
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19840011285 2020-03-21T00:09:47+00:00Z

(NASA-UB- 174(b4 i) PbitALI-i- L PECLESSUR ZhGINE	 N84- 193 53
MUJEL PROGRAM finai Retort (Pratt acid
iihitnzy Aircraf t Grour)	 70 p HC A04; Kf A01

CSCL 21E	 Unclas
G3/07 18652

by
Pets tNclm*il t

UNITED TECHNOLOGIES WRPORATIOiV	 - --	 --
Pret S WI*rwy Aircraft Group

Prett a Vi t*uwy Ergivisering

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center

Contract NAS3-2 M

7y.

1.REPORT NO.
NASA CR-174641

2. GOVERNMENT AGENCY
NASA/LEWIS

3.RECIPIENT'S CATALOG NO.

4.TITLE AND SUBTITLE	 '—S—.RTMT
PARALLEL PROCESSOR ENGINE MODEL. PROGRAM

FINAL REPORT

DATE
January 1984

6. PERFORMING ORG. CODE

Peter Mclaughlin
.

PWA 5896-21

9.PERFORMING ORG. NAME AND ADDRESS

UNITED TECHNOLOGIES CORPORATION
Pratt & Whitney Aircraft Group
Pratt & Whitney Engineering

76TORK UNIT	 .

]I. CONTRACT OR GRANT NO.
NAS3-23283

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road, Cleveland, Ohio	 44135

13. TYPE REPT./PERIOD COVERED
Contractor Report

74. SPONSORIM AGENCY CODE

1o. 3urrLLMLN1MKI RUIL3

76. ABSTRACT

The Parallel Processor Engine Model Program is a generalized engineering tool intended
to aid in the design of parallel processing real-time simulations of turbofan engines. It
is written in the FORTRAN programming language and executes as a subset of the SOAPP
simulation system. Input/output and execution control are provided by SOAPP; however, the
analysis, emulation and simulation functions are completely self-contained.

The program had two major objectives. These were to provide a framework in which a wide
variety of parallel processing architectures could be evaluated and to provide tools with
which the parallel implementation of a real-time simulation technique could be assessed.

• I•VI\Y3 1 3 YVM1,. 3 ILV YI llYllt V1 \\J/ /	 IV. 3 aJtl\JYVilVt\ 3 1111 LI'IL I \1

Parallel Processor
Simultaneous Techniques
Real-time
Non-Linear
Turbofan Engine

. 3 LV VI\11 .

or sale by the Nationa
	

nical Information Service, Springfield,

0

i

FOREWORD

The Final Report contained in this docunent was prepared under

contract NAS3-23253, "Parallel Processor Engine f!cdel Procrar..". The
prograr is intended to aid in the desic o; parallel processinc
real-tire sirulaticns of turbofan engi .:s. The prograr, v!as conducted

under the direction cf Mir. Carl J. Daniele who served as the NASA
Proerar: f!anacer, and fir. Peter U. McLaughlin who perforred as Procrar,
Manager at United Technolocies Corporation.

PRECEDING PACT,, BLAXIC NOT FILMED

iv

_o

=.

+7.

TABLE OF CONTENTS

SECTION

I	 SUMMARY

II	 INTRODUCTION

III TURBOFAN ENGINE MODEL

IV	 REAL-TIME SIMULATION TECHNIQUE

V	 PARALLEL IMPLEMENTATION

VI	 COMPUTER PROGRAM

VII RESULTS

VIII CONCLUSIONS

IX	 REFERENCES

APPENDIX - The Real-Time Performance of a Parellel,
Nonlinear Sinulation Technique Applied
to a Turbofan Engine

DISTRIBUTION; LIST

PAGE

2

5

S

12

27

2L'

