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ABSTRACT. Bifurcation theory is used to analyze the nonlinear dynamic

stability characteristics of an aircraft subject to single-degree-of

freedom pitching-motion perturbations about a large mean angle of attack.

The requisite aerodynamic information in the equations of motion can be

represented in a form equivalent to the response to finite-amplitude

pitching oscillations about the mean angle of attack. It is shown how

this information can be deduced from the case of infinitesimal-amplitude

oscillations. The bifurcation theory analysis reveals that when the

mean angle of attack is increased beyond a critical value at which the

aerodynamic damping vanishes, new solutions representing finite

amplitude periodic motions bifurcate from the previously stable steady

motion. The sign of a simple criterion, cast in terms of aerodynamic

properties, determines whether the bifurcating solutions are stable

(supercritical) or unstable (subcritical). For flat-plate airfoils

flying at supersonic/hypersonic speed, the bifurcation is subcritical,
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implying either that exchanges of stability between, steady and periodic

motion are accompanied by hysteresis phenomena, or that potentially large

aperiodic departures from steady motion may develop.
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1. INTRODUCTION. Problems of aerodynamic stability of aircraft flying

at small angles of attack have been studied e~tensively. With increasing

angles of attack the problems become more complicated and typically

involve nonlinear phenomena such as coupling between modes, amplitude

and frequency effects, and hysteresis. The need for investigating sta

bility characteristics at high angles of attack was clearly demonstrated

by Orlik-Ruckemann [1] in his survey paper which largely deals with

experiments.

On the theoretical side, the greater part of an extensive body of

work is based on the linearized theory, in which the unsteady flow is

regarded as a small perturbation of some known steady flow (possibly

nonlinear in, e.g., the angle of attack) that prevails under certain

flight conditions. The question of the validity and limitations of such

a linearized perturbation theory is of fundamental importance and yet

has been investigated only rarely. One may argue that in principle, it

should be possible to advance to higher and higher angles of attack 0

by a series of linear perturbations, since the solution at each step

should include a steady-state part which, when added to the previous

steady-state solution, would provide the starting point for the next

perturbation. This may well be true provided that at each step the

steady motion is stable both statically and dynamically, and that the

actual disturbances, e.g., the amplitude of oscillation, remain small.

However, the linear perturbation procedure must eventually cease to be

valid when the angle of attack exceeds a certain critical value 0 cr

at which the steady motion is no longer stable.
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In this paper we investigate the stability characteristics of an

4

aircraft trimmed to a mean angle of attack cr nearm crcr at which the

steady motion becomes unstable. Padfield [2] studied a similar problem,

using the method of multiple scales, which is valid only for weakly non-

linear oscillations. We shall study the problem by means of bifurcation

theory. This will allow us to draw on recent mathematical developments

(e.g., [3]) that are particularly well suited to investigating funda-

mental questions in linear and nonlinear stability theory. A numerical

scheme based on bifurcation theory was proposed earlier [4] for analyz-

ing aircraft dynamic stability in a rather general framework. More

recent work [5] demonstrates the considerable potential of bifurcation

theory in flight dynamics studies, particularly toward establishing a

method for the design of flight control systems to ensure protection

against loss of control. On the other hand, while acknowledging the

importance of the .aerodynamic model in determining the aircraft stability

characteristics, neither of these works contains an adequate assessment

of the model requirements. The treatment of unsteady flow effects, in

particular, receives no attention. In contrast, we shall focus on just

this aspect of the problem at the expense of narrowing the scope of the

motion analysis. Restricting the motion to a single-degree-of-freedom

pitching oscillation will enable us to analyze a motion for which com-

plete aerodynamic information is available, for certain aerodynamic

shapes, in the form of exact solutions of the inviscid supersonic/

hypersonic unsteady flow theory [6-10]. In this way it will be possible

to establish a form revealing a precise analytical relationship between



the basic aerodynamic coefficients and the characteristics of the motion.

For a more extensive account of the analysis presented here, see [11].

