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INTRODUCTION 

Effor t s  t o  improve performance f o r  h igh -a l t i t ude  high-speed a i r c r a f t  and f o r  
s p a c e c r a f t  have motivated t h e  search  f o r  minimum-mass fuse lage  and tank s t r u c t u r e s .  
The fuse lage  s t r u c t u r e s  of such a i r c r a f t  have e x t e r n a l  h e a t  s h i e l d s  t h a t  provide a n  
aerodynamically smooth surface.  Thus, mass-ef f ic ien t  concepts which do n o t  have a 
smooth o u t e r  su r f ace  can be used t o  c a r r y  t h e  fuse l age  loads  and t o  support the h e a t  
sh i e lds .  An important  l i m i t i n g  load i n  such a i r c r a f t  i s  t h e  compression buckl ing 
load of t h e  fuse l age  w a l l ,  and a number of s t r u c t u r a l  concepts  have been i n v e s t i g a t e d  
( r e f .  1 )  f o r  minimum m a s s  under a compressive load. Of t hese  concepts,  t h e  corru-  
gated pane l  c r o s s  s e c t i o n  ( f i g .  1 ) o f f e r s  a very a t t r a c t i v e  mass-strength e f f i c i ency .  
Recent advances i n  t h e  s t a t e  of t h e  a r t  of s u p e r p l a s t i c a l l y  forming and d i f f u s i o n  
bonding (SPF/DB) technology ( r e f .  2) f o r  a l imi t ed  c lass  of materials provide con- 
s i d e r a b l e  freedom t o  design w a l l  s e c t i o n s  f o r  high performance a i r c r a f t .  In  t h e  
p re sen t  s tudy ,  new s t r u c t u r a l  concepts ( f i g s .  1 (b) through 1 (d )  ) are proposed us ing  
t h e  SPF/DB process  t h a t  have a s i g n i f i c a n t  mass-saving p o t e n t i a l  over previous con- 
cepts f o r  a wide range of loading. 

The purpose of t h i s  paper i s  t o  r e p o r t  t h e  r e s u l t s  of a s tudy of t he  s t r u c t u r a l  
e f f i c i e n c y  of corrugated compression panels  with curved caps and with beaded webs. 
In t h e  s tudy,  t h e  s ta te -of - the-ar t  opt imizat ion code PASCO ( r e f .  3 )  w a s  used t o  
mass-optimize t h e s e  panels .  S t r u c t u r a l  e f f i c i e n c y  c h a r t s  f o r  t h e  new concepts a re  
presented,  and var ious  design f e a t u r e s  f o r  making t h e  pane ls  m a s s  e f f i c i e n t  are 
discussed.  

SYMBOLS 

Values are  given i n  both S I  and U.S. Customary Units. Measurements w e r e  made i n  
U . S .  Customary Units. 

l amina te  ex tens iona l  s t i f f n e s s  matrix,  N/m ( l b / in .  

laminate coupl ing matr ix ,  N/m ( l b / in .  ) 

corrugat ion  cap chord width,  c m  ( i n . )  

beaded-web p i t c h ,  c m  ( i n . )  

l a m i n a t e  bending s t i f f n e s s  matrix,  N-m ( lb-in.  ) 

i s o t r o p i c  e l a s t i c  modulus, N/m2 ( p s i )  

e l a s t i c  modulus, N/m2 ( p s i )  

shear modulus, N/m2 ( p s i )  

Ai j 

B i j  

b f 

b" 

Di j 

E 

Ei j 

Gi j 

h f i lamentary  composite lamina th ickness ,  c m  ( in .  ) 

beaded-web depth,  c m  ( i n . )  hW 
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edge support  parameter; 

panel  length,  c m  ( i n . )  

t o t a l  number of laminae 

panel compressive loading index 

r a t io  of depth of cap curvature  t o  cap thickness  

lamina s t i f f n e s s  modulus, N/m2 ( p s i )  

beaded-web c i r c u l a r  arc radius ,  c m  ( i n .  1 

parameter def ined by equation ( A 1  ) 

thickness ,  cm ( in .  ) 

corrugat ion cap thickness ,  c m  ( i n .  ) 

beaded-web thickness ,  c m  ( i n .  ) 

mass index 

d i s t a n c e  from reference to  given lamina i n t e r f a c e ,  c m  ( i n .  ) 