57

60

61

6

v

Y

LIST OF FIGURES

FIGURE PAGE

1 Typical Turbofan Engine Model 7

2 Comparison of the Stiff Response of Backward Difference 7
Integration Formulas

3 Parallel Processing Architecture 12

4 Data Flow Requirements - Coresident Broyden Algorithm 14

5 Data Flow Requirements - Simultaneous Broyden Algorithm 15

6 Simulator Functional Structure 16

7 Parallel Implementation of the Technique 16

8 Allocation Options 18

9 Parallel Processing Architecture 22

10 Data Flow Requirements - Coresident Broyden Algorithm 22

11 Data Flow Requirements - Simultaneous Broyden Algorithm 24

12 Illustration of Asynchronous Data Transfer Crosstalk 26

13 Configuration Survey Summary 30

14(a-f) PPEM Configuration Summary 31

15 Error Measured by the Figure-of-V erit as a Function 39
of the Time Increment

16 Figure-of-Merit as a Function of Precision 40

17(a-n)	 Comparison Between Fully Converged and Real-Time Results 41

18 Cost Effectiveness Presentation 56

`46

V1

_	 ..

I. SUMMARY

Parallel Processing Engine Model (PPEM) is a 12-month program conducted by
Pratt & Whitney Aircraft in order to develop a methodology that can be used by
NASA in designing real-time digital simulations of turbofan engines. This
methodology is embodied in a computer program which is supporting the design
of the Real-Time Multi-Processing System (RTMPS), a parallel processing system
now being developed by NASA-Lewis Research Center.

The program consisted of the design, development, and submittal to NASA of
algorithms by which mathematical models of turbofan engines can be effectively

implemented on the RTIIPS. A real-time simulation technique (reference 1),
based on the work of C. W. Gear (reference 5) and C. G. Broyden (reference 6)

and developed at Pratt & Whitney, was utilized in the program. Using this
methodology, the implementation of a typical turbofan model on the RTIIPS
(reference 2) as well as other parallel processor designs was simulated.

The simulation took the form of a serial computer program which was aelivered
to MASA. This program implemented a parallel version of the real-t-me
technique, model segmentation and distribution algorithms, timing, and storage
estimators, and provides the capability to execute test cases usiiiy an
emulation of the target parallel processing system. This program was used to
generate data describing the effect on the technique's accuracy of variations
in the parallel processing system's design parameters.

The results obtained in this program show that the use of low-cost
microprocessors operating in parallel can achieve real-tine turbofan engine
simulation capability.

II. INTRODUCTION

Real-tire simulation of gas turbine engines has been shown to Le an effective

and efficient design and development tool. It contributes tc productivity in
several ways. It reduces the full-scale engine testing required to deve:op the
control system. By replacing very expensive full-scale testing with less
costly bench tests, the savings in toth cost and tire are consideratle.

Furthermore, the use of real-tire simulation can enhance the value of
full-scale testing by directing it at problem areas identified ty the LEnch

test. System nodificatio.s can be investigated prior to hardware corrlitrent.
Finally, real-time sirulat:.,n has proven to be a significant aid in the

certification testing of control computer software. %hich of this process is
accomplished using bench tests eriploying real-time simulations.

The use of nonlinear, digital simulation in real-tire applications, however,
has teen lirited. To address this limitation, Pratt £.tlhitney has developed

the methodology and associated corputer programs and dccurentatien for
producing a segmented turbofan engine nodel that can run in real tire on E.

paral l el processing syster.

The program was Lased on the use of our previously dercnstrated nonlinear

real-tire simulation technique, %;hich is %,,ell suited. for this application.
This technique, %,,hich has been successfully ir,pler.,ented or conventional serial

processors, provides numerically stable results even ►;hen applied to systems
possession a %tide range of tire constants (stiff systems). This technique can
he applied directly to any continuous nonlinear yodel Without extensive
sirplification or analytical derivations.

In the development of turbine en g ine control systems, the use of real-tire
sirulations of the engine has Lecor.e ccrronplacc. I'J ile nonlinear, digital

simulation is the standard approach used in other facets of the desirr
process, its use in real-time applications has Lcer lirited Ly t%rc factors:

(1) The need for extremely fast dirital processor; %;hich car, execute the

nonlinear rcdel at a rate consistent with the accurate representation
of the frequency response characteristics of the Er,rir,e, and

(2) The availability of technic'ues which corkine absolute rurerical

stability with the explicit requirerents of operation in real tire;
i.e., a fixed number of calculations in each tire step.

