A Mathematical Model for the DoublyFed Wound Rotor Generator

Part II

Frank J. Brady
National Aeronautics and Space Administration Lewis Research Center

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America

Available from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
NTIS price codes ${ }^{1}$
Printed copy: A02
Microfiche copy: A01
${ }^{1}$ Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and 1); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from NTIS at the above address.

DGPAM $69 / 2 / 1$

UTL: , mathemethat wodel for the dodry-fed mond yotor generator, part 2
OTH: AROROY F: .
ofe: Wationa heronatics and Gpace Gdninstation Lemis Regearch Center,

Prooged tor pregentath at the Gumer meetme of the Fomar Ene, Goos Geatle, i5-20 Wh. 1984 spongored by IEE

GEA: S.1.

f8: A Hethematicel atheis of a dobly-fed mond rotor generato is presented. The constrants of contan etator woltage and treatency to the chrot ecuetions were aplied and expectons for the curyente and voltages in the manime thtand. The der ved weribles are redetined as direct and madrabure comonents. in adotion the amparent fomplee power for woth the rotor and the stator are derived in terme of these redefined components.

ENTER

A Mathematical Model for the DoublyFed Wound Rotor Generator

Part II

Frank J. Brady
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Work performed for
U.S. DEPARTMENT OF ENERGY
Conservation and Renewable Energy
Wind Energy Technology Division
Washington, D.C. 20545
Under Interagency Agreement DE-Al01-76ET20320

Prepared for
Summer Meeting of the Power Engineering Society sponsored by the Institute of Electrical and Electronics Engineers Seattle, Washington, July 15-20, 1984

N84-17479

National Aeronautics and Space Administration
 Lewis Research Center
 Cleveland, Ohio 44135

K	coupling coefficient
L_{R}, L_{S}	self inductance, rotor, and stator, respectively
${ }^{n}$, n_{S}	number of turns, rotor, and stator, respectively
$\mathrm{R}_{\mathrm{R}}, \mathrm{R}_{S}$	resistance of winding, rotor, and stator, respectively
S	slip
t	time
v_{R}, v_{S}	terminal voltage, rotor, and stator, respectively
$\mathrm{v}_{\mathrm{RO}}, \mathrm{v}_{\mathrm{Re}}$	rotor voltage required to establish $i_{R O}$ and $\dot{i}_{R_{\varepsilon}}$, respectively
\bar{x}	the bar above a variable indicates it is a phasor
$\theta_{R}, \theta^{\prime}, \theta_{L}$	phase angle shift, rotor, stator, and load, respectively
${ }^{\omega, \omega} \mathrm{S}$	angular frequency, mechanical and synchronous electrical, respectively
	PREVIOUSLY DERIVED VARIABLES

Before proceding with any new derivations, some of the results of the previous paper [1] will be restated. To make the development of the model easier to follow, some terms will be made more compact.

From the previous paper, the voltage and current at the stator terminals is,

$$
\begin{equation*}
\bar{v}_{S}=V_{S} e^{j\left(\omega S^{t-0} R^{\left.+_{\pi} / 2\right)}\right.} \tag{1-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{i}_{S}=-I S e^{j(\omega} S^{t-\theta} R^{-\theta} L^{+\pi / 2)} \tag{1-2}
\end{equation*}
$$

The induced stator voltage was given as,

$$
\begin{equation*}
\frac{3}{2} \mathrm{aKL}_{R} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{e}^{\mathrm{j}(\rho \omega t / 2)} \overline{\mathrm{i}}_{\mathrm{R}}\right] \tag{1-3}
\end{equation*}
$$

This variable was not derived explicitly. But if the expression for \bar{i}_{R} is substituted into (1-3), the induced stator voltage becomes,
$\bar{e}_{S}=V_{S} e^{j\left(\omega S^{t-\theta} R^{+\pi} / 2\right)}+\left|Z_{S}\right| I_{S} e^{j(\omega} S^{t-\theta_{R}-\theta} L^{+\theta} S^{\left.+_{\pi} / 2\right)}$

It should be noted that the derivative of the product in (1-3) produces the sum of two terms. The induced stator voltage is, more precisely,

$$
\begin{equation*}
\bar{e}_{S}=(1-S) \bar{e}_{S}+S \bar{e}_{S} \tag{1-5}
\end{equation*}
$$

Later in this paper, when the active and reactive powers are derived, this separation of terms will have more meaning.