s t r a i n  

angle of web t o  plane of panel,  deg 

beaded-web c i r c u l a r  arc angle,  deg 

i s o t r o p i c  Poisson's r a t i o  

Poisson's r a t i o  

3.29/( 1 - v 2 )  for simply supported edges 

STRUCTURAL CONFIGURATION 

The basic funct ion of the s t r u c t u r a l l y  e f f i c i e n t  compression panel is t o  c a r r y  a 
design load over a d i s t ance  without local buckling i n  the  c ros s  s e c t i o n  and without 
buckling i n  a general  o r  Ehler i n s t a b i l i t y  mode. For Euler buckling s t r eng th ,  a 
s t r u c t u r a l l y  e f f i c i e n t  panel c ros s  s e c t i o n  should have the  load-carrying material 
symmetrically placed about the c e n t r o i d a l  a x i s  (ref.  4 ) .  Load-carrying material on 
o r  near the c e n t r o i d a l  a x i s  should be kept  t o  a minimum s i n c e  it con t r ibu te s  l i t t l e  
t o  the o v e r a l l  cross-sect ional  bending s t i f f n e s s  and adds i n e f f i c i e n t  mass. In 
general ,  the  corrugated-panel c ros s  s e c t i o n  ( f i g .  1 )  is a s t r u c t u r a l l y  e f f i c i e n t  
design because the load-carrying caps are symmetrically spaced about the panel  cen- 
t r o i d a l  a x i s  by d i s c r e t e  w e b s .  The most familiar s t r u c t u r a l  corrugated panel c ros s  
s e c t i o n  is the  t r apezo ida l  corrugat ion ( f i g .  1 ( a ) )  which has f l a t  caps and f l a t  webs. 
The w e b s  i n  the t r apezo ida l  corrugat ion,  however, are load carrying.  The proposed 
panel  concepts shown i n  f i g u r e s  l ( b )  through l ( d )  o f f e r  an improvement i n  m a s s  e f f i -  
c iency over the t r apezo ida l  corrugat ion by reducing the load c a r r i e d  by the webs and 
by improving the l o c a l  buckling s t r e n g t h  of the caps. 
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Webs 

Because the  cent ro id  of the  web segment i n  a cor ruga t ion  lies on the  panel cen- 
t r o i d a l  a x i s  and con t r ibu te s  l i t t l e  t o  the o v e r a l l  bending s t i f f n e s s ,  the  amount of 
web ma te r i a l  should be kept  t o  a minimum. I n  the  t r apezo ida l  cor ruga t ion ,  the  f l a t  
web must have a t  l e a s t  the  s a m e  l o c a l  buckling s t r e n g t h  as the  f l a t  cap. As a 
r e s u l t ,  t he re  is as much web mater ia l  as the re  is  cap material i n  the  t r apezo ida l  
c ros s  sec t ion .  To improve l o c a l  buckling s t r eng th ,  the  web can be beaded i n  the  
d i r e c t i o n  perpendicular  t o  the  loading ax i s  ( f i g s .  l ( b )  through l ( d ) ) .  As a r e s u l t ,  
the  web ex tens iona l  s t i f f n e s s  i n  the load d i r e c t i o n  is d r a s t i c a l l y  reduced, whereas 
i t s  t ransverse  bending s t i f f n e s s  is enhanced. The beaded web is  non-load ca r ry ing  
and can be t r e a t e d  as a core ma te r i a l  with an a s soc ia t ed  core dens i ty  i n  the  same 
manner as the honeycomb core i n  a sandwich s t r u c t u r e .  The depth of the  beads gives  
the  beaded web a s u b s t a n t i a l  t r ansve r se  bending s t i f f n e s s  and, thereby, allows the  
use of very t h i n  gage web mater ia l .  The beaded web provides  a cross  sec t ion  with a 
s u b s t a n t i a l  improvement i n  m a s s  e f f i c i e n c y  over the t r apezo ida l  corrugat ion.  

In  earlier s t u d i e s  of beaded-web corrugated panels  ( r e f .  l ) ,  the  f a b r i c a t i o n  
problem of a t t ach ing  the  beaded web t o  the cap w a s  solved by taper ing  the  depth of 
t he  web beads down to  the  thickness  of a s i n g l e  shee t  a t  the  junc ture  with the  caps. 
(See f i g .  2 ( a ) . )  For tapered beaded webs and t h i n  gage web mater ia l ,  the  s i n g l e  
s h e e t  of web ma te r i a l  a t tached  t o  the  cap gives  very l i t t l e  edge support  t o  the  cap, 

tapered beaded web r equ i r e s  a heavy gage web ma te r i a l  t o  support  the  caps, which 
adversely a f f e c t s  the s t r u c t u r a l  mass-strength e f f i c i ency .  The SPF/DB process a l l o w s  
more freedom t o  design attachment of the beaded web t o  the caps without the necess i ty  
of taper ing  the beaded web down t o  the  thickness  of a s i n g l e  shee t .  As can be seen 
i n  f i g u r e  2 ( b ) ,  with the  SPF/DB process ,  the  beaded web can be c a r r i e d  without taper  
t o  an i n t e r s e c t i o n  with the  caps. The beaded-web i n t e r s e c t i o n  is spread o u t  over an 
area as wide as or wider than the  bead depth a t  the  cap edge. With t h i s  method of 
attachment of web t o  cap, the  fu l l -depth  beaded-web bending s t i f f n e s s  is used for  
s t a b i l i z i n g  the  edges of the caps aga ins t  l o c a l  buckling. 

1 e s p e c i a l l y  f o r  buckling modes t h a t  involve tw i s t ing  of the  caps. As a r e s u l t ,  t h e  

I 
I 

Caps 

To improve l o c a l  buckling s t r eng th ,  the  caps of the  corrugated panels  a r e  curved 
in s t ead  of f l a t .  In the  opt imiza t ion  process ,  the  curva ture  has the  e f f e c t  of 
i nc reas ing  the  r a t i o  of cap width t o  thickness  over t h a t  of a f l a t  cap a t  a given 
compressive load-s t ra in  l eve l .  An outward curva ture  i n  the  caps, as shown i n  f i g -  
u re  1 ( b )  , adds t o  the  s t r u c t u r a l  e f f i c i e n c y  by moving the  cen t ro id  of the load- 
car ry ing  cap ma te r i a l  to  a more e f f i c i e n t  p o s i t i o n  away from the  panel c e n t r o i d a l  
a x i s  compared with the  f l a t  cap without  increas ing  the  length of the webs. 

