@ https://ntrs.nasa.gov/search.jsp?R=19840009464 2020-03-20T23:16:42+00:00Z
NAasH CB-173,282

NASA-CR-] 73282
19840009464

A Reproduced Copy

OF

NASH - /73, 2852

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

W
LIBRARY GOPY

S G 1084

LANGLEY RESEARCH CENTEN
LIBRARY, NASA
HAMPION, VIRGINIA

FFNo 672 Aug 65



DEPARTHMENT OF MATHEMATICAL SCIERCES
SCHOOL OF SCIENCES AND HEALTH PROFESSICNS
0LD DOMINION UNIVERSITY

NORFOLK, VIRGINIA

STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A STREAMWISE CORNER

By
Williem D. Lakin, Principal Investigator

SEARCH FOUNDATION

A2
(¥ )
Final Report

:g_ For the period ending September 30, 1983
€L
8
%éi Prepared for the
Pl National Asronautics and Space Adwministration
s Langley Research Center
fffﬁ Hampton, Virginia
pd
(:) Under : &
s Research Grant NAG1-297
G John R. Dagenhart, Technical Monitor %
S Airfoil Aerodynamics Branch
o
{

(NASB-CR—-173282) STAELLLTY GF THE LAMIMAG NE4~175352
K:) BOUNDARY LAYEE IN A SIREAMSISE CUKNER Final
- Report {(0ld beminion Unav., Ncrfolk, Va.)
( 35 p HC AO3/KF 401 CSCL 20D unclas
e G3/34 18320

February 1984

’ o
NZH- 11532



S R

DEPARTMENT OF MATHEMATICAL SCIENCES
SCHOOL QOF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA

STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A STREAMWISE CORNER

By

William D. Lakin, Principal Investigator

Final Report
For the period ending September 30, 1983

Prepared for the

National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia

Under

Research Grant NAGL1-297

John R. Dagenhart, Technical Monitor
Airfoil Aerodynamics Branch

Submitted by the
01d Dominion University Research Foundation
P.0. Box 6369

Norfolk, Virginia 23508

February 1984



STABILITY OF THE LAMINAR BOUNDARY LAYER IN A STREAMWISE CORNER

By
William D. Lakin*

SUMMARY

Viscous incompressible flow along a streamwise rectangular corner form-
ed by the intersection of two semi-infinite flat plates is often called the
corner boundary layer problem. Theoretical work on the mean flow in this
problem has primarily been asymptotic and numerical in nature. Unfortunate-
ly, experimental results do not recover the flow patterns predicted by
theory and, indeed, tend to differ from study to study. Zamir (1981) has
suggested that one reason for the differences is an instability of the mean
flow. The present work is the first theoretical investigation of the sta-
bility of the corner boundary layer problem,

By symmetry, it is sufficient to consider the flow region y < z in
which x, y, and z are respectively the streamwise, vertical, and speawise
coordinates, and the plate is at y = 0. Rubin (1966) has shown that for x
large and fixed and z/x small, the presence of the corner induces a secon-
dary spanwise velocity w which reverses direction within the boundary lay-
er. Further, it can be shown that with 2z/x small, there is a wide range
of z such that, to suitable order, all three velocity components u, v,
and w are functions of y alone, so the mean flow is quasi-parallel.

This region will be termed the blending boundary layer,
In the present work, three-dimensional, time dependent, small amplitude

*Eminent Professor, Department of Mathematical Sciences, 01d Dominion
University, Norfolk, Virginia 23508.
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perturbations u , v, w, and p are superimposed on the mean velocity
and pressure fields in the blending boundary layer region. As weak stream-
wise vorticity perturbations may produce large defects in the mean stream-
wise flow, two different velocity scales are used for fhe velocity perturb-
ations., This is similar to the treatment of Gartler vortices by Floryan and
Saric (1982). Partial differential equations for disturbance quantities are
obtained by substituting total velocity and pressure fields into the Navier-
Stokes equations and consistently linearizing about the mean flow. In ac-
cord with the quasi-parallel nature of the mean flow, dependence on x, z,
and t 1is separated out by assuming normal mode forms for the perturba-
tions. In the Gortler context, Hall (1983) has shown that there is a wave
number regime for which parallel flow gives a self-consistent approximation
to the linear stability equations.
' After some manipulation, the coupled ordinary differential equations
for the perturbation amplitude functions G(y), ¥(y), w(y), and p(y) can
be reduced to a main uncoupled differential equation for V¥, a second dif-
ferential equation which couples w to V, and algebraic equations for 0
and p. Some care must be taken in formulating associated 'outer' boundary
conditions for v and W as the line of symmetry y = z may not be crossed.
For large Reynolds number, the asymptotic character of the main stabil-
ity equation is set by a simple turning point and the resulting critical
layer. Uniformly valid approximations to solutions of the main stability
equation are derived using generalized Airy functions. Key steps to achiev-
ing uniformity on the full semi-infinite domain include definition of an
appropriate Langer variable and reformulation of the equation in terms of a
a proper large parameter which suitably incorporates the limiting behavior

of the mean velocity components. Approximations to the balanced solution



are found to have a phase shift across the critical layer which is an indi-
cation of instability.