In rany cases, the accurate nonlinear rodel is linearized and ir:plererted as a
set cf transfer functions with variaLle tine constants. ThcsE proCrars are

capable of stable, real-tire operation on relatively lo%,,-cost cor:put i r;
equiprent but require considerable development tine in order to act'Jcve
acceptable accuracy. The use of explicit rurerical intt ration rethcds, suci:
as Euler or Runge-Kutta, is irappropriatc in this z,pplicaticn c'ue tc the range

of tire constants associated with turtcfan engine rodels. These retf ces
require the use of L,pdate intervals sr.aller than is necessary for an accuracy
adequate in control studies. Generally, this can not Le achieved in a

cost-effective ran ger Othout ccrpror.ising the validity of the r-ceel Ly
ever-siriplifyinr it.

In recent years, real-time, nonlinear models of turbofan engines have been
successfully executed at Pratt & Whitney on commercially available mini-
computers. The technique used in their implementation is based on one utilized
in conventional nonlinear transient simulation applications where real-time
operation is not required. Here, the use of Gear's backward-difference
numerical integration formula requires an iterative evaluation. A quasi-
Newton method of Broyden is employed where the elements of the inverted
Jacobian matrix are updated on the basis of information obtained from previous
iterations. The key feature of this technique is that the Jacobian used need

not be re-evaluated during the transient. This results in a highly efficient
simulation whose execution rate is relatively insensitive to the size of the
update interval. However, because of variations in the number of iterations
required to obtain a fully converged solution at each time point, it is
unsuitable for real-time applications.

If the number of iterations is held to some arbitrary value without regard to
the sizes of the residual iteration errors, then real-time operation is
possible. Of course, by relaxing the convergence requirement, the possibility
for numerical instability is introduced. Experiments have Fhown that this

phenomena occurs at an update interval that is larger than that required for
dynamic accuracy in turbofan engine simulations. It has, therefore, been

successfully executed in this application. In fact, with a modification to the
Broyden update algorithm, the technique is successful even when only one model
execution per update interval is employed.

Wher the real-time technique is viewed as a predictor-corrector method, the
corrector step is replaced by an iteration update. This, in turn, is computed

from the approximate inverted Jacobian modified by the previous Broyden
updates. In this way, the second model execution required in predictor-
corrector methods is replaced by a linear solution which corrects the

iteration variables on the basis of the iteration errors obtained from the
predictor step. The iteration errors are generally the difference between the

predicted state iteration variables and those calculated from the integration
formula. The loss in accuracy relative to the fully-converged solution is

proportional to the residual error resulting from the single corrector step
(iteration). This, in turn depends on the size of the update interval employed.

In general, the use of the Broyden update algorithm requires that external
inputs to the model be held constant during the iterative process. If it is to
be applied to the iteration errors from two consecutive update intervals, it
is impossible to maintain this condition unless the effect of the external
disturbance can be accommodated. The only practical means of accomplishing
this is to treat them as iteration variables and then to account for the

changes to them within the Broyden algorithm. An increase in execution time
results from the addition of iteration variables but this is normally much
less than the execution time saved by the elimination of a second model

execution.

PER

a

In order to implement a parallel simulation technique, it is necessary to
segment the algorithm and allocate its elements evenly among several parallel
processors. The real-time technique discussed above meets this requirement. As
will be seen, it is possible to segment the technique in such a way that each
processor can operate independently of the others. The coupling required
between the segments residing on each of the processors occurs through the use
of block data transfers among them. Furthermore, the segment sizes can be

adjusted so as to achieve an optimum distribution of the overall computing
task among the processors. For these reasons, it is ideally suited for

implementation on a parallel processing system; such as the Real-Time
Multi-Processor System (RTMPS) being developed by NASA Lewis Research Center.

Furthermore, the structure of the Broyden algorithm can also be adapted to
parallel processing. This report is intended to explain the means by which
these concepts can be most effectively implemented on the target system, as
well as providing computational tools by which other arrangements and
communication schemes can be evaluated. In this way, the greater frequency
response capability required by advanced technology real-time engine
simulations can be achieved with cost-effective computing technology.