In the  i n t e r e s t  of g iv ing  the  curved-cap corrugated panel some r e s i s t a n c e  t o  
dimpling, the curva ture  of the caps may be reversed or  inver ted  as shown i n  f i g -  
ure  l ( c ) .  I n  t h i s  conf igura t ion ,  a foreign-object  impact spanning s e v e r a l  corruga- 
t i o n s  of the panel would presumably occur a t  the edges of the caps r a t h e r  than a t  
the  cen te r  of the  caps. An a d d i t i o n a l  f e a t u r e  t h a t  may be incorporated t o  improve 
the  cap l o c a l  buckling s t r e n g t h  is to  extend the  width of the  cap and crimp the  edges 
down a s h o r t  d i s t ance  over the  beaded webs as shown i n  f i g u r e  1 ( a ) .  This f e a t u r e  
in su res  a s t r a i g h t  edge f o r  t he  cap and, i f  the crimped edges are bonded a t  each d i s -  
Crete crest of t he  web beads, a s t i f f e r  edge support  f o r  the cap. 

~ 

3 



Filamentary Composite Corrugation 

The primary mass-saving p o t e n t i a l  achieved with f i lamentary  composites comes 
from using low dens i ty  materials. However, an i n v e s t i g a t i o n  w a s  made of the mass- 
saving p o t e n t i a l  added t o  a f i lamentary  composite cor ruga t ion  by curved caps s t a b i -  
l i z e d  by deep w e b s  ( f i g .  3) .  Filamentary composite f a b r i c a t i o n  processes do not lend 
themselves t o  making beaded w e b s .  To achieve the  needed web depth f o r  l o c a l  buck- 
l i n g  s t r eng th  and f o r  s t a b i l i z i n g  the edges of the caps, the corrugat ion cons t ruc t ion  
considered has a w e b  with a l o w  dens i ty  foam i n s e r t  and encapsula t ing  outer  plies.  
To reduce the load-carrying s t i f f n e s s  of the web ,  the  l aye r s  encapsulat ing the foam 
i n s e r t  w e r e  c ross  p l i ed .  For the  curved-cap f i lamentary  composite cor ruga t ion  
s tud ied  i n  t h i s  r epor t ,  it w a s  assumed, for manufacturing reasons,  t h a t  the cross-ply 
l aye r s  are four  continuous *45O p l i e s  throughout the  corrugated panel  c ross  s e c t i o n  
and thereby encapsulate  the foam i n s e r t s  as w e l l  as the un id i r ec t iona l  load-carrying 
zero-degree f i lament  l aye r s  used f o r  s e l e c t i v e  s t i f f e n i n g  i n  the caps. The thickness  
of the foam . .nsert  w a s  a r b i t r a r i l y  chosen t o  be equal  t o  the  thickness  of the zero- 
degree cap p l i e s .  

Geometric Parameters 

In  the  ana lys i s  of the  curved-cap corrugated panel ,  the  nota t ion  shown i n  f i g -  
ure  4 ( h )  i s  used. The depth of the  curvature  i n  the  caps i s  expressed as a multi-  
ple n of the cap th ickness  tf. The depth n t f  is measured from the cap midsur- 
f ace  a t  midspan t o  the  chord between the cap edges. To analyze the  curved caps with 
the PASCO code, the  cap w a s  broken i n t o  f i v e  equal-length s t r a i g h t  segments. The 
f i v e  segments w e r e  then used t o  approximate the c i r c u l a r  arc. The angle between each 
s t r a i g h t  segment c e n t e r l i n e  and the  chord of the c i r c u l a r  arc w a s  computed by us ing  
an i n i t i a l  guess f o r  n t  A prel iminary PASCO ana lys i s  w a s  made t o  obtain an op t i -  
mum cross  sec t ion  and a value f o r  cap thickness.  The angles  f o r  each s t r a i g h t  seg- 
ment w e r e  then recomputed f o r  reopt imizat ion i n  PASCO so t h a t  a l l  the corrugat ions 
would have near ly  the same value f o r  n. For this repor t ,  the value of n f o r  the 
e n t i r e  range of loading w a s  kept  between 4 and 6 f o r  a l l  the corrugat ions s tudied.  

f '  

The cross  sec t ion  of the beaded web shown i n  f i g u r e  4 ( b )  i s  determined by speci- 
fy ing  the  web th ickness  h, bead spacing bw, and bead depth h,. Beaded-web shapes 
can be s inuso ida l ,  c i r c u l a r ,  o r  any o ther  s u i t a b l e  shape. I n  this repor t ,  the c i rcu-  
lar arc w a s  a r b i t r a r i l y  chosen as the web shape f o r  the  SPF/DB metallic corrugat ions.  
To input  the beaded-web s e c t i o n  p rope r t i e s  i n t o  the  cor ruga t ion  c ross -sec t iona l  model 
i n  PASCO, the properties of the  w e b  had t o  be transformed t o  an equiva len t  layered 
segment. A model of the beaded-web cross-sec t iona l  geometry shown i n  f i g u r e  3 ( b )  w a s  
made and a PASCO ana lys i s  of the  model w a s  used t o  compute ex tens iona l  and bending 
s t i f f n e s s  values. These s t i f f n e s s  values w e r e  ro t a t ed  through 90° and subsequently 
converted,  by the  method given i n  the  appendix, t o  equiva len t  lamina p rope r t i e s  f o r  
use i n  PASCO. Since PASCO inpu t  is s p e c i f i c a l l y  designed f o r  layered input ,  ind iv id-  
u a l  l aye r  p rope r t i e s  f o r  the f i lamentary  composite cor ruga t ions  could be inpu t  
d i r e c t l y  i n t o  PASCO. 

