General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

A NOVRL ALCORITHM FOR

SEA SURFACE REIGEI ESTIMATION

USING COMPTEX SAR DATA

FINAL REPORTI

Period：July 1， 1982 to Decenber 31， 1983

NASA GRANT NEGN－387

Dr．Robert O．Barger
Electrical Engineering Department
University of Maryland
College Park，Meryland 20742

N84 16873

A NOVEL ALGORITHM FOR
SEA SURFACE HEIGHT ESTIMATION
USING COMPLEX SER DATA

FINAL REPORT

Period: July 1, 1982 to December 31, 1983

NASA GRANT NAGW-387

Dr. Robert 0. Harger
Electrical Engineering Department
University of Maryland
College Park, Maryland 20742

1. The area of research of this grant was the study of a novel method of extracting sea height information - the sample functions, generally - from SAR complex data, a method that was suggested by a furidamental SAR ocean inaging model for gravity waves[1], that showed that information about the long wave is present in the SAR complex data, especially its phase. The initial study [2],[3], mainly supported by earlier NASA and ONR grants and partially supported at the publication stage by the present grant, employed an ad hoc, albeit quite reasonable, phase demodulation algorithm followed by linear regression and filtering: only the latter two steps incorporated a priori information that might be available. A relatively simplified simulation indicated that, amoig other possible limitations, the finite bandwidth of the SAR system imposed the apparently most serious limitation. A preliminary application to SEASAT-SAR complex imagery was encouraging. This work has been reported to the community, formally and informally [2],[3],[4],[6]. It was evident that a priori information about the long wave, at a minimum, if incorporated into a "more sophisticated" phase demodulation structure - i.e., at an earlier point in the algorithm, could conceivably mitigate this bandwidth limitation.
2. The work on this grant began by directly addressing the following central problem: given the SAR complex data of the sea, modeled as described above, and received along with thermal noise, what is the optimal (minimum mean-square error) estimator (a conditional expectation, then) of the long wave structure and what is its performance? While such an estimator is generally very difficult to find and, when found, implement, nevertheless we have done so for this problem! The significance of
such an answer is simply that it gives the best possible performance whatever deleterious effects may be modelled - finite bandwidth, thermal noise, random phase, etc.
(a) In particular, it has been found that this optimal estimator is able to overcome, to a considerable degree, the bandwidth limitation encountered by the earlier-posed, ad hoc, sub-optimal estimator. The optimal estimator is able to do this because it incorporates in its structure the a priori knowledge available). This estimation structure can be quite flexibly adaptive (at the cost of increased computation), is realized as an efficient, recursive calculation - e.g., as inferred from the SAR image, and, generally speaking, seems practical.

While we will defer detailed discussion tu a forthcoming article [8], we call attention to the simulation shown in Fig. 1. The complex image was (randomly) generated using our model of the SAR complex image of the sea and was processed by the optimal estimation structure to produce an estimate of the height of a sinusoidal long wave - of known phase and wavenumber, as could be separately estimatd from the SAR image, e.g. the long wave shape is shown in Figure 1 and the resulting mean-square error, and its sample average, for 50 simulation runs is shown in Figure 2. The wavenumber spectrum generated by the SAR ocean-sensing mechanism is several times greater than the SAR bandwidth but the performance is very good!!
(Also shown for reference is the Cramer-Rao lower bound when the height is an unknown parameter: in the simulation it was assumed to be a Rayleigh randam variable with an a priori known variance.)
(b) The above-discussed optimal model has, in the main, been elaborated so far assuming a stationary scene. Actually, it may well turn