Recent experience with real-time simulations executed in support of

closed-loop bench control system development testing has served to reinforce
our belief in this practice. The models used in these tasks are based on a

piece-wise linear approach, however, and suffer from accuracy problems unless
the models are updated frequently. This is a time-consuming and expensive
process. Linear models also tend to be less flexible in modelling the effects
of secondary control systems, such as intercompressor bleeds and stator vanes.
Both of these problems could be accommodated by the use of nonlinear models.

Parallel processing offers an alternative approach to real-time turbofan
engine simulation. Instead of improving update rates by the acquisition of
faster serial processors, slower, less expensive processors operate on

different parts of the computing task, thereby achieving a reduction in the
time each of them consumes. The effective update rate of this architecture is
the longest of the individual execution times.

The next generation of real-time turbofan simulations will be required to
execute models consistent with the requirements of multi-loop control systems
at update rates several times greater thaii current practice. At the same time,
market pressure will force the utilization of the most cost-effective
approaches available. It is quite possible that arrays of low-cost micro-
processors may offer an economical means of achieving nonlinear real-time
simulation capability.

4

III. TURBCFAII ENCINE MODEL

This procran is intended to demonstrate the capability and the characteristics
of turbofan engine nonlinear models operating in real-tine on parallel
processing systems. Therefore, it is important that the turbofan engine r..odel

utilized represent, at least, current practice. It should, in fact, to capaLle
of demonstrating the higher frequency response characteristics that trill Le
required in future real-tine applications. Models similar to the typical
turbofan engine used in this procran have teen implemented cn serial

processinc equipment and utilized in several nilitary control systcr research
and developrent applications. Comrercial engine procrars could use nodes cf
siri lar scope in the developr.:ent test and certification process. I; ith the
addition of dynarhic fluid continuity effects, this rodel represents th,e
probable next step in real-tine engine riodellin5 practice.

Modelling Practice

In the conventional modelling practice erployed in PPEI:, rotatirp ccrpcncnts

are described in terns of their gas flo g capacity and thermodyr,i.r;ic
efficiency. Cortustors are described Ly the chan^c in terrperatL:re achievEd

fora given level of fuel flog . The fan is represented Ly an overalloverall rhap and
an inner strear warpace function. These cor,ponent representations, tal.en

tocether with the equations of fluid dynamics and therrodynar-ics, serve to
descriLe the transient and steady-state perforrhance of a turl. , cfen Encir,E.

Several r.hodifications were made to the tasic rodel. First, the dynaric effects
Of unsteady continuity (volure dynarics) have Leer, added to the pressure
calculations in each of the major cor.ponents cf the rcdel. Second, retal
ter,perature states of the hot section are now treated in the sane rarncr ^s

the ether states (and the control inputs), in that they forar part cf tl-c
iteration retrix.

The perforrarce aspects of the rcdel used in this pror_,rar •, are ccfir,ec: in u
ccnver,tional r.anner. Corponent representations consist cf ccrhLir,aticrs cf
alretraic and teLular data. Pressures, terpera.tures, and cas flct,s c:escriLe
the conditions at the interfaces between corponerts. The r edel is define(". in a
ccrpletely irplicit fashion.

In order to provide the rest strinCent test of ti ,.c parallel tcchnigrc

possiL-le, especially with regard to precision, it t,as decided tc incluee fluid
continuity effects. This provided tine constants which ranrcd frci .LLUE
seconds up to 10 seconds for transient heat transfer phenor cna. Vitk tire
increrents expected to Le cn the order of 1C tc 'L rilliseconds, tl-,e statility
of the technique is well tested when applied tc this redcl

The rcdel reeuires l(C iteration variatles in its ev2luaticn. T%XItE cf tf•csc
are state variatles representir,r rotor speeds, retal terperatures, pressures,
and actuator outputs. The rope in inn six are required Ly the ccrper,cr t
perforrancc representations.

