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STABILITY OF THE LAMINAR BOUNDARY LAYER IN A STREAMWISE CORNER 

By 

Will i am D. La k i n* 

SUMMARY 

Viscous incompressible flow along a streamwise rectangular corner form-

ed by the intersection of two selT\i··infinite flat plates is often called the 

corner boundary layer problem. Theoretical work on the mean flow in this 

problem has primarily been asymptotic and nll11erical in nature. Unfortunate­

ly, experimental results do not recover the flow patterns predicted by 

theory and, indeed, tend to differ from study to study. Zamir (1981) has 

suggested that one reason for the differences is an instabil ity of the mean 

flow. The present work is the first theoretical investigation of the sta-

bilityof the corner boundary layer problem. 

By symmetry, it is sufficient to consider the flow region y (z in 

which x, y, and z are respectively the streamwise, vertical. and sp<:'!lwise 

coordinates, and the plate is at y = O. Rubin (1966) has shown that for x 

large and fixed and z/x small, the presence of the corner induces a secon­

dary spanwise velocity ~ which reverses direction within the boundary lay­

er. Further, it can bE! shown that with z/x small, there is a ",ide r~nge 

of z such that, to suitable order, all three velocity components u, v. 

-and ware functions of y alone, so the mean flow is quasi-parallel. 

This region will be termed the blending boundary layer. 

In the present work, three··dirnensional, time dt~pendent. small amplitude 

-*Eminent -fYr-Ofesso-r-,--De-partment of Mathematical Sciences, Old Dominion 
University, Norfolk, Virginia 23508. 



perturbations u, v , w • and p are superimposed on the mean velocity 

and pressure fields in the blending boundary layer region. As weak stream­

wise vorticity perturbations may produce large defects in the mean stream­

wise flow, two different velocity scales are used for the velocity perturb-.. 
ations. This is similar to the treabnent of Gortler vortices by Floryan and 

Saric (1982). Partial differential equations for disturbance quantities are 

obtained by substituting total velocity and pressure fields into the Navier­

Stokes equations and consistently linearizing about the mean flow. In ac­

cord with the quasi-par':lllel nature of the mean flow, dependence on x, z, 

and t is separated out by assuming normal mode forms for the perturba­

tions. In the Gortler context, Hall (1983) has shown that there is a wave 

number regime for which parallel flow gives a self-consistent approximation 

to the linear stability equations. 

After some manipulation, the coupled ordinary differential equations 

for the perturbation amplitude functions u(y), v{y). w(y)~ and p(y) can 

be reduced to a main uncoupled differential equation for V, a second dif­

ferential equation which couples w to V, and algebraic equations for u 
and p. Some care rrust be taken in formulating associated 'outer' boundary 

conditions for v and w as the 1 ine of symmetry y:: Z may not be cl'ossed. 

For large Reynolds number, the as.;mptotic character of the main stabil­

ity equation is set by a simple turning point and the resulting critical 

layer. Uniformly valid approximations to solutions of the main stability 

equation are derived using generalized Airy functions. Key steps to achiev-

ing uniformity on the full semi-infinite domain include definition of an 

appropriate Langer variable and reformulation of the equation in terms of a 

a proper large parametet which suitably incorporates the limiting behavior 

of the mean velocity components. Approximations to the balanced solution 

2 



are found to have a phase shift across the critical layer which is an indi­

cation of instability, 

A paper describing this research has been accepted by the Royal Society 

of London for publication in the Proceedings. It is co-authored by Dr. ~I. 

Y. Hussain; of the Institute for Computer Applications in Science and Enyin­

eering (ICASE). Publication date will be late 1984. The paper was communi­

cated to the Royal Society by Prof. Keith Stewartson shortly before his 

death. A copy of the manuscript is included in this report as an Appendix. 

The major portion of this research was carried out under the present 

grant. However, initial work on the corner layer stability problem was done 

at ICASE prior to the starting date of the grant. and appeared in an leASE 

report. Final details of the work, including the final revisions of the 

manuscript, were done on an unfunded basis after the expiration date of the 

grant. 
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STABILITY OF THE LAMiNAR BOUNDARY LAYER 

IN A STREAMWISE CORNER 

W. D. Lakin 

Old ~omlnlon University 

and 

~. Y. Hussainl 

Institute for Computer Applications in 5clence and Fngineerln~ 

Abstract 

This work examines the sta!>illty of viscou'i, inC·)l"rlt'p.5s{hle f10w .l('"lng a 

stre:tmwise corner, often called the corner houndary layer prohleIT'. The '>e,:"i-

infinite boundary value prol'-lem satisfied 1:-y smail-a:"'plltuce :!isturrances in 

the "blending houndary layer" region f.s obtained. The r.'ean secondary flo.J 

induced by the corner exhibits a flow reversal in this region. Unlfomly 

v3lid "first approlCimiltlons" to solutions of the ~overnini? dlfferentl"t ~1'la-

tlons are derived. ~niforrnlty at inflnity is achieved ~y a 'iuitable choice of 

the large parameter and use of an appropriate Langer variable. Appro)(l~ations 

to solutf.ons of halanced type have a phase shift across the critical lay~r 

which Is associated with Instabilities in the case of two-dimendional houncary 

layer prof Ues. 