2. MATHEMATICAL FORMULATION.

A. The Coupled Dynamic/Aerodynamic System. We restrict attention

to the sing1e-degree-of-freedom pitching oscillations of an aircraft

about a fixed trim angle. Before time zero, let the aircraft be in

level, steady flight with its longitudinal axis inclined from the hori-
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zontal velocity vector by the fixed trim angle of attack o •m At

time zero the aircraft is perturbed from its trim position, but during

the subsequent motion the center of gravity continues to follow a recti-

linear path at constant velocity v .
00

The instantaneous angle of attack

o(t) is again measured relative to the horizontal velocity vector, while

the inclination of o(t) from the fixed trim angle

be designated s(t). The equations of motion are

~ (0 - 0 ) = ~dt m

I d~ = M(t)
dt

o , o(t) - 0 , willm m

(2.la)

(2.1b)

where I is the moment of inertia and M(t) the instantaneous aerody-

namic pitching moment, both referred to the center of gravity. We

assume that the moment required to trim the aircraft at o has beenm

accounted for, so that M(t) is a measure of the perturbation moment

only.

Now we consider the equations governing the flow around the aircraft,

assuming for simplicity that it is permissible to neglect viscous effects.

The inviscid unsteady flow-field equations are



+
av + + .YE.at + v • Vv + P = 0

(2.2a)

(2.2b)
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where

.l.. L + ~ • v L = 0 (2. 2c)
at pY pY

+
p, p, and v are the pressure, the density, and the velocity

vector, respectively, and y is the ratio of specific heats of the

medium. Denote the position vector originating from the center of

gravity by t and let the equation of the body surface be

B(t,~(t» = 0, which, as noted, depends on the instantaneous displace-

ment angle ~(t). The tangency condition at the body surface is then

aB + o7ov· • DB = 0 B 0at v on = (2.3)

which also depends on ~(t). The far-field boundary conditions (relative

to a coordinate system fixed in the aircraft) are

(2.4)

for subsonic flight, or the well-known shock jump conditions for super-

sonic flight.

It is clear from the above that the pitching motion of the aircraft

~(t) is coupled to the unsteady flow field (e.g., the pressure p)

through (2.3), and, more directly, through M(t) in (2.la&b), which is

determined from the instantaneous surface pressure through

+
M(t) = rJ + VBJl r x p TVBT dS

S:B=o .
(2.5)

The principal difficulty, however, is that the instantaneous surface

pressure in (2.5) depends not only on the current state of the flow

•



field but also on its prior states. This means that past values of E;,

figure in the determination of the current state of the flow field and

-+-
M(t) is a functional, not a function, of E;,(t). Thus, unless approxi-

mations are introduced, a determination of E;, starting from given

initial conditions requires the simultaneous solution of the coupled

equations (2.1-2.5).

Although the, simultaneous solution of the coupled equations (2.1-2.5)

in principle represents an exact approach to the problem of determining

time-histories of maneuvers from given initial conditions, it is

inevitably a difficult and costly approach (see the discussion of [12]).

Approximate approaches leading to simpler, less costly computations are

a practical necessity. To date, these computations have invoked the

assumption of a slowly varying motion of known form (e.g., a harmonic

motion) whose aerodynamic force and moment response at t could be

calculated. This stratagem, in. effect, uncouples the flow-field equa-

tions from the equations of motion. In a series of papers (see in

particular [13]), Tobak and Schiff have shown how this stratagem can be

rationalized to create mathematical models of the aerodynamic response

at various levels of approximation of the dependence on the past motion.

(See also the contribution of Tobak, Chapman, and Schiff in this

collection. )

B. Uncoupling Near Neutral Dynamic Stability Boundary. Let us

7

suppose that there is a mean angle of attack (J = (J
m cr at which the

damping-in-pitch coefficient vanishes. Then, at and beyond this angle

of attack, the steady motion of the aircraft will no longer be stable



so that, in response to a disturbance, the motion will seek a new stable

state which usually will consist of a finite-amplitude periodic osci11a-

tion about the mean angle of attack. The changeover from a stable

steady motion to a stable periodic motion is called a Hopf bifurcation

8

(see [3, 14], also Sec. 4). Thus, in the vicinity of o , where thecr

damping-in-pitch coefficient will be near zero, the consequent persis-

tence of oscillatory motions will make it particularly appropriate to

assume a periodic past motion about a mean position in calculating the

aerodynamic pitching moment from the flow-field equations for use in

(2.1). This assumption is consistent with the mathematical modeling

approach of Tobak and Schiff [13] at the second level of approximation.

