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1. The area of research of this grant ~s the study of a novel 

method of extracting sea height information - the sample functions, 

generally - fran SAR coop1ex data, a nethod that was suggested by a furJ­

&mental SAR ocean iIraging node1 for gravity waveslll, that showed that 

information about the long wave is present in the SAR catp1ex data, espe­

cially its phase. The initial study [2],[3], min1y sUAX>rted by earlier 

~ and ONR grants and partially sUAX>rted 8.t the pililication stage by 

the present grant, enp10Yed an ad hoc, albeit quite reasonable, phase 

da~lation algorithm followed by linear regression and filtering: only 

the latter two steps incorporated a priori information that rrdght be 

available. A relatively si~lified simulation indicated that, aIIDfJ9 other 

possible 1irrdtations, the finite bandwidth of the SAR system inposed the 

apparently most serious 1irrdtation. A preliminary application to 

SEASAT-SAR coop1ex inagery was encouraging. This work has been reported 

to the comrunity, fornally and informally [2], [3] , [4] , [6] • It w:lS evident 

that a priori information about the long wave, at a min~ if incor­

p'rated into a "nore sophisticated" phase dem:xiu1ation structure - i.e., 

at an earlier point in the algorithm, could conceivably mitigate this 

bandwidth limitation. 

2. The work on this grant began by directly addressing the following 

central problem: given the SAR conp1ex data of the sea, node1ed as 

described above, and received along with thermal noise, what is the opti­

mal (minim.nn rrean-square error) estimatr)r Ca conditional expectation, 

then) of the long \eve structure and Mlat is its performance? \tItile such 

an estimator is generally very difficult to find and, when found, imple­

ment, nevertheless we have done so for this problem! The significance of 
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such an answer is sinply that it gives the best p:>Bsible perfonmnce wha­

tever deleterious effects my be nDdelled - finite bandwidth, thenml 

noise, randan phase, etc. 

(a) 1n particular, it has been found that this optinal estinator is 

able to overcare, to a considerable degree, the bandwidth limitation 

encountered by the earlier-p:>Sed, ad hoc, sub-optina1 estinator. The 

opt ina 1 estinator is able to do this because it incorporates in its struc­

ture the a priori knowledge available). This estination structure can be 

quite flexibly adaptive (at the cost of increased cooputation), is 

realized as an efficient, recursive calculation - e.g., as inferred from 

the SAR inage, and, generally speaking, seeIr5 practical. 

While we will defer detailed discussion tu a forthcoming article [8], 

we call attention to the sinulation shown in Fig. 1. The corrplex inage 

was (randanly) generated using our nDde1 of the SAR conp1ex inage of the 

sea and was processed by the optiIIB1 estination structure to produce an 

estinate of the height of a sinusoidal long wave - of known phase and 

wavenumber, as could be separately estinatd from the SAR inaqe, e.g. the 

long wave shape is shown in Figure 1 and the resulting mean-square error, 

and its sanple average, for 50 siIl1.1lation runs is shown in Figure 2. The 

wavenuntler spectrum generated by the SAR ocean-sensing rrechanism is 

several tines greater than the SAR bandwidth rut the j;)&fornance is very 

good! ! 

(Also shown for reference is the Cramer-Rao lower bound when the height is 

an unknown parameter: in the sinulation it was ass-..nned to be a Rayleigh 

random variable with an a priori known variance.) 

(b) The above-discussed optinal m:xiel has, in the nain, been ela­

borated so far assuming a stationary scene. Actually, it nay well turn 
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out that the assunption ~s not especially limiting in view of analysis 

concerning the inege l'!Ddel nature. Urner reasonable conditions (e.g., an 

L-band SAR with not too fine a resolution and typical sea paraneters) 

(1) the srrall wave structure part that can influence the SAR inage is nore 

concerted than dispersive in its action, and (ii) an appropriate focus 

adjustnent can "l-ender the long wave stationary". Then, with: '.i SOITe 

details, the SAR inaging nodal reduces to that used in the above-discussed 

height estinetion study. 