INTRODUCTION 

Viscous, incompressible laminar flow along a streamwise corner formed by 

the intersection of two solid surfaces is often refftrred to as the cornar 

boundary layer problem. In the theor.etical model of this prol?lem. two flat 

plates, which are infinite in the streamwise and spanwise directions, 

intersect such that the line of intersection (the corner line) is normal to 

the plane containing their. leading edges. The basic flow is along the line of 

intersection. Most theoretical work assumes a rectangular corner. 1his 

situation is shown in Fi~lre 1. 

Solution of the exact corner flow velocity profile from the full Navier-

Stokes equations is impractical, and the only exact solution produced to date 

flO} requires an exponentially increasing suction through the walls. 

Consequently, most theoretical work OIl the corner layer problem has been 

numerical or asymptotic 1.n nature with the main focus being on the boundary 

layer regions close to thf.~ solid walls. An excellent summary of existing work 

has been given by Zamir [11}. The qualitative features of the flow field 

which emerge are shown in Figure 2. Region I, away from the solid houndaries, 

is a basically inviscid region. To lowest order, the flow in this region Is 

irrotational flow. Region II, which lies "close" to the corner line 

y • Z a O. is a viscous corner layer dominated by the contraints of no-slip on 

the walls and symmetry on the line y .. z. Regions III and IV ar!:: the 

boundary layers on the solid walls "alvay" from the corner. By symmetry, it is 

only necessary to consider region III (say) whicll is the boundary layer on the 

plate y .. 0, x > 0, z > O. If the mean velocity field is (u,v,w), then in 

lcegion III, u is the streamwise component, v is the outflow from the 

boundary layer, and w 1,9 the secondary flow component: due to the presence of 
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the corner and the oppos1,te wall. There has been some disagreement: over the 

nature of the secondary flow. However, recent experimental results support 

the picture derived by Rubin [8J, Rubin and Grossman f9) and Ghia [2) which 

Invol,,,es a reversal of the secondary flow component for 0 < I z/x «1 in 

'region III. In this reglllrd, the COl'ner boundary layer problem is similar to 

the boundary layer on El wing along til wing-body junction. For large z in 

region III (far away from the corner), the usual Blasius profile must be 

recovered. However, the decay of the secondary flow with increasing z 

appears relatively slow, algebraic rather than exponential. There will thus 

be a significant portion of region III where corner effects are important. It 

101111 be convenient to denote this region where the corner layer blends into 

the Blasius-type layer as the "blending boundary layer," 

Theoretical work on the corner layer problem has primarily considered the 

:L-:leal situation where the incoming uniform stream is aligned with the corner 

line. Hence, the pressure gradient along the corner line is zero. However, 

:l t is difficult to produce experimentally a laminar corner flow with a nonzero 

angle of incidence between the incoming uniform stream and the corner line. 

1'his fact, as well as apparent differences between the various experimental 

!Jtudies, has recently been analyzed by Zamir r 11! . Based on his e,cperimental 

lcesults, \<]hich indicate a loss of profile simllad.ty, he concludes that 

differences are the result of instability of the mean corner flow velocity 

profile. By extrapolating his data, Zamir predicts flow instability at zero 

/lnglc of incidence when the Reynolds number R x 
u x* .. ---v is order 104 , where 

U is the local free stream velocity, x* is the distance from the leading 

edge, and v is the kinematic viscosity. 



-3-

The present work is the Hrst part of an asymptotic and nUll1er:cal 

investigation of the stability of the corner boundary layer problem to small 

aml)l1tudc disturbances. Three-dimensional velocity pe~turbat1ons are imposed 

on the mean flow in the portion of region III where z/x h small. The 

differential equdtions and boundary conditions governing the amplitude of 

dit!turbance qualities are derived, and, for high Reynolds number, the 

reflUlting eigenvalue problem is found to be of singular perturbation-type. 

Fr()m an asymptotic point of view, the character of this singular perturbation 

problem is determined by the simple turning point of one of the differential 

equations and the resulting critical layer in the blending boundary layer 

region. Both heuristic and uniformly valid asymptotic approximations to 

solutions of this disturbance equation are dedved. One of the two inviscid­

type solutions is found to behave logarithmically away from the turning point 

leading to a phase shift in the general solution across the critical layer. 