It will be convenient to write M(t) in the form

1 2- •
M(t) = -2 p V S~[C (;,;,0 ) - C (0,0,0 )]

0000 m m m m (2.6)

The function C (~,t,o ) is the pitching-moment coefficient resulting
m m

from a finite-amplitude periodic pitching motion ~(t) about the center

of gravity, and C (0,0,0 ) is its steady-state value at the mean anglem m

of attack o.
m

The function C (~,~,o ) depends on the instantaneousm m

displacement angle ~(t), its rate of change get), and the mean angle

of attack o. It also depends, of course, on the location h of the
m

center of gravity relative, say, to the wing leading edge, the flight

Mach number Moo, the ratio of the specific heats of the medium y, and

the aircraft shape. A great amount of work has been devoted to the

theoretical determination of the function C for the case of pitching
m

oscillations of infinitesimal amplitude. For example, for the cases of

a wedge, a flat plate in supersonic/hypersonic flow [7, 8] and an airfoil



of arbitrary profile· in the Newtonian limit 19], this function is

available in exact analytical form for large, as well as small, mean

angles of attack (]m' and includes the critical angle (J . On thecr

other hand, little is known about the pitching-moment coefficient Cm

when the amplitude of oscillation is finite, except for the special

case of a slowly oscillating wedge [10]. In the next section we shall

show how the function C for slow pitching oscillations of finite
m

amplitude may be obtained from its behavior in the limit of oscillations

of infinitesimal amplitude.

C. The Pitching-Moment Function for Slow Pitching Oscillations

9

of Finite Amplitude. . +Cons1der a uniform flow V past an aircraft that
00

is undergoing a slow pitching oscillation of finite amplitude about a

mean angle of attack (] .
m

The instantaneous angular displacement from

the mean position is measured by set) so that lsi is the finitemax

amplitude of the oscillation. It is required to calculate the unsteady

pressure field, hence the form of the pitching moment M(t) in (2.1).

Let the cylindrical coordinates (r,~,z) be such that the z-axis coin-

cides with the lateral axis through the center of gravity. Let the

equation of the body surface at the mean angle of attack

~ ; (] + A(r,z). Then its equation at time t is
m

B(r,~,z,t) ; A(r,z) + (] + set) - ~ ; 0
m

(] be
m

(2.7)

With velocity vector

becomes

+v ; (v ,v~,v ), the boundary condition (2.3)
r 'I' Z

(2.8)



at ~ = A(r,z) + cr + ~(t). Equations (2.2), (2,4), and (2.8) complete
m

the formulation for calculating the flow field in terms of ~(t). Now,

for a long-established periodic motion of the aircraft, the aerodynamic

response is also periodic. Furthermore, invoking the assumption of

slow oscillations allows us to neglect terms of 0(g2,~) and higher and

10

to write
.

P = Po + l;p 1
+ + .+
V = V 0 + l;v

1
. (2.9)

where ( )0 and ()1 are independent of g(t), but may depend on time

through the function ~(t). Since the zeroth-order quantities ( )0

.
represent the flow field when ~ = 0, such a flow must be quasi-steady;

i.e., the time variable t can only appear implicitly through the

instantaneous displacement angle ~(t). Hence,

Po = po(crm + l;(t),r,~,z) , etc. (2.10)

To derive the mathematical problem for the first-order quantities

( )1' we substitute (2.9) into (2.2), (2.4), and (2.8), use (2.10), and

neglect terms of
·2 ••

O(l; ,0. Thus,

(2.lla)

~0 • v~ + ~ • v~ + l (vp _.:2:. VP) =
1 1 0 Po 1 Po 0

+
~vo
~l;

(2.11b)

+
v o (2.llc)



and

at

V;L = r(l + V;L ~A + V;L ~A)
~ r ~r z aZ

~ = A(r,z) + a + set)m

(2.11d)

(2.11e)
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Since the time variable t appears in (2.11) only as a parameter

through set), the solution to (2.11) must be of the form

(2.12)

The forms of p and po 1
in (2.10) and (2.12) determine the form of the

pressure p in (2.9) which, in turn, determines the form of the

pitching-moment coefficient after the integrations indicated in (2.5)

have been carried out. Thus
.