RESULTS AND DISCUSSION 

Various beaded-web geometries w e r e  i nves t iga t ed  €or  the  SPF/DB metallic corruga- 
t i o n s  i n  this study. Analy t ica l  r e s u l t s  using these geometries,  as w e l l  as manufac- 
t u r i n g  considerat ions,  led t o  the s e l e c t i o n  of t he  beaded-web geometry shown i n  f i g -  
u re  4(b), which w a s  used f o r  the  e n t i r e  load ranges considered i n  this repor t .  The 
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minimum gage web thickness  thought t o  be f e a s i b l e  from s u p e r p l a s t i c a l l y  forming w a s  
0.0127 cm (0.005 i n . ) .  The value of 8 f o r  t he  angle  between the  web and the  plane 
of the  panel  used i n  this report w a s  found from the PASCO analyses  to  be near ly  op t i -  
mum a t  60° over a wide range of t he  loading index. 

Cap-to-Web Junct ion 

In  the  f l a t -cap  corrugated panel  of re ference  1,  the  beaded-web geometry tapered  
t o  the thickness  of a s i n g l e  s h e e t  a t  the junc t ion  with the cap. The beaded-web 
attachment,  however, w a s  assumed t o  be s u f f i c i e n t  t o  provide a simple support  edge 
condi t ion  f o r  the  cap. I t  w a s  noted i n  re ference  1 that the assumption of simply 
supported cap edges should be v e r i f i e d  by test. 

An at tempt  w a s  made i n  this study t o  supply some of the  edge support  v e r i f i c a -  
t i o n  sought i n  re ference  1 by a PASCO ana lys i s  of a d e t a i l e d  model of the tapered 
beaded web. I n  the PASCO model of this cor ruga t ion ,  the smooth web taper  was approx- 
imated by th ree  equal-length web sec t ions  t h a t  changed from the  f ul l -depth beaded-web 
s e c t i o n  t o  the thickness  of a s i n g l e  s h e e t  i n  three s t eps .  For computing sec t ion  
p r o p e r t i e s ,  the c ross  sec t ion  of each step w a s  c i r c u l a r  as shown i n  f i g u r e  4 ( b ) ,  
except  t h a t  the angle 8, w a s  decreased i n  each s t ep .  For the  f i r s t  t aper ing  s t e p ,  
t h e  angle O w  was decreased so t h a t  the beaded-web he igh t  was two-thirds the f u l l  
depth given i n  f i g u r e  4 ( b ) .  S i m i l a r l y ,  f o r  the  second taper ing  s t e p ,  the angle 8, 
w a s  decreased so t h a t  the  he igh t  was one-third the f u l l  depth. The f i n a l  and t h i r d  
taper ing  s t e p  w a s  an unbeaded f l a t  shee t  w i t h  a thickness  of &. Each s t e p  had the  
s a m e  length a r b i t r a r i l y  chosen t o  be equal  t o  the  beaded-web f u l l  depth. 

The s t r u c t u r a l  e f f i c i e n c y  r e s u l t s  f o r  the tapered-web model are shown i n  f i g -  
ure  5 and compared with the r e s u l t s  obtained f o r  a f l a t - cap  cor ruga t ion  with webs 
t h a t  d id  not  taper .  Figure 5 shows the  v a r i a t i o n  of the  m a s s  index E/L w i t h  t he  
s t r e n g t h  index Nx/EL. 
comparing panel  cons t ruc t ions . )  U s e  of the dimensionless i nd ices  f / L  and Nx/EL 
removes the e f f e c t  of material p rope r t i e s  from the e f f i c i e n c y  curves and p e r m i t s  a 
comparison of s t r u c t u r a l  e f f i c i e n c i e s  on the bas i s  of c ross  sec t ion  alone. The f 
used i n  E/L is a mass-equivalent thickness  f o r  t he  corrugated cross sec t ion .  Mul- 
t i p l y i n g  E/L by the  ma te r i a l  dens i ty  gives  the panel  mass per u n i t  a rea  per u n i t  
length.  The a n a l y t i c a l  r e s u l t s  show t h a t  the tapered webs a t  moderate to heavy load- 
ing  l e v e l s  supply a near ly  simple support  condi t ion  to  the  cap edges; thereby, t he  
local buckling loads i n  the  caps are i n  l i n e  with the r e s u l t s  i n  re ference  1. This 
support ,  however, is not s u f f i c i e n t  t o  prevent  buckling modes involving tw i s t ing  of 
t he  caps. These modes could not  be determined i n  the  opt imizat ion techniques used 
i n  re ference  1.  These modes, accounted f o r  i n  PASCO, occur a t  load l e v e l s  lower 
than those given by the simply supported p l a t e  buckling modes assumed i n  the caps i n  
re ference  1. The t ape r ing  of t he  webs to  the  thickness  of a s i n g l e  w e b  shee t  r e s u l t s  
i n  a cor ruga t ion  about 6 percent  less e f f i c i e n t  than a f l a t - cap  fu l l -depth  beaded-web 
s t r u c t u r e  as can be seen i n  f i g u r e  5. These r e s u l t s  also show t h a t  a wide v a r i a t i o n  
i n  the support  condi t ion f o r  the edges of the  cap has only a s m a l l  e f f e c t  on the 
s t r u c t u r a l  e f f i c i ency .  Therefore,  t he  simple support  edge condi t ion assumed i n  
re ference  1 f o r  t he  caps w a s  a reasonable assumption. 