Phase shifts of this type are characteristic of the critical layer in the case 

of two-dimensional boundary layer profiles, such as the Blasius hounoary 

layer. 

2. 'r'ff.g DISTlJRBAl~CE EQUATIONS 

It is ~onvenient to work in terms of dimensionless var.iables to derive the 

houndary value problem sathfied by small amplitUde disturbances to the mean 

corner layer flow. A(.cordf.ngly, velocities will be scaled relative to the 

local free stream velocity U. A characteristic l~ngth L may be based on 

either x* or the boundary layer thickness 0*. The choice adopted here is 

..; 
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L - x*/Rx
l/2 , 

in which case the usual Reynolds number becomes 

UL R. _ .. R 1/2. 
v x 

ORIGINAL PAC.::; :. 
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(2.1) 

(2.2) 

We wish to impose perturbations on the mean velocity and pressure fields 

in the portion of region III closest to the corner where 0 < z/x «1. This 

subregion will be referred to as IlIa. To lowEst order, ~he principal 

difference between the mean v210city profile in region IlIa and the usual flat 

plate Blasius profile is the secondary velocity component 101 which changes 

direction within the houndary layer. As noted. for z/x large. w necays 

algebraically so for fixed x the Blasius profile is recovered as z + 00. 

For z/x small. however, the algebraically decaying portion of 101 ent~rs at 

higher order. 

Asymptotic approximations to the mean velocity profile tn reRion IlIa have 

heen derived by Rubin [8J. The expansions have the for~s 

-1 -2 U :0 Uo + R u
1 

+ OCR ) , 

-1 + 0(R-2 ), v .. R VI (2.3) 

and 

-1 + O(R-2 , 
-1 2 

R z ) w .. R t-ll 2 
x 

where uO(s) and VI (s) are the usual Blasius quantities 
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- -1/2 ( ) V1(S) • 2 sf'(s) - f(5) • (2.4) 

In the current scallng, thE> similarty variable s .. 21/2 y, 

f(O) - E'(O) • 0, f' (s) + 1 -.J (2.5) 
f"'" + ff" ... 0, 

as s + 

and the mean secondary flow Is 

60 "" 1.2168 ••• (2.6) 

where 

lIo + 1 as s + _.} 

(2.7) 

The behavior H" o is shOtvn in Figure 3. In particular, Hn(s) is negative for 

o , s < 2.15 and positive above this level. 

Consider now the order of macini tude of z in region IIIa. As in o,;r 

scaling x - x*/L - R, if z - O(RP) then z/x small :equires p < 1. Also, 

we must have y < z to avoid crossinz the line of symmetry, and as y J1ay 

get large this requires p > O. Rubin rRJ has shown that in region IlIa, the 

function z/x times an order one function of s. Consequently, 

-1 
R •. \ Similarly, the second term in -

\01 is In 

particular, if p is the range 0 < p < 1/3, then the mrJan velodty profUe 

in region IlIa is 
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{ii. ". w) • (u
O

' R- I v
1

, R- I w
1

) + O(R-
q

) (2.8) 

with q > 4/3. Thus, to the order required by the pre~ent theory for uniform 

"first approximations". the mean velocity in region IlIa involves only y and 

the stability problem for small amplitude disturbances can be treated using R. 

quasi-parallel flow approximation. 

Dropping the subscripts on mean flo~1 quantities, consider now total (mean 

plus perturbation) velocity and pressure fields in region IlIa of the form 

u • u(y) + u'(x.y,z,t) 

-1 - -1 v D R v(y) + R v'(x,y,z,t) 

(2.9) 

-1 - -1 waR w(y) + R w'(x,y,z,t) 

and 

p ~ p(y) + R-2 p'(x,y,z,t). 

Relat1.ons (2.9) involve different velocity scales for the perturbations u', 

v'. and w·. This 1s similar to the treatment of G'Ot·tler vortIces by Floryan 

and Saric [l} and t'€·flects the fact that we«k streamwise vorticity 

perturbations may produce large defects in the mean streamwise flow. The 

linear theory for the Gortler problem has recently been placed on a firm 

footing by P..all [31. [t~l. In particular, for the Gortler problt.'!m it was shown 

that there is a wavenumber regime for which parallel flow gives a self-

consistent approximation to the stability equations_ 
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To obtain the differential equations for the small amplitude disturbances, 

the eltpressions (2.9) for the velocity and pressure may be substituted lnto 

the Navler-Stokes equations and the resultln~ equations are consistently 

linearized about the mean flow. Thls gives 

au· - au' 1 - all' v' du 1 _. au' -- + u -- + - v -- + - - + - w -- .. at ax R ay R dy R az (2.10) 

v' dv + 1. w a v' IS _.!. () p' + .!. v 2 
dy R ()z R 3y R 

v', (2.11) 

aw' + - aw" + 1 - aw' + 1 , d~ + .! w aw" ,.. _ 1. 3p" + ! v2 , at u ax it v ay R v dy R 3z R dZ R W, (2.12) 

and 

(2.13) 

vhere Is the usua1 Laplacian and du 2-l/2 du 
dy D ris • etc. 