• st
C (s,s,o ) = f(o + s) + --V g(o + s)m m m m

00

(2.l3a)

In the case of oscillations of infinitesimal amplitude, (2.13a) reduces

to
.

Cm = f(om) + sf'(om) + ~t g(om)
00

(2.13b)

It is now clear that the functions f'(o) and g(o ) are related to them m

stiffness derivative S(o) and the damping-in-pitch derivative D(o)m m

at an angle of attack am' as defined in classical aerodynamics, by

f'(o) = -S(o ) ,
m m

g(o ) = -D (a )
m m

(2.14)

Comparing (2.13a) and (2.13b), we conclude that knowing the stiffness and

damping derivatives from the results of calculations for oscillations of



infinitesimal amplitude enables one to obtain immediately the pitching-

moment coefficient C for the corresponding finite-amplitude case.
m

This general conclusion is supported by the form of the exact solution

for C for the wedge oscillating at large amplitude given in [10].m

(To correct a misprint in [10], a term hA4 [cos(6 - 6a ) - 1] should be

added to the right-hand side of Eq. (12b) in [10].)

Having determined an appropriate form of M(t) for use in the iner-

tial equations of motion (2.1), we now rewrite the equations introducing

(2.l3a) along with dimensionless time (1. e., characteristic .lengths of

travel) T = V tit. (Note that we shall retain the symbol (.) to desig-
co

nate a time derivative. Henceforth, however, the derivative will be

with respect to dimensionless time: (.) =d/dT.) Let

F(~,~,a ) = __M_(~T~)__ = K[C (s,~,a ) - C (O,O,a )]
m 1(V /t)2 m m m m

co

12

with

= K[f(a + s) - f(a ) + ~g(o + s)]m m m (2.15)

P St 3
co

K = ----:--
21

• dss =-dT

The inertial equations of motion become

ds •
-- = SdT (2.l6a)

d~ •
-d = F(s,s,a )

T m

An expansion of F(s,~,o ) in a Taylor series in
m

(2.l6b)

.
sand s and a

.
change of notation u

1
= S, u

2
= s yields for (2.16)
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(i = 1,2) (2.17)

where

( 0

-KD:aJ
A=

-KS(Om)

B1jk a B2jk
1 d2 F= , =-2! dUjd~ +u=o

C 0 C
1 d 3 F= , =-ljk£ 2jk£ 3! dUjdUkdU£ +

u=o

(2.l8a)

(2.l8b)

(2.l8c)

(Although (2.l6a&b) have been derived on the assumption of slow oscilla-

tions (terms in C ofm O(g2,~) omitted), our subsequent bifurcation

analysis of (2.16) will hold for general F(~,t,o ), i.e., as if nom

restriction had been placed on the magnitude of t.)
In (2.18) the tensors Band C represent the effects of finite amp1i-

tude to the second and third order. We note that the following symmetry

properties hold:

(2.19a)

(2.19b)

On the basis of (2.17), we shall study the linear and nonlinear stability

of the motion in subsequent sections.

3. LINEAR STABILITY THEORY. The stability of the steady motion at

an angle of attack ° to infinitesimal disturbances is determined by
m

the nature of the eigenvalues of the matrix A. They are



(3.1)
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Case I: S(om) < O. In this case .A I > 0, A2 < O. The steady motion

at this angle of attack o
m

is always unstable.

Case II: S(o) > O.
m

Case IIa: D(Om) < O. In this case Re(A
I

) ; 0 and the steady motion

at 0 is unstable.m

Case lIb: D(o) > O.
m

at 0 is stable.
m

In this case Re(Al) < 0 and the steady motion
2

Thus, only in Case lIb, when both stiffness and damping-in-pitch

derivatives are positive, is the steady motion at angle of attack o
m

stable to infinitesimal disturbances. In fact, stability theory [3] can

be used to show that stability of the steady motion in this case is

assured only if the disturbance is sufficiently small.

