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Abstract

The instability of an infinite swept attachment llne boundary layer is

considered in the linear regime. The basic three-dimenslonal flow is shown to

be susceptible to travelling wave disturbances which propagate along the

attachment line. The effect of suction on the instability is discussed and

the results suggest that the attachment llne boundary layer on a swept wing

can be significantly stabilized by extremely small amounts of suction. The

results obtained are in excellent agreement with the available experimental

observations.
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INTRODUCTION

The laminar boundary layer which forms on a long cylinder whose axis is

inclined relative to the oncoming flow is known to exhibit instability to

small amplitude disturbances at large Reynolds numbers. Depending upon the

flow conditions these disturbances may take the form of Tollmien-Schlichting

waves, stationary cross-flow vortices or, if the surface has regions of

concave curvature, Taylor-Gortler vortices. In general, as the Reynolds

number is increased, the instability occurs first in the regions of adverse

pressure gradient on the lee side of the cylinder. Further increases in

Reynolds number cause the location of the instability to move progressively

forward towards the attachment line. It follows that the Reynolds number at

which the attachment line flow exhibits an instability to small amplitude

disturbances represents a limit beyond which the flow over the cylinder is

unstable everywhere.

The motivation for studying the flow over inclined cylinders lles in the

fact that the results find direct application in situations of engineering

significance, notably to the flow over high aspect ratio swept back wings. In

recent years the attempted development of laminar flow wings has resulted in

renewed interest in the instability mechanisms which can affect a three-

dimensional laminar boundary layer. For conventlonal wings operating at

typical long range cruise conditions a laminar boundary layer would be

unstable over a large proportion of the surface area and, consequently, wholly

laminar flow cannot be maintained without the use of some form of artlficlal

stability augmentation. The most convenient form of stabilization is that

provided by distributed surface suction. Surface suction affects the boundary

layer in two ways. Firstly, the viscous layer is thinned with a corresponding
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reduction in local Reynolds number. Secondly, and more importantly, the

vorticity distribution within the boundary layer is modified in such a way

that a more stable flow is established. The combination of these separate

effects makes surface suction a particularly efficient stabilization mechanism

with transpiration velocities of order .1% of the velocity at the edge of the

boundary layer being sufficient to maintain aerofoil boundary layers in the

laminar state. Therefore, an investigation of the stability characteristics

of the attachment line boundary layer with and without surface transpiration

constitutes a problem of considerable practical importance.

The significance of the attachment line with respect to laminar flow

control has been recognized for many years (see Pfennlnger (1977)). The

previous work on this problem has been almost wholly experimental though,

following Gregory, Stuart, and Walker (1955), there have been many theoretical

investigations of crossflow instabilities which are important outside the

attachement region. The small amplitude stability problem was first

considered by Gaster (1967) who introduced controlled acoustic disturbances

into the attachment line flow formed upon a faired circular cylinder model.

From his measurements he concluded that the swept attachment line boundary

layer was stable to small amplitude disturbances for momentum thickness

Reynolds numbers up to at least 170. In a later investigation Cumpsty and

Head (1969) reported that no instability was observed for _ up to 240. The

first experimental investigation to detect amplified attachment llne

disturbances was conducted by Pfenninger and Bacon (1969). Their test

configuration consisted of a 45° swept back wing with a blunt-nosed aerofoil

section which also had provision for surface suction through closely spaced

slots. The results of this experiment will be discussed in depth later in
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this paper. More recently, an investigation of the stability characteristics

of the attachment line flow on a swept cylinder has been carried out by Poll

(1979 and 1980). In these tests, which were similar in some respects to those

conducted by Pfenninger and Bacon, amplified disturbances were observed and

recorded. By combining the results of all the available experimental data

including the little known work of Carlson (1966), Poll argued that the upper

limit for the stability of the laminar swept attachment line boundary layer

flow occurs at a momentum thickness Reynolds number of approximately 230.

In this paper we investigate the instability of a three-dimensional

boundary layer which is directly relevant to the experimental configurations

of Pfenninger, Bacon and Poll. The relevance of the flow will be immediately

obvious when we describe it but we postpone until the last section of this

paper a more detailed discussion of the relationship between the experimental

situation and our idealized model.

