
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19840009234 2020-03-20T23:20:43+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42850035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NASA TECHNICAL MEtZORA.NDUM
	 NASA TM- 77026

CONS1E)EIZATIONS ON THE EXTERNAL C04BUSTION SYSTE11
OF THE STIRLING PDT GAS BNGINF

V. Zacharias

'I
(NASA-TM- 77026) CUhS.IDER4a1CNS ON THE	 N84-17302
EXTERNAL COMBUSTION SYSTEM OF THE STIRLING
HOT GAS 8NGINL (National Aeronatitics and
Space Administration) 19 p HC A02/MF A01	 Unclas

CSCL 21b G3S15 18451

Translation of "Betrach.tungen zum aeusseren Verbrennungssystem des Stirling-
Heissgasmotors," in Motortechnische Zeitschrift, Volume 32, Number 1,
January 1971, pages 1	 5.

r

7i7

i

K

y!

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON F D. C. 20546	 FEBRUARY 1983

f



ORIGINAL• PAGE 18
OF POOR QUALITY

,r

STANDARD TITLE PAGE

1.	 Report No. 2, Covernment Accession No. 3.	 Recipient's Catalog No,
ASA TM-77026

4.	 Title and Subtitle S.	 Report Date
CONSIDERATIONS ON THE EXTE •RYJAL COMBUS- February	 1983

6,	 Performing Organisation CodeTION SYSTEM OF THE STIRLING NOT GAS
ENGINE.

7.	 Author(s)
F. Zacharias, MS,,mber of the Company

8.	 Performing Organisation Report No,

Motored-Werke Mannheim MT^'M and part of 10,	 warp Unit 140.
the Devolopment Grp. of Stirling Motor.

9, Performing Organization Name and Addre0 4AN MTTM	 in	 suCJiib 1	 ri traet or Grant No,

Leo Kanner Associates NASw-3541
13. Type of Report and Period CoveredRedwood City, California 	 94063

Translation,

12,	 Sponsoring Agency Name and Address`

National Aeronautics and Space Admini- i^, SDonsorinpAgencyCode
stration, Washington, D.C. 	 20546

15.	 Supplementary Notes

Translation'of "Betrachtungen zum aeusseren Verbrennungssys-
tem des $ti.rling-I•ieissgasmotors," in P4otortechnische Zeit-
schrift, Volume 32, Number	 1, January 1971, pages 1 - 5.

16.	 Abstract

p.fter an introduction on the,St,irlina engine the external
combustion system as well as the general loss division and
efficiencies are •described.	 The requirements for the com-
bustion''system and different variants of the combustion
system are compared and discusses?.

17. Key Words (Selectod by Ruthorw) 18.	 Dlstributizin Statement

' Unlimited.-Unclassified

19.	 Security Clossil. (of this ,sport), 20.	 Security Claeeif. (of this page) 21. No. of Pages 22.

Unclassified Unclassified 17

t



CONSIDERF„TIONS ON THE EXTERNAL C014BUSTION SXSTFIV
OF THE STIR HOT GP5 ENGINE

i
Dr.-Ing. F. Zacharias

Member of the Company Motoren-Werke Mannheim M[1M_ and
part of the Development Group of Stirling Motor MAD? 1P A1:4 in Augsburg

1. Stirling Engine	 /1*

At the beginning of the previous. century Robert Stirling (1516)

invented a closed but air process and its technical implementation with

already all the decisive features of the present Stirling engine. The

lacking material qualities and the want of knowledge of thermodynamics 	 }

prevented the suitable layout and the breakthrough for this machine as

compared with steam machines and combustion engines. In the thirties

development studies on the Stirling engine started at the Company Philips

in Holland (1). In Germany the Company MAN of Augsburg and Mum? of Mann-

heim have started jointly working on the development of Stirling engines, 	 j

The Stirling engine is a piston machine with external hea t supply	 ¢,

and enclosed internal gas circuit process. The internal circa--r—ior	 E

medium is helium. The inLernal circulation process is controlled in such

a way that a uniform heat supply can be achieved from outside, as though

the engine were fed constantly from a heat tank with constant high tem-
p	 A

perature. The thermal flows fed to and removed from the internal pro-(

cess flow through heat exchangers (recuperators).

