CONSTRUCTION OF A MODEL OF THE VENUS SURFACE AND ITS USE IN PROCESSING RADAR OBSERVATIONS
V.A. Borodin, V.A. Stepan'yants and V.A. Shishov

Translation of "Postroyeniye Modeli Poverkhnosti Venery i Yeye Ispol'zovaniye pri Obrabotke Radiolokatsionnykh Nablyudeniy," Academy of Sciences USSR, Institute of Applied Mathematics imeni M.V. Keldysh, Moscow, Preprint No. 20, 1983, pp. 1-19.
standard title page

| NASA TM -77298 <br> THE ond Subrure CONSTRUCTION OF A MODEL OF <br> THE VENUS. SURFACE AND ITS USE IN PROCESS <br> ING RADAR OBSERVATIONS. |  | 3. Recipieni's Catalog No. |  |
| :---: | :---: | :---: | :---: |
|  |  | 5. Raporit Data September 1983 |  |
|  |  | c. Parlorming Organization Code |  |
| 7. Author(s) V.A. Borodin, V:A. Stepan'y.ants and V.A. Shishov |  | a. Perioralag Organization Rep |  |
|  |  | 10. Tork Unit N |  |
| 9. Perlorming Orgenization Name and Address <br> Leo- Kanner Associates Redwoo"d City, California 94063 <br> 12. Sponsoring Ageney Nome and Address <br> National Aeronautics and Space Administration, Washington, D.C. 20546 |  | 11. Contrect ar Grant No. NASW-3547 <br> 13. Type of Rapent and Pariod Coraten Translation |  |
|  |  |  |  |
|  |  | 14. Sponsoring Agoney Code |  |
| 15. Supplementary Notes <br> Translation of "Postroyeniye Modeli Poverkhnosti Venery i Yeye Ispol'zovaniyë pri Obrabotke Radiolokatsionnykh Nablyudeniy," Academy of Sciences USSP, Institute of Applied Mathematics imeni M. V . Keldysh, Moscow, Preprint No. 20, 1983, pp. 1-19. |  |  |  |
| 16. Abstract? <br> An algorithm is described for constructing the model of the Venus surface as an expansion in spherical functions. The relief expansion coefficients were obtained up to the coefficient $\mathrm{S}_{99}$. The surface picture . representation is given according to this expansion. The surface model constructed was used for processing radar observations. The paper contains data showing that the use of the surface model allows improved agreement between the design and measured values of radar ranges. |  |  |  |
| 17. Kay Worda (sesected by Author(s)) <br> 18. Distribution Statament <br> Unlimited-Unclassified |  |  |  |
| 19. Socurir Clasill. (ot tig repon | 20. Seceriry Clasal $\quad$ Unclass | 21. Mo. al Pages |  |

## ANNOTATION

An algorithm is described for constructing the model of the Venus surface as an expansion in spherical functions. The relief expansion coefficients were obtained up to the coefficient $\mathrm{S}_{99}$. The surface picture representation is given according to this expansion. The surface model constructed was used for processing radar observations. The paper contains data showing that the use of the surface model allows improved agreement between the design and measured values of radar ranges.

Key words and phrases: Venus, surface relief, spherical functions, radar observations.

## TABLE OF CONTENTS

Introduction ..... 11. Coordinate System
2. Representation of Planet Relief in the Form of Expansion in Spherical Functions ..... 5
3. Numerical Results ..... 7
4. Accounting for Asphericity of Surface of Venus in Processing Radar Observations ..... 9
References ..... 14

CONSTRUCTION OF A MODEL OF THE VENUS SURFACE AND ITS USE IN PROCESSING RADAR OBSERVATIONS

V.A. Borodin, V.A. Stepan'yants and V.A. Shishov

## Introduction

Radar ranging of Venus, Mars and Mercury has been successfully conducted since the beginning of the 1960s. Due to improvement in equipment, the accuracy of radar measurements is continually increasing. The errors of the most accurate measurements of the delay time of a signal reflected from the surface of the planet is not over 2-3 microseconds, which corresponds to a few hundred meters in distance. Radar measurements presently are widely used for the development of highly precise theories of motion of the solar system planets. They permit determination of the distance from the nearest section of the surface of the planet to a ground measuring point. To determine the location of the center of mass of a planet relative to the observation point, it is extremely important to take account of its topography. Thus, irregularities of the surface of Venus reach 5-10 km in altitude, which significantly affects the accuracy of determination of the distance between the centers of mass of the earth and Venus.