The rotor variables that were previously derived are as follows:

Rotor current,

$$
\begin{align*}
\bar{i}_{R} & =\bar{i}_{R O}+\bar{i}_{R E} \\
& \left.=\frac{2}{3} \frac{1}{a K X_{R}}\left[V_{S} e^{j\left(S_{\omega} S^{t-\theta_{R}}\right)}+\left|Z_{S}\right| I_{3} e^{j\left(S_{\omega}\right.} S^{t+\theta} S^{-\theta} R^{-\theta} L^{\prime}\right)\right] \tag{1-6}
\end{align*}
$$

Rotor voltage,

$$
\begin{align*}
\bar{v}_{R}= & \bar{v}_{R O}+\bar{v}_{R \varepsilon} \\
= & \left.\frac{2}{3} \frac{1}{a K X_{R}}\left|z_{R}\right|\left[v_{S} e^{j\left(S_{\omega} S^{t}\right)}+\left|z_{S}\right| I_{S} e^{j\left(S_{\omega} S^{t+\theta} S^{-\theta} L\right.}\right)\right] \\
& \left.+\frac{3}{2} \frac{K}{a} S X_{S} I_{S} e^{j\left(S_{\omega}\right.} S^{t-\theta} R^{-\theta} L\right) \tag{1-7}
\end{align*}
$$

The voltage induced on the rotor is given by,

$$
\begin{equation*}
\frac{3}{2} \frac{k}{a} L_{S} \frac{d}{d t}\left[e^{-j(\rho \omega t / 2)} T_{S}\right] \tag{1-8}
\end{equation*}
$$

If the expression for is is substituted_into (1-8), the result is the induced rotor voltage, \bar{e}_{R}.

$$
\begin{equation*}
\left.\bar{e}_{R}=\frac{3}{2} \frac{k}{a} S X_{S} I S^{j(S \omega} S^{t-\theta} R^{-\theta} L\right) \tag{1-9}
\end{equation*}
$$

In order to make the expressions for \bar{v}_{R} and \bar{i}_{R} more compact, the following definitions will be made:

$$
\begin{gather*}
I_{R O}=\frac{2}{3} \frac{1}{a K X_{R}} V_{S} \tag{1-10}\\
I_{R \varepsilon}=\frac{2}{3} \frac{1}{a K X_{R}}\left|Z_{S}\right| I_{S} \tag{1-11}\\
E_{R}=\frac{3}{2} \frac{K}{a} S X_{S} I_{S} \tag{1-12}
\end{gather*}
$$

When these definitions are substituted into equations (1-6) and (1-7), the results are,

$$
\begin{align*}
& \left.\left.\bar{i}_{R}=I_{R 0} e^{j\left(S_{\omega}\right.} S^{t-\theta} R\right)+I_{R_{E}} e^{j\left(S_{\omega} S^{t+\theta}\right.} S^{-\theta} R^{-\theta} L\right) \tag{1-13}\\
& \bar{v}_{R}=\left|Z_{R}\right|\left[I_{R O^{e}} e^{j\left(S_{\omega}\right.} S^{t)}+I_{R_{\varepsilon}} e^{j\left(S_{\omega} S^{t+\theta} S^{-\theta} L\right)}\right] \\
& \left.+E_{R} e^{j\left(S_{\omega}\right.} S^{t-\theta} R^{-\theta} L^{\prime}\right) \tag{1-14}
\end{align*}
$$

ROTOR PHASOR DIAGRAM

Equations (1-13) and (1-14) describe the voltage and current as seen at the rotor terminals of the machine. Since these expressions are in phasor form, a phasor diagram can be constructed from them directly. This diagram is a visual aid to what happens on the rotor as slip and stator current varies. it will also be used to explain the basis for the direct and quadrature currents that will be derived later.