We consider the flow adjacent to the infinite flat plate defined by

y = 0 with respect to Cartesian coordinates (x,y,z) with the x and z

axes lying in the plate. The velocity components in the x and z

x
directions are zero at the plate and approach the values U0 _ and W0

respectively when y + =. The normal velocity component takes on the

constant value V0 at the wall and grows linearly with y when y + =. The

important simplifying feature of this flow is that it corresponds to an exact

solution of the Navier-Stokes equations so that it is not necessary for us to

make the boundary layer approximation when deriving the basic flow. Thus it

is sensible for us to discuss the stability of the flow at finite Reynolds

number and the concept of a critical Reynolds number is tenable. This is in

contrast to the situation with Blasius flow where a self-consistent
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perturbation investigation of the linear stability problem does not lead to a

critical Reynolds number. The latter problem has been discussed by Smith

(1979) and Bodonyi and Smith (1981).

The basic flow described above is susceptible to centrifugal instabilities

because of the curvature of the streamlines in the x-y plane. In particular

when W0 = 0 the plane stagnation point stability equations of Hammerlin

(1955) are recovered when a disturbance periodic in z is imposed on the

flow. Hammerlin showed that a continuous spectrum of neutrally stable

wavenumbers exists for these equations. The eigenfunctions corresponding to

these modes decay algebraically with y but it is yet to be shown that they

are physically relevant in a more realistic situation where they mast be

matched onto a disturbance outside the attachment region. There also exists a

discrete spectrum of damped eigenvalues having eigenfunctions which decay

exponentially when y + = and it is this type of eigenvalue on which we will

concentrate our attention here.

If W0 is nonzero the spanwise velocity component is susceptible to

Tollmien-Schlichting waves but we show that there is no rational approximation

which leads to the Orr-Sommerfeld eigenvalue problem. Instead we find that

the appropriate eigenrelation is of sixth order in y and reduces to that

obtained by Hammerlin in the limit W0 . 0.

The numerical solution of the eigenvalue problem is nontrivial because of

the rapidly varying nature of the eigenfunctions and two independent schemes

were used in our calculations. The most efficient scheme was a fourth-order

compact finite difference method based on that described by Malik, Chuang and

Hussaini (1982). In addition the Riccati method was also used to provide a

check on the eigenvalues obtained from the finite difference method.
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Our calculations showed that at a critical value of W0 the attachment

line boundary layer is unstable to discrete Tollmien-Schlichting

instabilities. Moreover, these modes are connected to the discrete modes of

the plane stagnation point stability problem found by Wilson and Gladwell

(1979) so that we have an additional check on the numerical work. The

eigenfunctions associated with the discrete spectrum change from being of

typical Taylor-Gortler type at small values of W0 to being of Tollmien-

Schlichting type when instability occurs.

The results which we obtain for the basic flow described previously can be

applied to the experiments of Pfenninger and Bacon (1969) and Poll

(1979,1980). We shall compare our predicted frequencies with those given by

these authors and there seems to be little doubt that the instability

mechanism which we investigate is responsible for that found experimentally.

The procedure adopted in the rest of this paper is as follows: in Section

2 we derive the basic flow and formulate the eigenvalue problem governing the

stability of this flow to spanwise periodic disturbances. In Section 3 we

discuss the boundary conditions at infinity which must be imposed before the

eigenvalue problem can be solved. In Section 4 we discuss the numerical work

required to calculate the basic flow and solve the eigenvalue problem. In

Section 5 we discuss the asymptotic limit of large suction whilst in Section 6

we discuss the relevance of our results to experimental observations.

2. THE BASIC FLOW AND THE DISTURBANCEEQUATION

We consider the flow of a viscous incompressiblefluid of kinematic

viscosity _ adjacent to a flat plate defined by y = 0 with respect to the
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Cartesian coordinate system (x,y,z). The y axis is taken to be normal to

the wall and we look for a solution of the Navier-Stokes equations which

satisfies the conditions

u = w = 0, v = V0, y = 0,

(2.1)

x

u + U0 _ , w + W0, y + _,

where £ is a length scale in the x direction whilst U0, V0 and W0 are

independent velocity scales. We define the parameters A, R, and < by

W0_A (_0) 1/2 (2.2)
(_£I R - K = V0

A = _0 _ , ,

Thus, A is the thickness of the boundary layer associated with the flow in

the x-y plane. It is known that there exists an exact solution of the

Navier-Stokes equations corresponding to (2.1). The velocity field of this

exact solution can be written

x A

u = U0 _-_(n) , v = U0_(_) , w = W0 _(_) , (2.3)

where

- Y (2.4)
n A

and u, v, w satisfy

u + v" = O_

v " + v - v v - I --0, (2.5)

W''-- V W" ----O,

v'(O)=o, v(O)=<, v'(-)=-I,w(O)=o, =I.
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We note that the solution of the above system has

v ~ -1_ - _(K)) when _ + _,

where the displacement 6(_) is, of course, a function of K. We further

note that if _ > 0, then _'" will necessarily vanish at some values of n

so that if [ and _ are, in some sense, negligible in the stability

calculation we expect inflection point instabilities to occur.