A paper describing this research has been accepted by the Royal Society
of London for publication in the Proceedings. It is éo-authored by Or. M.
Y. Hussaini of the Institute for Computer Applications in Science and Engin-
eering (ICASE). Publication date will be late 1984, The paper was communi-
cated to the Royal Society by Prof, Keith Stewartson shortly before his
death. A copy of the manuscript is included in this report as an Appendix.

The major portion of this research was carried out under the present
grant. However, initial work on the corner layer stability problem was done
at ICASE prior to the starting date of the grant, and appeared in an ICASE
report. Final details of the work, including the final revisions of the
manuscript, were done on an unfunded basis after the expiration date of the

grant.
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IN A STREAMWISE CORNER

W. D. Lakin
0l1d Pominfon University

and

M. Y. Hussaint

Insticute for Computer Applications {n Sclfence and anlnéering

Abstract

This work examlnes the stahility of viscous, {ncorpressible flow alang a
streamwise corner, often called the corner boundary laver problem. The serti-
infinite boundary value problem satisfled by smail-armplitude disturbances In
the “blending boundary layer” reglon 1is obtalned. The mean secondary flow
f{nduced by the corner exhibits a fléw reversal In this regfion. Uniformly
valid “first approximations™ to solutlons of the governing differenttal 2qua-
cions are derived. Uniformity at infinity i{s achleved by a suitable cholce of
the large parameter and use of an appropriate Langer varfable. Approximations
to solutions of balanced type have a phase shift across the critical laver
which is assoclated with fingtabtlities in the case of two-dimensional houndary

layer profiles.
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INTRODUCTION . -

Viscous, incompressible laminar flow along a streamwise corner formed ﬁy
the intersection of two solid surfaces is often referred to as the corner
boundary layer probleﬁ. In the theoretical model of this probhlem, two flat
plates, which are 1infinite {In the streamwise and spanwise directions,
intersect such that the line of intersection (the corner 1line) is normal to
the.plane containing thelr leading edges. The basic flow is along the line of
intersection. Most theoretical work assumes a rectangular corner. This
situation is shown in Figure 1.

Solution of the exact corner flow velocity profile from the full Navier-
Stokes equations is impractical, and the only exact solution éroduced to date
[10] requires an exponentially 1Increasing suction through the walls.
Consequently, most theoretical work on the corner layer problem has been
numerical or asymptotic in nature with the main focus belng on the boundary
layer regions close to the solid walls. An excellent summary of existing work
has been given by Zamir {11]. The qualitative features of the flow fleld
which emerge are shown in Figure 2. Region I, away from the solid bhoundaries,
is a basically inviscid region. To lowest order, the flow in this region is
irrotational flow. Region II, which lies "close” to the corner line
y = 2z = 0, Is a viscous corner layer dominated by the contralnts of no~slip on
the walls and symmetry on the line y = z. Reglons III and IV are the
boundary layers on the solid walls "away”™ from the corner. By symmetry, it is
only necessary to consider region IIT (say) which 1s the boundary layer on the
plate y =0, x > 0, z > 0. If the mean velocity field is (u,v,w), then in
reglion TIII, u i3 the streamwise component, v is the outflow froh the

boundary layer, and w 13 the secondary flow componen{. due to the presence of



the corner and the opposite wall. There has been some disagreeﬁen& over the
nature of the secondary flow. However, recent experimental results suppoft
the picture derived by Rubin {8], Rubin and Grossman §9] and Ghia [2] which
involves a reversal of the secondary flow component for 0 < ,z/x << 1 {n
region ITII. 1In this regard, the corner boundary layer problem is similar to
the boundary layer on a wing along a wing~body junction. For large 2z in
reglion III (far away from the corner), the usual Blasius profile must be
recovered. However, the decay of the secondary flow with increasing =z
appears relatively slow, algebrailc rather than exponential. There will thus
be a significant portion ofnregion IIT where corner effects are Important. It
will be convenient to deﬁote this region where the corner 15?er blends 1into
the Blasinc~type layer as the "blending boundary layer.”

Theoretical work on the corner layer problem has primarily considered the
ideal situation where the incoming uniform stream is aligned with the corner
line. Hence, the pressure gradient along the coruner line is zero. However,
it is difficult to produce experimentally a laminar ccrner flow with a nonzero
angle of incidence between the incoming uniform stream and the corner line.
This fact, as well as apparent differences between the various experimental
studies, has recently been analyzed by Zamir [11!. Based on his experimental
results, which indicate a loss of profile similarity, he concludes that
differences are the result of Ifanstability of the mean corner flow veloclity
profile. By extrapolating his data, Zamir predicts flow instability at zero
angle of incidence when the Reynolds number Rx = E_gi is order 104, where
U 13 the local free stream velocity, x* 1s the distance from the leading

edge, and v 18 the kinematic viscosity.



The present work 1s the first part of an asymptotic and nuwmerical
investigation of the stability of the corner boundary layer problem to smali
amplitude disturbances. Three~dimensional velocity perturbations are imposed
on the mean flow in the portion of region III where 2z/x 1is small. The
differential equacions and boundarv conditions governing the amplitude of
disturbance qualities are derived, and, fér high Reynolds number, the
resulting efgenvalue problem 1is found to be of singular perturbation-type.
From an asymptotic point of view, the character of this singular perturbation
problem is determined by the simple turning point of one of the differential
equations and the resulting critical layer in the blending boundary layer
region. Both heuristic and uniformly wvalid asymptotic ap?roximations to
solutions of this disturbance equation are derived. Omne of the two Inviscid-
type solutions is found to behave logarithmically away from the turning point
leading to a phase shift 1in the general solution across the critical layer.
Phase shifts of this type are characteristic of the critical layer in the case
of two-dimensional boundary layer profiles, such as the Blasius bhoundary

layer.

2. THE DISTURBANCE EQUATIONS
It is convenlent to work in terms of dimensionless variables to derive the

boundary value problem satisefied by small amplitude disturbances to the mean
corner layer flow. Accordingly, velocitles will be scaled relative to the

local free gtream velocity U. A characteristic length L may be based on

efther =x* or the boundary layer thickness &%, The chiolce adopted here is
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L = x*/R.1/2, (2.1)

in which case the usual Reynolds number becomes

R =Ulop /2 (2.2)
v X

We wish to 1mpose perturbations on the mean veloclty and pressure flelds
in the portion of reglon IIIL closest to the corner where O < z/x << 1. This
subregion will be. referred to as IIla. To lowest order, the principal
difference between the mean velocity profile in region IITa and the usual flat
plate Blasius profile is the secondary velocity component w which changes
direction within the boundary layer. As noted, for z/x large, w decays
algebraically so for fixed x the Blaslus profile 1s recovered as z + =,
For z/x small, however, the algebraically decaying portion of w enters at
higher order.

Asymptotic approximations to the mean velocity profile i{n reglion IIla have
been derived by Rubin [8]. The expansions have the forms

U=Tug+ R+ 0R™%y,
+ oR™2), 3 (2.3)

and

- -1 — -2
w = R v + O(R , —»—Tfﬂ-)

where Eo(s) and Vl(s) are the usual Blasius quantities
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Ty(e) = £°(s), v (e) = 272 (se7(s) - £(s)). (2.4)
In the current scaling, the similarty variable s = 21/2 Y,

£°°° + ££" = 0,

(2.5)
f(0) = £°(0) = 0, f°(s) + 1 as g + o,
and the mean secondary flow is
w,(3) = 271/2 ¢ Hi(s) By~ 1.2168 voe (2.6)
1 00 ’ 0 ) :
where
HG™" + (£ HY)™= 1
(2.7)

HO(O) = 0, HO(O) = -BO, HO +1 as s+ =,

The behavior H6 is shown in Figure 3. 1In particular, Ha(s) is negative for
0 €8s <2.15 and positive above this level.

Consider now the order of magnitude of =z in region I1Ta. As in our
scaling x = x*/L = R, {f =z = O(RP) then z/x small requires p < 1. Also,
we must have y < z to avoild crosging the line of symmetry, and as y may
get large this requires p > 0. Rubin [8] has shown that 1in region IITa, the
function El is z/x times an order one function of s. Consequently,
r7L uo= O(R-2+p). Similarly, the second term in w {s O(R_Z,R~3+2p). In
particular, if p s the range 0 < p < 1/3, then the mean velocity profile

in region IIIa is

o e JTY M (FSIEA T PR, AN
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: @5 W e (5. RV RTHE) 4 o™ (2.8)

with .q > 4/3. Thus, to the order required by the present theory for uniform
"first approximations", the mean velocity in region IIla involves only y and
the stability problem for swmall amplitude disturbances can be treated using a
quasi-parallel floﬁ approximation.

Dropping the subécripts on mean flow quantities, consider now total (mean

plus perturbation) velocity and pressure fields in region ITIa of the form

u = G(Y) + u’(x,y,z,t) \

v = R-l viy) + R.1 vi(x,y,z,t)

> (2.9)
-] - -1 .
w a R w(y) + R wi(x,v,2,t)

and

~— -2 .
p=ply) +R 7 p7(x,y,2,t). /

Relations (2.9) fnvolve different velocity scales for the perturbations u~,

-~

v, and w'. This {s similar to the treatment of Gortler vortlces by Floryan
and Saric [1] and reflects the fact that weak streamwise vorticlty
perturbations may produce large defects in the mean streamwise flow. The
linear theory for the Gortier problem has recently been placed on a firnm
footing by Hall [3], [4]. In particular, for the Ggrtler problem it was shown
that there 1s a wavenumber vegime for which parallel flow gives a self-

consistent approximation to the stability equacions.
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To obtain the differential equations for the small amplitude disturbances,
the expressions (2.9) for the velocity and pressure may be substituted into
the Navier-Stokes equations and the resulting equations are consistently

linearized about the mean flow. This gives

Ju — 3u 1 -3u” , vvdu, l—a3u” 13p-, 1.2 .
3t TV YRV g RV ;‘fo“*ﬁ" U (2.10)
v’ L, =3v" 1 =3v: 1 _dv_ 1-23v> _ 13p- 1.2 .
5t TUs R Y Jy RV dy YRV 32 R 3y *gVOv (2.11)
W™ - gw” 1 — 3w~ 1 ., dw 1 —3w” __13p~ 1,2 .
st TV TRV Y RV 3z RV v (2.12)
and
du” 1 3v” 1 3w” N
5T+§§'>7'+"§'3_é— 0, (213
2 2 2

du 2-'1/2 du , etc.

2 3 .
where VUV~ = — + —y * —3 {s the usua®! Laplacian and v s

This {s a set of partial differentlal equations. However, In the quasi-
parallel flow approximation, dependence on x, z, and t can be separated out
by assuming normal mocde solutions of the form

1(ax+ﬁz-wt). (2.14)

(u”, vo, wo, p7) = (Uly), V(y), wy), p(y))e
Equations (2.10) - (2.13) now become the set of four coupled ordinary
differential equations

L,u=<—p+u’ v, (2.15)
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Lv-Ve=0p , (2.16)
L2 :} = 16[‘; +u :' . _ (2.17)
and
u;-%(iu;-ﬂ;)u() (2.18)

where D = d/dy, Ly 1is the differential operator
L, = (02 -a? - 32) - D - {R{el +%T« -w), (2.19)

and a prime on a mean flow quantity denotes a y-derivative, e.g., u” = du/dy.
Equations (2.15) ~ (2.19) are usually either left in their coupled form or

rewritten iIn terms of vortictity components. For the present purposes,

however, we wish to retain primitive variables. After some manipulation,

ﬁ, Q, and B can be eliminated from (2.15) - (2.18) to give a fourth-order

uncoupled equation for Q(y) of the form
[DLZ D - (a4 Bz)Lz]v + iP(au” + g W )Dv
+ R[aT + £ - 2 @@ +8%%)v = 0. (2.20)

The perturbatfion velocity w satisfies the inhomogeneous second-order (in &)

differential equation involving v of the form

(uz + BZ)L2 W o iSLZ Pv - aR(BG” —-% vilv , (2.21)
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1

)
u-.—_
aR

(iDv - 84). (2.22)
The scenario for determining the perturbation fields is now clear. Equation
(2.20), with appropriate boundary conditions on ;, is a fourth-order eigea-
value problem. For spatial stability, the frequency w 1is real and fixed and
the eigenvalue is the wave number vector (x,8). For temporal stability, «
and B are real and fixed and the eigenvalues {s the wave speed

¢ = w/(a2 + 82)1/2.

Having solved (2.20) and obtained Q(y), Q(y) is now
found by solving the second-order Inhomogeneous problem (2.21). Then G(y)
can be obtained algebraically from (2.22), and ﬁ(y). is obtatined
algebraically from either (2.15) or (2.17).

The basic equation to be solved in the current stability prohlem 1s thus
(2.20). Some simplification of this equation is possible as
DL

= LD - [V D+ iR(au” + 2 w)]. (2.23)

=l ™
£}

2

In particular, (2.20) can be written in the form

-

q — ——— — - —
{(0® - o - %) =T D - (167 + v} (0% - o -g%yv + 189" v

~ -

= 1aR{(@ - &) (0® - o - 8%y - T V). (2.24)

Equations (2.24) and (2.21) must be complimented by four boundary
conditions on G(y) and two boundary conditions on Q(y). No=-slip conditions

on the solid wall y = C require
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u(0) = v(0) = w(0) = O. (2.25a)
The continuity equation (2.18) now gives the additional condition

DY(0) = 0. | (2.25b)
Equations (2.25a,b) provide three of the required six boundary conditions for
v(y) and u(y).

For modes in the discrete specturm, the perturbation quantities u”, v°,

and w* must tend to zero in the free stream, 1.e., as y and =z tend to

infinity. However, the line of symmetry y = z wmay not be crossed. Care
must thus be taken In translating this “outer” behavior of u”, v°, and w”’
into conditions on fx. ‘{r, and @ as y tends to Infinity. Fortunately, the
restrictions that y < z to remain below the line of symmetry and z = O(RP)
with 0 < p < 1/3 for the quasi-parsllel flow approximation imply that =z

will tend to Infinity automatically as y tends to infinity. Appropriate

“outer” boundary conditlons for (2.24) and (2.21) are thus
v, Dv, w + O as y » -+, (2.26)

Consider now equation (2.24), which is the basic equation fn the stability
problem. This equation has a simple turning point at y = y. where
c_ﬁ(yc) - w vanishes. As the wave speed ¢ = w/(a2 + 82)1/2, this turning
point 1is subtly diffefent from the wusual turning pointf in the Blasius
problem. Nevertheless, the c¢ritical layer associated with Ye setg the

asymptotic character of equation (2.24) for large R. Further, as
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];; - ﬁ'(yc) > 0, the reduced equation

Ry v (@- 000 o -85y -5 V=0 (2.27)

obtained by formally letting R + o in (2.24) with

2.1/2
pag- (e . (2.28)

will have a regular singular point at y, whereas y, 1s a regular point of
the full fourth-order equation for 3(y). Pealing with this spurious
singularity provides one of the main challenges in deriving uni#orm approxima-~
tions to solutions of (2.24). 1In this regard, (2.24) is similar to the usual
Orr-Sommerfeld equation for the stabllity of two-dimensional boundary layer
profiles.

In treating equation (2.24), it 1s convenient to consider y to be a
complex variable. Accordingly, the aim of this study {s to seek "first

approximations” to solutions of (2.24) which are uniformly valid in sectors of

the complex plane containing the non-negative real axis.

3. THE PROPER LARGE PARAMETER AND HEURISTIC APPROXIMATIONS

For large Reynolds number, the most obvious large parameter Iin equation
(2.24) is iaR. However, if approximations are required to remain valid as
y * =, faR 1s not an appropriate expansion parameter. This may be most
easily seen in connection with the WKB approximations to viscous-type

solutlons of (2.24). It has been appreclated for some time that the WKB
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approximations are only valld away £from the turning point {n certain
restricted sectors of the complex y-plane. However, examination of the

~1/2 term {in the Poincare serfes portion, of the usual WKB

0(aR)
approximations shows that, 1in the present context, these approximations alsc
lose validity for y » 0(aR)}’2.  This breakdown at infinity may he traced
to the use of icR as the large parameter and may be eliminated through
cholce of the proper large parameter.

As y + 4o, equation (2.24) becomes a comnstant coefficfent fourth-order

equation which can be written in the factored form

\4 -~
{o? - o - 8%} - % = yHv a0 | (3.1)
where _a
2 2 2 Yoo —
Y* = {aR(1 - 06) +a~ + B ""'Z; + 1Bw, (3.2)
with
rey > 0 (3.3)
and
vV, =u, =22 (3.4)

Thus, as y + +=, 1inviscid type solutions of {2.24) will have the asymptotic
behavior.

constant x exp{x (a® + %)% g}, (3.5)

and viscous type sclutions will have the asymptotlc behavior
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vﬂ
constant x exp{t Yy + -y (y - yc)}. (3.6)

Equatfon (3.6) suggests that the proper large parameter for the corner layer
problem 1is 72, not iaR. Accordingly, as the starting point of the present
asymptotic theory, equation (2.24) will be rewritten in the form

2 2.° °

{(n2 -a? - 32) - VD - (1Bw 4-'(?)}(1)2 ~a® - 8%)v + 18V v

= of - olEg 0 - st - 2 e
with
; .
K = a2+32+_§(30+813), (3.8)

and BO as in (2.6).

The so-called heuristic approximations to solutions of equation (3.7) are
not uniformly valid in full neighborhoods of the turning point y, and have a
number of other limitations. However, they will be considered here as they
contalin essential elements which will be needed later to construct the fully
uniform approximations. Let these approximations be denoted by o(y).
Consider first the modified WKR approximations for equation (3.7) based on the
large parameter Yz. Application of the usual WKB technlque to (3.7) gives
the approximations

~5/4 etho(Y) + hl(Y) . 1

By = o) [u-0] (1 -yt o™}, @)
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and

-5/4 e+¥ho(Y) + hl(Y)

F,00 = cpn) 1501 (L+y P +oa™dl, (a0

where co(Y) is a constant which wmay depend on vy,

. y -
ho(y) = | {5}-—_—-%}“2 dy (3.11)
yC
and
1 Y -
h () = 5 [ v dy. (3.12)
yC

In many applications, an explicit expression for the term Hi(y) 1in (3.9)
and (3.10) {s not required. In the present context however, Hl(y) {s an
essential component in the uniform approximations and is also needed to check
that $3(y) and $&(y) remain valid as y +» 4w, In the wusual WKB
procedure, Hl(y) 1s determined algebraically after considerable manipulation.
An alternate procedure is to take $4 (say) in the form

-5/4 eYhO(Y) + h(y)

§,(y) = cpy) lu-o] H(y,Y) (3713)

with

Lu o) + ov72y. (3.14)

H(y,Y) = H(y) + Y~
Substitution of (3.13) and (3.14) into (3.7) now gives explicit expressions
for H°(y) and Hi(y). In particular, H(y) = 0 so H(y) = 1. The

equation for R;(y) is
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. 5 ..~-1 . 17 ,.=2 ..., ¥ .1~
HI(y) = = [3 b5 h{ =~ =z g™ hg™+ 5 hol

=2

1 _ - v 2
+x (180 +V + 2 +a

27, -1 1 .. ol =2
+B]h0 "[2 o hy +hg ]ho

7 ..-3,.2
1 h0 ho . : (3.15)
This equation immediately shows H{(y) + 0 as y + o g0 Hl(y) ~ constant

for large y and uniformity at infinity is preserved. Solving for Hl(y)

glves

u’ u-0y- — (u-0y=1/2 u-8y1/2
H 17u(u0)3/2_%v(u-)/_K(U)/

ASE Y + Ilgy), (3.16)

with

dy. (3.17)

Following the usual practice, the lower limit of {integration in‘(3.17) has
been taken eo be y.. Also, Hj(y) has been normalized so that its exparsion
relative to Yo contalns no constant term.

The WKB approximations (3.9) and (3.10) are valid for 0 < |y~yc| { o {n
restricted sectors of the complex plane. For example, in the complete sense
of Watson [6], the approximation $3 mst be restricted to the range

Iph v ho(y)l < w.
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To approximate solutions of (3.7) of inviscid type, $(y) may be expénded

In inverse powers of Yz, e.g.,

77 O +v725 Wy + ov™). (3.18)

First outer approximations to two solutions 751 and ’4')'2 of (3.7) then

satisfy the reduced equation
R, § (@ .. (3.19)

To express the solution of (3.19) which remains bounded as y + 4o, it is

convenient to define the inviscid combination
0 Q) — (0 - (0
2y = a® ¢1( diyy + ¢2( Y. (3.20)

The constant A(O) is determined by the condition that ¢(0) behaves

2 1
asymptotically 1like exp{-(a‘ + 82) Azy} as y * », For bounded ly~yc|,

+ (0) - (0)
%

expansions for and ¢2 may be obtained by the Frobenius method.

They have the forms
5,90 = v -y p» (3.21)

and

"

u .
5,V = 2,0 +%—f~$1(9)(y) In (y-y.)» (3.22)
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where Py(y) and Py(y) are power serles in (y-y.), Pi(y.) = Pa(y.) = 1,

)

and Pi(yc) = 0. The subscript "¢" above denotes evaluation at y., e.g.,

uc = G"(yc) and H;" = E"‘(yc). The power series . Pl(y) and Py(y) will
not be given explicitly as they are similar to the serles for the solutions of
the ﬁayleigh equation in the usual Orr-Sommerfeld problem. However, it 1s
again worth commenting that G:; Ez, and E;” are different here than in the
Orr~-Scommerfeld case as the definition of the turning point Ye involves

@ rather than the wave speed c.

The approximation (3.21) for the “regular inviscid"” solution El(y) is
valid in the entire complex plane. However, because of {ts Jogarithmic
behavior, the approximation (3.22) for the "singular inviscid solution” $2(y)
is only valid away from the turning point in the restricted sector
-1 < ph(YhO(y)) < -m/3. It should be noted that the logarithm in 3;0)(y)
induces a phase shift in Q(O)(y) across the critical layer. This behavior

is associated with instability in problems involving two-dimensional boundary

layer profiles.

4, A PRELIMINARY TRANSFORMATION
As a first step in deriving uniformily valid approximations to solutions
of the disturbance equation (3.7), it is convenient to explicitly bring out

the turning point nature of the equation through a preliminary transformation

y -—
(E=0)172 43273, 4.1y

-8 dy}

v{y) = x(n), where n = {%f
y

(o]
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The Langer variable defined in (4.1) 1s appropriate for the present case of an
unbounded domain, and differs from the usual bounded domain variable which 1s

normalized by G: rather than 1-8. 1In the present case
n(y) = n7(y-y ) + 1 n” (y-y )2 + oee (4.2)
c c ZT e c

for bounded Iy—ycl where

u T
- 1/3 hral e
l’lc ("1—_-) and nc 3’ i-_l-j- 3 (4.3)
c
Also,
n(y) ~ (% y)2/3 as y + 4w, (4.4)
-2/3
If § =y » equation (3.7) now becomes

3, 1 ... 3 . 37 3 -
85 (x™ + €y x777) - (n + 6 Ex" = (g + 67 g))x" - (g + 6 g)x = 0,

(4.5)

where



.
¢
;
!

-1 9" , ) ‘fﬂ

fo(M) = 6u - ¥ n-"L, h
£,(n) = (4" + llu2 +xn) + 3V nl oy [2a2 + 282 4 1fw + V']n'-z.

gl(n) =ny,

él(n) —(u" + Tup” + 6u3 -k n u) + (Zuz + 282 + 18w +‘V’)u n’"2 > (4.6)

2

+ v(u + 2% - (cx2 + Bz)n"z)n'-l.

gy(n) = ~{5u + 6nu2 + 2np” + (az + Bz)nn’_z},
;;0(0) = @ 4 8% + 6%+ 1gw ) 4 189} - < go(n). J
and
k() = n"(y)/In"(y)]2. (4.7)

The function u(n) has the behavior

"

u

[
(=

=l
=

-1

)"1/3 and u(n) ~ - %-n as n + o, (4.8)

1
o = u(0) =

:il
QNin

Consider nert the wvarious ‘euristic approximations to solutions of
equation (4.5). For outer approxiwmations to solutions of inviscid type,

x(n) may be expanded in the form

x(m) =% Omy +635 Wy 0(s°y. 14.9)
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(0)

Then, X satisfies the transformed teducéd equation

R, X (® 20 where R, =np? - g, (1D~ gy(n) (4.10)

with D = d/dn. Solutions of (4.10) may now be expressed as
%, D) = no (m) (4.11)

and

% V) = gy + 5 7,V (n) 1an (4e12)

where Ol(n) and Q?(n) are power secies fn n, Ql(O) = Qp(0) = 1 and
( )

Qé(O) = 0. For numerical purposes it {s casier to compute

%, O (yy YI(O)(H)

(y) and
rather than and ;,(O)(n). This can easily be dore as

- ( ) (0)

(n) = n ¢1 )

and ) (4.13)

0
( )(n\ ” @ (o )(y) + ( )(y) la nZ .
For later reference, Qz(n) also satisfles the inhomogeneous equation
Ry Qpn) = =sug(2n Q7 + (go(m) + i, ). (4.14)

The WKB approximations to viscous type solutions of equation (4.5) are
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. - 3/2 + h (y) |
X5(n) = dy(8) Inn-2]73/% g=2/3 ¥n 1" - p1<n)a3/2 + 085y}
and (4.15)
- 3/2 + h, () .
X (M) = d(8) lan-2|73/4 g*2/3 S g [-'l(n)é‘:’/2 + 0(53)}

where Fl(n) = H,(y). For later use, these approximations will he normalized
by chocsing the constant d0(6) to be

1 - 1/2 .5/4 .5/2
do(d) -5 b 8 nc

. (4.16)

In discussing solutions of equation (4.5), we wish to exploit as much as
possible certaln symmetries which they exhibit in the complex'plane, and for
this purpose we consider the Stokes and anti-Stokes lines assocfated with the
WKB approximations (4.15). They are defined by the conditions

312

Imy 0 3/2 oy, (6.17)

and Re ¥ n

respectively. There are thus, three distinct Stokes and anit-5tokes lines
which radiate out from the turning point n = 0 wiﬁh cqual angular spacings
of 2n/3. For marginal stability, ¢ 1is real, and for modes in discrete
spectrum x <{ aR(1-0). In this case, ph Yy = n/4 and the Stokes and anti-
Stokes 1lines {a the n-plane have the arrvangement fin Figure 4. In the y-plane,
the behavior of the Stokes and anti-Stokes lines fs more complicated. As

ho(y) = % n 3/2, the definitions corresponding to (4.17) are

Tm vy br(y) « 0 and Re vy hw(y) = (), (4.18)

of
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These are agaln straight lines with equal angular spacing of 21/3 close to
the turning point Yeo Howevg;, awvay from Yeor the glohal behavior of the
Stokes and anti-Stokes lines in the y~plane depends on both the detalls of the
Blasius velocity profile and the specific value of 6 chosen. Thege
difficulties {in the y-plane provide a compelling reason for use of the
appropriate Langer variable.

Consider now seven exact solutions of equation (4.5) which will be denoted
by Uo(n). Uk(n), and Vk(n), k=1,2,3. These solutlons can be uniquely
defined (to within nmultiplicative factors and modulo an arbitrary additive
multiple of U,y 1in the case of Ul) in terms of thefr asymptotic properties.
Thus, we require that Uy be well-balanced, that U be (purely) balanced
in Tk' and that Vi be recessive in Sk’ where Sy and Tk are sectors of
the n-plane shown in Figure 4. Associated wlth these seven exact solutions
will be three exact connection formulae which will not be needed for the
present pucrposes.

Uniformily valid asymptotic approximations for these seven solutions will
involve slowly-varying coefficlents times rapldiy-varying generalized Airy

functions of a stretched variable ([5], [6])
E = n/S. (4.19)

Proper indices p and q for the Alry functions may be {nferred by expanding
coefficients In (4.5) about n = 0 and deriving finner approximations. ;(E).

First inner approximations satisfy the equation

ap? ¥ Dy = o, (4.20)
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where D = d/df and A =D? - €. Solutions of (4.20) are Bo(€,2),
Bk(E,Z,l), and Ak(E,Z), k=1,2,3. Higher inner approximations are solutions
of {inhomogeneous versions of (4.20) and involve the Alry functions BO(E,p),

Bk(evpal)» and Ak(E,P) with p=0,1.

5. SOLUTIONS OF DOMINANT-RECESSIVE TYPE
Uniformly valid "first approximations” to the dominant-recessive solutions
Vk(n) of equation (4.5) involve the Alry functions Ak(i,p), k=1,2,3, with

p=0,1,2. They have the Forms
Vi) ~ (A (5,2) + 62 (A (E,1) + Sc(nIn (6,0, (5.1)

where a, b, and ¢ are regular at the turning point. On substituting (5.1)
into equation (4.5), the slowly varying coefficients a(n) and c{nj are

found to satlsfy the equatlions
R,(na) = 0 ' (5.2)

and

{2nD + (nfy ~ gl)} (a + ne) = 0, (5.3)

where Ry is given in (4.10), D = d/dn. These equations may irmediately be

Integrated to give the regular solutions

a(n) = a(0) n~t IL<°)(n) = a(0) o) (n) (5.4)
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and

)-5/2

a(n) + ne(n) = a(0)(2- exp{h, (9} - (5.5)

c

The differential equation satisfied by b(n) 18 quite involved and will not
be given explicitly. A more {lluminating way of ohtaining this coefficient is
to require that the outer expansion of Vl(n) (say) be the WKB approximation

Y3(n) away from the turning point in the sector §; where this solution {is
purely recessive. With §3 normalized as in (4.15) and (4.16), this

condition gives
a(0) = 1 : (5.6)

and

1 101 _=3/2

'I/Z(a(n) + nc(n))(Fl(n) “ & " ). (5.7)

b(n) = 2n" " c(n) +n

Thus, b(n) 1s essentially a regularized form of Fl(n) o Hl(Y)'

6. SOLUTYIONS OF BALANCED AND WELL-BALANCED TYPE

The uniform first approximation to the well-balanced solution is simply
- (0 K]
e =%, Py + ocs?y. (6.1)

First approximations to the three solutions of balanced type have the forms
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U () ~ () + A8{A(M) B(£,2,1) + 62 B(n)B,(£,1,1)
+6C(n) B, (5,0,1)}, (6.2)
wvhere G, A, B, and C are regular at the turning point and A 1is a constant
%o be determined.

Substitution of (6.2) into (4.5) shows that A, B, and C satisfy the

same differential equations as a, b, and c. Consequently

{am),B(m),cm)} = Ac0){a(n),bny,e(m)}. (6.3)
The well-~balanced part G(n) of (6.2) is found to satisfy the equation

R, G = AMé4n(A + nC)” + A - 2n(nC)” + fo(d +nC) = g, nc} (6.4)
which, on simplification, becomes

R, G = XA(O){ZnQi + (1 + go)Ql}. (6.5)

A comparison of this equation with (4.14) now shows that the solution of (6.5)

which s regular at n = 0 13 of the form
. . - (0)
Gn) = Qy(n) + by x;° (A, (6.6)

where by 1s an arbitrary constant, provided
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A= -Suo and A(0) = 1. (6.2)

The constant by in (6.6) may be chosen in a varlety of ways. A particularly
convenient way is to choose by so that the outer expansion of Uz(n) (say)
to 0(62) in the sector Ty contains no multiple of 31(0)(y). Using the
asymptotic expansions of the B-type Airy functions in Ty and the usual outer

expansion operator E, to 0(62),
E, U, (n) = Q,(n) +% (Ob, + 5y [logn - log 6 +y -1 - 2r1]} (6 sj
2 "2 2 X1 0 ol *o8 k .

where ? = ()0.577 ses {5 Fuler’s constant. This result can now be written 1in

the form

B, Uy(n) = 7, + yl(o)(y){b0 - Sugllog 6 - Togn7 + 1 - y + 2]},

(6.9)

31(0)(Y) provided

Thus, Ez Uz(n) contains no multiple of
by = Suo[log § - lognl -y +1+ mi). (6.10)

It is worth noting that the slowly varying coefficients in both (5.1) and
(6.2) are expressible In terms of known quantities In the theuristic
approximations: the regular solution and the regular part of the singular
gsolution of the reduced equation, and the terms exp(hl(y)) and Hy(y) 1in

the WKB approximations.
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7. CONCLUDING REMARKS

The major aims of this paper have been to obtain the boundary wvalue
problem assoclated with small amplitude disturbances in the blending bhoundary
layer region, and to derive "first approximations” to solutions of the
governing equation for %(y) which are uniformly v-lid on a semi-infinfte
interval. This requires the {ntroduction of a new large parameter and an
appropriate Langer variable. The uniform "first approximations” 1involve
slowly varying, analytic coefficients times rapidly varying generalized Airy
functions of a stretched Laager variable. Because of the important first and
third derivative terms in the fourth-order disturbance equation, as well as
the presence of v and W in other terms, these analytic coefficlents differ
from their counterparts {n the usual stability problem for two dimensional
mean profiles. Approximations to solutions of balanced type display a phase
shift across the critical layer that is an indication of instability.

A derivation of the eigenvalue relation assoclated with the houndary
conditions (2.25) and (2.26), numerical resulits for the solution of equation
(2.21) for Q, and stability characteristics of the basfic corner flow will be
given in a subsequent paper.’ The characteristic equation for thils problem is

of the form A(0) = 0 where
A(y) = nZ W(,8V (), (7.1)
W 1is the usual Wronskian,

sy = APy ) + Uy = sy, (7.2)
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and A(o) is again determined by the condition that ®(n) remains bounded as
n + 4o, The need to use uniformly valid approximations for Ug, U, and Vl
in analyzing (7.1) may be easily seen. If, following the usual heuristic
procedure, Frobenlus-type approximations are used for 0(0) and either flrst
WKB approximations or first inner approximations are used for Vy» the
resulting crude approximation to (7.1) is independent of both the mean outflow

velocity v and the mean secondary flow component W.
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: FLOW

Figure 1. Geometry for flow along a rectangular streamwise
corner. The incoming uniform streaw is aligned with the corner

line y = z = 0.
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Figure 2. Qualitative regions of the mean flow velocity
field in the plane perpendicular to the corner.
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Figure 3. The function Hb(s) from the secondary velocity R~1§1
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