Fig. 1

Fig. 2
out that the assumption was not especially limiting in view of analysis concerning the image model nature. Under reasonable conditions (e.g., an I-band SAR with not too fine a resolution and typical sea parameters) (i) the small wave structure part that can influence the SAR image is more concerted than dispersive in its action, and (ii) an appropriate focus adjustment can "iender the long wave stationary". Then, with': some details, the SAR imaging model reduces to that used in the above-discussed height estimation study.
(The observation (ii) is a well-known controversy in this community and $\cdot \ldots \geq$ have had a fairly general proof that the focus adjustment is determined by the long wave's phase velocity for some time. The experimental "test" of this focus parameter dependence, proposed at an APL workshop last October was, as reported at a MARSEN workshop at JPL in January, in each instance supportive of our SAR model: that is, that the dependence is on the long wave's phase velocity.)
(c) In considering the practical implementation of this optimal estimator, it was noted that a significant saving in computation can be achieved by generating the short wave ensemble by a so-called "chaotic dynamical" process - rather than the "conventional" (e.g., Markov) random process models. Such an observation is of much wider consequence and an initial publication has been prepared [7]. Besides its potential computational advantage [8], such "chaotic" models of the sea surface are known to arise naturally as solutions to the nonlinear hydrodynamical equations and, hence, may be precisely the kind of models needed.
(d) The nature of the short wave ensemble plays a critical role: its presence is necessary for receipt of backscattered energy at typical intermediate incidence angles; at small incidence angles a quasi-specular
ba kscatter from the long wave can be more significant. The structure of an optimal height estimator, and its performance depends upon the statistical nature - e.g., "coherence length" - of the short wave ensemble and on the backscatter mode as determined by the incidence angle. A simulation of the estimation algorithm - and the SAR imege - in a study would be very informative, as would be eventual comparison with the data forthcoming from the SIR-B experiment, offering data at various incidence angles.
(e) The algorithm was simulated through numerical simulation of the optimal estimation algorithm to estsablish, as completely as possible, its accuracy, flexibility, and practicality; The attempt to apply the algorithm to SEASAT-SAR data, as sumplied by NASA JPL and/or ERIM, was only partially accomplished: despite repeated requests to both, only a limited amount of data was obtained from ERIM: see [8], included in this report.
3. The following publications, presentations, and discussions accomplished and prospective - have been done during the Grant period. (It is likely that the topic of [8] will produce several publications as, e.g., [7].)
I. Journal, book, and proceedings publications supported by the Grant:
(1) "The SAR image of short gravity waves on a long gravity wave", in Proceedings of a Symposium on Wave Dynamics and Radio Probing of the Ocean Surface, O. M. Phillips and K. Hasselman, Eds., Plenum Press (in press). (Partial support of revision and manuscript preparation; also supported by earlier NASA grant.)
(2) "A sea surface height estimator using synthetic aperture radar complex imagery", IEEE Trans. Ocean Engineering, April 1983. (Partial support for revision and manuscript preparation; also supported by earlier NASA grant.)
(3) "A sea surface height estimator using SAR complex imagery", Proceedings of Oceans ' 82 Conference, Washington, DC September 1982. (Partial support for travel and manuscript preparation; also supported by earlier NASA grant.)
II. Workshop participation related to grant:
(4) "A novel SAR spectral estimation algorithm", presented at SEASAT-SAR Workshop on Ocean Wave Spectra, Johns Hopkins Applied Physics Laboratory, October, 1982.
(5) ONR Workshop on SAR Ocean Imaging Applications, Johns Hopkins Applied Physics Laboratory, December, 1982.
(6) NASA MARSEN Wbrkshop on SAR Ccean Imaging Theory and Experiment, Cal. Tech. JPL, Jan., 1983.
(7) "Optimal estimation with chaotic dynamics", Proceedings of the 1983 Conference on Information Sciences and Systems, Johns Hopkins University, March, 1983.
III. Publications in process:
(8) "A Fundamental Model and Efficient Inference for SAR Ocean Imagery", being revised for publication in IEEE Jo. Oceanic Engrg.

Enclosed are a reprint of [7] and a preprint of [8].