(The observation (ii) is a well-known controversy in this community 

and ',,~ have had a fairly general proof that the focus adjustment is deter­

mined by the long wave's phase velocity for sone tine. The experinental 

"test" of this focus parameter dependence, proposed at an APL workshop 

last Octcber was, as reported at a W\RSEN workshop at JPL in January, in 

each instance su~rti ve of our SAR l'!Ddel: that is, that the dependence is 

on the long wave's phase velocity. ) 

(c) In considering the practical inplerrentation of this optinal 

estinetor, it was noted that a significant saving in computation can be 

achieved by generating the short wave ensemble by a so-called "chaotic 

dynamical" process - rather than the "conventional" (e.g., Markov) random 

process nodels. Such an observation is of nuch wider consequence and an 

initial ~lication has been prepared [7]. Besides its potential com­

~tational advantage [8], such "chaotic': lOOdels of the sea surface are 

known to arise naturally as solutions to the nonlinear hydrodynamdcal 

equations and, hence, nay be precisely the kind of nodels needed. 

(d) The nature of the short ~ve ensemble plays a critical role: 

its presence is necessary for receipt of backscattered energy at typical 

internediate incidence angles; at SDBll incidence angles a quasi-specular 
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!lb. ~kscatter fran the long wave can be mre signif icant. The structure of 

an optil1l11 height estinator, and its perfornance 1epends upon the sta­

tistical nature - e.g., "coherence length" - of the short W!lve ensemble 

and on the backscatter node as determined by the incidence angle. A sinu­

lation of the estimation algorithm - and the SAR image - in a study would 

be very infornative, as would be eventual catparison with the data forth­

caning fran the SIR-B experiment, offering data at various incidence 

angles. 

(e) The algorithm was simulated through numerical sinulation of the 

optimal estimation algorithm to estsablish, as completely as possible, its 

accuracy, flexibility, and practicality; The attenpt to apply the 

algorithm to ~T-SAR data, as supplied by Nl\SA JPL and/or ERIM, leS 

only partially accarplished: despite repeated requests to both, only a 

limited anount of data \taS obtained frcr.l ERIM: see [8], included in this 

report. 

3. The following p.lblications, presentations, and discussions -

accarplished and prospective - have been done during the Grant period. 

(It is likely that the topic of [8] will produce several plblications -

as, e.g., [7].) 

I. Journal, book, and proceedings pililications supported by the Grant: 

(1) "The SAR image of short gravity \taves on a long gravity \eve", 

in Proceedings of a SyttpOSium on Wive Dynamics and Radio 

Probing of the Ocean Surface, O. M. Phillips and K. HasselnBn, 

Eds., Plenum Press (in press). (Partial support of revision 

and manuscript preparation; also supported by earlier NASA 

grant. ) 
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.. 
(2) "A sea surface height estinator using synthetic aperture radar 

carplex iIrBgery", IEEE Trans. Ocean Engineering, April 1983. 

(Partial support for revision and IrBnuscript preparation1 also 

sUPlX>rt.ed by earlier NASA grant.) 

(3) "A sea surface height estiIrBtor using SAR COI'I'(>1ex inagery", 

Proceedings of Oceans '82 Conference, ",shington, IX: SE!pt.eniJer 

1982. (Partial support for travel and manuscript preparation1 

also supported by earlier NASA grant.) 

II. WOrkshop participation related to grant: 

(4) "A oovel SAR spectral estiIrBtion algorithm", presented at 

SEASAT-SAR ~rkshop on Ocean W!ve Spectra, Johns Hopkins Applied 

Physics Laboratory, October, 1982. 

(5) ONR W,rkshop on SAR Ocean IIrBginq Applications, Johns Hopkins 

Applied Physics Laboratory, December, 1982. 

(6) NASA MMBEN W,rkshop on SAR Ocean IIreging Theory and ExperiIrP.nt, 

Cal. 'rech. JPL, Jan., 1983. 

(7) "OptinBl estimtion with chaotic dynamics", Proceedings of the 

1983 Conference on Infornation Sciences and Systems, Johns 

Hopkins University, March, 1983. 

III. Publications in process: 

(8) "A Fundamental MXie1 and Efficient Inference for SAR Ocean 

Imagery", being revised for p.lbl ication in IEEE Jo. Oceanic 

Engrg. 