We restrict our attention to the linear stability of the flow (2.3) to

disturbances periodic in the z-dlrection with wavelengths 2____A. We shall

take _ to be real and look for the corresponding complex frequency

associated with e for each value of R and K. We perturb the flow (2.3)

by writing

X --

u = _[_u + RUE]Wo0 €

v V

W0 R + VE, (2.6)

W

--= w+WE,
W0

U0 ctW0
- z _ It will also be useful to work

where _ W0 and E = exp i _{_ - A J"

with the quantities m, _ given by

m = ac, I = -icRc. (2.7)

The pressure perturbation corresponding to (U, V, W) is P_0 PE and U, V,

W and P are functions of the nondimensional variable n defined by

(2.4). The x-dependence of the disturbance which we have assumed corresponds
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to that used by H'ammerlin (1955) and enables us to find a solution of the

linear stability equations by solving ordinary differential equations. Such a

simplification does not happen in more general boundary layer centrifugal

instability problems and a self-consistent linear stability analysis leads to

a partial differential system (see Hall (1983)). It is a routine matter to

substitute the disturbed flow velocity and pressure fields into the Navier-

Stokes equations and linearlze in U, V, W to obtain:

{ d5 - c2}U = -icRcU + 2_ U + _" + VU" + icR_ U, (2.8a)

{dd_2 -c2}V = RP" - icRcV + _V" + _'V + iaR_V, (2.8b)

d2

{d--_ - a2}W = iaRP - iaRcW + VW" + RV_" + ieR_W, (2.8c)

U + V" + i_W = 0. (2.8d)

The pressure perturbation P and the z component of velocity W can be

eliminated from (2.8) to give the following pair of coupled equations to

determine U and V;

{M + i_Rc}U = 2_U + _'V + _U" + icR_U, (2.9a)

{M+ I=Rc}MV= i_R_MV- i=R_''V+ VMV"+ V'MV- 2?0 - 2_U"-?'V -?V'.

(2.9b)
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Here the operator M is definedby

d2 2
M-

2
d_

and we see that (2.9) with R = 0 reduce to the usual equations governing

the stability of stagnation point flow to Taylor-G'ortler instabilities.

Alternatively by setting _ = _ = 0 in (2.9b) we obtain the Orr-Sommerfeld

equation for V. However, it is clear that there is no rationalapproximation

to (2.9) which decouples the equations in order to produce the latter

simplification. Before discussing the numerical solution of (2.9) we n_ast

derive the appropriate form of the disturbance for _ >> I, this will enable

us to generate boundary conditions at _ = _ >> I.

3. THE BOUNDARYCONDITIONSTO BE IMPOSED AT n = _ AND THE CONTINUOUS

SPECTRUM

Suppose next that we let _ + _ in (2.9) and replace u,v,w by their

asymptotic expansions for _ >> I to obtain

[M - I - 2 - iuR]U + [n - _]U" = 0, (3.1a)

[M - I - iuR]MV+ [_ - _]MV" + MV + 2U" = 0, (3.1b)

where _ is given by (2.7). If we look for asymptotic solutions of (3.1)

with U and V having an algebraic dependence on [_ - _] we obtain the two

independent solutions
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a. U ~ (n')k+2+iaR+_2, V ~ (n')%+l+iaR+_2,

b. U = 0, V ~ (n')k-l+i_R+_2,

where n" = n - _. In addition, there exist the following three independent

exponentially decaying solutions:

c. U=O, V~e ,

d. U = 0, V ~ (n')-2-_2-%-iaR e-B'2/2,

(n')-3-a2-l-ieR -n'2/2 + c2e. U N e , V ~ [3 + _ + ieR] U2 .3 "
n

2
Suppose that _ is constrained to lie in the half plane %r < -2 -

and we impose the condition U, V, W + 0 when _ + =. We see that there are

five independent solutions of (2.9) which have this property and they

correspond to the asymptotic forms (a) - (e). Each of these solutions can be

multiplied by an arbitrary constant, ea,''',e e, and the solutions must then be

combined so as to satisfy

U(O) = V(O) = V'(O) = O. (3.2)