5

The number of pressure states estimated in the Work Plan to be available in
the model did not recognize that the particular form of the model dictates the

number of valid pressure states. With reference to the engine configuration
representation shown in Figu;-e 1, the use of an explicit relationship between

fan outer and inner diameter pressure means that only a single "metering"
relationship (i.e., pressure ratio versus corrected flow) exists in the fan.

In a dynamic sense, there can be only one pressure rtate associated with it.
In fact, there are only six metering sections in the model used here. Since a
pressure state can only be defined in those volumes bracketed by metering
sections, this means that there can be only one state in the duct stream,
bracketed by the fan map and the duct exit nozzle. Since there is no fan inner

diameter map, as such, the high compressor map serves as the inlet metering
section for the core stream. There are, then, a total of four metering
sections in the core stream for a total of only three pressure states. These
are identified in Figure 1 as the burner inlet pressure -- PTBN -- and the low

turbine inlet pressure and exit pressures -- PTLT and PTTE. PTDU is used as
the duct stream pressure state.

Accommodation of Stiff Elements in the Model

The normal form of Gear's integration formula is applied to those states whose
time constant is large compared to the time increment. For the stiff states
associated with continuity effects, however, the use of an integral form

results in ill-conditioned Jacobian matrices. Therefore, a differential form
is chosen which, at very large increments (relativ e to the time constant),
essentially negates the dynamic effect and degenerates to a simple iterative
relationship. Figure 2 shows a comparison of the step response of Gear's
formula with that obtained from the trapezoidal backward difference formula

when applied to a stiff, first-order system. This effect is a key factor in
the success of the technique, since it minimizes the destablizing influence of

the spurious elements introduced by conventional integration formulae employed

in stiff models.

Experience with this approach has been quite good. Accurate responses have
been obtained with 16-bit precision at time increments varying from 1 to 35

milliseconds. While current applications are well served by real-time
simulation update rates of 10 to 20 milliseconds, future models will be
required with response capability an order of magnitude greater. Proof of the

technique in the higher frequency regime is an important consideration in its
evaluation.

6

I
i
I

El

i
i

_ I	 _ _ _ _ _"` ___ ^..^...... ^ d .. _.^-- _ _. _ _ -+fir ^^ • ^^ ^^ ^ ^

y

ORIGINAL PAGE 19
OF POOR QUALITY

CONTROL
INPUTS. PRIMARY FUEL FLOW IWFSNI .

DUCT FUEL FLOW IWFONI-
DUCT NOZZLE AREA IAR[A JOI

8- STATION MNEMONICS 	 i
CONTIIGL ACTUATOR MOOEI

f	

- PRESSURE STATE LOCATIONS

Figure 1	 Typical Turbofan Engine Model

EXACT

TIME

Figure 2	 Comparison of the Stiff Response of Backward Difference
Integration Formulas

7

IV. REAL-TIVE SIMULATION TECHNIQUE

Broyden-Gear Real-Tine Simulation Technique

The Broyden-Gear real-time simulation technique is based on r fully implicit

method used routinely in non-real-time applications. The Gear integration
formula provides stable response in stiff systems, while the Broyden update

algorithm corrects the iteration matrix and provides stable, efficient
iterative performance. The truncated version used in real-time applications is
capable of stable operation at time increments that are consistent with the
capabilities of low-cost computational equipment, while providing adequate

response in closed-loop tests with real control systems.

Gear's second order integration formula is employed in this program. This

backward-difference integration scheme provides stable operation when applied
to stiff (small time constant) states while accurately representing the
response of the slower responding elements. The integration formula is given
by:

Xn	 (4 ' X n-1 - X n-2 * 2 - X n -DT)/3

where:

X	 -	 system state

X	 -	 derivative of the state with respect to tine - dX/dt

	

DT	 -	 update interval

	

Subscripts	 -	 denote values at current and past update intervals

When applied to the stiff elements of the system (e.g., pressure dynamics), it
is appropriate to employ a differential form:

Xn = (3 ' X n- 4 ' X n-1 * Xn-2)/(2•DT)
	

(2)

In either case, the state is taken to be an iteration variable, and an error
term is formed which is either a function of the calculated state variable or

its time derivative.