Professor Robert 0. Harger
Electrical Engineering Department
University of Maryland
College Park, MD 20742

SUMMARY

Recently deepening understanding of nonlinear dynamical systems has revealed an interesting aspect of their possibly complicated behavior their so-called 'chaotic', seemingly random, evolution. The observation of such an evolution leads naturally to the problem of estimating aspects of such systems, a problem area of increasing importance as the use of such models spreads into many sciences.

While the evolution of chaotic systems can be very complex, it is the result of iterating a nonrandom mapping of a (possibly random) initial state: optimal estimation structures can thereby simplify, relative to conventional random evolutions, possibly to practicality in specific instances.

This last remark is of additional significance since, in prac:-ice, it is often true that only quite limitad knowledge is available for model construction - e.g., a correlation function: the 'orbits' of a chaotic dynamical model may well have a suitable sample-path correlation.

Typically, the evolution of such chaotic dynamical systems is indexed by a 'chaos parameter': both the gross and detailed nature of the evolution can depend upon its precise value. Thus a computationally simple dynamical model is capahle, under parametric control, of generating a diversity of 'sample functions'. Of course, the obverse is that, first,
care must be taken in applying such madels and, second, the performance of estimation schenes may also sensitively depend upon the value of the chaos parameter.

The formulation of a recursive estimation problem, in discrete time, using Markov and chaotic descriptions is contrasted. Then a simple parameter eritimation problem is noted in which the more general role of certain orbit functionals appears. Next a more complicated nonlinear filtering problem - arising, e.g., in an ocean remote sensing system - is discussed. Finally, the 'identification' of the chaos parameter itself is studied, assuming an a priori distribution. Generally conditional espectation escimators are considered with the assistance of numerical computation.

Abstract

Nonlinear mapping that can axhibit "chaotic," eceaingly random, evolution have appeal as models of dynasical systess. Their deteiminiatic evolution, via-a-vis Markov evolutions, can result in much simpler optimal detection and estiantion algorichas. The variation of a "chaon" parameter (u) can result in diverse evolutions, suggesting simple but rich source of model variations. For the specific apping examined here, this latter possibility is problematic due to the extreme senaitivity on u of the evolution in the "chaotic regime."

1. Introduction

Recent deepening understanding of nonlinear syateas has revealed an interesting aspect of their possibly complicated behavior - their socalled "chaotic," seeringly random, evolution. The observation of such an evolution leads naturally to the problea of aking inferences regarding aspects of such evolutions, a problem increasing in importance with the spreading study of such models in many scientific areas.

While the evolution of such a system can be very complicated indeed in detail, in one respect it is simple, evolving as an iterated, nonrandom eapping on a given initial state. Optimal algorithas for inference - decection and estiantion can be computationally quite feasible.

This observation and the remark that, in practice it is often true that only quite limited knowledge - e.g., a covariance function - 18 available for aodel construction, leads to the idea that a nonlinear, "chaotic" model wight provide evolutions with suitable properties.

Such chaotic dynamical models may be indexed by a "chaos" parameter: both the gross and detailed nature of the evolution may depend dramatically upon its precise numerical value. Thus a relatively simple dynamical model can be capable of generating a diversity of evolutions, under a simple parametric control. Paradoxically, careful consideiation would be required in a practical application. Also, the performance of oprimal inference algorithms may depend sensitively on this parameter. Bcth eatters will be addressed here.

2. Markov and Chaotic Inference Models

(a) Consider a discrete time, nonlinear system evolving in accordance with the dynamical model

$$
\begin{equation*}
x(k+1)-f[x(k), \omega(k)], k=0,1, \ldots, \tag{1}
\end{equation*}
$$

where $\{w(k)\}$ is a equence of mutually independent random variables ("r.v.s"). The evolution (1) 1s observed as

$$
\begin{equation*}
y(i)=c[x(k), v(k)], k=0,1, \ldots \tag{2}
\end{equation*}
$$

where $\{v(k))$ is a sequence of mutually independent r.v.s, the random processes $\{w(k)\}$ and
\{ $v(k)$) being Independent. (f and g are real functions of two real arguments.)