(Mass-strength ind ices  w e r e  proposed by Shanley ( r e f .  4 )  f o r  

A s tudy of t he  PASCO r e s u l t s  f o r  t he  beaded-web corrugated panels revealed t h a t  
t h e  f i x i t y  condi t ion  f o r  the cap edges var ied from nea r ly  simply supported t o  nea r ly  
clamped. The corresponding values  of edge support  parameter k4 var ied from 3.6 
t o  6.3. This wide v a r i a t i o n  i n  edge condi t ion is a t t r i b u t e d  t o  the f a c t  that the cap 
th ickness  var ied  w i t h  load l e v e l ,  whereas the  beaded-web geometry w a s  held constant .  
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A t  l o w  load i n t e n s i t i e s ,  t he  cap thickness  approached minimum gage, and the cap 
t r ansve r se  bending s t i f f n e s s  became s i g n i f i c a n t l y  smaller (of t he  order  of 1/10] than 
t h e  t r ansve r se  bending s t i f f n e s s  of the beaded web. Thus a t  low loading l e v e l s ,  t he  
beaded web gives a near ly  clamped support  condi t ion to  the caps. A t  higher loading 
i n t e n s i t i e s ,  t he  cap thickness  increased and the cap t r ansve r se  bending s t i f f n e s s  
became g r e a t e r  (of the order  of IO) than the t r ansve r se  bending s t i f f n e s s  of t h e  
beaded web.  Thus a t  high loading l e v e l s ,  t he  beaded w e b  gives  a nea r ly  simple SUP- 

p o r t  condi t ion t o  the cap edges. These r e s u l t s  suggest t h a t  the web chosen f o r  t h i s  
s tudy provides adequate support  t o  the caps of about 4.3) over a wide range a t  
t h e  middle loading l e v e l s ,  but  the support  should be improved f o r  the higher loading 
l eve l s .  It would s e e m  from t h i s  study t h a t  t he  most appropr i a t e  choice of beaded- 
web shapes would be a w e b  geometry t h a t  had a t r ansve r se  bending s t i f f n e s s  of the 
same order  as the cap t r ansve r se  bending s t i f f n e s s  a t  a l l  load l eve l s .  I f  t h i s  con- 
d i t i o n  is m e t ,  then k4 

(k4 

v a r i e s  only s l i g h t l y  about an average value of about 4.3. 

F l a t  Webs and Beaded Webs 

The mass-strength r e s u l t s  from an optimized PASCO model of the t r apezo ida l  cor-  
rugat ion with f l a t  caps and f l a t  webs are shown i n  f i g u r e  6. As shown, the curved- 
cap beaded-web corrugat ion o f f e r s  an improvement i n  mass-saving p o t e n t i a l  of up t o  
50 percent  b e t t e r  than the  t r apezo ida l  corrugation. Most of t h i s  l a rge  improvement 
i n  s t r u c t u r a l  e f f i c i e n c y  is a d i r e c t  r e s u l t  of beading the w e b s  which allows the web 
t o  be made of a much th inne r  material than the caps. The cen t ro id  of a corrugat ion 
web l i e s  i n  an i n e f f i c i e n t  p o s i t i o n  on the n e u t r a l  a x i s  of t he  panel. To achieve 
s u f f i c i e n t  panel bending s t i f f n e s s  f o r  Euler buckling s t r eng th ,  the load-carrying 
f l a t  w e b  of the t r apezo ida l  corrugat ion must have a r a t i o  of thickness  t o  width t h e  
same as that  for the caps to  resist local buckling. For the t r apezo ida l  corrugat ion 
shown i n  f i g u r e  6, the w e b  and cap thicknesses  are equal. I f  the web is beaded, it 
i s  no longer load ca r ry ing  and, t he re fo re ,  can be made of a very t h i n  gage material. 
The loss i n  panel s t i f f n e s s  from beading the  w e b s  is  made up by more material i n  t h e  
caps which are located i n  a more e f f i c i e n t  p o s i t i o n  away from the n e u t r a l  a x i s  of the 
panel. Since the beaded-web material is non-load carrying,  i t s  mass can be t r e a t e d  
as a core material i n  much the same way as the  honeycomb core i n  a sandwich s t r u c -  
t u re .  Resul t ing mass i n d i c e s  f o r  the beaded-web corrugat ion are about 80 pe rcen t  
of t he  m a s s  i nd ices  f o r  the 1-percent honeycomb wide column that  is used i n  the 
f i g u r e s  as a s tandard of comparison i n  t h i s  report. 