Gear's second-order formula can be readily expressed in a single-step form, as
shown below. This has the effect of simplifying the design of the evaluation
facility. If an average derivative is defined as:

Xav = 1 Xn - Xn-11/DT
	

(3)
n

8

t

ORIGINAL PAGE IS

OF POOR QUALITY

then, in terms of this variable's past value, the integration formula can be
expressed as:

Xn = Xn-1 + [LXn + Xav	 JDT/3	 (4)

n-1

The error term associated with a given state variable is:

f(X) = Xn 1 - Xn

where: Xn 1 = iteration variable

In order to aid the iterative process in its evaluation of stiff systems of
equations, the differential form of Gear's formula is employed when DT is
larger than some characteristic time representative of the state's response

rates. If the integral form is used under this condition, the Jacobian
elements increase with DT, which eventually leads to near-singularity and a

failure to achieve convergence. The value of DT at which the two forms produce
equivalent Jacobian elements is given by:

DTc - 3/2
	 (5)

--r—
AX/ AX

1/ (\ X/.1X) is an equivalent state time constant calculated directly from the
model. The second-order Gear differentiation formula is given by:

Xn = 3/2 . [X n - Xn-1] /DT - Xavn-1/2 = 3/2 X avn - 1/2 Xav
n-1	 (6)

The error term associated with the differential form is proportional to the
difference between the derivative computed by the model and that obtained from
Equation 6. In order to rationalize the units of the differential error with
those of the inte gral error, it is multiplied by the equivalent state time
constant:

M) _ Pni - X n] . 1/(A / AX) ; X
n
 = f(Xn)	 (7)

In steady-state, an initial value specifics on replaces the value obtained

from the differentiation formula. The net effect of this procedure is that the
elements of the Jacobian vary by only a factor of 3/2 for all values of DT.

}

Convergence of the error terns to within a given tolerance will be obtained by

the use of aroyder,'s quasi-Newton method. The successive values of the
iteration variables in a Newton method are given by:

X' = X'-1 - f(Xi-1) . A-1	 (D)

i1111111r -

9

ut

ORIGINAL PAGE 19

OF POOR QUALITY

where:

f 	 -	 iteration error term

A-1	 -	 inverted Jacobian matrix

superscripts -	 denote values at successive iteration steps

At each step of the iteration, the elements of the inverted Jacobian are
updated by Broyden's nethod:

A-I = A -I + AA_ 1
(5)

A-1 = AX . (AX' - Af i . A- l)

CAA - Af')
where:

AX T 	= AX' A-1
T

Ax i	=	 X i - Xi-1

Af i	=	 f(X i) - f(Xi-1)

In the real-tine version of this technique, only one iteration update is

allowed, preceded by the matrix update which is based on the results obtained
from the single execution of the nodel and the integration algorithn.

In order to reconcile the increments (A f i) which are associated with state
variables with the requirements in the update algorithm of Equation S, the
changes in the state over the update interval must be added to then.

Af' = f(X') - f(X i- 1) +AX;
	

(10)

where:

AX' =Xi-Xi-1

External disturbances to the model such as control inputs must to acconmcdated

in the real-time simulation technique. For each of these, a state variable is
defined whose derivative is given by:

X=(C-X);r

where:

C is the control input disturbance

T is a time constant.

10

fto

r

r
't	 ^"1

The values of the iteration variables used to evaluate the model in the

real-time technique are obtained from a predictor whose arguments are the
values obtained from previous iteration updates. A linear predictor is used:

XnP =
(2)X n-1 + Xn-2	 (12)

Equation 8 can then be written as:

X = X nP - M P) . A-1	 (13)

It should be noted that the outputs of the simulation are the predicted state
and iteration variables. A drawback of the real-time technique is that each
external input to the simulation must be matched by a corresponding iteration
variable. This adds to the computational load and delays their effect on the
model by a full cycle. For this reason, it is recommended that all outputs
from the model used to drive the control system hardware be likewise treated

as iteration variables which can take part in the corrector-predictor step.
The predicted values used to evaluate the model are also used as the output
signals.