The phasor diagram (Fig. 1) shows the relative phase angles between the rotor variables. The reference phasor is $\bar{v}_{R O}$, since it was assumed to have zero phase angle. In order to draw the other variables, three assumptions must be made. First, the value of $\left|Z_{R}\right|$ is arbitrary, but the relationship $V_{R O}=\left|Z_{R}\right| I_{R O}$ must be maintained. Second, by manipulation of equations (1-10) and (1-11) it can be shown that the relationship $I_{R_{E}}=\left(\left|Z_{S}\right| /\left|Z_{L}\right|\right) I_{R 0}$ must hold. Finally, the variable, E_{R} can be scaled using equation (1-12), and assuming that $X_{S} \cong\left|Z_{S}\right|$.

Figure 1. - Rotor phasor diagram. (Shown for positive slip.)

DIRECT AND QUADRATURE ROTOR CURRENTS

The induced stator voltage consists of two components, one that is in phase with the stator current, another leading the current by 90°. This can be shown by modifying equation (1-4). In order to make a comparison between voltage and current, the voltage must be placed in the same reference frame as the current. This is done by factoring equation (1-4) into the following form,

$$
\begin{equation*}
\bar{e}_{S}=\left[v_{S} e^{j \theta} L+\left|Z_{S}\right| I_{S} e^{j \theta} S\right] e^{j\left(\omega_{S} t-\theta_{R} \theta_{L}{ }^{\pi} / 2\right)} \tag{2-1}
\end{equation*}
$$

Comparing this equation to (1-2), it can be seen that both phasors \bar{e}_{S} and \bar{i}_{S} have the same rotational reference; namely,

$$
e^{j(\omega} S^{t-\theta} R^{-\theta} L^{+\pi / 2)}
$$

The terms within the brackets of equation (2-1) are the phasor components within the reference frame.

As they are written, the two components in equation (2.1) are not orthogonal. They can be made so by using the identity,

$$
\begin{equation*}
e^{j \theta}=\cos \theta+(\sin \theta) e^{j(\pi / 2)} \tag{2-2}
\end{equation*}
$$

and combining like components.
Equation (2-1) becomes

$$
\begin{align*}
\bar{e}_{S}=\left[\left(V_{S} \cos \theta_{L}+R_{S} I_{S}\right)\right. & \left.+\left(V_{S} \sin \theta_{L}+x_{S} I_{S}\right) e^{j(\pi / 2)}\right] \\
& x e^{j\left(\omega_{S} t-\theta_{R} \theta_{L}+_{\pi} / 2\right)} \tag{2-3}
\end{align*}
$$

The first component is in phase with the stator current. It will be called the direct component, that is,

$$
\begin{align*}
\bar{e}_{S D} & \left.=\left(V_{S} \cos \theta_{L}+R_{S} I_{S}\right) e^{j\left(\omega_{S} t-\theta\right.} R^{-\theta} L^{+} / 2\right) \\
& =E_{S D} e^{j\left(\omega_{S} S^{t-\theta} R^{-\theta} L^{+\pi} / 2\right)} \tag{2-4}
\end{align*}
$$

The second component leads the current by 90°. It will be called the quadrature component, that is,
$\bar{e}_{S Q}=\left(V_{S} \sin \theta_{L}+x_{S} I_{S}\right) e^{j(\pi / 2)} e^{j(\omega} S^{t-\theta} R^{-\theta} L^{+\pi / 2)}$

$$
\begin{equation*}
\left.=E_{S Q} e^{j(\omega} S^{t-\theta} R^{-\theta} L^{+\pi}\right) \tag{2-5}
\end{equation*}
$$

The components $\bar{e}_{S D}$ and $\bar{e}_{S Q}$ will be shown to have a relationship to the rotor current.

The expression for rotor current, equation (1-6) can be rewritten in the following form
$T_{R}=\frac{2}{3} \frac{1}{a K X_{R}}\left[V_{S} e^{j \theta} L+\left|Z_{S}\right| I_{S} e^{j \theta} S\right] e^{j\left(S_{\omega}\right.} S^{t-\theta} R^{-\theta} L^{)}$
Using equality (2-2), \bar{i}_{R} can be separated into orthogonal components.
$\bar{i}_{R}=\frac{2}{3} \frac{1}{a K X_{R}}\left[\left(V_{S} \cos \theta_{L}+\left|Z_{S}\right| I_{S} \cos \theta_{S}\right)\right.$

$$
\left.+\left(v_{S} \sin \theta_{L}+\left|z_{S}\right| I_{S} \sin \theta_{S}\right) e^{j(\pi / 2)}\right] e^{j\left(S_{\omega_{S}} t-\theta_{R} \theta_{L}\right)}
$$