2
Thus for each _ < -2 - e there are two independent eigenfunctions

r

corresponding to say, e = 0 and __ = 0. We refer to these eigenfunctions
a D

as the B and A eigenfunctions respectively. We further note that the

pressure perturbation corresponding to these eigenfunctions also tends to zero

when n + =.
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Suppose next that X is constrained to be in the intervalr

-2 - e2 < Xr < 1 - a2 so that (a) no longer gives algebraic decay for U

when q + _. However, the asymptotic form (b) still corresponds to algebraic

decay of the disturbance when _ . _ so that there exists one eigenfunction

(i.e., the B eigenfunction) corrersponding to each X in this strip. In

particular, if we set X = 0, R = 0, we obtain the continuous spectrum

0 < e < I which was discussed by Hammerlln (1955).

The eigenfunctlons of the continuous spectra discussed above have the

property that the velocity fields tend to zero algebraically when n + _. If

this condition is replaced by one which requires that U, V, W should tend to

zero exponentially when n + _, then only (c), (d), and (e) can be used to

generate independent solutions of (2.9). In this case the three independent

solutions of (2.9) must be combined to satisfy (3.2) and then only a discrete

spectrum will exist. This possibility was investigated by Wilson and Gladwell

(1978) who considered the plane stagnation point problem R = O. The latter

case is that discussed by Hammerlln (1955) and Wilson and Gladwell found a

damped discrete spectrum corresponding to disturbances which decay

exponentially when q . _. It was suggested by the latter authors that the

continuous spectrum is not physically relevant for the reasons we discuss

below.

Suppose that the basic flow which we are considering is the local flow

near the attachment line on, say, an infinitely long swept cylinder. The

disturbances which we are calculating _st then be matched with a disturbed

flow in the appropriate "outer region" unless they decay exponentially when

n . _, in which case the disturbed flow is confined to the boundary layer.

Thus the physical relevance of the continuous spectrum in this more realistic
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flow is not known until the disturbance flow field in the "outer region" has

been found. It seems that, as yet, the latter structure has not been

determined so that the relevance of the continuous spectrum remains an open

question. Wilson and Gladwell argue that the algebraic decay of the

continuous spectrum eigenfunctions will lead to inconsistencies in the

matching procedure between the inner and outer region. This is indeed

possible but perhaps a more likely outcome is that only the unstable part of

the continuous spectrum would be ruled out by such a procedure. Without

solving the outer problem the above arguments are merely speculative but it is

clear that the exponential decay of the discrete spectrum removes any doubt

about its relevance to more realistic flows. For that reason we shall confine

our attention to the discrete spectrum but we must bear in mind that the

continuous spectrum may play an important role the linear stability problem

under investigation. Indeed, Dhanak and Stuart (1) who investigated the

problem with R = 0, argue that even some of the algebraically growing

solutions of (2.9) are physically relevant. However, the close agreement

between experimental observations and our results suggests that the discrete

modes with exponential decay at infinity dominate the boundary layer stabilty

characteristics on a swept cylinder. Finally, we note that if U and V are

to decay exponentially when n + = then for sufficiently large values of

_, U N e-n2/2 , V ~ e-_n. Thus the normal velocity component V decays to

zero more slowly than U.

(1)M. Dhanak and J. T. Stuart, 1983, Imperial College, England, personal
communication, to be published.
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4. THE NOMERICAL WORK

The first step in the calculations was to integrate (2.5) by a shooting

method by guessing an initial value for V''(0) and iterating until

V'(_) = -I. The results obtained were in excellent agreement with those

given in Rosenhead (1963).

The linear stability equations (2.9) were then integrated subject to (3.2)

together with the condition that (U, V, W) should tend exponentially to zero

when B + _. The first method used was a shooting procedure which though

able to reproduce Wilson and Gladwell's results at R = 0 without r_ach

difficulty or expense proved prohibitively expensive at higher values of the

Reynolds number where instability is possible. For that reason the following

independent schemes were implemented.