This is a set of partial differential equations. 110wever, In the quasi-

parallel flov approximation, dependence on x, Z, and t can be separated out 

by assuming normal rrode solutions of the forrr 

(2.14) 

Equatlono (2.10) (2.13) now he come the set of four coupled ordinary 

differential equations 

L ia • L-' 
2U"'RP'rli v, (2.15) 
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L v - v' v • 0 p 2 

I ... 
a u - R (i Dv - B w) M 0 

where D - d/dy, LZ is the differential operator 

ORIGiNJU. PACE tS 
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and a prime on a mean flow quantity d~notes a y-derlvative, e.g., ~' 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

lu/dy. 

Equations (2.15) - (2.19) are usually either left in their couple~ form or 

rewritten in terms of vorticity components. For the present purposes. 

however, we wish to retain primitive variables. After some manipulation, 
... ... 

U, w, '.md p can be eliminated from (2.15) (2.18) to give a fourth-order 

uncoupled equation for ;(y) of the form 

2 2' S- • 
[OL2 D - (0. + B ) L

21v + iP(au' + R w')Dv 

+ iR[ au" +: i 2 2 - ... 
~" - I (a + B )v'lv • o. (2.20) 

The perturbation velocity ~ satisfies the inhomogeneous second-order (in ~) 

differential equation involving v of the form 

(2.21) 
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lind from (2.18) 
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(2.22) 

~rhe scenario for determining the perturbation fields is now clear. Equation 

... 
(2.20), with appropriate boundary conditions on v, is a fourth-order eigen-

1Talue problem. For spatial stability, the frequency w is real and fixed and 

the eigenvalue is the wave number vector (a,S). For temporal stability, ex 

and S are real and fixed and the eigenvalues is the wave speed 

(! u Having solved (2.20) and obtained ~(y), ~(y) is now 

found by solving the second-order inhomogeneous problem (2.21). Then ~(y) 

<:an be obtained allZebl~aically from (2.22), and is ohtained 

algebraically from either (2.15) or (2.17). 

The hasic equation to be solved In the current stabil tty prol'-leM is thus 

(2.20). Some simplification of this equation is possihle as 

[- - 6 - J DL 2~ L2D - v' r + IR(au' + R 1.1') • (2.23) 

In particular, (2.20) can be written in the form 

{ 
2 2 2 __ } 2 2?A _ 

(D - ex - a ) _. v D - (l6w + v') (D - a -S-)v + i6w" v 

Equations (2.24) ancl (2.21) must be complimented by four boundary 

conditions on ~(y) and two boundary conditions on ~(y). No-slip conditions 

on the solid wall y - 0 require 



~(O) = ~(O) • w(O) - O. (2.25a) 

The continuity equation (2.18) now gives the additional condition 

D,,(O) - O. (2.25b) 

Equations (2.25a,b) provide three of the required six ~ounclary conditions for 

~(y) and ~(y). 

For modes in the discrete specturm, the perturbation auantities u', v', 

and w' must tend to zero in the free stream, 1.e., as y anel z tend to 

infinity. However, the line of symmetry y:: z may~! be crossed. Care 

must thus be taken in translating this 'outer' behavior of u', v', and w' 

~ ~ 

into conditions on u, v, and w as y tends to Infinity. Fortunately, the 

restrictions that y < z to remain below the line of symmetry and z .. O(RP) 

with 0 < p < 1/3 for the quasi-par<,llel flow approximation imply that z 

w111 tend to infinity automatically as y tends to infinity. Appropriate 

'outer' boundary conditions for (2.24) and (2.21) are thus 

v, D~, W + 0 as y + -to>. (2.26) 

Consider now equation (2.24), which is the hasic equation in the stability 

problem. This equation has a simple turn1.ng point at y" Yc where 

au(y ) - w vanishes. As the wave speed c '" 0)/(a 2 + 82)1/2, thts turning _ c 

point is subtly different from the usual turning point in the Blasius 

problem. Nevertheless, the critical layer associated with sets the 

asymptotic charRcter of equation (2.24) for large R. Further, as 
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iil~ - u'(Yc) > 0, the reduc:ed equation 
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.. 2 2 2 .. 
R2 V .. , (u .. a)(I'· - a - a )v - u" v. "" 0 

obtaint::d by formally letti.ng R + ... in (2.24) with 

a • ~ a (1 + ~)1/2 c 
a 

(2.27) 

(2.2R) 

will have a regular singular point at Yc whereas Yc is a regular point of 

the full fourth-order equation for Dealing with this spurious 

ningularity provides one of the main challenges in deriving uniform approxlma-

tions to solutions of (2.24). In this rE!gard, (2.24) is similar to the usual 

Orr-Sommerfeld equation for the stability of ttJo-dimensional boundary J<\yer 

profiles. 