Enclosed are a reprint of (7) and a preprint of (8). 
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Recently deepening understanding of nonlinear dynamical systens has 

revealed an interesting aspect of their possibl:, carplicated behavior -

their so-called 'chaotic', seemingly randan, evolution. The observation 

of such an evolution leads naturally to the problem of estirreting aspects 

of such systems, a problem area of increasing inportance as the use of 

such models spreads into many sciences. 

16874 

While the evolution of chaotic syst.enB can be very corrplex, it is the 

result of iterating a nonrandom lIBpping of a (possiblr randan) initial 

state: cptimal estirretion structures can thereby sinplify, relative to 

conventional random evolutjons, possibly to practicality in specific 

instances. 

This last remark is of additional significance since, in prac~:ice, it 

is often true that only quite limited Jc:no".tledge is available for ltDdel 

construction - e.g., a correlation function: the 'orbits' of a chaotic 

dynamical nodel DIlY well have a suitable sanple-plth correlation. 

Typically, the evolution of such chaotic dynamical systens is indexed 

by a 'chaos parameter': both the gross and detailed nature of the evolu­

tion can depend upon its precise value. 'I11us a carputationally sinple 

dynamical IIDdeI is capahle, under parametric control, of generating a 

diversity of 'saD'ple functions'. Of oourse, the obverse is that, first, 
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care DUSt be taken in applying such nrdels and, second, the perfornaDCe of 

estilllltion schemes nay also sensitively depend upon the value of the chaO& 

paramet~r. 

The fortrll!ation of Q recursive estimltion problem, in discr£te tine, 

usinq Mlrkov and chaotic descriptions is CX)ntrasted. '!hen a sinple para­

meter et'ltination problem is noted in Wlich the nore gencrl\l role of cer­

tain orbit functionals a.ppears. Nexl a !lOre carplicated nonlinear 

filtering problem - arising, e.g., in an ocean l'errote sensing system - is 

discussed. Finally, the 'identification' ofehe chaos paraneter itself is 

studied, assumir19 an a priori distribution. Gi.!l'leI'ally conditi~nal eepec­

tation es'ti..nators are considered with the assistance of nwtI!rical 

carpltation. 
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,-- OPTlHAL INr£kENCE WITH CHAOTIC DYNAMICS 
I. O. Harau. 

N84 El.ctric.l Enlin.erin& Depart.ant 
Univaraity of Maryland 
Collele Park, MD 20742 16875 

: Abatract i----
Nonline.r .. pplnal that cen axhibit 

"chaotic," .... inlly random, evoluticlD have 
,.pprd .a .odel. of dynaaic.l .y.t.... Their 
'dat.:mioi.tic evolution, via-a-vil Markov evolu­
tion., c.n reault in auch ai.pler opti .. l 
detection and e.tt.Ation allorithaa. The varia­

'tion of • "chao." p.r •• ter (~) C.n reeult in 
Idivera. evolution., aUI&.ating • aimple but rich 
aource of andel variationa. For the .pecific 

'aappin& e ... ined here, this latter poe.ibility 
1a probl .... tic due to the extreae aen8itivlty 

!on of the evolution io the "chaotic rea1me." 

1. Introduction 

, lecent deepeninl understanding of nonlinear 
'syat ... haa reve.led an intereeting aspect of 
their po.aibly coaplicated behavior - their so­

,called "chaotic," .eer1ngly r.ndOll, evolution. 
'The observation of .uch .n evolution le.ds 
naturally to the probl .. of .. king inferencea 
'reiardin, a.pecta of .uch evolutiona, a probl.m 
,incree.inl in importanc. with the Ipreadins 
Itudy of luch andel. in aany acientific areas. 

While the evolution of .uch a aystem can be 
very complicated indeed in detail, in one respect 
'it i. ltaple, evolvini .a an iterated, nonrandom 
.. pplng on a liven initial atate. Optimal algor­
ithms for inference - detection and eatimation -

:can be computationally quite feasible. 
Thia obaervation and tha remark that, in 

practice it ia often true that only quite limited 
knowledge - e.I., a covariance function - i. 
availaDl. for 80dal con.truction, leed. to the 
idea Lhat a nonlinear, "chaotic" model might 
provide evolutions with .uitable properties. 