I. The Rlccatl Transform Method

A detailed account of this method can be found in, for example, Aziz

(1973), Scott (1973), Davey (1977) or Sloan (1977). Davey (1977) has compared

the efficiency of the method to an orthonormalization method for Orr-

Sommerfeld equations whilst Wilson and Gladwell (1978) used the method for the

plane stagnation point problem. The system (2.9) is written in the form

dyI
dn - A1 --Yl+ A2 Y2' (4.1a)

dy2
an - A3 Yl + A4 Y2' (4.1b)

where AI, A2, A3 and A4 are defined by
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A1 = 0 A2 = 0

0 1

2 +_ +2_+ia_ u" 0 -I

A3= 0 0 0 ,

-2u" _{=4+=2 _ + i3 R_'"+ 2-_.+-_..} _ 2F_ u

o 0

A4= 0 ,

2_ 2=z + I + v + i=Rw

and

Yl = (U'V'v')T' Y2 = (U',V'', V''').

The matrix T, defined by _2 = T _I' satisfies the equation

dT

_-_-= A1T - TA4 + A2 - TA3 T, (4.2)

-I
whilst S = T satisfies

dS
_-= A4 S - SA1 + A3 - SA2 S. (4.3)

Apart from the definition of _I and [2 the above formulation follows

closely that given by Wilson and Gladwell. The no-slip condition requires

that T satisfies the initial condition
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T(0) = 0, (4.4)

and (4.2) was then integrated from _ = 0 to n = _ using a fourth-order

Runge-Kutta scheme. If _ is taken to be large the matrix T contains

exponentially large-elements so it is convenient to take _ = I and calculate

S before integrating (4.3) from _ = _ to _ = n_ >> i.

The three asymptotic forms (c), (d), and (e) found in Section 3 show that

at large values of n

--Yl= MI ad ' Y2 = M2 '

\_e

where MI, M2 are 3x3 matrices. Thus at n = n_, we require that

SMI = M2 d 'ed

_e \ae/

and the eigenvalue k = %(e,R,_) can be found by iterating to make

det(SM 1 - M2) = 0.

The step length of the Runge-Kutta integration and D were varied until

was obtained with sufficient accuracy. We now describe an alternative

method which was used to solve the eigenvalue problem.
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II. A Compact Fourth-Order Finite Difference Scheme

The scheme which we now describe was proposed by Malik, Chuang and

Hussainl (1982) and is derived by means of the Euler-Maclaurin formula:

2

_k _ _k-1 hk (d_k d_k-I hk (d 2 _k d2 _k-I+ _ d__a + (4.5)

where

_k = _(nk ) and hk = nk - nk_ I.

The nodes are distributed to resolve singular layers so that

_k = L(k-1)/(Ng - (k-l)), k = 1,2,...,N + I, (4.6)

where N + 1 is the total number of nodes, g = (n_ + L)/_, n_ the location

of the boundary layer edge, and L a scaling parameter. We chose L to be

twice the height (from the wall) of the nodal point at which the

nondimensional mean velocity _ assumed the value 0.5. It was found that for

a given number of points, this choice of L in the grid distribution function

(4.6), ylelded maximum accuracy.

In order to apply the above compact difference scheme to (2.9a,b), it is

necessary to write them as a set of first-order differential equations. They

are rewritten as

d_i 6

- _ aij Sj; i = 1,2,...,6, (4.7)
dn j=l

where
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d41
€I = v, €2 - d_ '

de2 de3

€3 = dT ' ¢4 - dn '

d45

€5 = u, 46 - dn '

with the boundary conditions

41 = 42 = 45 = 0 at n = 0, (4.8)

42 + a41 = 43 + a42 = 46 + n45 = 0, n = n_. (4.9)

The latter conditions follow from the discussion of Section 3 where it was

shown that for sufficiently large values of

2
U ~ e-n /2 -an, V_ e .

The nonzero elements of the matrix (aij) are

a12 = I,

a23 = 1,

a34 = I,

4 2--
a41 = -a + ia2 mR - ia3 R_ - _ v - i=R _'" - _'',
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_ _o

a42 = -_ v - u ,

= 2e2 -- --.
a43 - i_R + i_Rw + v ,

a44 = v,

a45 = -2_',

a46 = -2_,

_ _

a65 = _ - i_R + 2u + iaRw,

a66 = _.