In all cases in which the linearized theory predicts growth of the

disturbance amplitude, the growth predicted is of exponential form and

hence must cease to be valid after some finite time when the amplitude

is no longer small. Thus, what eventually happens to a motion for which

linearized stability theory predicts an initial growth of disturbances

cannot be determined from the linearized theory itself. Instead, the

full nonlinear inertial equations of motion, or a suitable approximation

of them, such as (2.16), must be adopted to determine the ultimate state

of the motion. Of particular interest is the dynamic stability boundary

Om = ocr' where S(ocr) > 0, D(ocr) = O. The stability characteristics

near this boundary will be studied in the next section.



4. NONLINEAR STABILITY THEORY. At the dynamic stability boundary

a = a ~ we have S(o ) > ° and D(o ) =0, hencecr cr cr

15

(4.1)

The existence of purely imaginary eigenvalues of the matrix A at

a = a is the characteristic sign of a Hopf bifurcation [3, 14],
m cr

signaling a changeover from stable steady motion to periodic motion.

On crossing am = 0cr~ the steady motion that had been stable for

a < a will become unstable to disturbances, resulting (after a
m cr

transient motion has died away) in the existence of a new motion, which

(if it is stable) will be periodic. In the vicinity of a = a them cr~

circular frequency of the periodic motion will be nearly equal to wOo

We call the new solution of the equations of motion a bifurcation solu-

tion. In this section we shall determine its character and a criterion

for its stability.

For am slightly larger than ocr' the eigenvalues of the matrix A

are

1Al = - - KD(o ) ± in(o )
22m m

where

We shall assume that

D' (0 ) < °cr

(4.2)

(4.3)

(4.4)



which is .the usual case in applications [6]. (The case D' (0 ) > 0cr can

16

be treated in exactly the same way.) The normalized eigenvector -+
1,;(0 )

m

associated with the eigenvalue A(0 ) is
m

(4.5)

whereas the adjoint eigenvector -+s*(o ) with eigenvalue
m

X(o ), which is
m

the complex conjugate of A(0 ), is
m

-+
s*(cr )m

(4.6)

A. Hopf Bifurcation. -+The bifurcation solution u(.,cr) may be
m

written as

--+ -+ - -+
U = a(.)s + a(.)~ (4.7)

Following looss and Joseph ([3], p. 125), we get

a = eb1(s) + 8 2 b 2 (s) + 8 3b
3

(s) + 0(8 4 )

s = two + £2 w2 + 0(£4)].

am = Ocr + £20m2 + 0(£4)

(4.8)

where, for brevity, we omit the lengthy solution forms for £, bn , w2 ,

and 0m2 (cf. [11]). The solution is periodic in • with circular

frequency equal to Wo + £2 w2 + 0(£4).

B. Stability of the Periodic Bifurcation Solution. Accordingto

Floquet theory [3], the stability of the periodic bifurcation solution

(4.8) is determined by the sign of an index ll. To 0(£4), II has the

form



]l (4.9)
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and the periodic bifurcation solution is stable if ]l < 0, unstable if

]l > O. Since we have assumed D'(cr ) < 0, stability thus depends oncr

the sign of 0m2' with 0m2 > 0 denoting stability and 0m2 < 0 insta-

bility. It remains to cast 0m2 in more recognizable terms. After

considerable manipulation, we get

(4.10)

in terms of F(U
1

,u2,crm). From (2.15) we see that the function F is

directly related to the pitching-moment coefficient c (~,~,cr ) actingm m

on the aircraft which is performing a finite-amplitude pitching oscilla-

tion around a mean angle of attack a .
m

Equation (4.10) demonstrates

that the stability of the periodic motion near the dynamic stability

boundary acr is determined by the behavior of the aerodynamic response

c (~,~,cr ) in that vicinity.m m

With the assumption of slow oscillations under which the form of

(2.15) was derived (terms of 0(t2,~) neglected), we may substitute

(2.15) into (4.10) to get

£2 (2 02 f ~
11 = 4w ~ I( at;, 2 at;, + (4.11)