Curved Caps 

The mass-strength opt imizat ion r e s u l t s  from PASCO for corrugated panels w i th  
ful l -depth beaded w e b s  and f l a t  caps are also compared i n  f i g u r e  6 with the r e s u l t s  
f o r  a corrugat ion with ful l -depth beaded w e b s  and curved caps. From the curved panel  
buckling formula ( r e f .  5) ,  it can be seen that the  a d d i t i o n  of a s m a l l  amount of 
curvature  i n  the caps of t he  corrugated panel  g r e a t l y  enhances the local buckling 
s t r a i n  i n  the  caps ( f i g .  7).  A s tudy of a l l  t h e  r e s u l t s  from the mass-strength anal-  
yses of t he  corrugat ions revealed t h a t  t he  increase i n  the  mass-saving advantage 
from increased amounts of cap curvature  became n e g l i g i b l y  s m a l l  f o r  curvatures  with 
values of n g r e a t e r  than about 6. The predominant e f f e c t  on e f f i c i e n c y  of adding 
cu rva tu re  t o  the caps is t h a t  an inc rease  i n  cap width is achieved over a f l a t  cap 
for a given compressive load - s t r a in  level ( f i g .  7 ) .  With wider caps, the non-load- 
ca r ry ing  beaded-web material is  spaced f a r t h e r  apart i n  the curved-cap corrugat ion 
than i n  a f l a t - cap  corrugat ion.  The curved-cap corrugat ion core material becomes a 
smaller po r t ion  of the panel  mass compared with the  f l a t - cap  corrugat ion and gives a 
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lower core dens i ty  r a t i o  f o r  the curved-cap beaded-web corrugated panel. As a 
r e s u l t ,  the  opt imizat ion curves i n  f i g u r e  6 f o r  t he  curved-cap concept show a 
12-percent mass-reduction p o t e n t i a l  over the cor ruga t ion  with f l a t  caps i n  the 
buckling l imi ted  range of the  load index. 

The mass-strength e f f i c i e n c y  curve f o r  a corrugated panel  with inver ted  caps is 
compared i n  f igu re  8 w i t h  the  curved-cap beaded-web cor ruga t ion  e f f i c i e n c y  curve. AS 
can be seen, the  mass pena l ty  f o r  i n v e r t i n g  the caps is of the order  of 6 t o  7 per- 
cent .  The inverted-cap beaded-web cor ruga t ion ,  however, s t i l l  has a mass-saving 
p o t e n t i a l  that is  about 6 percent  better than the  f l a t - c a p  beaded-web corrugat ion.  

Crimping the  edges of the  caps is a p r a c t i c a l  f a b r i c a t i o n  technique f o r  preserv-  
i ng  a s t r a i g h t  cap edge. I n  add i t ion ,  crimping the edges should s t rengthen  the  caps 
a g a i n s t  impact damage and improve the  l o c a l  buckling s t r e n g t h  of the corrugated panel  
caps. The m a s s  pena l ty  f o r  adding a 0.254-cm (0.1-in.) crimp t o  the edge of t he  
inve r t ed  caps can be seen i n  the  r e s u l t s  shown i n  f i g u r e  9. The m a s s  pena l ty  f o r  
crimping the edges was found to  be about a 4-percent mass inc rease  compared with the 
inve r t ed  curved-cap beaded-web cor ruga t ion  without crimped edges. 

Filamentary Composite Panels 

The mass-saving advantage of adding curva ture  t o  the caps of a f i lamentary  com- 
p o s i t e  corrugated panel can be seen from the r e s u l t s  shown i n  f i g u r e  IO. The o p t i -  
mized mass-strength e f f i c i e n c y  curve f o r  the  composite cor ruga t ion  w i t h  curved and 
f l a t  caps and foam i n s e r t s  i n  the'webs is compared with the  e f f i c i e n c y  curve f o r  an 
optimized f l a t - c a p  cor ruga t ion  w i t h  no foam i n s e r t  i n  the  webs. I t  was assumed t h a t  
t he  bond between the foam i n s e r t  and the cross p l i e s  is s u f f i c i e n t  t o  prevent  wrin- 
k l i n g  of the  composite l aye r s .  As can be seen i n  f i g u r e  10, the  add i t ion  of cap 
curva ture  and foam i n s e r t s  improves the mass-strength e f f i c i e n c y  by 35 t o  40 percent  
over t h a t  of the  f l a t - cap  cor ruga t ion  w i t h  no foam i n s e r t s .  Comparing the  e f f i c i e n c y  
curves f o r  the foam i n s e r t  cor ruga t ions  with f l a t  and curved caps shows t h a t  the cap 
curva ture  improves the e f f i c i e n c y  by about 1 2  percent .  Note t h a t  the composite 
s t r u c t u r e  e f f i c i e n c y  curve is above the  I-percent  honeycomb e f f i c i e n c y  curve, whereas 
i n  previous f i g u r e s  the  m e t a l l i c  beaded-web curved-cap cor ruga t ion  was below t h a t  
of the 1 -percent honeycomb. The composite cor ruga t ion  s t r u c t u r e  s tud ied  does not 
u t i l i z e  i ts  load-carrying ma te r i a l  as e f f i c i e n t l y  as the  m e t a l l i c  beaded-web corruga- 
t i on .  However, the lower ma te r i a l  dens i ty  of fe red  by composite ma te r i a l s  is more 
than enough to  give panel  s t r u c t u r e s  w i t h  lower m a s s  per u n i t  panel  area per u n i t  
length than the  m e t a l l i c  beaded-web corrugat ions.  The advantages of both metallic 
beaded webs and f i lamentary  composites could be combined by using an SPF m e t a l  corru-  
ga t ion  s e l e c t i v e l y  re inforced  with bonded composite caps. Such a conf igura t ion  
should be the o b j e c t  of another  study. s 

CONCLUDING REMARKS 

The combination of curved caps and beaded webs i n  corrugated compression panels  
produces mass-strength e f f i c i e n c i e s  that are better than that of a I-percent core 
honeycomb s t r u c t u r e .  The mass-strength e f f i c i e n c y  of t he  beaded-web curved-cap con- 
c e p t  o f f e r s  a p o t e n t i a l  50-percent m a s s  saving over conventional panels with f l a t  
caps and f l a t  webs. 