In treating equation (2.24), it is convenient to consider y to he a 

co~plex variahle. Accordingly, the aim of this study is to seek "first 

~Ipprolcimations" to solutions of (2.24) which are uniformly vaJ id in sectors of 

the complex plane containing the non-negative real axis. 

31. TIlE PROPER LARGE PARAM!!:TY.R AND HEURISTIC APPROXIt1ATIONS 

For large Reynolds number., the most obvious large parameter in equation 

(2.2/~) is iaR. However, if approximations are required to remain valid as 

y + co, iaR is ~ an appropriate expansion parameter. This may be most 

easily seen in connection wi.th the WKB approximations to viscous-type 

solutions of (2.24). It has been appreciated fOl· some time that the I.J¥.B 
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approximations are only valid away from the turning point in certain 

restricted sectors of the complex y-plane. However. examination of the 

O(aR)-1/2 term 1n the Poincar~ series portion. of the usual I-lKB 

approximations shows that. tn the present context. these approximations also 

lose val1dj ty for y;l O(aR) 1/2. This breakdown at infinity may l'e traced 

to the use of iaR as the large parameter and may be eliminated thr.ough 

choice of the proper large parameter. 

As Y + ....... equation (2.24) becomes a constant coeffic1ent fourth-order 

equation which can be written in the factored form 

2 _. a 2 Voo 2 2 A 

6 }{ (D - "2) - y } V :2 0 (3.1) 

where 
-2 

y2 • iaR(l _ e) + a 2 + 13 2 + ~ + iBwoo (3.2) 

with 

rc y > 0 (3.3) 

and 

.. 2-1/2 Bo' (3.4) 

Thus, as y + ....... invis(.id type solutions of 0.2 11) will have the asymptotic 

behavior 

(3.5) 

and viscous type solutions will have the asympt(()tic behavior 

',j 
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v ... 
constant )( exp{ ± yy -I- -:2' (y - y c)} • (3.6) 

Equation (3.6) suggests that the proper large paramete~ for the corner layer 

pIl"oblem Is 2 Y , not laR. Accordingly, as the starting point of the present 

asymptotic theory, equation (2.24) will be rewritten In the form 

(3.7) 

w:Lth 

(3.8) 

and So as In (2.6). 

The so-called heuristic approximations to solutions of equation (3.7) are 

not uniformly valid in full neighborhoods of the turning point Yc and have a 

nUlIlber of other limitations. Ho,,'ever, they will bp considered here as they 

contain essential elements which will he needed later to construc~ the fully 

uniform approximations. Let these approximations be denoted ~y ~(y). 

C,:>nslder first the modif1.ed tJlm approximations for equation (3.7) based on the 

large parameter y2. Application of the usual HKB technique to (3.7) gives 

the approximations 

(3.9) 
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(3.10) 

where cO(y) is a constant which may depend on y. 

(3.11) 

and 

(3.l2) 

In many applications, an explicit expression for the term HI(y) in (3.9) 

and (3.10) is not requf.red. In the present context however, HI (y) is an 

essential component in the uniform approximat ions and is also needed to check 

remain valid as y ~. 4<». In the usual WKB 

procedure. H1(y) is determined algebraically after considerable manipulation. 

An alternate procedure is to take ~4 (say) in the form 

with 

(3.14) 

Substitution of (3.l3) and (3.l4) into (3.7) nOI:"] gives explicit expressions 

for H'(y) and Hi(y), 

equation for Ri(Y) is 

In particular, H'(y) ~ 0 so H(y) = 1. The 
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7 h .. - 3 h,,2 
-8 0 o· (3.15) 

1:his equation immediately shows "i(Y) + 0 as y + 00 so "l(Y) - constant 

for large y and uniformity at infinity is preserved. Solving for "1 (y) 

gives 

H ( ) "" 17 U" (u-e)-3/2 _ 5 - (u-e)'.1/2 _ K (U-e) 1/2 + I ( ) 
1 Y SH H 7;v r-e "! 1=6" 1. y , (3.16) 

"'ith 

f y { 1 ( u')2 (U-a)-S/2 _ 1[~;" + 1 u" V](U-8)-3/2 
II (y) .. '32 1-8 1-a 2" 1-8 7; 1-8 r:e 

Yc 

(3.17) 

Following the usual practice, the lot-ler limit of integration in (3.17) has 

heen taken to be Yc' Also, HI (y) has been normalized so that its expaLsion 

relative to Yc contains no constant term. 