We set

I I I 1= {$i }, _ = aij Sj ,
j=1 dq--_ = "=I bij Sj '

where
da.. 6

_ 13 + _ ai£ a£jbij dn £=1

and thus (4.5) becomes

2

k hk _ k k+hk _ k k
$i---2 aij Sj ]-2 bij Sj

j=I j=I

2

- *i + 2"- j=l_ aij *J "[_ j=l ij Sj '

k = 2,3,...,N + I.
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It is possible to write the above equation system along with the boundary

conditions (4.8) - (4.9) in block-tridiagonal form:

Ak _k-i + Bk ik + Ck ik+l = H, k = 1,2,...,N + 1 (4.11)

where Ak, Bk, Ck are 6x6 matrices defined below and H is a 6xl null

matrix.

6 columns

-NonzerOoelements ] 3 rows
.... ; k = 2, .... ,N + 1, (4.12)

3 rows

6 columns

0 ] 3 rows
Ck .... ; k = I,.... ,N. (4.13)

Nonzero elements 3 rows

Bk are full matrices with k = 1 and k = N + 1 having the structure

6 columns

oE ] 3 rows
B1 = (4.14)

Nonzer lements 3 rows
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6 columns

[N°nzer°Felementsl 3 r°ws

. (4.15)

BN+I = 3 rows

where E and F are 3x6 matrices representing the bottom and top boundary

conditions (4.8) and (4.9) respectively. Thus we obtain

1 0 0 0 0 0]

E = 0 1 0 0 0 0 (4.16)

0 0 0 0 1 0

and

F = c 1 0 0 . (4.17)

0 0 0 n

We can write (4.11) in the form

_ = H (4.18)

where _ : [Ak, Bk, Ck].

Assuming an estimate of the eigenvalue is available, we solve (4.18)

directly. In order to avoid the trivial solution, nonhomogeneous boundary

conditions are imposed at the wall. Specifically, the boundary condition

_1(0) = 0 is replaced by _3(0) = I. This is equivalent to normalizing the
d2 V

eigensolution by the value of _ at the wall. Matrix E of (4.16) now
dn2

becomes
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! 0 1 0 0 0 ]

E= 1 0 0 0 0

0 0 0 1 0

and

H = (I, 0, 0,...,0)T.

The system (4.18) is nonhomogeneous and the nontrivial solution is

obtained using block LU factorization. Newton's method is then used to

iterate on the eigenvalue such that the remaining boundary condition

_i(0) = 0 is satisfied.

In order to generate neutral curve (mi = 0), a solution _ is first

obtained for assumed values of e and mr. The corrections Aa and Am r

are then determined from the equations:

_1 (0) _1 (0)

r Ae + r Am = O, (4.19a)€1 (0) + _a _m r
r r

3€1i(0) 3_1i(0)

_li(O) + 3a Aa + _m r Am r = O. (4.19b)

Here @i(0) is known from the solution @ just obtained whilst the

derivatives with respect to _ and m are obtained by solvingr

-_-_ + (4.20)

and

_m _m _ (4.21)
r r
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The process is repeated until 41(0) vanishes within preassigned

tolerances. We see that (4.18), (4.20) and (4.21) can be solved with the same

LU factorizatlons and both the elgenvalue and elgenfunctlon are obtained.

The two schemes described above were first used to calculate the

eigenvalues of (2.9) with R = 0. The results obtained were found to be

consistent with those given by Wilson and Gladwell (1978). At higher values

of R_ where instability is possible_ the Riccatl method gave consistent

results provided that enough grid points were used. For Reynolds numbers less

than N I000 it was found necessary to use at least five hundred steps (with

_ = I0) to obtain a neutral eigenvalue correct to four significant

figures. In Table I we have illustrated the convergence of the finite

difference scheme in this region.

The convergence of the latter scheme is significantly faster than that of

the Riccati method and the neutral values of e, c correct to four
r

significant figures can be obtained with only forty-one grid points.

Moreover, it was found that the iteration to an eigenvalue with the Riccati

method was much more sensitive to the initial guess for the elgenvalue than

was the case with the finite difference scheme. In view of the fact that the

elgenfunctions cannot be calculated directly using the Riccatl method because

of numerical instabilities it was therefore decided to use the finite

difference scheme to generate the neutral curves and use the Riccati method to

check selected elgenvalues.

In Figure 1 we have shown the neutral wavenumber and frequency _ = ac r

as functions of the Reynolds number R for < = -.8, -.4, 0, .I. The

critical values corresponding to the zero suction case _ = 0 are
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R = 583.1, _ = .288, =c = .iii.
r

It is clear from Figure 1 that suction and blowing have stabilizing and

destabilizing effects on the flow respectively. The shape of the neutral

curves for _ < 0 is typical of viscous instabilities of flows without

inflection points whereas the open neutral curves for _ > 0 are to be

expected since _ has an inflection point in this case. It should be noted

that, although (2.9) is not the Orr-Sommerfeld equation, the inviscid limit of

(2.9) is the Rayleigh equation so that in the absence of an inflection point

the flow is stable at infinite Reynolds numbers.