In the internal circular process of the Stirling engine in the ideal

case a double isotherm-isochoric process. takes place with helium (compare

later Figure 2). On the i.sotherms.of high temperature the heat is supplied,

at low temperature the residual heat is removed from the process. On the

isochores the heat is exchanged with high efficiency tILrough regenerators,

The actual, proces q affected by losses takes place within the ideal one

with high efficiency. Greater details on the internal circular process

and technical implementation have been given in this journal by ^naijer (1)

on the. Philips.-Stirling en.g.ine.:.

Numbers in the margin indicate pagination iii the foreign text.
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The internal circular process is independent of the type of the ex-

ternal supply of heat because of the separating walls of the recuperators

in the material flows. Bascially the Stirling engine is in the ordinary

sense able to use thus many fuels because it only requires a heat gen-

erator with. a certain temperature. All liquid fuel can be burned with

air in an optimal manner in the same heating plant of the~Stirling engine.

But in the external generation of heat a uniform continuous com-

bustion is possible. Only the mobile parts of the power unit, auxiliary

unit and the continuous gas flows contribute to the noise of the engine.

Therefore the total noise level is much lower than for internal combustion

engines. The uniform flame also allows a "clean" combustion.

2. The External Combustion System

The external production of heat for the Stirling engine is in the

generally most convenient case achieved by external combustion. This is 	 j

an open through process with air and combustion gases connected before

the Stirling engine, Figure 1.^^

Brenn_	 `	 '"^
(8 ^	 kamTer (7 /	 `r̀i

Luft `iorer^itze.	 ^^

..0
6a---=

5.^ (6)

wy`tzE R (5)

Regenerator

erdrcnaer

	

uhter (3)	 r

`	 C

r,--^	 •	 t	 Arbeitskoiaen (2 ) E

Brenner=
geblase

Figure 1: The Stirling engine with external combustion. Key: (1) burner
blower; (2) working chamber; (3) illegible; (4) compressor; (5) heater;

-"	 (6) fuel; (7) combustion chamber; (8) air preheater.
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A blower conveys the necessary combustion air to the combustion 	 /2

chamber. After the combustion in the combustion chamber the hot com-

bustion gases first activate the heater, that is the hot heat exchanger

of the Stirling engine and give off the thermal energy there to operate

the engine. Sincc the Starling engine can no longer use directly the

thermal content of combustion gases below about 700 degrees C, from. 700

degrees C onwards the energy content of the combustion gases would be

lost if an air preheater (preliminary heating device for the air, Luvo)

were not able to recover the heat for combustion.

Figure 2 provides information on the thermal flows in the external

and internal system of the Stirling engine, in which Mollier h,s diagrams

of the internal and external process are plotted which are coordinated

through the absolute temperature scale.

In the external heat generation continuous process the blower work

to maintain the heating process, the affect of the air preheater, the

combustion heat QB to be supplied and the heat QE to be removed in the

Stirling process is recognizable. This heat must be transmitted as

energy or heat flow 0 E through the heater to the internal cycle with

helium, which is indicated in Figure 2 by the dashpoint reference lines.

A

i

Figure 2 shows on scale the changes in

interrupted; for entropy values both in the

with helium and in the external continuous

bustion gases the entropy zero points s = 0

p = 1 bar. For helium the enthalpy-entropy

(2) and for combustion gases the diagram of

state. The entropy scale is

internal circular process

Drocess with air and com-

were chosen at 273.16 K at

diagram according to Bammert

Pflaum (3) were taken as bases.

To satisfy the heat QE required by the internal engine circulation

with the thermal content of the combustion gases, as is apparent from

Figure 2, very high gas and combustion .;ha:mber temperatures are needed.

3
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3. Loss Division and Efficiencies

On the way from fuel energy to effective mechanical power in

energy conversion in the Stirling engine losses occur which can be

described by a set of products of partial efficiencies just like for

engines with internal combustion.