From (2.14) and the structure of the functions f and g, we write



simple form

18

(4.13)

(The simplicity of this result suggests that it might be possible to

derive it by a less formal method. This is indeed the case: We have

verified the result by a physical approach familiar to workers in the

field of nonlinear mechanics.) Equation (4.13) reveals that the sign of

~, and thus the stability of the bifurcation solution, is independent of

the scalar and inertial properties of the aircraft. Rather, stability

depends only on whether the aerodynamic property (DI/s) is increasing

or decreasing on crossing the dynamic stability boundary o = 0'
m cr The

two possibilities are well illustrated in the form of bifurcationdia-

grams as shown in Figs. la and lb.

In a bifurcation diagram, the abscissa represents the parameter that

is being varied, in our case the mean angle of attack o •
m

The ordinate

is a parameter characteristic of the bifurcation solution alone. In our

case it is ~, a measure of the amplitude of the periodic bifurcation

solution. Stable solutions are indicated by solid lines, unstable solu-

tions by dashed lines. Thus, over the range of mean angle of attack

o < 0 where the steady-state motion is stable, ~ is zero, and them cr



stable steady motion is represented along the abscissa by a solid line.

19

The steady motion becomes unstable for all values of o > 0 as them cr

dashed line along the abscissa indicates. Periodic solutions bifurcate

from 0 = 0 either supercritically or subcritically.m cr

When (d/do )(D'}S)! _ > 0 (implying 0m2 > 0), the bifurcation
m om-ocr

is called supercritical and its characteristic form is shown in Fig. lao

Stable periodic solutions (solid curves in Fig. la) exist for values of

o - 0 > O. The amplitude of the periodic solution at a given valuem cr

of 0 - 0 is proportional to £, hence is vanishingly small whenm cr

o - 0 is small, varying essentially as (0 - 0 )1/2.
m cr m cr

When (dido )(D'/S)! _ < 0 (implying 0m2 < 0), the bifurcation
m om-ocr

is called subcritical and its characteristic form is shown in Fig. lb.

Periodic solutions exist for values of 0 - 0 < 0, but they are
m cr

unstable (dashed curve in Fig. lb). Whether stable periodic solutions

do or do not exist for o > 0 depends predominantly on the behavior
m cr

of the damping-in-pitch derivative D(o ) for
m

o > 0 •
m cr If no such

stable periodic solutions exist for o > 0 , then when the mean angle
m cr

of attack 0 is increased beyond 0 the aircraft may undergo anm cr

aperiodic motion whose departure from the steady motion at

is potentially large.

o = 0
m cr

In the more likely event that stable periodic solutions do exist for

o > 0 (an example is given later), their amplitudes must be finite,m cr

and not infinitesimally small, even for small positive values of

0-0
m cr It is likely that this branch of stable periodic solutions

will join that of the unstable branch in the way illuatrated in Fig. lb.



In this event, the form of the bifurcation curve for values of a < a
m cr

20

helps explain the situation mentioned earlier, where it was noted that

the steady-state motion could be stable to sufficiently small distur-

bances but become unstable to larger disturbances. Thus, Fig. lb

suggests that for a < a ,so long as disturbances are of smallm cr

enough amplitude to lie below those of the unstable branch of periodic

solutions (curve OB in Fig. lb), they will die out with time and the

steady motion will remain stable. However, disturbances with ampli-

tudes sufficiently larger than those of the unstable branch may actually

grow up to the ultimate motion as T,+ 00, which will be that of the

stable branch of periodic solutions (curve BAin Fig. 1b). Finally, we

note that if the motion does attain the stable branch of periodic solu-

tions (say, for a < a ) then hysteresis effects will manifest them-m cr

selves with further changes in a •m When a
m

is increased beyond

the motion will continue to be periodic with finite amplitude (point A

in Fig. lb). If a is now decreased below a ,the periodic motionm cr

will persist, even at values of a where previously there had been
ill

steady motion when a was being increased.m Not until a is dimin
ill

ished beyond a certain point (point B in Fig. lb) will the motion return

to the steady-state condition (point C in Fig. lb) that had been experi-

enced when a was increasing.m

To further explore the implications of (4.13), we invoke some approx-

imate relationships between the damping-in~pitch derivative D(a ) andm

the stiffness derivative S(a). Tobak and Schiff have argued (see, inm

particular, [15]) that, to good accuracy, a linear relationship should



exist between D and S at any value of a ; i.e., D(o ) ~ a - bS(o ),m m m
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with b > O. In addition, we require that D vanish at 0= am cr