The HKB approximations (3.9) and (3.10) are valid for o < Iy-y 1 < ... 
c 

in 

I:estricted sectors of the complex plane. For example, in the complete sense 

of Hatson [61, the approximation ~3 must be restricted to the range 

'ph y hO(y)1 < B. 
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To app-roximate so1utic)ns of (3.7) of invisc1d type, fey) may be expanded 

:In inverse powers of y2, e.g •• 

(3.18) 

First outer approximations to two solutions f1 and f2 of (3.7) then 

satisfy the reduced equation 

R2 f (0) .. o. (3.19) 

'ro express the solution of (3.19) which remains bounded as y + {oa, it is 

convenient to define the inviscid combination 

(3.20) 

They have the forms 

(3.21) 

and 
uti 

T (O)(y) P ( ) + __ c __ x1(0)(y) In (y_y ), 
'1'2 '" 2 Y u~ 'I' C 

(3.22) 

C 
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where Pl(Y) and P2(y) are power sE!ries in (y-Yc) , Pl(Yc) m P2(Yc) • 1. 

and P2(Yc) .. O. The subscript "c" above denotes evaluation at Yc' e. g •• 

u" • u"(y ) and U',.,. :I u#'#(y ). The power series. PI (y) and P2(y) will 
c c c c 

not be given explicitly as they a~e similar to the series for the solutions of 

the Rayleigh equation in the usual Orl:,-Sommerfeld problem. However, it is 

again worth commenting that u# u" and c' c' 
u', .. 

c 
are different here than in the 

Orr-Sommerfeld case as the definition of the turning point Yc involves 

e rather than the '-lave speed c. 

The approdmation (3.21) for the "regular inviscid" solution ~1 (y) is 

valid In the entire complex plane. However. because of its loga r1 thmic 

behavior, the approximat1.on (3.22) for the "singular invlsc!d soluti.on" $2(y) 

is only valid away from the turning point in the restricted sector 

It should be noted that the logarithm in 

induces a phase shift In .(O)(y) across the critical layer. This behavior 

is associated with instability in problems involving two-dimensional boundary 

layer profiles. 

4>. A PRELIMINARY TRANSFORHA'rION 

As a first step in deriving uniformlly valid approximations to solutions 

of the disturbance equation (3.7), it Is convenient to explicitly bdng out 

the turning point narure of the equation th~~ugh a preliminary transformation 

(4.1) 
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The Langer variable defined in (4.1) is appropriate for the present case of an 

unbounded domain, and differs from the usual bounded domain variable which Is 

normalized by u' rather than 1-0. c In the present case 

n(y) .. nc'(Y-y
c

) + 1 n" (y_y )2 + ••• 
nee 

for bounded I Y-Yc , where 

and 

Also, 

1 u~ 
n" • c ., =- . 

u' 
c 

n(y) - (i y)2/3 cIS y + -fc!o. 

If -2/3 
5 = Y ,equation (3.7) now becowes 

where 

(4.2) 

(4.3) 

(4.1~) 

(4 • .') 
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- ,-1 f 0 (11) ' .. 6u - v 11 p 

( 2) - -1 [2 2 - _] -2 f 1 (11) m - 4u' + 11U + 1(11 + 3U v n' + 2a + 28 .+ l~w + v' n' , 

.. () (. 7 ' 6 3 ) (2 2 - -) -2 g1 11 .. - U· + UU + U - K 11 U + 21l + 26 + law + v' U 11' 

{ 2 2 2 -2 gO(11) .. - Su + 611U + 211U' + (a + 8 )n11' }, 

and 

The function u(n) has the behavior 

Uo .. u(O) 
u" u 1 c ( c )-1/3 - ') =-' r=8 
u' 

c 

and 1 -1 
u(n)--"!n as n + "'. 

(4.6) 

(4.7) 

(4.8) 

Consider neyt the various ~euristic approximations to solutions of 

equation (4.5). For outer approxiwations to solutions of inviscid type, 

X(11) may be expanded in the form 

X (11) s " " 14.9) 



./ 

-20-

. , 

ORIGINAL Pf\~~ r:~ 
Or. POOR QUALITY 

Then. X (0) satisf.ies the transformed reduced equation 

with 0 .. d/dn. Solutions of (4.10) may now be expressed as 

and 

where Olen) and Q 2 (n ) are power sedes In 1'), Ql(O) .. Q2(0) .. 1 

Q2(0) ... O. For numerical purposes it is rasier to compute ~ (0) (y) 
1 

l (O)(y) 
2 rather than X (O)(n) 