Taking up, e.g., the filtering problem - an gptimal estimation of $x(k)$ given the observation $y(k) \equiv(y(0), \ldots, y(k))$, the knowledge sufficient
for estimating $x(k)$ in accordance with common optimality criteria-a.g, minimizing the estimate's mean-square error ("MSE") - is given by the a posteirori distribution of $x(k)$ given
$\vec{y}(k)$, denoted $\rho(x(k) \mid \vec{y}(k)]$. (We assume density functions ("d.f."s) exist in every case.) It is well-known that the evolution of this a pasterfori d.f. is governed by the recursion

$$
\begin{equation*}
\rho[x(k+1) \mid y(k+1)]=\frac{\int F(k+1, k) d x(k)}{\int F(k+1, k) d x(k) d x(k+1)} \tag{3a}
\end{equation*}
$$

where
$F(k+1, k) \equiv \rho[y(k+1) \mid x(k+1)] \rho|x(k+1)| x(k)]$ $\rho[x(k) \mid \vec{y}(k)]$.

It is also well-known that this recursion is, generally, very difficult to specify in detail and implement as a feasible computation. The qinimum MSE escimaror ("M-MSE-E") of $x(k)$, given $y(k)$, is then

$$
\begin{equation*}
\vec{x}(k \mid k)=\int x(k) \rho[x(k) \mid \vec{y}(k)] d x(k) \tag{3c}
\end{equation*}
$$

where $f\{x(k) \mid \vec{y}(k)]$ is compured recursively by (38).
(b) Alternatively, consider the evolution of a possibly "chatic" nonlinear system defined by

$$
\begin{equation*}
x(k+1)=f_{j}(x(k)], k=0,1, \ldots, x(0)=x_{0} . \tag{4}
\end{equation*}
$$

where x_{0} is an initial state and μ is a ("chaos") parameter; x_{0} and/or ψ may be random variables. ("r.v."s). Conditioned upon any such randomress, if present, (4) describes a nonrandom evolution that, when replacing (1) as a cynamical model. results in a great simplification of (3), namely

$$
\begin{aligned}
& \rho[x(k+1) \mid \vec{y}(k+1)]= \\
& \iint \rho[y(k+1) \mid x(k+1)] \delta\left[x(k+1)-f_{\mu}^{k+1}\left(x_{0}\right)\right] G(k) d x_{0} d \mu
\end{aligned}
$$

A variety of releted inference problems can be posed, all siaplifying greatiy as congequence of the ainplification of the joint d.f.:

$$
\begin{align*}
& \rho[\vec{y}(k), \vec{z}(k)]_{\mu=0}^{k} \rho[y(1) \mid x(1)] . \\
& k \sum_{j=1}^{k} \delta\left\{x(j)-f_{\mu}^{j}\left(k_{0}\right)\right] \cdot \rho\left(x_{0}\right) \rho(\mu) . \tag{5d}
\end{align*}
$$

(c) The todel (4) can result in far lese calculation than the oodel (1). Suppose $X(k \mid k)$ at kok. is required: (3c) requires $4 k$. integration; in contrant, (5 c) requires only 4 . If $x(k)$ in model (l) is a vector of dimension N, the integrations required are. resp., $4 k_{\text {a }} N$ and 4. This latter comparison is of interest if, in such a case, (4) can, n ecme sence, adequately replace (1) as a model
(d) Por the tpecific aumerical calculations here we choose the mpping

$$
\begin{equation*}
f_{\mu}(x) \equiv 1-\mu x^{2}, x \in(-1,1], \mu \varepsilon[0,2] ; \tag{6}
\end{equation*}
$$

it is representative of well-studied class of mappings that are (1) continuous, (1i) of one maximum (at $x=0$), (iii) monotone decreasing with increasing $|x|$, and (iv) of a certain convexity in the derivaifive $\partial f \mid \partial x[1]$. The general nature of the "orbits" $\left\{x(k)=f^{k}\left(x_{0}\right), k>0\right\}$ is fuggested by Fig. 1 where $\{x(k), k=500$ to 600$\}$ is plotted versus u. Viewing it, some of the following facts are agreeable.