The total efficiency is the quotient of the effective shaft power

and the fuel energy used:

This overall relation can be subdivided as follows:

with	 Ito- 76H• 17,.s	 (1b)

,JB = _,E burner efficiency (heater thermal flow to the fuel energy used)
08

P" efficiency of the total Stirling process (power of the perfect

E Stirling engine to the heat flow supply ; Carnot efficiency) 	 K
;t

quality of the internal Stirling process. Approximation of

P„ the real to the theoretical process (indexed piston power to

the power of the perfect Sterling process)

4

mechanical efficiency of the Stirling engine without auxiliary

^Jm:
=PPie equipment (mechanical power on the crankshaft without mechanical

losses show auxiliary equipment for the index piston power)

mechanical efficiency because of lost powers through the aux-

_ P, iliary equipment (effective drive power to crankshaft power
77mH '- 

PSAE without losses to auxiliary equipment).

4
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Figure 2:	 Mollier h,s diagrams of the internal and external process.
Key:	 (1)	 temperature s	(2)	 internal circular process;	 (3)	 entropy;
(4)	 burner blower.;	 (5) waste gas;	 (6)	 air heating;	 (7) waste gas heating:	 ^° r
(? illegible);	 (8)	 heater;	 (9)	 combustion chamber;	 (10)	 external continuous
process;	 (11)	 air or combustion gas.

To evaluate the external-combustion plant an efficiency must be taken

which consists of the burner iffi,ciency and the burner blower component of

the mechanical efficiency as a result of loss powers through auxiliary

equipment, since the burner blower is the component of the combustion

system.

If PG is the power of the burner blower, the efficiency of the external

heating system is defined as follows:

F _ ^.^► V—Pc1=O'I^	 11Is1

qAE	 e
6

with >> s 1iv_>>D ; rrms,	 , the degree of conversion of the internal Stirling

engine. Through the splitting of the blower power PG from the efficiency

5
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mF this efficiency improves to:	
y+

The total efficiency is then unchanged:.

	

77# ' "('N •G ' 77, S • ?79	 7?v	 7?ER	 (4)]

Since the efficiency of heatingn BR (? illegible) is included di-

rectly in the total efficiency, it is equally important as the other

partial efficiency,

4. Requirements for the Combustion System 	 /3

4.1 Starting

The external combustion plant is an automatic system. and must be

started itself before the starting of the internal circulation and the

Stirling engine, in order to preheat all the heat exchanges and to have

sufficient heat available for the starting of the Stirling engine. For

this reason the burner blower and a fuel delivery pump are first operated

electrically from battery. Thereupon the Stirling engine can be started.

When the Stirling engine is brought to idling speed, the auxiliary equip-

ment indicated are taken over and driven mechanically by the engine through

the override clutches. The total starting processes Last according to

experience less than a minute.

4.2 Operation for Constant Load 	 a

The temperatures . Ocgl and. ecg2 as well as the amounts of combustion

gas of the external system must be adjusted to the energy requirement of

the engine ^DF and specifically in such a way that according to the laws

of thermal transfer the required heat flow (D R is transmitted to the _hot

heat exchanger to the internal cycle. The heat transfer relation. is:

	

= k - A,, • A tm	 (5)

in which.

k AC, =
(I

	

	
(SO)

A°, e -AEm 
1 

ai W Co

6
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and

orm F	 ?	 (5b)(rt_r^
with the designations of Figure 2.

The internal, heat transfer coefficient in the heater

a = C, Me6) 
e'
	 ($c)

and the external heat transfer coefficient in the heater

	

C, , (Ree"1,	 (5d)

are calculated through the Reynolds number.

The internal flow conditions in the heater are pregiven by the Stirli nc

engine. From this follow the values for re,. and the maximum temperature

eiac of helium. The heat transfer coefficient a is therefore adjusted

according to the operating conditions of the engine, the load and speed.