In the work of Ye.V. Pit'yeva [4], based on a hypsometric chart of the surface of Venus for approximation of the relief of the planet, an altitude interpolation grid has been constructed. Data on the relief were successfully used for reduction of the averaged values of the radar observations.

It is advisable to present information on the surface relief of the planet in a form which is convenient for computer processing of radar observations. The volume of this information is limited by the place assigned to it in the computer memory. It should also be con-
*Numbers in the margin indicate pagination in the foreign text.
sidered that a radar signal is reflected from a quite extensive region of the planet (approximately 200 km in diameter). Therefore, it is sufficient to know the average relief characteristics in processing radar measurements.

With this situation taken into account, it is most convenient to present the description of the model of the planet surface in the form of an expansion in spherical functions. Such an expansion was obtained for Mars in [6]. The task of approximating the surface relief of Venus in a similar manner is carried out in this work.

The most accurate data on the surface relief of Venus was obtained with the aid of the American Pioneer-Venus-l artificial Venus satellite, which was injected into a highly eccentric orbit with the following characteristics:

Rotation period
Semimajor axis of orbit Eccentricity
Distance to pericenter
Distance to apocenter
Pericenter longitude
Inclination of orbit

$$
\begin{aligned}
& 24 \text { hours } \\
& 39,500 \mathrm{~km} \\
& 0.84 \\
& 150 \mathrm{~km} \\
& 66,600 \mathrm{~km} \\
& 17^{\circ} \\
& 104^{\circ} .
\end{aligned}
$$

The pericenter longitude and inclination of the orbit are reduced to the planetographic coordinate system, a description of which is in Section 1 .

The equipment installed aboard the satellite permitted determination of the distance from the spacecraft to the planet surface. As a result of processing altimeter measurements, a color topographic map of the surface of Veñus was obtained [5].

The following conclusions were drawn from analysis of the experiment conducted:
the distances of all points of the surface of Venus at which measurements were made from the center of mass of Venus is in the range from 6049 km to 6062 km ;
approximately $5 \%$. of the territory investigated is elevated more than 2 km above the average radius sphere ( $6051.5 \pm 0.1 \mathrm{~km}$ ):
approximately $60 \%$ of the territory investigated is within $\pm 0.5 \mathrm{~km}$ of the mean level.

Accuracy of presentation of the relief was $100-150 \mathrm{~km}$ horizontal-- ly (linear resolution) and 200 m in altitude. The distances from the center of mass of Venus to different points on the surface of the planet can be recovered from the map to within the color gradations. This accuracy is 0.5 km in the $6049.5-6056 \mathrm{~km}$ distance range and 1 km in the $6056-6062 \mathrm{~km}$ range.

## 1. Coordinate System

The motions of Venus and other planets of the solar system are described in the geoequatorial coordinate system of the 1950.0 epoch, $\left.{ }^{(X Y Z}\right)_{50.0^{\circ}}$

For tie in of surface details of Venus, the aphroditographic coordinate =system $X_{B} Y_{B} Z_{B}$ is used (see Fig. I). In this system, the $Z_{B}$ $\qquad$ axis is directed to the north pole of Venus. The $X_{B}$ axis is rigidly tied to the surface of Venus, and it is in the zero meridian plane: The $Y_{B}$ axis supplements the coordinate system to the right.

Auxiliary planetoequatorial coordinate system $X_{B}{ }^{e} Y_{B}{ }^{e} Z_{B}{ }^{e}$ also is introduced. The $Z_{B}{ }^{e}$ axis of this system coincides with the $Z_{B}$ axis of the $X_{B} Y_{B} Z_{B}$ coordinate system. The $X_{B}{ }^{e}$ axis is directed to the point of intersection of the equators of the earth and Venus. The $Y_{B}{ }^{e}$ axis supplements the system to the right.

The transition matrix from the geoequatorial (XYZ) 50.0 system to
the aphroditographic $X_{B} Y_{B} Z_{B}$ system

$$
\mathrm{P}=\mathrm{P}_{2} \cdot \mathrm{P}_{1}
$$

is expressed by the product of transition matrix $P_{2}$ from the $X_{B}{ }^{e} Y_{B}{ }^{e} Z_{B}{ }^{e}$ coordinate system to the $X_{B} Y_{B} Z_{B}$ coordinate system and transition matrix $P_{1}$ from the $(X Y Z)_{50.0}$ coordinate system to the $X_{B}{ }^{e} Y_{B}{ }^{e} Z_{B}{ }^{\ddot{e}}$ coordinate system.