Pig. 1-The iterates (500 to 600) of (6).
For auficiciently sanll values of μ, the
orbite, for alwogt all x_{0}, approach a "final" value $x(\infty)$, fixed point of the mapping f_{μ}. As μ is increaged sufficiently, a "bifurcation" occure, the orbit then, for mimost all x_{0}, approaching atable, periodic visit to two values, fixed points of the mapping $f{ }_{\mu}^{2}$. As μ increases, further bifurcations occur on an increasingly finer ecale, unt11 $\mu=1.40155$... is reached, where a quite different behavior is encountered.

There an aperiodic motion an atet of (Lebesque) measure 0 occure; the orbits of almos all x_{0} are attracted to this set, and the orbits initially "close" reand close (for almost all x_{0}) - an ergodic, but not aixing, evolution

When ym2, the orbits are elso almost all aperiodic, but range over the entire interval [-1,1]: an invariant measure, absolutely continuous with respect to Liokesque measure, exists and its form is known [2]. Orbits initially close almost aurely do not remain close-an ergodic and mixing evolution. (Incidentally, the points $x_{0}=0, \pm 1 / 2, \pm 1$ ure easily directly seen to be exceptional poinef-as numerical analysis may well inadvertently discoverl)

It is not known if other types of evolution occur: in fact, the dynamics of this model are not fully understood, though a great deal is known [1]. The following facts are helpful in orienting and evaluating numerisal analysis (i) f has either one or no stable, periodic orbit . (1i) If f hes atable, periodic oribit, then the orbits of almost all x_{0} are attracted to it and, specifically, $x_{0}=0$ is so attracted.

3. A simple estimation problem

A typical question that arises concerning the nonlinear model (4) occurs in the following simple estimation problem. Suppose that x_{0} ind μ are known a priori and that (2) is specialized to

$$
\begin{equation*}
y(k)=a \quad x(k)+v(k), k=0,1, \ldots, \tag{7}
\end{equation*}
$$

where a 1 s an unknown parameter co be estimated, having data $v(k)$. Suppose further that the [v(k)) are identically distributed normal r.v.s. with mean 0 and variance v^{2}

Then it is easy to show that the maximum likelihood estimator,

$$
\begin{equation*}
\left.\left.\underset{i}{\eta}(k)=\sum_{i=0}^{k} y(i) f_{\mu}^{1}\left(x_{0}\right)\right] / \sum_{i=0}^{k}\left[f_{\mu}^{i}\left(x_{0}\right)\right]^{2}\right\} . \tag{8a}
\end{equation*}
$$

is efficient- that 18 , it is unbiased and of error variance equal to the Cremer-Rao lower bound, namely

$$
\begin{equation*}
E\left\{[2(k)-a]^{2}\right\}=v^{2}\left\{\sum_{i=0}^{k}\left[f_{w}^{1}\left(x_{0}\right)\right]^{2}\right)^{-1} \tag{8b}
\end{equation*}
$$

Therefore, of special interest is the average

$$
\begin{align*}
& \text { along the orbit, } k \\
& V\left(k ; x_{0} \cdot \nu\right) \equiv \frac{1}{k} \sum_{i=0}^{1}\left[f_{\mu}\left(x_{0}\right)\right]^{2} . \tag{8c}
\end{align*}
$$