For the external combustion gas flow vie have	 7
49, de (5e)

ReEo r(cy Se.

in which 5Ea is the external passage cross-section for the combustion gas

through the heater and dE the diameter of the tube of the heater_.

With these quantities we have 

t
I	 a'cr'"
	

/AEO rn(̂ _"^ w /i 7co	 rr.71

	

06 = AE, . d AEm .	 l	 ^6)

1 a	 ^W	 (m^^'
Simultaneously the cooling of the coml,.ustion gas is:

¢	 rn(h( co (- h (Tq,)) : m;n	 vry " 9c, ..?;n l	 (7)

with cpmcg as average of the specific thermal capacity of the combustion

gas, valid for thetemperature range e cnl to 0*crr2,

7
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soo	 -' (2)
:o

Lu(NerhOnis A

f	 1	 1	 f
S	 b	 v	 a	 ?

Vie r brennungsgasme',ge 6k9 102fkg,'sy

.	 (3)

Figure 3: Temperatures and 'energies in the combustion plant as a function
of the rate of flow of gas. Key: (1) valid. for; (2) air ratio; (3) amount
of combustion gas.

In the solution according to the temperatures we obtain the implicit

equation (8) which can be solved by iteration with the valid material

quantities for example from (5): 	 u

kv	 rTy _ c
a^a^ V -(1- a ''1	 (8)	 x

with
r Q^r	 u	 a

A	 Q AF	 1	 +

1

Here there is a clear assignment between the maximum temperature of 	 j

the internal Stirling process O T	 and the maximum. combustion temperature

8	 I
cgl'

A certain value of the heat flow (D T, may be achieved with different

amounts of combustion gases, while with the increasing amount of combust=ion 	 4

gas the temperature 9crl1 deeded for the heat transfer decreases, Figure 3.

8
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Simultaneously however the necessary blow.--r power FGebl for the

maximum rate of flow and the consumption in the aa.r pre.heater increases

to be able to transfer the increasing thermal flow Luvo = QLuvo. mcg

for the same Loss of waste gas, that is the transfer area of the air pre

heater must be increased.

From a consideration of the exergetic efficiency of the combustion

chambers of Baehr (4) it is also clear that the smallest possible amount

of combustion gas mcg must be chosen for a satisfactory efficiency of the

combustion plant.

	

Small amounts of combustion gases allow the lirr.itatior: of the con- 	 it

struction cost in the air preheater and a low blower power. Here however

the maximum combustion temperatures eceT_ (? illegible) are adjusted. Nigh
.x	 combustion gas temperatures and loY4amounts of combustion gases mean a low

air proportion X which should lie in the neighborhood of the stoichiometric
Y

combustion. The combustion chamber requires however a certain excess of

air to achieve a complete combustion. A sure operation of the combustion /4
k	 chamber without unburned components in the waste gas is according to ex- 	 }°
k	 perience assured with air proportions of X 	 1.3 to 1.5. This range of 	 # j

air ratio should tend in the sense of high heating efficiencies.

i^W7 
JK

 

}
'	 Jerorennunsgos	 !

Y Helium	 '	 (2)'	 i
j 0,4o,metouscherwond
L	 L7	 '+

Figure 4: -:eat transfer conditions on
the heater. Key: (1) combustion gas;
(2) heat exchanger. wall. }

The side of the heat exchanger walls of the heater turned towards the

hot combustion gases has a very high temperature, which however is almost

independent of the chosen air proportion and the amount of combustion gases,

compare erg in Figure 3.
9
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in Figure 4 the heat transfer proportions of the heater of the Ptirling
engine are shown, Because of the very satisfactory heat transfer for helium

on the internal side of the heater the external wall temperature can be

maintained also within technologically achievable limits.

2.3 The Combustion System with Changed Load

The internal circulation process of the Stirling anaine with helium

is regulated through the average cycle pressure. if the engine is to give

off more power, then the pressure level must be increased by supplying

helium.	 The heat flow 0= to be supplied must undergo a suitable

increase.

An attempt will be made to maintain constant the maximum temperature

of the internal circulation process even with unchanged load witI regard

to the efficiency of the process on one hand and the maximum permissible

wall temperatures of the heater on the other in the entire load range.