If the appropriate substitutions are made, using equations (1-10) and (1-11), the rotor current becomes,

$$
\begin{align*}
\boldsymbol{I}_{R}= & {\left[\left(I_{R O} \cos \theta_{L}+I_{R_{\varepsilon}} \cos \theta_{S}\right)\right.} \\
& \left.\left.+\left(I_{R O} \sin \theta_{L}+I_{R_{\varepsilon}} \sin \theta_{S}\right) e^{j(\pi / 2)}\right] e^{j\left(S_{\omega} S^{t-\theta} R^{-\theta} L\right.}\right) \tag{2-8}
\end{align*}
$$

The rotor current can now be expressed in orthogonal components. Equation (2-8) becomes

$$
\begin{equation*}
\left.\bar{i}_{R}=\left[I_{R D}+I_{R Q^{e}} e^{j(\pi / 2)}\right] e^{j\left(S_{\omega}\right.} S^{t-\theta} R^{-\theta} L\right) \tag{2-9}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{R D}=I_{R O} \cos \theta_{L}+I_{R_{\varepsilon}} \cos \theta_{S} \tag{2-10}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{R Q}=I_{R O} \sin \theta_{L}+I_{R_{\varepsilon}} \sin \theta_{S} \tag{2.11}
\end{equation*}
$$

When equations ($1-10$) and (1-11) are substaituted into equations (2-10) and (2-11), the rotor components and stator componments are related as follows.

The relationship between direct components is,

$$
\begin{equation*}
E_{S D}=\frac{3}{2} a K X_{R} I_{R D} \tag{2-12}
\end{equation*}
$$

The relationship between quadrature components is,

$$
\begin{equation*}
E_{S Q}=\frac{3}{2} a K x_{R} I_{R Q} \tag{2-13}
\end{equation*}
$$

ROTOR VOLT-AMPERES (APPARENT POWER)

In order to properly size the power supply feeding the rotor, the volt-ampere requirements of that circuit must be known. This can now be done by making use of the expressions for \bar{i}_{R} and \bar{v}_{R}.

The rms value squared of rotor current, I_{R}^{2}, can be obtained by inspection of equation (2-9).

$$
\begin{equation*}
\mathrm{I}_{\mathrm{R}}^{2}=\frac{1}{2}\left(\mathrm{I}_{\mathrm{RD}}^{2}+\mathrm{I}_{\mathrm{RQ}}^{2}\right) \tag{3-1}
\end{equation*}
$$

To obtain a corresponding expression for rotor voltage, equation (1-14) can be expressed in terms of direct and quadrature rotor currents. The result is,

$$
\begin{equation*}
\bar{v}_{R}=\left\{\left|Z_{R}\right|\left[I_{R D}+I_{R Q} e^{j(\pi / 2)}\right]+E_{R} e^{-j \theta_{R}}\right\} e^{j\left(S_{\omega} S^{\left.t-\theta_{L}\right)}\right)} \tag{3-2}
\end{equation*}
$$

In order to obtain the rms value by inspection, the terms within the braces of equation (3-2) must be orthogonal. This can be done by using the identity,

$$
\begin{equation*}
e^{-j \theta_{R}}=\cos \theta_{R}+\left(\sin \theta_{R}\right) e^{-j(\pi / 2)} \tag{3-3}
\end{equation*}
$$

Equation (3-2) becomes

$$
\begin{align*}
\bar{v}_{R} & =\left[\left(\left|Z_{R}\right| I_{R D}+E_{R} \cos r_{R}\right)\right. \\
& \left.+\left(\left|Z_{R}\right| I_{R Q}+E_{R} \sin \theta_{R}\right) e^{j(\pi / 2)}\right] e^{j\left(S_{\omega} S^{\left.t-\theta_{L}\right)}\right.} \tag{3-4}
\end{align*}
$$