The two requirements yield the form

D(o ) = b[S(o ) - S(o )] ,
m cr m b > 0 (4.14)

(4.15)

(The validity of the approximate relation (4.14) has been verified in

the present study (via comparison with exact results in [7]) for use

with oscillating flat-plate airfoils in supersonic/hypersonic flow and

in [12] for use with oscillating flaps in transonic flow.) Replacing

D in (4.13) by (4.14) casts the criterion solely in terms of S:

]..l = e:2.(KS)l/2.b ~. [l.n S(a )] I
4 d02 mm a =0

m cr

Thus, near a = a ,if the stiffness derivative S(om) increases withm cr

a slower/faster than exponential, the periodic bifurcation solution
m

is stable (supercritical)/unstable (subcritical). Cast in terms of D

instead of S, the criterion states that decreasing D with respect to

a slower/faster than exponential results in stable (supercritical)/
m

unstable (subcritical) periodic bifurcation solutions.

Examples of Sea ) and D(a ) that obey (4.14) and exhibit the variousm m

possibilities are as follows.

Example 1:

= So exp[k(o - a ) + m(o - a )2] }m cr m cr

= bSo{l - exp[k(a - a ) + mea - a )2.]}. m cr m cr

(4.16)



Example 2:
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= So exp[k(a - a ) + m(a - a )2 - n(a - a )4] }m cr m cr m cr

= bSo{l - exp[k(a - a ) + m(a - a )2 - n(a - a )It]}m cr m cr m cr

(4.17)

where So' k, and n are positive constants. According to (4.15),

m > 0 corresponds to unstable periodic bifurcation solutions (sub-

critical bifurcation), and m < 0 corresponds to stable periodic bifur-

cation solutions (supercritical bifurcation). In the case of subcritical

bifurcation (m> 0) in Example 1, the damping-in-pitch derivative D1(am)

continues to decrease to very large negative values as (a - 0 )
m cr

increases, which makes it very unlikely that the system (2.16) will

have a stable periodic motion as a solution for o > 0 •
m cr On the other

hand, in Example 2 the damping-in-pitch derivative D2 (Om) becomes posi-

tive for sufficiently large 10 - a Im cr so that a stable periodic

motion may be a possible solution for a > 0 ,m > O.
m cr Indeed, S2

and D
2

in Example 2 fulfill all of the conditions set by a theorem of

Filippov [16], the satisfaction of which guarantees the existence of a

stable periodic motion of the system (2.16) for a > a •m cr As we have

noted, resulting as it does from a subcritical bifurcation, the solution

will exhibit hysteresis effects with variations in am below acr

The stiffness deriva-

5. SUPERSONIC/UYPERSONIC FLAT-PLATE AIRFOILS. To illustrate the

application of bifurcation theory in a concrete case, we consider a

flat-plate airfoil in supersonic/hypersonic flow.

tive S(am) and the damping-in-pitch derivative D(o ) are known asm



analytic functions of am up to the ang1e-for-shock detachment [6-8].

They depend on the flight Mach number Mw ' the ratio of specific heats

y (here taken to be that of air, y = 1.4), and the (dimensionless)

distance h of the center of gravity from the leading edge, here taken

as a fraction of the chord length t. Results are presented in Fig. 2

of log 8(0 ) versus a (with M = 2.0, h = 0) and in Table 1 of them m 00
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index l.1 for various combinations of M and h.
00

It is shown in Fig. 2

that 8(0 ) increases faster than exponential near a = a = 15.75°m m cr '

and in Table 1 that l.1 is always positive. We conclude that whenever

the flat-plate airfoil becomes dynamically unstable [D(o ) =0], thecr

ensuing bifurcation always will be subcritica1.