The add i t ion  of a s m a l l  amount of curva ture  t o  the  caps of a corrugated 
panel  enhances the  l o c a l  buckling s t r e n g t h  of the caps. I n  add i t ion ,  f o r  a given 
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l oad - s t r a in  l e v e l ,  a wider cap width is possible which means a wider w e b  spacing is  
achieved f o r  the curved cap than f o r  a f l a t  cap. As a r e s u l t ,  the  opt imizat ion curve 
shows a p o t e n t i a l  12-percent mass reduct ion for the curved-cap concept compared with 
the  f l a t - c a p  corrugat ion i n  the  buckling l imi t ed  range of load index. 

Beading the webs of corrugated panels  i nc reases  t h e i r  t r ansve r se  bending s t i f f  - 
ness. The w e b s  can then be made of very t h i n  gage materials without i ncu r r ing  loss 
of l o c a l  buckling s t r e n g t h  under load. Since the beaded w e b  is  non-load ca r ry ing ,  
t he  w e b  material may be considered as a core material i n  much the s a m e  way as t h e  
honeycomb core i n  a sandwich s t r u c t u r e .  Resul t ing m a s s  i n d i c e s  are about 80 percent  
of t he  mass ind ices  f o r  a 1-percent honeycomb wide column. 

Corrugated panels with caps that  are curved inward or inve r t ed  t o  improve damage 
to l e rance  are only about 6 to  7 percen t  less m a s s  e f f i c i e n t  than corrugated panels  
with outward cap curvature .  Adding crimped edges t o  ensure s t r a i g h t  cap edges and 
t o  improve damage to l e rance  as w e l l  as improve l o c a l  buckling s t r e n g t h  i n  the caps 
inc reases  the mass about 4 percent  compared with t h a t  of the p l a i n  edge curved-cap 
corrugated panel. 

For the f i lamentary composite corrugat ion,  adding curvature  t o  the caps and 
using foam i n s e r t s  t o  inc rease  the thickness  of the web improve m a s s  e f f i c i e n c y  by 
about 35 percent  over a f l a t - cap ,  no-foam-insert f i lamentary composite corrugated 
panel.  The buckling s t r a i n  of the load-carrying web,  however, is s t i l l  governed 
p r i m a r i l y  by the geometric r a t i o  of w e b  thickness  t o  web width; hence, t he  mass- 
reduct ion p o t e n t i a l  achieved by beading the  w e b s  cannot be achieved with the f i l a -  
mentary composite concept s tud ied  i n  t h i s  report .  A more e f f i c i e n t  approach would 
be t o  use a beaded-web metallic corrugat ion as a core and then bond f i lamentary com- 
p o s i t e s  t o  the caps f o r  s e l e c t i v e  s t rengthening of the hybrid composite corrugat ion.  

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
January 26, 1984 
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APPENDIX 

REDUCTION O F  GENERAL CROSS-SECTIONAL PROPERTIES 
TO THREE EQUIVALENT LAYERS 

The s t i f f n e s s e s  of a n  N-layer laminate,  such as shown i n  f i g u r e  l l ( a ) ,  are  given 
by t h e  expression 

(m = 1 ,  2, and 3) 

where t h e  values of ( Q i j ) ?  are gene ra l i zed  lamina s t i f f n e s s e s .  (See r e f .  6.) ?he 
ex tens iona l  s t i f f n e s s  ma t r ix  A i j  i s  given by 

t h e  coupling matr ix  Bi j  i s  given by 

(A3 

and t h e  bending s t i f f n e s s  matr ix  i s  given by 

Equation ( A I )  g ives ,  f o r  a laminate with any number of laminae, S i j  i n  terms 
of ( Q i j ) k .  Suppose S i j  f o r  t h e  laminate i s  known, then t h e  t h r e e  expressions from 
equat ion ( A I )  can be solved f o r  t h r e e  values of 
i n  terms of t h e  known 
f i g u r e  l l ( b ) ,  i s  

( Q i j ) k  f o r  t h r e e  equ iva len t  l a y e r s  

S i j .  ?he r e s u l t i n g  s o l u t i o n ,  u s ing  t h e  n o t a t i o n  shown i n  

2(6, + 6, + 6,) 3 
(Q..) = - 6,) Aij - (6, - 6,) (6, - 6,) (6, - 6,) Bij +(6, - 6,) (6, - 6,) (6, - 
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APPEND1 X 

The values of 6k are a r b i t r a r i l y  chosen and the r e s u l t i n g  values of (Qij)k are 
independent of the reference su r face  used. Thus f o r  any given s e t  of equ iva len t  
laminate thicknesses  (6, - 6k-1 ), equ iva len t  values of ( E i j  ) k  computed from t h e  
r e s u l t i n g  values of ( Q i j ) k  are unchanged by changes i n  60. Therefore, f o r  conve- 
nience of computing the  equ iva len t  moduli, t he  reference su r face  can be chosen as the 
midsurface. 