Certain "etanderd" quantions arise: e.g., for large k, does $V\left(k ; x_{0}, \mu\right)$ depend upon x_{0} and/or $\mu 1$ For the model (6), $v\left(k ; x_{0}{ }^{\mu}\right)$ is lasily numorically calculated. The reeslt can be expected to be influenced by two phenomena: first, a number of iterations may be required before the corbit arrives on the "attractor" (assuming it exista) and, cecond, very large number of iter;ations may be required to achieve "stable" !average value over the attractor. The firat effect is noticeable but here minimized by sume iag from the 100th iteration on. A sum over the iabbequent 100 iterations resulted in an orbit average V apparently independent of x_{0} for trial valuen of $\mu=.4,8$, and 1.2: see Fig. 2 where $x_{0}=(0,0.05, \ldots, 1)$. Further calcula-ion over 1,000 (vice 100) iterations resulced in independence of x_{0} of V when $\mu=1.6$ and, when $\mu=2$. further calculation over 5,000 iterations resulted in a stable value of V. independent of \mathbf{x}_{0}.

PIg. 2-The orbit average V of (8 c) versus x_{0}, wich μ as parameter

4. Chacs Parameter Eatimation

Taking up the "chaotic" dynamical model (4) and the nbervation model (6). (7) - with a=l, the M-MSE-E $\hat{u}(k)$ of u, given data $f(k), 1 y$, by (5),
$1 \cdot \hat{\mu}(k)=\int_{\mu \rho}[\vec{y}(k) \mid \mu] \rho(\mu) d \mu / \int_{\rho}(\vec{y}(k) \mid \mu] \rho(\mu) d \mu \quad$ (9a)
where
$: \rho[\vec{y}(k) \mid \mu]=\frac{1}{\sqrt{2 \pi y}} \exp \left[\frac{-1}{2 \psi^{2}} \sum_{i=0}^{k}\left\{y(1)-f_{\mu}^{1}\left(x_{0}\right)\right]^{2}\right\}$.
The sums are efficiently, recuraively calculated. The dynamical, observation: and uptimal estimator equations vere numericaliy simulated and some results are shown in Fi_{b}. 3, for $\mu \mathrm{c}$ ($0.33,1,1.46,1.76$), all with $x_{0}=0$. Referring to Fig. 1, the rate of convergence for $\mu \in(0.33,1$, 1.76) Intuitively corresponds to the "distinctIveness" of these μ values; the quite rapid convergence for und. 46 in the chaotic region is informive. . The (true value, estimate)-pairs
are $(0.33,0.332, \ldots),(1,1.01 . .).(1,46,1,45 \ldots$.$) .$ ($1.76,1.763 \ldots$), all for $v=0.1$. These aimulations employed net of 100 points in μ : ay k increased, the eupport of the a posteriori d.i. $\rho[\mu i \bar{y}(k)]$ became. Within the numerical range of the coaputer (104^{435}), confined to a amall portion of these points; \therefore. , a more refined, or adaptively refined, μ net would be of interest.

Fig.3- The H-MSE-E \hat{u} of (9) for several μ.
The general conclusion at this point is that the parameter y is efficiently and accurately estianted by the M-MSE-E. At issue, however, is a momewhat more subtle matter, as will be seen. Cramer-Rao bound. - The Cramer-Rao lower bound on the mean-square error that any estimator ming have, is of interest-though it is not necesaarily atcainable by any estimacor. This lower bound involve the generally well-known form-take x_{0} and μ to be unknown parameters -
$-E\left\{\frac{\partial^{2}}{\partial \mu^{2}} \ln \rho(\vec{y}(k) \mu]\right\}=\frac{1}{v^{2}} \sum_{i=0}^{k}\left[\frac{\partial}{\partial \mu} f_{\mu}^{j}\left(x_{0}\right)\right]^{2}$
Here, given (6), the derivative with respect to μ can be defined recursively as

The behavior of $\partial f^{n} / \partial \mu$ itself is of sume interest: like f^{n}, it displays a rich behavior. While bounded-it is a polynomial in μ of degree less than n, it can be relativtly large at points (in μ) of bifurcation of f, and it is very large in the "chaotic regior." In Fig. 4, the 90th through 100th iterates of this derivative are plotted over a restricted μ-set in the "chaotic" regime so that detall may be seen. It can be many orders of magnitude greater still at larger ψ. At least some of the nature of $j \rho^{n} / \partial \mu$ is inferrable from the nature of f^{n} as evidenced in Fig. 1.

corralation function - would then be known, the conclusion appears to be unjustifiedt To clarify this, sharper eeagures of "orbit distinguistr ability" are now considered.