Since the phasors of equation (3-4) are now separated by 90°, the rms value squared of rotor voltage, v_{R}^{2}, can be written as,

$$
\begin{equation*}
v_{R}^{2}=\frac{1}{2}\left(\left|Z_{R}\right| I_{R D}+E_{R} \cos \theta_{R}\right)^{2}+\frac{1}{2}\left(\left|Z_{R}\right| I_{R Q}+E_{R} \sin \theta_{R}\right)^{2} \tag{3-5}
\end{equation*}
$$

The rotor volt-amperes can be found by taking the product of equations $(3-1)$ and $(3-5), V_{R}^{2} I_{R}^{2}$; the result is

$$
\begin{align*}
V_{R}^{2} I_{R}^{2} & =\frac{1}{4}\left[R_{R}\left(I_{R D}^{2}+I_{R Q}^{2}\right)+\frac{L_{S}}{a^{2} L_{R}} S E_{S D} I_{S}\right]^{2} \\
+ & \frac{1}{4}\left[(1+K) S X_{R}\left(I_{R D}^{2}+I_{R Q}^{2}\right)+\frac{L_{S}}{a^{2} L_{R}} S E_{S Q} I_{S}\right]^{2} \tag{3-6}
\end{align*}
$$

Inspection of equation (3-6) gives the rotor real power, P_{R}; and reactive power, Q_{R}.

The second term within each bracket of equation (3-6) is the real and reactive powers transferred between rotor and stator. To show that these same terms appear in stator power expressions, equation (2-3) can be written as follows,

$$
\begin{equation*}
\bar{e}_{S}=\left[E_{S D}+E_{S Q} e^{j(\pi / 2)}\right] e^{j(\omega} S^{t-\theta} R^{-\theta} L^{\left.+_{\pi} / 2\right)} \tag{3-7}
\end{equation*}
$$

The rms value squared of $\overline{\mathrm{e}}_{\mathrm{S}}$, from equation (3-7), is

$$
\begin{equation*}
E_{S}^{2}=\frac{1}{2}\left(E_{S D}^{2}+E_{S Q}^{2}\right) \tag{3-8}
\end{equation*}
$$

However, referring back to equation (1-5), it can be seen that the stator induced voltage expands into two components; one related to mechanical speed, another,
to slip speed. It can be shown that an equivalent form of equation (3-8) is the following,

$$
\begin{equation*}
E_{S}^{2}=\frac{1}{2}\left[(1-S) E_{S D}+S E_{S D}\right]^{2}+\frac{1}{2}\left[(1-S) E_{S Q}+S E_{S Q}\right]^{2} \tag{3-9}
\end{equation*}
$$

When this equation is multiplied by I_{S}^{2}, the result is the apparent (complex) power for the stator circuit; namely

$$
\begin{align*}
& E_{S}^{2} I_{S}^{2}=\frac{1}{4}\left[(1-S) E_{S D} I_{S}+S E_{S D} I_{S}\right]^{2} \\
&+\frac{1}{4}\left[(1-S) E_{S Q} I_{S}+S E_{S Q} I_{S}\right]^{2} \tag{3-10}
\end{align*}
$$

When equation (3-10) is compared with equation (3-5), the terms $S E S D^{I} S$ and $S E$ SOIS are the real and reactive powers, respctively, that are transferred between rotor and stator. Equation (3-10) gives the stator real power, P_{S}; and the reactive power, Q_{S}.

$$
\begin{align*}
& P_{S}=E_{S D} I S \tag{3-11}\\
& Q_{S}=E_{S Q} I_{S} \tag{3-12}
\end{align*}
$$

SUMMARY

The rotor currents and induced stator voltages are redefined into direct and quadrature components. The quantative relationship between direct rotor current and direct stator voltage is shown; also, a similar relationship is given for quadrature rotor current and quadrature stator voltage. These components are used to derive expressions for the apparent (complex) power on both the rotor and stator.

This paper, along with the first paper, provide a complete description of rotor and stator variables, as well as the real and reactive power flowing in the doubly-fed generator.

REFERENCE

1. F. J. Brady, "A Mathematical Model for the Doubly Fed Wound Rotor Generator," NASA-TM-83454, 1983. IEEE Power Engineering Society, 1983 SM479-3.

[^0]
[^0]: *For sale by the National Technical Information Service. Springfield, Virginia