The external combustion system consequently must be readjusted as exactly

as possible in load variations in the power output (D to satisfy the needs

of the engine.

If in the regulating process slight fluctuations arc allowed for the

maximum temperature of the helium circulation process, then the thermal

capacity of the heater walls act as an intermediate buffer, so that a sure 	 k
phase displacement is allowed for the reregulation of the combustion system.

To obtain optimum conditions in the external continuous process in the

entire load range, we must always proceed with the minimum possible amount
of combustion gas, high combustion temperatures and low air proportion,

compare Figure 3.

To this end it is necessary that the amount of fuel and air should be

regulated simultaneously to a constant low air proportion which is achieved
by throttling the fuel flow and the suction force of the burner blower.

10
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5. Different Variants of the Comb'usti'on S stem and Comparison

As a result of the extensive froedom in the process management in

the external combustion system different variants are possible of which

three types will be discussed here with the effects.

The circuit pictures are compared with the corresponding changes of

state in Mollier h j s diagrams in Figure 5:

I mechanically driven burner blowers and single stage combustion.

II mechanically driven burner blowers and two or multi-stage combustion.

III Burner blower designed as turbochargers with single stage combustion

(saving of blower power PGebl).

n^.	

r

t
i+ ^

^	 z

4
a

VV h r{
00

Figure 5: Types of variants of combustion plant.

For the previously built test engines the variant T was implemented.

The variant type II promises a better adjustment of the heat gener-

ation and the heat removal from the Stirling engine. The maximum com-

11
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bustion temperature &^cg (? illegible) can be much lower. But several

combustion chambers and a very complicated regulating system are required.

The efficiency 'h FP? can be biought to comparable values of the variant I

and differs only through the somewhat higher blower power, because of

the higher pressure losses, in several combustion chambers. P special

thermodynamic calculation was omitted because there are too few striking

differences from varian'; 1.

For the turbocharge variant III the operating conditions are cal-

culated thermodynamically and compared with .similar calculations for

variant 1,

To this end the external_ continuous processcwas constituted and sim-

ulated on an electronic data processing plant using the heat transfer laws

for the heater and the air p,ceheater. For the processing with the electron

data processing unit the thermodynamic properties of the combustion gases

and a program system according to (5), the transport quantities (viscosity,

conductivity) according to Brandt (6) were used.

In the variant III it must be established whether.:

1. the operation is possible with a waste gas turbocharger,

2. thermodynamic and structural advantages may be expected. and,

3. how the turbocharger group is introduced in the regulating

requirements of the external combustion system.

The turbocharger has been adjusted for the calculations in such a

way that it applies in the full load point of the Stirling engine a pres-

sure ratio of 3 to 1 in a single stage. The group efficiency for the

unit quantities considered were introduced with a flow volume of about

0.055 m3/s at 0 degrees C and 760 tore with n P.TL	 (Ohv/AhT) s z-0.5

according to (3).

1.2
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Figure 6: Comparison of efficiency and temperature of

the combustion ones I and III.

The first calculations show that the combustion plant with a turbo-

charger can only be operated if the air preheater is reduced to such an

extent that the working capacity of the combustion gas is sufficient to

cover the compression power including the turbocharger losses.

The comparison of the variants I and III from ' the point of view of

layout gives for (D F = 75 kW:

Weight gas temperature: 	 Ffficiency:

0,, 3 1 = 240° C	
qER t — 0,84

0, 3 in = 420 -' C	
IJER 111 = 0,73

Accordingly the use of the turbocharger gives no thermodynamic ad-

vantage even from the point of view of design.

To control the behavior of a waste gas turbocharger group for partial

load a plant of the first type was compared with a plant of type III for

same powers (DE , Figure 6.

t^ fi
^t

^r

w

ii
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The best efficiencies of the combustion system are obtained in the

entire load range of the engine (engine s peed = constant) for mechanically

driven burner blower n FR1. Here the efficiency even increases further in

the direction of partial load. The corresponding combustion temperatures

e cgll and O cg3l as well as the air proportion al show the favorable

variation discussed in the previous section.