Such chaotic dynamical IIOdels may be indexed 
by a "chaoa" parameter: both the gross and 
detailed nature of the evolution may depend 
,draaatically upon its preciae numerical value. 
~hus a relatively simple dynamical model can be 
capable of generating a diversity of evolutions, 
under a simple parametric control. Paradoxieal~, 
,careful conaide~ation would be required in a 
~practical application. Also, the performance of 
'optimal inference allorithms may depend sensitiv­
ely on thie parameter. Brth matter. will be 
addressed here. 

2. Markov and Chaotic Inference Models 

nonlinear (.) Consider a discrete time, 
system evolVing in accordance with 
aodel 

the dynamical 

I 
x(k+l)-f[x(k), w(k»), k-O,l,: •• , (1) 

where Iw(k)l is a aaquenee·of mutually indepen­
dent random vari.bl •• ( .. r.v .... ). The evolution 
(1) ia observed •• 

y(:.)-:;[x(k) ,v(k»), k-O,l, ... , (2) 

where {v(k)l ia a sequence of ... tually independ­
ent r.v.s, the random processes Iw(k)l and 
{v(k)l being independent. (f and g are real 
functions of two real arguments.) 

Taking up, e.I., the filtering prubl~m 
~Pti .. l estimation of x(k) liven the observation 
y(k) : (y(O) , ... ,y(k», the knowledge sufficient 
for estimating x(k) in accordance with eOlll11lon 
optimality criteria-a.g., minimizing the estim­
ate I. mean-aquare error (''MSE'') - 15 given by 
~he a posteirori diatrtbution of x(k) given 
y(k), denoted p(x(k)1 y(I<»). (We as~ume density 
functions ("d.f.".) exiat in every case.) It h 
well-known that the evolution of this a poster-
10ri d.f. is governed by the recursion 

fF(\l.+I,k)dx(k) ,(3a) 
p[x(k+l)ly(k+l»)- fF(k+l,k)dx(k)dx(k+l) 

where 

F(k+l,k);p[y(k+lHx(k+l») p(x(k+l) I,,(k)] 

p[x(k)IY(k»). (3b) 

It 1s also well-known that this recursion is, 
generally, very difficult to apecify in detail 
and implement as a feaaible computation. The 
!inimum KSE estimator (''M-KSE-E'') of x(k), given 
y(k), 1s then 

;(klk) - fx(k)p[x(k)ly(k»)dx(k) (3c) 

where p[x(k)ly(k») 1s computed recursively by 
(]a) • 

(b) Alter:\atively, consider the evolution of 
a possibly "ch.otic" nonlinear system defined by 

x(k+l)-f~[x(k»),k-O,I, ••• ,x(O)-xO' (4) 

where Xo 1& an initial state and ~ is a ("chaos") 
parallleter; xo and/or ~ may be random variable<, 
(" r • v. liS) • Conditioned upon any such random',ess, 
if present. (4) describes a non-andom evolution 
that, when replacing (1) as a ~ynamical moJd, 
results in a great simplification of (3), n~mc!y 

p[x(k+l)ly(k+l)] - (Sa) 

itl 
Ifp[y(k+I)lx(k+l»)6[x(k+l)-1~ (xO»)G(k)dXoJ e 

f fG(k+l):dxOd~ 

O~'GII\V\ L n·'1 "'::~ r,.;,: "I I";·' i'j.U,- h.-
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A v.r1.ty of r.l.ted 1nferenc. proble •• c.n 
b. pOlld •• 11 .1ap11fytna areatly •• a eona.qu­
ance of the ltap11f1eation of the jOint d.f.: 

I .... k I 
p(y(k).x(k\!l)-., p(y(1) x(1)1. 
k 1-0 
., 6{X(j}-f j

(kO)I' p(xO)p(~)· 
j.l ~ 

(5d) 

(c) The aodel (4) Can ruult in far l! .. 
'I calcul.Uon th.n the model (1). Suppoae xOt Ik) 
, at k·k. 11 r.quirad: (3e) requir.1 4k. int.gra­
, tion; in contralt. (Sc) requir •• only 4. If 

I 
I 

x(k) in aodel (1) il a vector of d1menaion N. 
the tntea,aUona r.quired are. relp •• 4k.N and 4. 
Thia latter coapari80n i8 of intere.t if. in 
such I caae. (4) can •. n a~"", len3e. adequately 
replace (1) al a aodel. 