Equations ( A S )  are only of general  i n t e r e s t  and are now pu t  i n t o  a more p r a c t i -  
cal  form f o r  analyzing the beaded web of a corrugat ion f o r  PASCO. The equ iva len t  
l a y e r s  may a l l  be chosen t o  be the same thickness  h, i n  which case, the  equations 
f o r  ( Q i j  )k reduce t o  the  simpler form 

( Q i j I 3  = +(- 5 A i j  - -  I 2 B i j  +'D) h3 i j  ) 
h 

With the values of Q i ,  known, the equivalent  E i ,  f o r  each l aye r  i s  determined 
from 

E 
11 - - 

Q l l  1 - V12V2,  

E 
22 - 

Q22 - - v12v21 

Q66 = G12 

Q16 = Q26 = 0 

The (Eim)k equivalent  p r o p e r t i e s  computed with Q i j  from equations (A6) are 
unchangea by changes i n  h. 
recomputing 
sum of 
s p e c i a l  reduced r e l a t i o n s  feqs. (A6)) t he  ou te r  two 
elastic p rope r t i e s .  

Thus, p ly  thickness  changes can be made e a s i l y  without 
A summation of the r e l a t i o n s  (A6) produces the check t h a t  t he  (Qij)k. 

(Q i , j )k  equals  A i . / h .  I f  the values of B i i  are a l l  zero,  then from the 
aye r s  (1  and 3 )  have the same 

The equivalent  three- layer  laminate with these equivalent  ( E i j  ) k  values repro- 
duces the A i , ,  B i j ,  and D i j  matrices f o r  any type of t h i n  s t r u c t u r e ,  except t h a t  
t h e  an i so t rop ic  terms (16 and 26 terms) i n  the A i j ,  B i j ,  and D i j  matrices f o r  t he  

10 



APPENDIX 

three- layer  equivalent  laminate are zero. Conversely, t he  values of ( E i j  )k are 
unaffected i f  the a n i s o t r o p i c  t e r m s  i n  t he  A i j ,  B i j :  and D i j  matrices are ignored 
i n  computing ( E i j ) k .  Thus, the A i j  and D i j  matrices generated f o r  a model Of 
t h e  beaded web can be i n p u t  t o  PASCO through a three- layer  equivalent  laminate with- 
o u t  loss i n  t he  e s s e n t i a l  s t r u c t u r a l  p r o p e r t i e s  of the beaded web. 
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( a )  Trapezoidal corrugat ion.  

r Cap ,- Beaded web 

(b )  Curved-cap beaded-web corrugat ion.  

I n v e r t e d  c a p  

( c )  Inverted-cap beaded-web corrugat ion.  

Crimped e d g e 7  

( d )  Crimped-edge cap corrugat ion.  

Figure 1.- Geometric conf igura t ions  f o r  corrugated panels. 
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+Cap width- 

----- 

Section B-B 
- 

Section A-A 

( a )  Corrugated panel  with tapered beaded web. 

Section B-B 

Section A-A 

( b )  Corrugated panel  With nontapered beaded web. 

Figure 2.- Corrugated panel  cross-sect ion d e t a i l i n g  attachment of 
beaded webs to  caps. 
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ply layers L Unidirectional p l i e s  

Figure 3 .- Curved-cap composite corrugation concept. 



. . . .. . . . . .. - .. - I 

(a  1 Curved-cap corrugation geometry. 

rW + 

( b )  Beaded-web geometry. 

h, = 0.318 cm (0.125 i n . )  
b, = 0.952 cm (0.375 i n . )  
t, = 0.0127 cm (0.005 i n . )  
r, = 0.259 cm (0.102 i n . )  
e, = i35O 

Figure 4.-  Schematic of curved-cap beaded-web corrugation defining nomenclature 
for cross section. 
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Figure 5.- Comparison of f la t -cap corrugations showing e f f e c t  on s t r u c t u r a l  e f f ic iency  of tapering 
beaded web a t  junction with cap. 



beaded-web 
c o r r u g a t i o n  

I 
.I I I 1 

Load index ,  Nx/EL 

Figure 6.- Eff ic iency comparison f o r  curved-cap beaded-web corrugat ion and f l a t - cap  and 

t rapezoida l  corrugat ions.  
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n= 0 / n = l  

Buck1 i n g  s t r a i n  parameter,  d k 4  

Figure 7.- Variat ion of r a t i o  of cap thickness  t o  w i d t h  with l o c a l  buckling 
s t r a i n  fo r  curved caps. 
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Curved-cap beaded-web 
corrugation 

Inverted-cap beaded-web 
corrugation 

I I 1 

Load index, NJEL 

Figure 8.- S t r u c t u r a l  e f f i c i ency  comparison f o r  curved-cap beaded-web corrugat ion 

and inverted-cap corrugat ion.  
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1 % h o n ey c om b 
sandwich re fe rence  

Wi thout  cr imped edges 

Load index ,  Nx/EL 

Figure 9. - Struc tura l  e f f ic iency  comparison of curved-cap beaded-web corrugation with and without 
crimped edges. 
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Figure 10.- St ruc tu ra l  e f f i c i ency  comparison of curved-cap graphite/epoxy (G/E) composite corrugat ion and 
f la t -cap  graphite/epoxy composite corrugation. 
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( a )  Laminate nomenclature for general layup configuration. 
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( b )  Three-layer equivalent laminate nomenclature. 

Figure 1 1 . -  Nomenclature used for defining laminate cross section. 
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