1 and x
2

(O)(I'). This can easi~y he 

(4.10) 

(4.11) 

(4.12) 

and 

.'lort 

(ione as 

and (4.13) 

For later reference, Q2(n) also satisfies the inhomogeneous equation 

(4.14) 

The \.J1(13 approlCimatlon:l to viscous tj'pe solutions of equlItion (/~.5) ;lre 
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2 5/4 e
-2/3 y,,3/2 + hI (Y) 3/2 3 

X3(11) - dO(o) 11111" 1- {I - FI (I1)O + 0(0 )} 

nnd 

_ , 2,-5/4 +2/3 y.,3/2 + hl(y) • 3/2 3 
X4(11)-dO(o) 1111' e 'I {I + F

I
(I1)O +O(o)} 

For later use, these approximations wHI be normalized 

by choosing the constant dOCe) to be 

In discussing solutions of equation (I • • 5). we wish to exploit as ITl\.lch as 

possible certain symmetrles which they exhibit tn the complex plane, and for 

Ithis purpose we cons ide 1." the Stokes and ant i-Stokes lin(~s associated with the 

WKB approximations (4.15). They are defined by the conditions 

1m Y 11 3 / 2 .. 0 and Re y r,3/2 .. 0, (4.17) 

respectively. There are thus, three dlstinct Stokes ano snit-Stokes lines 

which radiate out from the turning point n" 0 wtth equal anp-ular spacing.:. 

of 21f/3. For marginal stability, c is real. and for modes in discrete 

spectrum K« aR(l-e). In this case, ph y ... ,'If I/~ qnd the Stokes and anti-

Stokes lines in the "-plane have the arrRn~ement In Figure 4. In the y-plane. 

the behavior of the Stokes and anti-Stokes lines Is more complicated. As 

_ 2 3/2 
hOCY) = 1 " • the definitions correspandl~g t~ (4.17) are 

find (4.11l) 
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These are again straight lines with equal angular spacing of 2w/3 close to 

the turning point Yc' However, away from Yc' the Illohal behavf.or of the 

Stokes and anti-Stokes lines in the y-plane depends on ~oth the details of the 

Blasius velocity profile and the specific value of e chosen. These 

difficulties in the y-plane provide a compelling reason for. use of the 

.appropriale Langer variable. 

Consider now seven eX~lct solutions of equation (4.5) which will be denoted 

These solutions can be uniquely 

defined (to within multiplicative factors and modulo an arbitrary addittve 

multiple of Uo in the case of Ul ) in terms of their asymptotic properties. 

Thus, we require that Uo be well-balanced, that Uk be (purely) balanced 

in Tk• and that Vk be recessiv~ in Sk' where Sk and Tk are sectors of 

the n-plane shown in Figure 4. Associated with these seven exact solut iOlls 

'will be three exact connection formulae which will not \"Ie needed for the 

present purposes. 

Uniformlly valld asymptotic approximations for these seven solutions wi.ll 

involve slowly-varyin~ coefficients ti~es rapidly-varyin~ ~enerallzed Airy 

functions of a stretched variable ([5J, [6J) 

t; '" nitS. (4.19) 

Proper Indices p and q for the Airy functions may be Inferred by expanding 

coefficients in (4.5) about n a 0 and deriving inner approximations X(F,). 

First inner approximations satisfy the equation 

(4.20) 
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Solutions of (4.20) are 

Higher inner approximations are solutions 

of inhomogeneous versions of (4.20) and involve the Airy functions RO(s,p), 

Bk(f;,p,l), and Ak(f;,p) with p.O,l. 

5. SOLUTIONS OF OO"AU!MIT-RECESSIVE TYP~~ 

Uniformly valid "first approximations" to the dominant-recessive solutions 

Vk(Tl) of equation (4.5) involve the Airy functions ~(Cp), k:aI,2,3, with 

pmO.l,2. They have the forms 

(5.1) 

where a, h, and c are regular at the turning point. On substituting (5.1) 

into equation (4.5), the slowly varyln~ coefficients a(n) and c(n, are 

found to satisfy the equations 

(5.2) 

and 

{2nD + (nfo - gl)} (a + nc) .. 0, (5.3) 

where RZ is given In (4.10), D'" d/dn. These equations may immediately be 

integrated to ~lve the regular solutions 

(5.4) 
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(5.5) 

The differential equatlon satisfied hy ben) is quite involverl anrl will not 

be given explicitly. A !Dore illuminating way of ohtaining this coefficient is 

to require that the outer e)tpansion of V, (n) (say) be the WKB approximation .. 
X3(n) away from the turning point in the sector 51 where this solution is 

purely recessive. ~1ith normalized as in (4.15) and (4.16), this 

condition gives 

a(O) .. 1 (5.6) 

and 

-1 -1/2( ) 101 -3/2, 
!.J(n) - 2n een) +n a(n) + nc(n) (Fl(n) -4"R n I' (5.7) 

Thus, ben) Is essentially a regularized form of FI(n) D H
1
(y). 