The elements of matrix $P_{1}$ are determined by the equations [3]

$$
\begin{aligned}
& p_{1 n}=\cos \Omega_{B} \\
& p_{18}=\sin \Omega_{B} \\
& p_{\mathrm{B}}=0 \\
& p_{81}=-\sin \Omega_{B} \cos i_{B} \\
& p_{22}=\cos \Omega_{B} \cos i_{B} \\
& p_{21}=\sin i_{B} \\
& p_{31}=\sin \Omega_{B} \sin i_{B} \\
& p_{32}=-\cos \Omega_{B} \sin i_{B} \\
& p_{33}=\cos i_{B},
\end{aligned}
$$

where $\Omega_{B}=\alpha_{0}+90^{\circ}$ is the angular distance from the spring equinox of the 17 earth ( $\gamma$ ) to the ascending node of the equator of Venus on the equator of the earth; $i_{B}=90^{\circ}-\delta_{0}$ is the relative inclination of the equatorial planes of Venus and the earth; $\alpha_{0}=272.8^{\circ}, \delta_{0}=67.2^{\circ}$ are the coordinates of the North Pole of Venus [7].

The matrix

$$
P_{2}=\left(\begin{array}{ccc}
\sin \omega \cos \omega & 0 \\
-\cos \omega & \sin \omega & 0 \\
0 & 0 & I
\end{array}\right)
$$

gives the rotation from the $X_{B}{ }^{e} \underline{v}_{3} e_{Z_{B}}{ }^{e}$ coordinate system to the $X_{B} Y_{B} Z_{B}$ coordinate system by the angle

$$
\omega=213.63^{\circ}-1.4814205^{\circ} \cdot \mathrm{d}
$$

between the point of intersection of the equators of the earth and Venus and the zero meridian of Venus [7]. In this equation, $d$ is the number of Julian ephemeris days which have elapsed from the start of the 1950.0 epoch to the current moment.

## 2. Representation of Planet Relief in the Form of Expansion in Spherical Punctions

The shape of the surface of the planet can be represented in the form of an expansion in spherical functions in the following manner [6]

$$
R_{i}=R_{0}\left\{I+\sum_{n=1}^{M^{\prime}} \sum_{m=0}^{n}\left[\begin{array}{l}
C_{n}  \tag{1}\\
S_{n}=\frac{r}{p_{n}^{\prime \prime}}(\sin +i)
\end{array}\left[\begin{array}{c}
\cos m \lambda_{i} \\
\sin m \lambda_{i}
\end{array}\right]\right\}\right. \text {, }
$$

where $R_{i}$ is the distance from the center of mass of the planet to points of the surface with angular coordinates $\phi_{i}, \lambda_{i}, R_{0}$ is the mean radius of the planet, $C_{n m}, S_{n m}$ are coefficients of expansion, $M^{\prime}$ is the maximum power of the Legendre polynomials used in the expansion:

$\delta_{\text {mo }}$ is the Kroneker symbol.

Coeficients of expansion $C_{n m}, S_{n m}$ should be selected so as to ensure sufficiently accurate representation of the distances from the center of mass of the planet to its surface. These values were obtained by processing the altimeter data of the Venus satellite, and it is used as the measurement material in determination of coefficients $C_{n m}, S_{n m}$. In this case, the number of measurements is considerably greater than the number of coefficients of expansion. Thus, we arrive at the statistical problem of determination of the parameters of the excess composition of the observations, which is reduced to determination of the minimum of the functional [2]

$$
\begin{equation*}
\Phi(\bar{Q})=\sum_{i=1}^{\Lambda} P_{i}\left[R_{i}^{m o s}-R_{i}(\bar{Q})\right]^{2} \tag{5}
\end{equation*}
$$

were $\bar{Q}\left(q_{1}, q_{2}\right.$, . . ., $\left.q_{m}\right)$ is the vector of the refined coefficients of expansion, $\mathrm{R}_{\mathrm{i}}$ meas are the measured distances from the center of mass of Venus to its surface, $q_{1}=C_{10}, \dot{q}_{2}=C_{11}, q_{3}=S_{11}, q_{4}=C_{20}, q_{5}=C_{21}, . .$,
$q_{M}=S_{M \prime M}, M=H^{\prime}\left(H^{\prime}+2\right)$ is the number of parameters refined, $N$ is the number of observations, $P_{L}=I / \sigma_{i}^{2}$ is the weight of the i-th observation, $\beta_{i}$ is the a priori observation accuracy, $R_{i}(\bar{Q})$ are calculated by Eq. (1)-(4).