(d) For the .pacific nuaerica1 calculations 
here we choole the .. pping 

f (x)H_~x2 • XE(-1.1).~dO.2); (6) 
~ 

it il repreeentative of a well-studied class of 
aappinss that are (i) continuous. (il) of one 
aaxiaua (.t x-Oj. (iii) aonotone decreasing with 
increasina Ix I. and (iv) of • certain convexity 
in the deriv.tive aflax{l). The aeneral nature 
of the "orbiU" {x(k)·f (x8)' k>O} 11 luuuted 
by Fia. 1 where {x(k). ~-5 0 to-600} ia plotted 
versuI~. Viewing it. loae of the following 
f.cts .re .gree.ble. 

fl. Fia· l-The itlretu (500 to 600) of (6). 
For luf~1cient1Y ... 11 value. of ~. the -- -.~ ----- -. ,_. . . - - "._-- -

om(:.H;·'i .,:.. i"i~'" ' , 
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orbit •• for .lao.t all xO' approach a "final" 
value x(-) •• fixed point of the sapping f~. As 
~ ia incr •••• d lutflci.ntly •• "bifurr.tlon" 
occur •• the orbit th.n. for alaoat all xO • 
• pproaching •• t.ble. periodlc vlalt ~o two 
v.luel. fixed point. of the sapping f~. A. ~ 
incr ...... further bifurc.tions occur on an 
lncr" •• inlly flner .c.l", until ~ - 1.40155 .. 
i. reached. where. quit. different behavior is 
.ncountered. 

Th.re .n .periodic .otion on • .et of 
(L.belqu.) .... ure 0 occur.; the orbita of .1mo& 
.11 xo .re .ttracted to thia let. and the orbits 
initially "clole" reuin cloae (for al1llOit all 
"0) - .n ergodic. but not .ixin~. evolution. 

When ~-2. the orbits .re Ilso almost all 
aperiodic. but range over the entire interval 
(-l.lJ: .n invariant .easure •• bsolutely contin­
uous with reapect to L;.~e.que measure. exists 
and ita fona 18 known (2). Orbite initially 
cl08e .laolt lurely do not remain close-an 
.raodic .nd .ixina .volution. (Incidentally. th~ 
points xO.0.il/2.tl are ealily directly seen to 
be .xceptional pointl-as I numerical analysis 
uy well inadvert.nlly dilcoverl) 

It is not known if other typM. of evolution 
occur: in f.ct. the dyn.mics of this model are 
not fully ~nderstood. thoUlh • great dc~l is 
known (1). The following facts .re helpful ill 
orienting .nd evaluating numerj ·oal ""Ialysis 
(i) f hal either one or no stlble. periodic 
orb1t~. (11) If f has a st.ble. periodic 
oribit. then the orb~ts of almo~t all xo are 
.ttr.cted to it .nd. specifically. xO-O i. tiD 

.ttracted. 

3. A 5imple estimation problem 

A typical question that arises concerning 
the nonlinear andel (4) occurs in the following 
aimple eatimation problem. Suppose that xo ond 
~ 3re known. priori and that (2) is specialized 
to 

y(k)-a x(k)+v(k). k·O.l ••.•• (7) 

where a is an unknown parameter to be estimated, 
having data v(k). Suppose further that the 
{v(k)} are identically dis~ributed normal r.v.s. 
with mean 0 and v.riance v • 

Then it is easy to show that the maximum 
likelihood eatiaator. 

'" k i .k i 2 
.(k)·[ t y(i)f (xO»)/. r (f~(xO») l. (8a) 

i-O ~ i.O 

i. efficient- that is, it is unbiaaed and of 
error variance _qual to the Cr~mer-Rao lower 
bound. n .. ely 

'" 2 2 k i 2 -1 
E{ (a(k)-.) I· v { t [f (x

O
») l . (Bb) 

i·O ~ 
Therefore. of .pecial interest ia the .verage 
along the orbit. k 

1 (fi( »)2 (8~) V(k;xO'~)= k t ~ Xo . 
i·O 



!,:ena1ii "acud.iil" 1j~' .. UOD8 ari .. : a., •• for 

liar,. k. doe. V(k;.o'~) d.p.nd upon .0 .nd/or ~t 
ror the .od.l {6). V(k; •• ~) i •• a.ily Qu.­

.rically calculatad. Tha ra.Slt can b ••• p.ctad 
to b. influancad by two phenoaena: fir.t. a 
nuabar of itarationl .. y be requlr.d before the 
'orbit arriv.1 on the "attractor" (a ...... 1nl it 
, .. i.tl) and. aacond. a vary lar,e nWlb.r of it.r­
'aUona .. y b. raquired to Ichieve ".tabl." 
ilverl,e vllue ovar the ettractor. \~e firat 
,effact ia Doticeabla but hare min1aiz.d by au..­
'iD, froa the lOOth itaration on. A IWI oyer tha 
:aubaaquant 100 iterationa reaulted in aD orbit 
~v.ra,. Y apparantly independent gf xo for trial 
Iyalu.a of \I - .4 •• 8. and 1.2: ••• Ft,. 2 where 
'XU.(O.O.OS ••••• I). Furth.r calcul._ion over 

1

'1.000 (vic. 100) iterationa ra.ulted in indepen­
danca of XU of V when ~.1.6 and. when ~-2. furdle% 
Icalculation oy.r S.OOU iterations resulted in a 
rtsble v~lue of V. independaat of XU. 

PiI.2-The orbit avera,e V of (8c) veraul xO. wi.h 
~ aa par ... ter 

4. ChaLs Parameter Estimation 

Takin, up the "chaotic" dynamical 1IIOdei (4) 
and the nb.ervation model (6).(1) - with a-I. the 
H-HSE-E ~(k) of ~. given data Y(k). ia. by (5). 

,where (9b) 
.. I -1 k i 2 

,p[)'(k)I~)- ili.
u 

eXP!-2 t [y(i)-f (xO») }. 
• 2" i-a ~ 

The ...... are efficienlly. recurs~vely calculated. 
The dynaaical. observatioP, and uptimal 

e.timator equatioDS wer~ numericallY simulated 
and .081 reaul ta are shown in F1&. 3. f or ~ t 
(0.33.1.1.46.1.76). all with xu-O. Referring to 
Fig. 1. the rate of converg~nce for ~ [(0.33.1. :1. 76) intuitively corresponds to the "distinct­
!ivene .... of these ~ values; the quite rapid 
Eonvel,ence ~or ~-1.46 in the chaotic region is 
iDfor.ative •• The (true value. eatimate)-pairs 
L-..-_____ -- '-'";-' -" - ------ - -

were (0.33.0.332 •••• ).(1.1.01 ••• )(1.46.1.45 .•. ). 
(1.76.1.763 ••• ). all for v-O.l. Theae aimula­
tiona .. ployed • net of 100 pOints in ~: aa k 
incr!a •• d. the aupport ~f the a po~tvriorl d.f. 
p[~ly(k)1 b.c .... within the numerical range of 
the co.puter ( 10~35). conf~ned to a amall 
portion of th ... poiDt.; : •.• a more r..tined. or 
adaptiv.ly rafined. ~-n.t would be of int~re.t. 

Fig.3- The HoMSE-E ~ of (9) for aeveral ~. 

The general conelu •• on at this point is that 
the parameter ~ ia efficiently and accurately 
eat1taated by the H-MSE-E. At i.aue. however, 
i. a ao .. what IOOre subtle ... tter. a. will be aeen. 

Cramer-Rao bound. - The Cramer-Rao lower 
bound on the mean-aquare error tbat any eatimator 
... y heve. 11 of interest-though it is nor. nec-
e •• arily attainable by any e.ti ... tor. This 
lower bound involvp the generally well-known 
form-take Xo and ~ to be unknown parameters -

.2 .. 1 k a.i 2 
-EI -2 inp(y(k),IJ)}-'2 t [artxO») (lOa) 

a~ \I i-a ~ ~ 

Here. given (6). the derivative with respect 
to ~ can be defined recursively a. 

(lOb) 

, 1 ' l' n-l :l fO_O. ~ fn __ (fo- )-_2~fn- . ~ f I 
a~ a~ .n~ '0; 

Tho! behavior of afn /d~ it"elf i~ of ~" .. e inte,,",.l: 
like fn. it display. a rich beh~vlor. While 
boundpd-it ia a polynomial in ~ of degree less 
than n. it can Le relativ"w lar,;" at pOints 
(in ~) of bifurcation of f • and it is very large 
in the "chaotic regior.." In Fil!. 4. the 90th 
through lOath iterates of this derivative are 
plotted over a restricted ~-set in the "chaotic" 
regime so that detail may be seen. It can be 
many orders of magnitude greater "till at larger 
~. At l~ast some of the nature of Jfn/a~ is 
inferrabie from the nature of fn as eviden"ed 
in Fig. 1. 

G, '\ : ; :~ ~ ~ .' ~. t.:··. r ; '~~ : :'.~ 
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Fia.4 - Th. deriv.tive afn/a~ of (lOb). for n -
~O to 100. v.rau. ~. 

The orbit evereae eppearing in (lOa). 

<IL> = 1. ~ (L fi(x »)2 
IL i-O a~ ~ 0 

(lOc) 

ia ahown in Fii' 5 for k-20, x -0.05. and 40 
point. in~. A. the nuaber ofO~ points are 

;incr .... d. areater detail in <k>'. ~apendaQce un 
:~ ia seen in the chaotic region. generally to the 
llait of the computer iraphic& and beyond. The 

.nature of the ~-d.pendence otherwise i. intuit­
'ively agreeable with the dependence exhibited in 
.Figs. 1 and 4. 

I 
I 
i 
! 

The very large valuea of <IL>. for this rel­
atively a .. ll IL, for moat of the ~ in the chaotic 
region •• ee. to there allow extremely .ccurate 
e.timation of ~. (A Monte Carlo .1mu1at10n of the 
H-HSE-E (9) could eatabli.h, numerically, whether 
or not such eatimator. exist.) But such a cor.­
clu6ion would depend upon the utilization of the 
,eat iaate: if it 11 to be able to "identify", or 
fix, the chaotic dynamicsl Iyste. ao that the 
~._AWL1t • .Att&l1d&nt prop&rt1e1l - c.a., orbit 

correlation functlon - would then be ILnown, the 
concluaion appeara to be unjustifiedl To clar­
ify thi ••• harper ... ure. of "orbit dhtingu1ah­
.bUity" ar. now conddered. 

S. Orbit diatinguishability 

(a) Th. re.ulta of the chao. p.rameter 
•• tiaation probl •• ju.t di.cu ••• d allowed the 
po •• ibility that the orbits of (6) ••• ob.erv.d 
vi. (7)(w1th .-1). are .xtr ... ly di.tiniui.h.blL 
To .harp.n tbi. que.tion. auppoa. one of two 
orbita, correapondini to ~l .nd ~2' .re .ccord­
inaly ob.erv.d: then, by .ny of tbe u8ual ~eci.­
ion criteria. the dec1aion performance i. deter­
ained by tbe "dbtance" 

IL k 2ILk k 2 
1\ f (.O)-f (xO)\I - I If (xO)-f (.0)" (11) 

"1 "2 k-O ~l "2 

normalized by }. 
In Fig. 6 is .hown this di.tance, depending 

on • sequence ~7.=~l-(O.l)I with ,,-1.6 .nd for an 
orbit aegment from k-lOO to 1.100. The remark­
able reault i. that. to the accuracy of the 
computer'a repre.entation of numbers (12 signif­
icant digits), tl· .. orbits remain distinguishablel 

Fig.6- The distance (11) between orbits of f~ 
and f~2' ~2·~-(0.1)1. 

