true value. estimte) pairs

dence of xg of V when y=l.6 and, when u=2, further

were (0.33,0.332,...),(1,1.01...)(1.46,1.45...),
(1.76,1.763...), all for v=0.1. These simula~
tions employed a net of 100 points in u: as k
incrgassd, the support ufi the a posteriori d.f.
plu{y(k)] became, within the numerical range of
the computer ( 102435), confined to a small
portion of these points; .., a more refined, or
adaptively refined, u-net would be of interest.

Fig.3- The M-MSE-E u of (9) for several un.

The general conclusion at this point is that
the parameter u is efficiently and accurately
estimated by the M-MSE-E. At issue, however,
is a somewhat more subtle matter, as will be seen.

Cramer-Rao bound. - The Cramer-Rao lower
bound on the mean-square error that any estimator
may have, is of interest-though it 18 not nec-
essarily attainable by any estimator. This
lower bound involve . the generally well-known
form-take %y and p to be unknown parameters -

52 . 1 K g
-E{ —5 inp(y(k)pll==5 I (& fex )] (10a)
a2 wlqag W

Here, given (6}, the derivative with respect
to u can be defined recursively as
(10b)

n-1 3 fo-O.

Fl
22l

n n=1,2 n-1
3_u fm =(f" ") -2uf

9
.a_u.[

The behavior of 2f"/3u itself is of sume Inturusi:
like f™, 1t displays a rich behavior. While
bounded-it is a polynomial in u of degree less
than n, it can bLe relatively large at points

(in u) of bifurcation of f , and it is very large
in the "chaotic region." 1In Fig. 4, the 90th
through 100th iterates of this derivative are
plotted over a restricted u-set in the "chaotic"
regime so that detail may be seen. 1t can be
many orders of magnitude greater still at larger
u. At least some of the nature of 3f%/du is
inferrable from the nature of f as evidenced

in Fig. 1.




Fig.4 - The darivative 3f%/3y of (10b), for n =
90 to 100, versus u.

The orbit average appearing in (10a),

1 %
b ke = ' Dol
: =0 ¥

|

is shown in Fig. 5 for k=20, x.=0,05, and 40
‘points 1n k. As the number of 'y points are
iincreased, greater detail in <k>'s Jdependence on
}u is seen in the chaotic region, generally to the
‘leic of the computer graphics and beyond. The
nature of the u-dependence otherwise is intuit-
ively agreeable with the dependence exhibited in
Figs. 1 and 4.

i
|
|
t
!
I

i 2
fu(uo)] (10¢)

Fig.5-Tre orbit nvetage (10c) appearing in the
. Creamer-Rao boun

The very large values of <k>, for this rel-
atively small k, for most of the u in the chaotic
region, seem to there allow extremely accurate
estimation of u. (A Monte Carlo simulation of the
M-MSE-E (9) could establish, numerically, whether
or not such estimators exist.) But such a con-
clusion would depend upon the utilization of the
iestimate: if 1t 1is to be able to "{dentify", or
fix, the chaotic dynamical system so that the
logbic, aad 1tg attendant properties - e.g.. orbit

correlation function - would then be known, the
conclusion appears to be unjustified! To clar-
ify this, sharper measures of "orbit distinguish
ability" are now considered.

5. Orbit distinguishability

(a) The results of the chaos parameter
estimation problem just discussed allowed the
possibility that the orbits of (6), as observed
via (7)(with a=1), are extremely distinguishable.
To sharpen this question, suppose one of two
orbits, corresponding to u; and uy, are accord-
ingly observed: then, by any of the usual decis-
ion criteria, the decision performance is deter-
mined by the "distance”

k

ekt e - xpi?  an
¥y ] k=0 1 ¥2

normalized by uz.

In Fig. 6 is shown this distance, depending
on a sequence u, u,~(0.1)* with u=sl.6 and for an
orbit segment from k=100 to 1,100. The remark-
able result 1s that, to the accuracy of the
computer's representation of numbers (12 signif-
icant digits), the¢ orbits remain distinguishablet

Fig.6- The distance (11) between orbits of f
and fu,, b,=u=(0. nIL,

(b) Another measure of distinguishability
of the orbits is the "orbit correlation coeffic-
ient"

E (x )f
kK u1 (¢}
min

®1.2 (xQ)/Ilfu (xgll- e (XO)H

12)

Referring to Fig. 7, it is seen that this
same extreme distinguishability persists to the
limit of machine accuracy. (The values of unity
for 1 near 12 occur when the machine can no
longer distinguish ujand u .) At the same time
the correlation with orbit% considerably removed
in v persists. (As a check on the hoped-for
independence of the calculation on xg, the curve



}of 1135“7‘1- actuslly the overlay of the curves
‘for xg=0.1 and xq=0.5: they are indistinguishable
‘on the graphics display.)

onirielts T
| OF FOUi LY

Pig.7~ The corrslation coefficient p of (12)
between otbitc £, and f tor My

w1710 1),

©) Spectral density distinguishability.-
It sight be thought that, if a more gross proper~

‘ty of the orbits were compared, their distingui-
'shability might be smoother and decreasing with
'decrelltng u-separation. Further, it is the
‘orbit spectral density that is prospectively
.-ont useful for choice of a chaotic model in
practice.

H Given an appropriate segment of an orbit,
we define the "orbit covariance function, o.c.f.”
‘ll
t

! 1 gkt
R()Er——— I (x )f (x5)s
! s (Klax-xnin) k-K-1n 0 0

1
i =0, t1,.000 Ly
where K, -1 >0. (In order to allow the orbit to
"n:;bllize". one prefers Kpin-L >>1, in fact:
‘here, Kain -1 #100 would be satisfactory, gener-
ally.)

The "orbit spectral density, o.s.d.”" is
defined as the discrete Fourier transform ("DFT")
of the o .,c.f.:

+L
S (W2 £ e iy (4), wa,81,...,2L,05 20/2L41)
u Lol ]
The "distinguishability"” of Su and Sul is
defined as the distance 1
2
0 ("1'"2)’2L+1m ISul(w) Suz(u)l , an

which is readily seen to be
+L

Dyluoups B IR, (1= R, 017,

R Py

a distence between o.c.f.s, ratlur thun, us
earlier, a distance between orbits themselves.
Writing this fors out,

k

L
Dl(ul.uz)- r (L t

(€ n+l
te-1 % k=K,

) £ L5

k+t k 2 <
f”z (xo)fuz(xo)l) o OgE K Ko

In Fig. 8 this diutlncc is shown for a
sequence u o, - (1/10)1 approaching uy=1.6 in
the "chaotic "region,” for Km‘x-ZOO Kgin=100,
L=25, x.,=0. Again, to the computer's limit of
12 ligngficnnt digits, the orbit spectral densi-
ties ar~ distinguishable!

Fig. 8- The distance (13) between orbit spectral
densities of fu and f for oy
w=-Q1/10y1).

(d) This extreme sensitivity of the orbit
of (6), and its orbit correlation function, to
the precise value of the parameter u in the
chaotic region renders problematic the feasibil-
ity of using such s model in & practical case.
Indeed, it raises a serious question whether
the oft-cited and much~studied nonlinear mapping
(6) 15 useful as a physical model at all.
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