In Figure 2 we have shown some of the eigenfunctions corresponding to the

neutral curves of Figure I. The eigenfunctions have been normalized in each

case such that the maximum magnitude of each velocity component is unity. It

can be seen that the x-velocity component goes to zero more quickly than the

other two components. This is, of course, to be expected since we have shown
2

earlier that for large n, U ~ e-q /2 whilst the other velocity components go

to zero like e-a_. We also notice that for the cases with K > 0 the

eigenfunctions have their critical layers further away from the wall than is

the case with _ _ 0.

In Figure 3 have have plotted the critical Reynolds numbers corresponding

V0
to _ = +.8, +.4, 0, -.I, -.15, -.2. We note that K

W0 - R so that the

significant rise in the critical Reynolds number corresponding to < =-.i

V£o~
corresponds to W0 10-4 which is well within the range of practical

feasibility. Figure 3 suggests that the critical Reynolds number can be made

arbitrarily large by taking -_ << I. In order to determine whether this is

the case we shall in the next section consider the structure of the neutral

curve in the limit K + -_.
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5. 'life LARGE SUCTIONLIMIT < + -_

We first considerthe limitingform of the solutionof (2.5)when

< + -_. For n _ 0(I), it is easily shown that the asymptoticform of _ is

2
n (5.1a)V~ < ,

whilst

u N _ + ... , (5.1b)

It follows from the z momentum equation that _ then approaches unity on

the length scale I<[-I so that if we write

$ = nl_l

then for _ N 0(I)

u _ + -'', v _ < + -'',_ = (I - e-_) + "'" • (5.2)
< 2<

Thus _ is given to first order by the asymptotic suction velocity profile

and before determining the correspondingasymptotic structure of U, V we

first write

= = l<la, (5.3a)

R = I_IR. (5.3b)

The above rescallng is suggested by the fact that the appropriate length

scaled for the instability is now _/V 0 and not A. It now remains for us
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to rewrite(2.9) in terms of _ and expand U,V in the form

u0 uI
K

V --V0 + V--I+ .-.<

where UO, Vl, etc. are functions only of $. It is then a routine matter to

substitute the above expansions into (2.9) and determine UO, V0, etc. We

find that V0 satisfied the equation

d_2 a + iaRc -a2 V0 = iaR[i-e-_]V0 + ia_e-_ V0_ ?_ V0"

(5.4)

which is just the modified Orr-Sommerfeldequationfor the asymptoticsuction

profile. The appropriateboundaryconditionsfor (5.4) are

v0 = v6 = o, _ = o, vo. o, $ .-. (5.5)

There is no continuous spectrum of (5.4) corresponding to (5.5) and the

critical Reynolds number associated with the discrete spectrum is given by

Hocking (1974) as

= 54,370

whilst the critical values of a, c are
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a = .1555, c = .150.

Hence, we see that in the limit of large suction (2.9) simplifies to the

modified Orr-Sommerfeld equation for the asymptotic suction profile and the

critical value of R is given asymptotically by

RN 54,370 I_I. (5.6)

The massive stabilizing effect of suction suggested by Figure 3 is therefore

not surprising. It follows from (5.6) that R can be made arbitrarily large

by taking the limit _ . -_ but that instability then always occurs when

V0 I
- and is confined to a layer of thickness (u/V0) at the wall.

w0

6. DISCUSSION

We have shown that the attachment line boundary layer flow (2.3) is

susceptible to travelling wave instabilities which propagate along the

attachment llne. These disturbances decay exponentially at the edge of the

boundary layer and at zero Reynolds number correspond to the eigenvalues of

the plane stagnation point stability problem found by Wilson and Gladwell

(1979). The exponential decay of the eigenfunctions ensures that in more

realistic situations there will be no difficulty matching the solutions onto

the appropriate outer flow field. We now turn to the relevance of our work to

the available experimental results which correspond to the flows around swept

flat-nosed wings and circular cylinders. Before doing so, it is of course

necessry to indicate the relevance of our basic flow to these
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configurations. A discussion of the boundary layer flow on an inflnitely long

swept cylinder is given in Chapter VII of Rosenhead (1963) and is based on the

work of Schubart (1945, unpublished), and Sears (1948, 1952).