A necessary condition of the minimum of functional (5) is satis- 19 faction of the following relationships:

$$
\begin{equation*}
\sum_{i=1}^{N} p_{i}\left(R_{i}^{n m m}-R_{i}(\bar{Q})\right) \frac{\partial R_{i}}{\partial q_{k}}=0 \quad(k=I, 2, \ldots, K) \tag{6}
\end{equation*}
$$

On consideration that function $R_{i}(\bar{Q})$ is linear, system of Eq. (6) can be written in matrix form

$$
\begin{equation*}
\mathrm{W} \cdot \overline{\mathrm{Q}}=\overline{\mathrm{B}}, \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& w_{k l}=R_{0}^{2} \cdot \sum_{i=1}^{N} P_{l} \eta_{k}^{i} \Pi_{2}^{i} \quad P_{l}=R_{0} \cdot \sum_{i=1}^{N} R_{i}\left(R_{i}^{-m}-R_{0}\right) \Pi_{l}^{i} . \\
& \mu_{1}^{i}=\overline{P_{1}^{0}}\left(\sin \varphi_{i}\right) \cdot \cos \left(0 \cdot \lambda_{i}\right), \quad \Pi_{2}^{i}=\bar{P}_{1}^{\prime}\left(\sin \varphi_{i}\right) \cdot \cos \left(I \cdot \lambda_{i}\right), \quad n_{3}^{i}=\overline{P_{1}^{\prime}}\left(\sin \varphi_{i}\right) \sin \left(I \cdot \lambda_{i}\right), \tag{8}
\end{align*}
$$

The solution of system of Eq. (7)

$$
\bar{Q}=W^{-1} \cdot \bar{B}
$$

is the vector of the desired coefficients of expansion.

The values of the joined Legendre functions are calculated by means of the recurrent relationships [1]

$$
\begin{gather*}
(2 n+I) P_{n}^{m}(x)=(n-m+I) P_{n-1}^{m}(x)+(n+m) P_{n-1}^{m}(x)  \tag{9}\\
P_{n}^{m-2}(x)+2(m+I) \frac{x}{\sqrt{1-x^{2}}} P_{n}^{m-1}(x)+(n-m)(n+m+I) P_{n}^{m}(x)=0 . \tag{10}
\end{gather*}
$$

In this case, the explicit expressions of joined functions $\overline{P_{0}^{0}}(x)=I_{1}, \overline{P_{1}^{0}}(x)-\sqrt{3} \cdot x, \overline{P_{1}^{\prime}}(x)=\sqrt{6} \sqrt{I-x^{2}}, \overline{P_{1}^{\prime}}(x)=\sqrt{15} \cdot x \sqrt{1-x^{2}}{ }^{i} \quad$ are obtained from Eq. (2)-(4). The values of $\overline{\mathrm{P}}_{\ell}^{\mathrm{k}}(\mathrm{x})$ are calculated as a result of successive
use of Eq. (9) and (10).

## 3. Numericai Results

The algorithm for determination of the coefficients of expansion were in the form of a program in FORTRAN language. The calculations were carried out in a BESM-6 computer. 1944 measurements were processed.

In processing, component sums (8) which correspond to the next measurement are determined successively. Accumulation of matrix elements and vector $B$ occurs as a result. The memory area required for solution of the problem does not exceed the memory assigned for loading the observation material, matrix $W$ (dimension $M \cdot M$ ), vector $\bar{B}$ (dimension $M$ ), the working cells, orogram and results.

The program developed can be used for representation of the surface of any planet in the form of expansion in spherical functions. For this, it is sufficient to assign the required mean radius of the planet $R_{0}$ and incorporate the corresponding observations.

Table 1 presents the results of determination of the coefficients of expansion in spherical functions of the surface relief of Venus up to harmonic $S_{99}$ inclusive. The two right hand columns contain accuracy characteristics of determination of coefficients $-\beta\left(C_{n m}\right)$ and $\beta\left(S_{n m}\right)$. The surface relief of Venus which corresponds to this expansion is represented graphically in Fig. 3. The contour lines are reckoned from a sphere of radius 6048 km , and they are 0.4 km apart.