The turbocharger efficiency required for the same optical amounts

of gases is shown in Figure 6 as n.A,TLIII. Accordingly for partial load

unachievably high turbocharger efficiencies are needed.

For comparison a plant of type III was taken which is equipped with

p	 an air preheating plant reduced to half and with a turbocharger of gATL =

e	 0.6, to be able to advance as far as possible in the partial load range
u

with the turbocharger arrangement. The efficiency here is moderate in the

upper load range, because the charging group conveys such a large amount of

air. But below the half-load the conveyor }dower is too low to apply the

required thermal current (D T;, r Therefore the combustion temperature 6cal

rises quickly, under half-load to temperatures which can no longer be

controlled by the combustion chamber, whereas the air proportion XIII

decreases strongly.

The quadratic delivery characteristic of the loading group can be

adjusted only poorly to the linear regulating requirements of the com-

bustion system in the Stirling engine. The use of the waste gas energy

is better for an air preheating device than for an expansion in a turbine.

Moreover the use of the waste gas turbocharger does not represent

any simplification in the construction cost of the combustion system.

The variants I and II tend to higher efficiencies, while a plant on

the basis of II must maintain large power units because of the increased

regulating costs.

AV

i^

f

s

JJJR^^^
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C empirical constant 1VT/m2K

A Heat exchanger surface m2

P Power, energy TAT

Q Heat J

Re Reynolds number --

S Flow cross-section m2

T Absolute temperature K

cp Isobar specific thermal capacity J/kg K

d Characteristic dimension, tube diameter m

h Specific enthalpy J/kg

k Thermal transfer coefficient W/m2 K

M Gas mass flow kg/s

n Speed of rotation rpm

p Absolute pressure N/m2 or bars

s Specific entropy J/kg K

(D Thermal current, power, energy J/s = 111

a Thermal transfer coefficient P'/m2 K

S Thermal exchanger wall thickness m

n Bar viscosity of the gas kg ms

;Efficiency -

j Celsius temperature degrees C

Thermal conductivity factor TVT m K4Y

a Air proportion -

Indices

A:TL referred to waste gas turbocharger

B	 referred to fuel

x

15
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A combustion plant according to I is preferred for assembly and trac-

tion Stirling engine sizes under thermodynamic and economic aspects.

Formula Symbols Used

Designations and units according to DINT 1345 (t,]est German Standards).



E	 referred to heater

ER referred to total heating system

G=Ge 1	 referred to burner blower

SAE referred to power without losses through heating equipment

T	 referred to turbine

V	 referred to compressor

a	 external

cg referred to combustion gas

e	 effective

i	 internal

m	 average

s	 for constant entropy

v	 total

16



REFERENCES

(1) Meijer, R. J.	 The Philips-Stirling Fngine.	 MTZ 29	 (1968), number 7,

page 284 to 298.

(2) Bammert, K. The Thermodynamic Properties of Helium as Working Medium

for Nuclear Gas!-Turbines.	 Kerntechnik 11	 (1969), number 2, pages 88

to 91.

(3) Pflaum, W.: Mollier Diagrams for Combustion Gases. 	 Part I.

Dusseldorf, 1969.

(4) Baehr,	 K.D.: The Exergetic Efficiency of Combustion Chambers in

Gas Turbine Plants.	 Brennstoff - Warme - Kraft 20 	 (1968), number 7,

pages 319-321.

(5) Zacharias, F.:	 Mollier hS Diagrams for Combustion Gases in Data

Processing. MTZ 31	 (1970)	 Number 7, pages 296-303.

(6) Brandt, F.: General Representation of the Material Parameters of

Flue Gases for Any Fuel.	 Brennstoffe Brennstoff - Waerme - Kraft

16	 (1964), number 2, pages 53-61.

(7) Plieghaar, A.:	 KKK Waste Gas Turbocharger.	 MTZ 18	 (1957), number 6,

pages 199-200.

E

17


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf

