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TRANSIENT THERMAL STRESSES IN A REINFORCED

HOLLOW DISK OR CYLINDER CONTAINING A

RADIAL CRACK

by

Renji Tang* and F. Erdogan

Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the transient thermal stress problem in a hollow cylin-
der or a disk containing a radial crack is considered. It is assumed
that the cylinder is reinforced on its inner boundary by a membrane which
has thermoelastic constants different than those of the base material.
The transient temperature, thermal stresses and the crack tiro stress
intensity factors are calculated in a cylinder which is subjected to a
sudden change of temperature on the inside surface. The results are
obtained for various dimensionless parameters and material constants.
The special cases of the crack terminating at the cylinder-membrane inter-
face and of the broken membrane are separately considered and some exam-
ples are given.

1. Introduction
^	 r

Cracking due to thermal stresses arises in many practical applica-

tions particularly when sudden changes occur in the environmental temper-

ature. Suddenly cooled glass plates and containers are generally the

familiar examples for the phenomenon. The problem may also be quite impor-

tant in such structural components as the pressure vessels, piping and

hollow circular disks subjected to thermal transients. In these structures

the actual problems are usually very complicated three-dimensional crack

problems. Under thermal shock a part-through crack may initiate or an

existing part-through crack may propagate in axial or circumferential as

well as in the thickness direction. However, if the crack driving force

*Visiting Scholar. Permanent address: Associate Professor, Department
of Mathematics and Mechanics, Lanzou University, China.
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due mechanical stresses is sufficiently small, then because of the self-

equilibrating nature of the thermal stresses the growth of the crack in

thickness direction is generally arrested. A clear demonstration of this

process may be seen in the results reported in [1] where it was observed

that in relatively thick-walled hollow circular glass cylinders suddenly

cooled from inside an axial initial crack penetrated into the cylinier

wall only partially but propagated axially along the entire length of

the cylinder. It is clear that in such problems the corresponding plane

strain or plane stress solutions may provide very useful bounds for the

actual part-through crack problem.

The axisymmetric problem for a thick-walled cylinder containing a

part-through circumferential crack and subjected to transient thermal

stresses was considered in [2]. In this paper we consider the ,correspond-

ing plane strain or plane stress problem for a hollow circular cylinder

which contains a radial crack. To simulate the cladding (in, for example,

nuclear pressure vessels) it is assumed that the cylinder is reinforced

on the inside boundary by a (thin) membrane. The results found may also

be applicable to other composite cylinders or disks in which the thick-

ness of the inner cylinder or ring is relatively very small.

In solving the problem it is assumed that the material is linear,

the thermo-mechanical constants of the cylinder and the reinforcing mem-

brane are independent of temperature, the bending stiffness of the rein-

forcing membrane and all thermoelastic coupling effects are negligible,

and the transient thermal stress problem may be treated as a quasi-static

time-dependent problem, that is, all inertia eff ,?c-`s may be neglected.

.Previous studies on dynamic thermoelasticity indicate that this last

assumption, which simplifies the analysis of the problem quite.consider-

ably, would not cause any significant". changes in the results (see, for

example, [3] and [41). Since the problem is linear the solution of the

E
crack problem due to thermal stresses and to all other sources of load-

ing may be considered separately. Also, the solution of the crack problem

k ' under thermal stresses may be obtained in two steps. The first would

be the calculation of time-dependent thermal stresses in an uncracked

reinforced cylinder under given temperature and stress boundary conditions.

-2-
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Then the second step would be the solution of an isothermal crack prob-

lem in which the self-equilibrating crack surface tractions equal and

opposite to that obtained in the first solution are the only external

loads. The complete solution may be obtained by adding these last two

solutions to the other isothermal results. Needless to say, in thermal

stress as well as in the isothermal problems the important information

which is useful in fracture considerations is contained in the perturba-

tion solutions.

2. The Thermal Stresses

Referring to Figure l for notation let the temperatures in reinforcing

and main cylinders be T l and T2 , respectively. If we assume that the

crack surfaces are well-insulated, then T 1 and T2 would be functions of

radial coordinate r and the time t only. Let To be the initial tempera-

ture of the composite cylinder and the temperature changes e l and 8 2 be

defined by

6 1 (r;t) = T1 ( r ,t) - To , (ao<r<a, 0<0	 (1)

e2 (r,t) = T2 (r,t) - To , (a<r<b, 0<t)	 (2)

Ir the case of uncracked cylinders the problem is axisymmetric, the shear

stresses are zero, and the relevant displacement and stress components

may be expressed as follows (see, for example, [51):

T	 1 +vi °`i r	 C21
 f

uri(r,t) = 1-vi r	 ei(p,t)pdp + Cli r + r	 (3)

ai

a. E.	
r	

E.	 C	 C
Cy (r,t) = - 1'^i r J ei( p , t ) pdp * 1+vi (1-2vi '

	 )	 (4)

ai

r

^e1 (r,t) = 1^E
i

 r	 e i ( p ,t)^d p - 1 1v1 ei ( r ,t) + + v. ( ^^vii	 C—)i	 f	 ^, 1 ._	 r
ai

(5)

i
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a i = ao , ao<r<a , for i = 1 ,

a i = a , a <r<b , for i = 2 ,

ai , Ei and vi are the standard thermoelastic constants of the materials

Uri is the radial displacement and the unknown constants C li and C21 
are

determined from the following boundary, and c^, ,tinuity conditions:

ar1 (ao ,t) = 0	 Qr2(b,t) = 0 ,	 (6a,b)

Ulr(a,t) = u2r`a ' t) ' ari (a 't)	 ar2(a,t)
	 (7a,b)

Thus, from (3), (4), (6) and (7) it can be shown that

1-2v l Al_ Al

C11 = ao Ao 	 C12 ` Ao

n

	

a2(1+v2)(1-2v2 )B + 1-2v2 A2	 _ A2	
( 8a-d)C21 - --Fl – 2)bz —	b	 Ao , C22 - A ^ 	 x

E

where	 '
E2(a2-b2)[(1-2v1)a2+ao] 	 E1(a2-ao2)[(1-2v2)a2+b2]

Ao = -	 1
+v2 

ao a	 +	 1 +v1 ao a b	 '

j

E2 (a 2-b 2 )[-(1 +y 1 )( 1 -v2)a l b '-A + (1-vl)(1+v2)(1-2v2)a2a26]

1	 1-vl 1 –)29 a b i
r

1a2 E2
+ alE1b2(1-v2)A][(1-2v2)a2+b2]	

I

-4-
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02 	

1 -vl	 -v2 ao a b

+ E 1 (a 2-ao2 )[(1+v l )(1-v2 )a l b 2A - (1-vl)(1+v2)(1-2v2)a2a2B]

-vl	 i-v2 ao a b

fa	 b
Q = 
	

e l (r,t)r dr , 8 =	 0 2 (r,t)r dr	 (9a-e)

a 
	 a

It should be noted that the expressions (3)-(5), (8) and (9) are valid

for the case of plane strain only. For "disk" problems which may be

approximated by generalized ,.lane stress E i and v i should be replaced by

E i (1+2v i )J(1 +v i 2 ) and v i `(l+v i ), respectively.

To obtain the temperature distributions e l and e2 the following dif-

fusion equations must be solved under given initial and boundary condi-

tions:

v2ei(r,t) _ ^
	 at	

, (i=1,2)	 (10)
i

where a o<r<a for i = 1, a<r<b for i = 2 and D l and D2 are the respective

coefficients of diffusivity. A particular problem of interest is the

sudden cooling of the composite cylinder from inside which is initially

under a homogeneous temperature To . Thus, if it is assumed that for t>0

the cylinder wall r = a o is maintained at a constant temperature Tao and

the outer surface r = b is insulated, (10) must be solved under

e1(rs0) = 0 , (ao<r<a)
	

(11)

e 2 (r,0) = 0 , (a<r<b)
	

(12)

e l (a ' t) = e 2 (a ' t) ' kl 
-a'. e

1 (a ' t) = k2 ar e
2 (a,t) , (0<t) (13a,b)

e l (ao ,t) = eaoH(t) , r a
2 (b,t) = 0	 (14a,b)

-5-
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eao = Tao - To '	 (15)

k 1 and k2 are the coefficients of heat conduction and H(t) is the

Heaviside function. By using the Laplace transforms the solution of

(10) sub3ect to (11)-(14) may be obtained as follows:

_ 2
6 1 W, 	

2e 
x t

eao	
= 1 - i a*^^^- ["OSZoo(a*xn , r*xn)Zll(sa*xn,Rxn)

n	 n	 ,

+ Zo
l (sa*xn ,sxn )Zol (r*xn ,a*x n)] ,	 (16)

-^ 2t*
9 2 (r* ,t*)	 4 °' Z

ol
(sr*xn ,sxn )e n

eao	 = 1 + Tr	 a* xn H xn	 (17)

where the cylinder functions and the dimensionless quantities are defined3

by

Zi
j
(x,y ) = J i (x)Y

j
(y) - Y i (x)ia(y ) , ( i ,J =0,1) ,	 (18)

r* = r/b ao* = ao/b a* = a/b t* = D 1 t/b2 s = (D 1/'2)
	 Ko = k2/kl

(19)	
E

H *( xn ) - "002Z00(ao*xn,a*Xn)[Zol(oa*xn,sxn)	 Zol(sxn,sa*xn)]

a*
+ Zo l ( Ra*x n rax n )[- Zoo ( ao*xn ,a*xn ) + a Z1l(ao*xn,a *xn)]

3

- sK0 l l (aan ,sa*xn )[ - Zol (ao*xn ,a*xn) + 
as Z

ola*xn ,ao
*x, )J	 1

+ azo1( ao*x n ,a*xn )1-Zll (sx n , aa*x n ) + a ZooOxn,sa*x n )] ,	 (20)

xn are the roots of

-6
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sKoZoo(ao*an'a*Xn)Zll("n,sa*an) + Zol (sa*Xn 10An )Zol (ao*Xn'
a*Xn ) 

- O,

(21)

and J n and Yn are the Bessel functions of first and second kind, respec-
tively.

The thermal stresses in the composite cylinder without the crack

may be obtained by substituting from (16) and (17) into (4) and (5).

For example, the hoop stresses ael and ae2 which are needed in the solu-
tion of the crack problem are found to be

TCrel (r*,t _ a 1 E l eao*) = --f-v F1(r*)
[ r— *Z	 -

e1(r*,t*)

e
r*2+ *2+	 4	 S l ]	 (22)r—

"o

T a E a2 2 ao F (r*)2 a (r*,t*)2 a (1+r*2)1
°e2 (r* 't *=)	 I C--r- *z-- - e

ao
+ F2 (1) + a

2

te_ S 21 1

(23)

where r*
f	 e^(r*'t

*)
r*2-a^*2

2e_Nn2t*F l (r* ) =
1	 e*	 ao

*	 *r dr = ---^ .
a	 H *1	 *a0

n	 n

•{K sZ 11 (^a*^ n s 7^ n )Cr'`Zof (a*^ n ,r*an )-ao
 *Z 

of	 n o(a*a ,a0	
*x n)]	

i

+ Zol(^a*Anlsan) Cr*Z11(r*xn,a*xn) -ao*Z11 ( aaxn'a*xn)]}

r*- 2t*
F (r* .) _	 e2(r*,t*) r*dr* = r*2_a*2 + 4 

E	
a ^n

2	 f	 eao	 2	 7 1 sa an H 1^ j
a*	 n

•(r*Zll 0r*X
n ,sX n ) - a*Zll(sa*an,san)]

? a*zF2 ( 1)+Fl(a*)]+ E2 (a*2-1)[Fl(a*)-(1-2v) a2 a*2F2(1)]1	 1	 1
(a*2_a0*2 )[(1-2v)a*2+1]- E1 (a*z-1)[(1-2v )a*2+ao*z]

S 1 =
[(1-2v)a*2+l]Cal

-7-
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[(1-2v)a*2+ao*2][«	
a*zF2 (

1)+F1( a*)J+(a*z_ao*z)[F1(a*^-(1-2v) a2 
a*2F2(1)]

S _	 1 1	 1
2

(a*2_a0*2)[(1 -2v)a*2+1]- "
Ell 

(a*2_1)[(1-2v)a*2+ao*2]

(24 a-d)

and, for simplicity, it is assumed that v 1 = v2 = v.

If one further assumes that E l = E2 = E as well as v 1 = v2 =	 (i.e.,

that the elastic constants but not the thermal coefficients of the two

cylinders are the same), then the expressions for hoop stresses are

further simplified and become

	

rz+a z	 a	 b

a81 (r 't) 1 r {bz-ao [«
1 fa e 1 (r,t )rdr + «2 e2 (r,t)riir]

o	 a
r

+ a 1 f	 e i (r,t)rdr - a 1 r2e l (r,t)}	 (25)

ao

	

r2+a 2	 a

	 f

b

a82(r, t ) = '^-Evr ^ [«1 f e
1 (r,t)rdr + «2 
	

e2(r,t)rdr]

ao	a

a	 r

+ a 1 f e 1 (r,t)rdr + a2 f 62(r,t)rdr - a2r2e 2 (r,t) } . (26)
ao	 a

If the thickness a-a o of the inner cylinder is indeed very small,

then the analysis given in this section may be simplified quite consid-

erably by using the identities

zoo (x,x) = 0, z 1l (x,x) = 0 0 zo1 (x,x) = - ^	
( 27)

In this case the characteristic equation (21) giving the roots a n may

be approximated by

-8-
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(28)

An interesting special case of the thermal shock problem under

consideration would be the yielding of the inner cylinder which may

occur if the step change e ao in the inner wall temperature is sufficiently

high. The limiting value e  = e ao which corresponds to the yielding

of the membrane cladding may be obtained from (22) by letting

ael (a*,+0) = aF
	

(29)

where aF is a measure of the yield condition of the material (e.g.,

the flow stress).

For the very thin inner cylinder mentioned above it can be shown

that

H*(gi n ) ° Tra—a an rZ110A 
n ,sa*an ) " a Zoo(^^n^sa*an)J

s	 F1(a*) = 0 , e l (a*,t*) = eao	 (30)

and from (29) we find

(1-v)dF
aF = - alEl
	 (31)

3. The Crack Problem

The thermal stress problem for a composite cylinder containing an

axial crack in a radial plane (Fig. 1) may now be solved by using the

equal and opposite of the hoop stress given by (23) as the crack surface

traction. As shown in [6], this problem must be solved under the

following boundary conditions:

arr(b ' e,t) = 0, are (b,e,t) = 0, (0<e<27r, 0<t) ,
	

(32a,b)

-9-
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°r
r(a,e,t)-xae e (a,e,t) = 0 , (0<e<2v, 04t) , 	 (33)

a	
are (a,s,t) + h % ve8 (a,e,t) = 0 , (0<e<2fr, 0<t)	 (34)

vA e( r , +0 ,t) _ ^8e(r,-O,t) _ -ae2 (r,t) , ( e<r<g , O<t)	 (35a)

ue (r,0,t) = 0, (a<r<e, g<r<b, 0<0 . 	 (35b)

where crib , (i,3=r,e) and ue are the stresses and the circumferential dis-

placement in cylinder 2 for the perturbation problem and

a

1 (1 - a El/E2	 for plane stress
a =<

ao	 aEl(1-v22)

for plane strain. (36)1	
a )	 -v, + a-ao 

l v2 +v2

By using the model to treat a cracked cylinder reinforced by a

membrane developed in [6], the present transient thermal stress problem

may be reduced to the following integral equation:

ff p ,t dp + 9k(r)f(pt)dp= ^ 1+K aT rt

	

, p p-r	 f	 2u	 e2(	 ) ,
e	 e

	( e<r<g , O<t) ,	 (37)

where K = 3-4v 2 for plane strain,, K = (3-v2)/(1+v2) for plane stress,

u = E2/2(1+v2 ), and the unknown function f and the kernel k are defined

by

f(r,t) =-L [ue(r,+O,t) - ue(r,-O,t)], ( e<r<g )	 (38)

2y
k (r, p ) _ -	 {- r + 2^yo +	 + 661r

+ 
n E2 [a

nrn"2+an( n+2-) rn+ynr
-(n+2) +6n (n-?)r

-n]},	
(39)

-10-
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s0 a-4 (1 x) -b +X (p - pZ)

Yo 
= 

a . _xi..;,b^+x [- (1+x) p + - p 1	 J

6 1 - aT-x-	 +-x [-
3l+x 2+b2(1+)+a`' pz 	],

01 _ 
b-20-1) pn-1 _ (n-1) b2 n - b-2(n-1) c_

n

TO 	 0

rn = I [—a2(n+l)p-(n+l)(1-2xn-x)-a2(1+n- nx-x) n + a2(n+l)(1-2nx-x) c
o
n1

co 

co = n2(1i-2x+x2) a-2b2-2(n2-1)(1-x2)- [1+2nx+(2n-1)x2]a-2nb2n

?^n?.tr,ol)x2]a2nb„2n + n2(1-2x-3x2)a2b-2

cn ='{(1-n2)(1-x2) -[1-2na-(2n+i)x2]a2nb-2n+n2(1-2x-3x2)a2b-21p 
(n+1)

+'{(2+n - n2)(1 -x2 )b-2-(2+n-n2)(1+x)2a-
2}p -(n-1)

+'{(l+n)[1+2nx-(1-2n)x2]a- 2n_[(1+n)-(n2+1)x2]b
-2n )pn-1

+'{(2+n)(
1+x )2a-2b-2n_(2+n)[1+2nx-(1-2n)x2]a-2nb-2

}pn+i

r

2

-11-r

i



1.4

do = {-(1-n)[1-2nx-(1+2n)x2]a2n+(l-n)(1-;y2)b2n}p-(n+1)

-{(2-n)(1+X)
2a-

2b2n-(2-n)fl-2na-(1+2n)x2]a2nb-21p-(n-1)

+{n2(1+X) 2a-2b2+( 1-n2)(1-X2 )-[1-2na-(1+2n)x2]a2nb-2n}pn-1

+{(2-n-n2)(1+a)2a- 2- (2-n-n2)(1-
X2)b-2)pn+l
	

(40)

From (35b) and the definition of f as given by (38) it is seen

that the integral equation (37) must be solved under the following

single-valuedness condition:

9

1 f(r,t)dr = 0
	

(41)

e

The singular integral equation may easily be solved by using the technique

described, for example, in [7]. If the crack is fully embedded in

cylinder 2 (i.e., if a<e<g<b), then the solution of (37) is of the form

f(r,t) = -	
Fir t	

t	 (e<r<g , O<t)	 (42)

[(r-e)(9-r)] 11

where F is a bounded unknown function. In order to have a solution such

as (42) it is, of course, assumed that the combination of mechanical and

transient thermal hoop stresses in the neighborhood of the crack are pre-

dominantly tensile. Otherwise the crack may close at one or both ends

and (42) would not be valid. If part of the crack lies in a region of

compressive hoop stress, then the crack surfaces may close smoothly and

the location of the related crack tip would be unknown. In this case

the unknown crack tip location is determined from the cusp condition

which requires that the corresponding stress intensity factor be zero

and the problem may be solved 4y using the technique described in [8].

-1k-



After solving (37) the Mode I stress intensity factors at the crack

tips a and g may be determined from

k l (e,t) _	 1imr-e f(r,t) = ^ F e,t 	 (43)
r-*e	 rf(g-e)/2

k l (g,t) _ - K lim	 2 g-r f(r,t)	 K F ,t	 (44)
r+g

In thn special case of the inner crack tip touching the reinforcing

membrane (i.e., for a=a) it was shown analytically in [6] that at this

crack tip the derivative f of the crack surface displacement is bounded.

Physically this follows from the fact that since the membrane has no

bending 4tiffness, when the crack touches it, it would form a kink. In

this case the solution of (37) is of the form

f(r,t) = F r,t7	 (a=e<r<g , 0<t)	 (45)

(g-r)^

where the bounded function F is determined by following the technique

used in [6].

In the other special case in which the external loads are suffi-

ciently high so that the membrane is fully yielded (if, for example,

eao>e F and no mechanical loading is present), the problem may be treated

as an "edge crack" problem and the yielding membrane may be replaced by

constant tensile tractions on the crack surface. In this case, too, the

only relevant stress intensity factor is that at the crack tip r=g.

Finally, there is the case of the broken membrane in which the

problem may be treated as an edge crack problem.

4. Results and Discussion

Some calculated results giving the transient temperature and ther-

mal stress distributions obtained from (16), (17) and (26) are shown in

-13-
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Figures 2-5. In (16) and (17) fifty terms are used i ►i the series to cal-

culate the temperatures which proved to be quite sufficient. The

results are calculated by varying dimensionless quantities defined by

(19). In these calculations it is assumed that for the two cylinders

the elastic constants are equal (E l =E2=E, v l =v=v ) but the thermal con-

stants are different (D l ¢D2 , k l ¢k2 ) and the composite cylinder is under

a state of plane strain. Figures 2-5 snow the temperature and the hoop

stress distribution for two different clad thicknesses ((a-ao)/(b-a) =

0.016 and 0.008). Referring to (15) note that for sudden cooling from

inside eao is negative resulting in tensile stresses at and near the

inner boundary (Figures 3 and 5). For an embedded crack (a<e<g<b) the

corresponding stress intensity factors are shown in Tabled 1 and 2. The

tables show the normalized stress intensity factors which are defined by

	

k i (e,t) = lim	 a-r Qee (rz,o,t) , k (e) = k lk(e,t)
	

(46)

	

r->e	 o

	

_ k
l (g.t)	 a

k l (g,t) = l im 32Tr-g7 a,,(r,0,t) 	 k ( g ) -	 k	 ,	 (47)

	

r-►g	 o	 r

	k o = - 
E^aleao	

(48)	 4
2

6

Note that for longer crack lengths the outer tip r=g of the crack would

be in the compression zone and consequently the related stress intensity

factor becomes negative.

In the case of the inner crack tip terminating at cylinder-reinforcement

interface the stress intensity factor at the outer tip r=g is shown in

Figure 6. It may again be observed that as g increases the stress intensity

factor k l (g,t) decreases and eventually becomes negative. In these cal-

culations, too, it is assumed that E l = E2=E, vl=v2=v.

The effect of modulus ratio El /E2= E* on the transient thermal

stress aTin the main cylinder is shown in Figure 7 for the case of

plane strain and in Figure 8 for plane stress. The figures show the

^z
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results at a fixed time t*=DI t/b2=0.0005 and for a2 /a l = 0.8, 91 =v2=0.3,
D2/Dl - 3 and k2/k l = 3. Tables 3 and 4 show the corresponding normalized

stress intensity factors for an embedded crack. The results for the

crack touching the membrane and for the broken membrane (i.e, for the

edge crack) are given in Table 5. Note that for the broken membrane

case generally the stress intensity factors are considerably higher.

Tables 1-4 and Figure 6 clearly show that an internal crack in a

cylinder undergoing thermal shock at the inner boundary would always

tend to propagate towards the inside wall, it may be arrested at the

cylinder-reinforcement boundary if the reinforcement material is suffi-

ciently tough, and under thermal shock alone it is not possible for the

crack to propagate through the entire wall thickness of the cylinder.

The tables also show that, generally for a given crz,ck geometry the stress

intensity factors first increase and, after going through a maximum,

then stavt deC reasing with increasing time. This behavior as well as the

fact that for relatively long cracks the stress intensity factors at the

two crock tips may have opposite signs is suggested by the thermal stress

profiles shown in Figures 3, 5, 7 and 8.

Acknowledgements:

This work was supported by NSF under the Grant MEA-8209083, NASA- 	 i

Langley under the Grant NGR 39-007-011 and was completed by the second

author at the Fraunhofer-Institut fur Werkstoffinechanik in Freiburg

while he was the recipient of an Alexander von Humboldt Senior U.S. 	 h

Scientist Award.
k

5. References

1. Stahn, D. and Blauel, J.G., "Experimentelle Untersuchungen zur
Rissausbreitung in Glashohlzyiindern unter Thermoschockbelastung"•,
Vortrag XI, Int. Glaskongress Prag, Sammelband II, pp. 435-445, 1977.

2. Nied, H.F. and Erdogan, F., "Transient Thermal Stress Problem for a
Circumferentially Cracked Hollow Cylinder", Journal of Thermal
Stresses, Vol. 6, pp. 1-14, 1983.

-15-



N 3. Sternberg, E. and Chakravorty, J.G., "On Inertia Effects in a Tran-
sient Thermoelastic Problem", J. Appl. Mech., Vol. 26, Trans. ASME,
pp. 503-508, 1959.

4. Sternberg, E. and Chakravorty, J.G., "Thermal Shock in an Elastic
Body with a Spherical Cavity", Q. Appl. Math., Vol. 17, pp. 205-220,
1959. 

5. Timoshenko, S. and Goodier, J.N., Theory of Elasticity, McGraw-Hill,
1951.

6. Tang, Renji and Erdogan, F. "Stress Intensity Factors in a Reinforced
Thick-Walled Cylinder", Int. J. Engng. Science, Vol. 22, 1984 (to
appear) .

k

7. Erdogan, F., "Mixed Boundary Value Problems in Mechanics", Mechanics
Today, S. Nemat-Nasser, ed., Vol. 4, pp. 1-86, 1978.

8,	 Bakioglu, M. and Erdogan, F., "Crack-Contact and the Free-End Problem
for a Strip under Residual Stress", J. Appl. Mech., Vol. 44, Trans.
ASME, pp. 41-44, 1977.

a

r"

-16-

(i)



Table 1. Normalized stress intensity factors for an embedded crack in a

reinforced cylinder subjected to transient thermal stresses

(-ado- = 0.7968, a = 0.8, k2/k l = 3, D2 = 3, !2 = 0.8, b = 0.84,

E l =E20 vl=v2).
1	 1

^

t*=0.0005 t*=0.001 t*=0.005

F k(e) k(9) k(e) k(9) k(e) k(9)

0.05 0.11258 0.07698 0.16846 0.13549 0.11857 0.10180

0.10 0.09617 0.03173 0.15356 0.09109 0.11120 0,07845

0.20 0.06695 -0.03653 0.12573 0.01508 0.09707 0.03509

0.30 0.04130 -0.08115 0.09912 -0.04545 0,08270 -0.00419

0.40 0.01857 -0.10986 0.07337 -0.09284 0.06770 -0.03938

0.50 -0.00189 -0.13062 0.04836 -0.13134 0.05204 -0.07128

OF

r

E

S

a

i

1

a

u
i

l

1

II

i
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Table 2. Normalized stress intensity factors for an embedded crack in a

reinforced cylinder subected to transient thermal stresses
ao	 a	 2	 02	 a2	 e_
(-^ 0.7984,	 = 0.8,	 = 3,	 3, ! = 0,8, 6 = 0.84,

E 1 = E2 1 v l = v2).

z

t*=0.0005 t*=0.001 t*=0.005

b-a
k(e) k(g) Re) k(g) k(e) k(g)

0.05 0.13677 0.09793 0.18877 0.15414 0.12371 0.11688

0.10 0.11899 0.04822 0.17328 0.10742 0.11642 0.08352

0.20 0.08715 -0.02784 0.14430 0.02677 0.10247 0.04005

0.30 0.58931 -0.07845 0.11639 -0.03816 0.08822 0.00057

0.40 0.3376 -0.11135 0.08916 -0.08943 0.07328 -0.03486

0.50 0.01106 -0.13495 0.06259 -0.13114 0.05764 -0.06692

^i

{

i^

r	 p

0
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Table 3. The effect of the modulus ratio E l /E2 on the stress intensity factors

in a reinforced cylinder, kn = -k l /a l E2 eao 1(-g--e-T7Y , ao/b = 0.79681,

a/b = 0.8, e/b = 0.81, t * = Dt/b 2 = 0.0005, a2/al g 0.8, k2/k l = 3,

D2/D l = 3, v l = v2 = 0.3, the case of plane strain.