The procedure is essentially identical to that appropriate to the two-

dimensional case and outside the boundary layer the basic flow is expanded in

the form

x (_)3u = U0 T+ U1 + ...,

w = W0 + ... .

In the boundary layer the velocity components are expanded in powers of %

and the first order flow is exactly that which we have described in Section 2.

Thus, sufficiently close to the attachment line, the basic flow which we have

calculated in Section 2 gives a good approximation to the attachment line

boundary layer on a swept cylinder. The range of validity of our theory will

therefore depend on the cross-sectional shape of the cylinder and the Reynolds

number.

The experimental investigations most relevant to the present work are due

to Gaster (1967), Pfenninger and Bacon (1969) and Poll (1979, 1980). The

first two investigations were concerned with the attachment lines on swept

wings whilst Poll performed experiments on a swept c_rcular cylinder.

However, the wing section used by Pfenninger and Bacon had a flat nose so it

is likely that our theoretical work is most relevant to their experiments. It

is well-known that the attachment line is turbulent when large amplitude

disturbances are present. These large amplitude disturbances convected into

the attachment line can be prevented by various means so that the llnear
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critical Reynolds number almost certainly gives an upper limit to the laminar

flow regime. Gaster found that the attachment llne boundary layer is stable

up to R _ 420 which was the maximum value of the Reynolds number which could

be achieved experimentally.

Pfenninger and Bacon (1969) and Poll (1979, 1980) measured equilibrium

frequencies of naturally occurlng small disturbances at various values of the

Reynolds number. We have indicated these experimental results in Figure 4

where we have also shown the neutral curves Without suction. The experimental

points lie close to the lower branch of the neutral curve and the critical

Reynolds number is close to the minimum Reynolds number at which Pfennlnger

and Bacon measured small amplitude equilibrium disturbances. It can be seen

in Figure 7 of Pfennlnger and Bacon (1969) that by introducing large amplitude

disturbances into the boundary layer by means of trip wires it is possible to

induce equilibrium disturbances at significantly lower values of the Reynolds

number. The latter authors also give experimental points in the presence of

suction but it is not clear from the results given whether the flow was

stabilized or destabilized by the suction. The amount of suction used

experimentally is not given by Pfenninger and Bacon but, in view of the

results shown in Figure 3 of this paper, we assume that it was extremely

small.

It seems likely that the instability mechanism which we have dlscussed is

responsible for the disturbances measured experlmetnally. Some further

evidence for the relevance of our model is provided by Figure 5 which is taken

from Poll (1980). Poll used two hot wires at the same spanwlse location but

different chordwise locations to measure the time history of the spanwlse

disturbance velocity component. The figure suggests that the instability is
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indeed two-dimenslonal and takes the form of a time-harmonic disturbance

propagating along the attachment llne.

Finally we close by making a few comments about the extension of our

analysis to include the effect of nonlinearity. Surprisingly, the disturbance

structure (2.6) can still be retained and enables us to take out the x-

dependence of the problem even in the nonlinear regime. Thus it is possible

in principle to calculate the weakly nonlinear development of the disturbances

considered in this paper. Such a calculation might explain the origin of the

subcrltlcal equilibrium disturbances measured by Pfenninger and Bacon (1969).
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Table I. The neutral eigenvalues as a function of the number of grid

points of the finite difference scheme for R = 800, _ = 0.

10 .3300581 .1226919

20 .3378719 .1267951

40 .3384238 .1270776

80 .3384613 .1270965

160 .3384638 .1270977
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Figure Captions

Figure la:

The neutral curves in the = - R plane for different values of K.

Figurelb:

The neutralcurvesin the _ - R planefor differentvaluesof <.

Figure 2:

The neutralelgenfunctionsfor: (a) R = 583.4,= = 28,

(b) R = 4000, a = .286, (c) R = 44., a = .4014, (d) R = 119,

a = .3587, (e) R = 979, _ = .285.

Figure 3:

The dependenceof the criticalReynoldsnumber on the suctionparameters.

Figure 4:

A comparisonbetween theoryand experimentfor < = 0.

Figure 5:

The spanwise disturbancevelocity componentsmeasuredby Poll (1980)at

nelghbourlngvalues of x with z fixed.
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Figure 2a
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Figure2b
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Figure 2c
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Figure 2d
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Figure 2e
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Figure 3
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Figure 4 
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