(b) Another measure of distinguishability 
of the orbits is th~ "orbit correlation coeffic-
ient" 

(12) 

Referring to Flg. 7, lt is 5een that this 
•• me extreme dlstingutshability persists to the 
11mit of machine accuracy. (The values of unity 
for 1 near 12 occur when the machine can no 
longer distinguish "land "2') At the same time 
the correlation witb orbits considerably removed 
in "persiatl. (As a check on the h~ped-for 
1AdepCDd~ of the calculation on 10' the curve 
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PiI.7- The correlltion eoeffictent p of (12) 

\ 

betveen orbitl ~\I and f" Cor "2-
11-(1/10)1). 2 

$:) spectral density dhtinl!uhhabllity.­
ilt .ilht be tboulht that. if a .ore Iroas proper­
I ty of the orbitl vere coapared. their diatinlui­
:lhabiUty aiaht be '!IOother Ind decreaa1n& vith 
'decrea'ina II-Ieplration. Further. it i8 the 
'orbit Iplctra1 dendty that 11 proapective1y 
;lIOst uleful for ehoice of a chaotic model in 
'practice. 
I Given aD appropriate aeament of an orbit. 
,ve define the "orbit covlriance function. o.c.f." 
la, 
I 
, 1 
Ii (1)=(K -K ) 
: II aax 8in 

'·Ot il •.•• IL, 

vhere K",in-L > O. (In order to allov the orbit to 
"Itabili,.". one prefera K",in-L »1. in fact: 
here. Kain-L"'lOO vould ba aathfactory. lener­
ally. ) 

The "orbit apectral dandty, o.s.d." is 
,defined al the d1lcrete Fourier tran,foI1ll ("OFT") 
of the a .c.f.: 
I +L -illwl 
IS (w)E tell (1) .... O.t1 ..... iL.IlE 2./(21.+1) 
, II l-L \I 

I The "distinl!uhhabiUty" of 5 and 5 
"I "I 

Idefined aa tbe diltance 
I I _ 1 +L 2 

I"""""'''''=-' 1'.,"'-'.,"'1 ' 
vhicb i, readily leen to be 

+L 2 
0a("i'''2)E t III (1)- Il~ (1)] • 

t--L "l 2 . 
___ -'---. __ -,---. _._. - - I. _. 

(13) 

a dbtance betw.en O.C.LM. rall ... r thun, u .. 
earlier. I diltance betveKn orbitl them.elv.a. 
Writinl tbil fora out. 

k 
L 1 aax n+l 

0a("1'''2)- t {.... t If (xO) 
t--L II; k-K ~l .in 

f k+! (x ) k ( ) ] ) 2 -
O f Xo • A,,: K -K i . 

"2 "2 .. aax • n 

In Fil. 8 thil diltance la Ibovn for a 
lequence "2-"1- (1/10)~ approechinl "1-1.6 in 
the "cbaotic nlion." for Kmax-200. K",in-lOO. 
L-2S. x -0. Alain, to the computer'a limit of 
12 .iln~flcant d1litl. tb. orbit apectral densi­
tiel ar~ diltinluisbable! 

I 
I 

Fli. 8- The diatlnce (13) between orbit apectral 
densities of f" and f for w2-
,,-{l/lO)l). "2 

(d) Thls extreme aensitivity of the orbit 
of (o), and it. orbit correlation function. to 
the precise value of the parameter ~ in the 
chaotic rellon renders problematic the feasibil­
ity of ualng sucb • model in a practical cas~. 
Indeed. it raise. a .edou. question whether 
the oft-cited and much-atudied nonlinear mapping 
(6) is uaeful IS a physical model at all. 

6. References 

1. P. Collet and J. P. Ec!<mann, Heratd Haps 
on the Interval as Dynamical Systems. 
Boston:Birkhauser. 1980. 

2. S. K. UIam and J. V. Neumann. "On combina­
tions of stochastic and deterministic 
proce .. e •• " Bull. Amer. ""th. Soc. 11, p. 
1120 (1947). 


	GeneralDisclaimer.pdf
	0050A02.pdf
	0050A04.pdf
	0050A05.pdf
	0050A06.pdf
	0050A07.pdf
	0050A08.pdf
	0050A09.pdf
	0050A10.pdf
	0050A12.pdf
	0050A13.pdf
	0050B01.pdf
	0050B02.pdf
	0050B03.pdf
	0050B04.pdf
	0050B05.pdf