9

El/E2 = 1 E1/E2 = 2 El/E2 = 6 El/E2 = 10

Fa kn(e) kn (9) kn (e) kn (9) k n (e) kn ( 9) kn(e) kn(9)

0.05 0.57556 0.49535 0.55469 0.47486 0.48101 0.40217 0.41844 0.34024

0.10 0.55370 0.39808 0.53000 0.37589 0.45059 0.29988 0.38554 0.23669

0.15 0.53438 0.31039 0.50762 0.28680 0.42198 0,20803 0.35420 0.14377

0.20 0.51465 0.23159 0.48504 0.20706 0.39366 0.12643 0.32335 0.06143

0.25 0.49342 0.16180 0.46139 0.13673 0.36513 0.05505 0.29263 -0.01036

0.30 0.47052 0.10099 0.43654 0.07569 0.33636 -0.00639 0.26207 -0.07195 t	 1

-19-

O ^



e

T.

Table 4. The effect of the modulus ratio 
El/E2 

on the stress intensity factors

in a reinforced cylinder, kn = -k l /a l E2e ao 3(P-^, ao/b = 0. 7968,

a/b = 0.8, e/b = 0.81, t *	Dt/b2 = 0.0005, a2/a l = 0.8, k2/k l = 3,

D2/D 1 = 3, v 1 = v2 = 0 . 3, the case of plane stress.

E l /E2 = 1 EVE 2  = 2 E1/E2 = 6 E1/E2 = 10

b-a kn(e)
k n (9) kn (e) kn(9) kn ( e) kn(9) kn(e) kn(9)

0.05 0.40280 0.34667 0.38800 0.33217 0.33564 0.28058 0.29124 0.23668

0.10 0.38732 0.27847 0.37022 0.26256 0.31276 0.20793 0.26620 0.16285

0.15 0.37362 0.21700 0.35405 0.19996 0.29130 0.14295 0.24263 0.09703

0.20 0.35965 0.16179 0.33784 0.14402 0.27048 0.08554 0.22017 0.03924

0.25 0.34468 0.11292 0.32100 0.09474 0.25002 0.03562 0.19862 -0.01068

0.30 0.32858 0.07035 0.30344 0.05204 0.22987 -0.00710 0.17791 -0.05312

q
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Table S. The effect of E 1 /E2 on the normalized stress intensity factor

kn (g) for a crack touching the membrane cylinder interface

and for a fully broken membrane, kn(g) --' -k l (g,t)/E2alOaojj--7aT,
ao/b = 0.7968, a/b =0.8, a/a=1, t*=Dl t/b2=0.005, k?/k1=3,

D2/D1 = 3, v 1 = v2	0.3, a2/al = 0,8, the case of plane strain.

„

a

Crack touching the membrane
broken membrane-

edge crack

E1/E2=1 E1/E2 =2
E1	 2

/E	 = 10 El /E/E	 = 1 E1	 2
/E	 =2

0.10 0.23866 0,22678 0.15943 0.39231 0.39201

0..20 0.20237 0.18697 0.11076 0.35107 0.34859

0.30 0.16164 0.14404 0.06290 0.32931 0.32314

0.40 0.11804 0.09940 0.01651 0.31389 0.30323

0.50 0407348 0.05484 -0.02742 0.29972 0.28361

0.60 0.02973 0,01190 -0.06839 0.28100 0.25851

0.70 -0.01222 -0.02881 -0.10741 0.24839 0.21943

F

Y
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Figure 1.	 The geometry of the reinforced cy r inder containing a

radial crack.
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	 The influence of the modulus ratio E 1 /E
2 on the distribution

of hoop stress in a composite cylinder undergoing a suddf.n

change in the inner surface temperature (t*=Dlt/b2=0.0005,

(a-ao)/(b-a) = 0.016, e/b = 0.81, the case of plane strain).
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sudden change in the inner surface temperature (t*=
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