5. Orbit dietinguishability

(a) The resulte of the chaos parameter eatimetion problem just discunced allowed the poseibility that the orbits of (6), as observed via (7) (vith a-l), are extremely distinguishable. To sharpen this question, auppose one of two orbits, correaponding to μ_{2} and μ_{2}, are accordingly observed: then, by any of the usual decision criteria, the decision performance is deteralned by the "diatance"
$\left\|f_{\mu_{1}}^{k}\left(x_{0}\right)-f_{\mu_{2}}^{k}\left(x_{0}\right)\right\|^{2}=\sum_{k=0}^{k}\left|f_{\mu_{1}}^{k}\left(x_{0}\right)-f_{\mu_{2}}^{k}\left(x_{0}\right)\right|^{2}$,
normalized by ν^{2}.
In Fig. 6 is shown this distance, depending on a sequence $\mu_{2} \equiv \mu_{1}-(0.1)^{1}$ with $\mu=1.6$ and for an orbit segment from $=100$ to 1,100 . The remarkable result is that, to the accuracy of the computer's representation of numbers ($12 \mathrm{signif}-$ icant digits), the orbits remain distinguishablel

-
Fig.5-Tte orbit average (10 C) appearing in the Creamer-Rao bound.
The very large valuea of $\langle k\rangle$, for this relatively amall k, for most of the μ in the chaotic region, seem to there allow extremely accurate estimation of μ. (A Monte Carlo aimulation of the M-MSE-E (9) could establish, numerically, whether or not such estimators exist.) But such a conclusion would depend upon the utilization of the iestimate: if it is to be able to "identify", or $f 1 x$, the chaotic dynamical system so that the lorbit, and if attendant properties - e.g.. orbit

Fig.6- The distance (11) between orbits of f_{μ}
and $f_{\mu_{2}}, \mu_{2}=\nu-(0.1)^{I}$.
(b) Another measure of distinguishability of the orbits is the "orbit correlation coefficient"
$\rho_{1,2} \sum_{k=K_{\min }}^{\sum_{\text {max }}} f_{\mu_{1}}^{k}\left(x_{0}\right) f_{\mu_{2}}^{k}\left(x_{0}\right) /\left\|f_{\mu_{j}}^{k}\left(x_{0}\right)\right\| \cdot\left\|f_{\mu_{2}}^{k}\left(x_{0}\right)\right\|$.
Referring to Pig. 7, it is seen that this same extreme distingutshability persists to the limit of machine accuracy. (The values of unity for I near 12 occur when the machine can no longer distinguish μ_{1} and μ_{2}.) At the same time the correlation with orbit: considerably removed in μ persists. (As a check on the hoped-for independence of the calculation on x_{0}, the curve
of Fig. 7 is ectually the overlay of the curven for $x_{0}-0.1$ and $x_{0}=0.5$: thay are indiatinguishable on the graphica display.)

$$
\begin{aligned}
& \text { ORAs } \quad \text { ? } \\
& \text { OF FOw: }
\end{aligned}
$$

between orbits f_{y} and $f_{\mu_{2}}$ for $\mu_{2}=$ $\left.\mu-(1 / 10)^{\mathrm{I}}\right)$.
(c) Spectral denaity distinguishability.-

It aight be thought that, if a more grose property of the orbits were compared, their distinguishability might be smoother and decreasing with decreasing u-separation. Further, it is the orbit epectral density that ia prospectively most useful for choice of a chaotic model in practice.