Accordingly, there are two possibilities. One, a subcritica1 bifur-

cation curve such as that sketched in Fig. 1b exists, in which case the

airfoil motion will find stability at values of a > a
m cr in a

periodic oscillation of finite amplitude. At values of a < a , the
m cr

steady-state motion will be stable for small disturbances, but for

larger disturbances the airfoil motion will again seek the stable

periodic motion. Exchanges between these two stable modes at a < am cr

will be accompanied by hysteresis effects. Two, alternatively, a bifur-

cation curve such as that sketched in Fig. 1b does not exist, in which

case a potentially large aperiodic departure from the steady-state

motion may occur as a exceeds
m

a •cr In either case, on exceeding

a the loss of stability of the steady-state motion must entail acr

discrete change to a new stable condition.



6. CONCLUDING REMARKS. Bifurcation theory has been used to analyze

the nonlinear dynamic stability characteristics of an aircraft subject

to sing1e~degree-of-freedompitching-motion perturbations about a large

mean angle of attack. Setting up the equations to which the bifurcation

theory was applied required, first, determining conditions under which the

inertial equations of motion and the gas-dynamic equations governing the

flow could be decoupled and, second, showing how the required aerody

namic responses to finite-amplitude oscillations could be obtained from

the responses to infinitesimal-amplitude oscillations.

Results of the bifurcation theory analysis revealed that when the

mean angle of attack is increased past the critical point where the

aerodynamic damping vanishes, new solutions describing finite-amplitude

periodic motions bifurcate from the previously stable steady motion.

The sign of a simple criterion, cast in terms of aerodynamic properties,

determines whether the bifurcating solutions are stable (supercritical)

or unstable (subcritical). For flat-plate airfoils flying at supersonicl

hypersonic speed, the bifurcation is subcritical, implying either that

exchanges of stability between steady and periodic motions will be

accompanied by hysteresis phenomena, or that a potentially dangerous

aperiodic motion may develop. In either case the loss of stability of

, the steady-state motion must be accompanied by a discrete change to a

new stable state.
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Figure Captions

Fig. 1 Typical forms of bifurcation diagrams near the dynamic stability

27

boundary a where P(a ) = O•.
cr cr

(a) Supercritical, (d/da )[D'(a )/S(a )] > O.m m .m am=acr

(b) Subcritical, (d/da )[D'(a )/S(a )] < O.
m m m am=acr

Fig.' 2 .stiffness derivative S(a ) versus mean angle of attack a form m

a flat-plate airfoil in a supersonic free stream:

y = 1.4, K = 1.

M = 2.0, h = 0,
ex>



28

Table 1 Values of stability criterion ~(~, h) for flat-plate airfoil:

K = £2 = 1, y = 1.4; ~ > 0 subcritical bifurcation, U < 0 supercritica1

bifurcation

h h
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

M M
00 00

1.5 36.5 19.0 2 39.5 25.8 17.2 13.0 14.7

1.6 39.6 23.4 13.6 8.8 10.7 3 57.2 38.6 26.8 20.9 23.3

1.7 40.0 24.8 15.5 11.0 12.8 4 84.7 58.4 41.4 32.8 36.4

1.8 39.7 25.3 16.3 12.0 13.7 5 107.3 74.8 53.7 42.9 47.5

1.9 39.4 25.5 16.8 12.6 14.3 6 123.6 86.7 62.6 50.3 55.6

2.0 39.5 25.8 17.2 13.0 14.7

h
0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35

M
00

1.6 10.6 10.1 9.7 9.3 9.0 8.8 8.6 8.5 8.4 8.4 8.5

1.7 12.6 12.2 11.8 11.5 11.2 11.0 10.8 10.7 10.6 10.6 10.7

1.8 13.6 13.2 12.8 12.5 12.2 12.0 11.8 11. 7 11.6 11. 7 11. 7

1.9 14.1 13.7 13.4 13.0 12 .8 12.5 12.4 12.3 12.2 12.2 12.3

2.0 14.5 14.1 13.8 13.5 13.2 13.0 12.8 12.7 12.6 12.7 12.7
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