Table 2 contains the parameters which characterize the matching of the constructed model with the measurements:
$B$ is the root mean difference of the calculated (obtained by means of the Table 1 coefficients) and observed distances between the center of mass of Venus and points on its surface;

TABLE 1.

$\Delta$ is the maximum deviation of the calculated value from the observed value.

TABLE 2.


Key: a. Spherical model
b. Moder using coefficients up to $\mathrm{S}_{99}$

Similar parameters for a spherical model of the surface of Venus are presented for comparison.

## 4. Accounting for Asphericity of Surface of Venus in Processing Radar Observations

In construction of a theory of motion of the planet with the use of radar measurements, the delay times of the signal reflected from the surface of Venus must be calcuiated. The distance from the center of mass of the planet to point $C$ (Fig. 2) on its surface which reflects the radio signal (subradar point) must be known for this. In order to determine this distance, the pianetographic coordinates of the subradar point at the time of refiection of the radio signal should be calculated and then, by using available data on the topography of the planet, the excess of the specified point of its surface above a sphere of a given radius shoulc be determined.

Let $\bar{e}_{1}$ and $\bar{e}_{2}$ be unit vectors which characterize the direction of the incident and reflected racio beams from the surface of the planet,

$$
\overline{\mathrm{e}}_{1}=\bar{r}_{1} / r_{1}, \quad \overline{\mathrm{e}}_{2}=\bar{r}_{2} / r_{2},
$$

where $\bar{r}_{1}$ are the venerocentric geoequatorial coordinates of the transmitter at signal emission time $t_{1}, \bar{r}_{2}$, are the venerocentric geoequatorial
coordinates of the receiver at time of reception of the signal on the earth $t_{2}$.

The location of the subadar point is determined by the intersection of surface of the planet with a straight line from the center of mass of the planet in the direction

$$
\begin{equation*}
\bar{e}_{0}=\frac{\overline{\bar{e}_{0}} \cdot \bar{e}_{2}}{\left|\overline{a_{0}} \cdot \bar{e}_{2}\right|} . \tag{11}
\end{equation*}
$$

In this case, angle $A C E$ is considered to be approximately equal to angle BCE.

In the aphroditographic coordinate system, unit vector of the direction to the subradar point $\bar{e}_{n}$ ' is calculated from the relationship

$$
\bar{e}_{n}^{\prime}=P \cdot \bar{e}_{n},
$$

where $\bar{e}_{n}$ is the unit vector of the direction to the subradar point in the geoequatorial system calculated by Eq. (ll) and $P$ is the transition matrix from the $(X Y Z)_{50.0}$ coordinate system to the $X_{B} Y_{B} Z_{B}$ coordinate system (see Section l) at signal reflection time $t$.

Aphroditographic latitude $\phi$ and longitude $\lambda$ of the subradar point are tied to the vector

## 

by the equations

$$
\varphi=\arcsin e_{x n}^{\prime}, \quad \lambda=\operatorname{arctg}\left(e_{m}^{\prime} / e_{x n}^{\prime}\right) .
$$

Accounting for asphericity of the relief of Venus, on which the model of the surface of the planet constructed above is based, appreciably decreases the discrepancies of the measured and calculated radar distances.

These discrepancies are presented in Fig. 4 by longitudes of the subradar points on the equator, without allowance for the relief. The excess of the points of the surface above a sphere of radius 6051.5 km is plotted on the same figure with a solid line. The discrepancies
noticeably duplicate the relief of the planet. The root mean error is 1.24 km in this case.

The discrepancies are represented with relief taken into account in Fig. 5. In this case, the root mean error is 0.99 km . Thus, allowance for the relief of Venus in processing the radar measurements provides a significant improvement in matching the calculated and measured radar distances.

It should be taken into account that the effect of the relief is reduced by the circumstance that the basic portion of the radar measurements is made in the area of inferior conjunctions of Venus with the earth (with maximum power of the earth-Venus-earth radio line). At inferior conjunctions, Venus turns one side to the earth which approximately corresponds to longitude $320^{\circ}$. In connection with this, the major portion of the measurements are concentrated near this longitude, where the surface of Venus is quite level.


Fig. 1.
.


Fig. 2.
$\begin{aligned} & \text { Key: } \text { a. Zero meridian } \\ & \text { of Venus } \\ & \text { b. Equator of Venus } \\ & \text { c. Equator of earth }\end{aligned}$


Fig. 3.


Fig. 4.