Given an appropriate aegment of an orbit,
we define the "orbit covariance function, o.c.f." |as
$\mathrm{E}_{\mu}(1) \equiv \frac{1}{\left(K_{\max }^{\left.-K_{n i n}\right)}\right.} \sum_{k=x_{\min }}^{K_{\mu}} f_{\mu}^{k+i}\left(x_{0}\right) f_{\mu}^{k}\left(x_{0}\right)$,
$\mathbf{L}=0, \pm 1, \ldots . L$
where $x_{\min }{ }^{-1}>0$. (In order to allow the orbit to "atabilize", one prefers $\mathrm{Kmin}^{-L \gg 1 \text {, in fact: }}$ here, $\mathrm{K}_{\mathrm{m}}{ }^{-L} 1100$ would be Eatisfactory, generally.)
The "orbit spectral density, o.s.d." is defined as the discrete Fourier transform ("DFT") of the O.c.f.:
$S_{\mu}(\omega) \equiv \sum_{i=1}^{+L} e^{-1 \Omega \omega \ell_{R_{H}}(\Omega), w=0, \pm 1, \ldots . \pm L, R \equiv 2 \pi /(2 L+1)}$
The "distinguishability" of $S_{H_{1}}$ and $S_{\mu_{1}}$ is defined as the diatance
$D_{S}\left(\mu_{1} \cdot \mu_{2}\right) \equiv \frac{1}{2 L+1_{\omega}=-L} \sum_{\mu_{1}}^{+L}\left|S_{L_{2}}(\omega)\right|^{2}$,
which ie readily seen to be
$D_{R}\left(\mu_{i}, \mu_{2}\right) \equiv \sum_{\ell \in-L}^{+L}\left[R_{\mu_{1}}(\ell)-R_{\mu_{2}}(l)\right]^{2}$.
a diutance between o.c.f.u, rather than, us earlier, a distance between orbits themselves. Writing this fora out,
$D_{R}\left(\mu_{1}, H_{2}\right)=\sum_{i=-L}^{L}\left(\frac{1}{\Delta_{K}} \sum_{k=K_{\min }^{k}}^{\max }\left[f_{\mu_{1}}^{n+1}\left(x_{0}\right) f_{\mu_{1}}^{k}\left(x_{0}\right)-\right.\right.$

$$
\left.\left.f_{H_{2}}^{k+L}\left(x_{0}\right) f_{\mu_{2}}^{k}\left(x_{0}\right)\right]\right)^{2}, \Delta_{k} \equiv x_{\max }-k_{\min }
$$

In Fig. 8 this digtance is show for a eequence $\mu_{2} \mu_{\mu_{1}}-(1 / 10)!$ approaching $\mu_{1}-1.6$ in the "chaotic region," for $K_{\max }=200, K_{m i n}=100$, $\mathrm{L}=25, \mathrm{x}_{0}=0$. Again, to the computer's 1imit of 12 ignificant digits, the orbit epectral densithes are diatinguishablel

Fig. 8- The distance (13) between orbit apectral densities of f_{μ} and $f_{\mu_{2}}$ for $\left.\mu_{2}=(1 / 10)^{2}\right)$.
(d) This extreme sensitivity of the orbit of (6), and its orbit correlation function, to the precise value of the parameter in the chaoric region renders problematic the feasibility of uaing such a model in a practical case. Indeed, it raises a serious question whether the oft-cited and much-studied nonlinear mapping (6) is useful as a physical model at all.

6. References

1. P. Collet and J. P. Eckmann, Iteratced Maps on the Interval as Dynamical Svistems. Boston:Birkhauser, 1980.
2. 5. M. Ulam and J. V. Neumienn, "On combinations of stochastic and deterministic processes," Bull. Amer. Math. Soc. 53. P. 1120 (1947).