6. SOLUTIONS OF BALANCEI> AND WELL-BALANCED TYPE 

The uniform first. approxirnation to the well-balaneed solution is siMply 

(6.1) 

First approximations to the three solutions of balanced type have the farms 
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(6.2) 

where G, A, B, and C are regular at the tllrning point and A is a constant 

!~o be determined. 

Substitution of (6.2) into (4.S) shows that A, B, and C satisfy the 

same differential equations as a. b. and c. Consequently 

{A(n),B(n),C(n)} • A(O){a(n),b(n),c(n)}. (6.3) 

The , ... ell--balanced part G(n) of (6.2) is found to satisfy the equation 

R2 G • A{4n(A + nC)' + A - 2n(nC)' + fO(A + nC) - g1 ne} 

which, on simplification, becomes 

(6.5) 

A comparison of this equation with (4.14) now shows that the solution of (6.5) 

which is regular at n· 0 Is of the form 

(6.6) 

where bO is an arbitrary constant, provl~ed 
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• 1. (6.7) 

The constant bO in (6.6) may be chosen in a variety 01 ways. A particularly 

convenient way is to choose bO so that the outer expansion of U2(n) (say) 

contains no multiple of ~l(O)(y). UainF the to in the sector 

asymptotic expansions of the B-type Airy functions in T2 and the usual outer 

expansion operator E2 to O(~2), 

" where y '" 0.577 ••• Is Euler's constant. This result can now be written i.n 

the form 

E2 U3(n) ~ ~2(O)(y) + x1(O)(Y){bO - 5U O[log ~ - log n~ + 1 - Y + 2ni]}. 

(6.Q) 

contains no mUltiple of 4i (0) (y) 
1 provided 

(6.l0) 

It is worth noting that the slowly varying coefficients in hoth (5.1) and 

(6.2) are expressible in terms of known quantities 1n the heuristic 

approxlll1ations: the regular solution and the regular part of the singular 

solution of the reduced equation, and the terms exp(h1 (y» and HI (y) in 

the WKB approximations. 
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jr. CONCLUDING REMARKS 

The major aims of this paper have been to obtain the houndary value 

problem associated with small amplitude disturbances irt the hlending boundary 

layer region, and to derive "first approximations" to solutions of the 

governing equation for ~'(y) which are uniformly v-:l1d on a semi-infinite 

interval. This requires the introduction of a new large parameter and an 

appropriate Langer variable. The uniform "first approxlmations N involve 

slowly varying, analytic coefficients times rapidly varying ~enera lized Ai ry 

functions of a stretched Laoger variable. Because of the important first and 

third derivative terms in the fourth-or.der disturbance equation, as "leI 1 as 

the presence of v and w in other terms, these analytic coefficients differ 

from their counterparts in the! usual stabUlty problem for tl ... O dimensional 

m.~an profiles. Approximat1.ons to solutions of halanced type display a pl"-nse 

shift across the critical layer that is an indication of instability. 

A derivation of the ei~envalue relation a~soclated with the houndary 

c()nditions (2.25) and (2.26), numerical resuits fer the solution of equatton 

(2.21) for ;, and stability characteristics of the basic corner flow will be 

gl.ven in a subsequent papel:. The characteristic equation for this prol"-le:n is 

of the form 4(0) - 0 where 

(7.1) 

W is the usual Wronskian, 

(7.2) 
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and A(O) is again determined by the condition that ~(n) remains bounded as 

n + -t-. The need to use uniformly valid approximations for UO' U2• and Vl 

in analyzing (7.1) lIIay be easily seen. If, following the usual heuristic 

procedure, Frobenlus-type approximations are used for ~(O) and either first 

WKB approximations, or first inner approximations are used for 

resulting crude approximation to (7.1) is independent of both the mean outflow 

-velocity v and thp mean secondary flow component w. 
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Figure 1. Geometry for flow along a rectangular streamwise 
corner. The incoming uniform strea~ is aligned with the corner 
line y '" z '" o. 
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Figure 2. Qualitative regions of the mean flow velocity 
field in the plane perpendicular to the corner. 
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-1-The function Hh(s) from the secondary velocity R wI 



.~ 

I, 
""'-

. ...-
J/ 

\'V\- -

J$ 
S 

-.2 ~, 

Fig.~. The Stokes lines (left) and the anti-Stokes lines (right) in 

tne ?-plane ,dth .:, rcal and ph ~= tn. 
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