Broyden Tolerance

Experience with the technique implemented in 16-bit scaled integer arithmetic

in this contract has been consistent with earlier results reported in
Reference 1. To repeat the conclusions dram then, the Broyden algorithm

operating on numbers of low precision and models of high discontinuity walks
tightrope ^etween two unstable chasms. If the tolerance applied to the scaler
factor (A X . Jf l) used to normalize the update is selected too large,
information necessary to stabilize the simulation may be ignored, while too
small a value produces spurious increments caused by trunication errors.
Generally, a value can be found in the range between 0.0001 and 0.00001
(normalized), which allows stable response at small enough time increments.
Reliability improves greatly when greater precision is specified.

i,
A.

V. PARALLEL IMPLEMENTATION

The tasic parallel architecture that was investigated it this project is shown

in Figure 3. Several microprocessors are arranged on a data bus which allows
high-speed transfers of data ar,ong them. A host processor performs control and
utility functions. Data can be transferred synchronously (once-per-cycle) on

the Lus. While outside the capability of the original specification,
provisions were made to investigate the use of asynchronous data transfers

directly from one processor tc another.

E •

MC68000	 MC68000
	

MC68000
Processor
	

Processor
	

Processor

1
	

2
	

3

Asynchronous	 Synchronous
data transfer
	

data transfer

Data bus

Host processor

Figure 3
	

Parallel Processing Architecture

f l odel Secnentation

The first step tot;arc; a parallel irplerentaticn of the sirulatior ^,as to
forrat the turtcfan engine riodel as a series of ncdel secrerts. Tl:e secr.Ents
are self-cer•tainEd sections of the corperert r.cdeis. They carry wits thcr an
identification of the inputs required and outputs corputed. This irforraticr,
is utilized it the data flea; analysis, which identifies the iteraticr
variaLles required for a particular parallel irplerentaticn.

The overall rcdel was divided into 3 1" approxiretely ecual sccrer,tS. In
practice, this denree of segrentation was pore than adequate to achieve well
Lalar,ced allccaticrs cf the rcdel arrcnr the parallel processors.

The sernentation process carries ►Jtl- it an irplied ordcr cf execution. This
crdcr is the cnc uses in its serial irplerentaticn. It requires a r • ir,ir l urr, set
of iteration variaLlcs for its evaluaticr, it the serial rode. This "preferrcO
order is used in the allocution process, where individual secr-ents are places
on a particular parallel processor. P.earrancererts of Ox secrer,ts required to
achieve a riven configuration retain this ordering.

12

ORIGINAL PAGE 19

Identification of the Iteration Variables_ 	
OF POOR QUALITY

In a given parallel arrangement of the model segments, additional iteration
variables are required because the segments on a given processor may require
information computed on another processor. In the synchronous data transfer
mode, this is the only way to provide the necessary communication path. By
creating the additional iteration variables, the model segments allocated in
parallel can be coupled in an arbitrary fashion. The algorithm for finding the
set of iteration variables required in a particular configuration relies on
the data flow information obtained from the segment definitions. Each segment
input is examined to see if it has been previously computed on the processor
or if it has been previously identified as an iteration variable. If neither
condition is met, the segment input variable is added to the list of iteration
variables.

Sunrary of the Technique

A previous section detailed the developr,ent of the serial version of the
technique. It is a truncated version of an ir..plicit technique used in
conventinal non-real-tine dynaric sirulaticn. In its real-tire r,anifestaticn,
the technique deronstrates excellent stability or very stiff yodels; tut,
since it is an explicit rethod, it is rot A-staLle. In the ranee of update
rates experienced in current practice, ho%;ever, it provides evaluations cf
correctly defined turbofan Engine rcdels with treat reliaLility.

The technique is a quasi-tlewton nonlinear solver, where the inverse JecoLiar,
is updated by Rroyden's rethod. Cear's stable second-order intecraticn fcrrula
reduces spurious response to negliritle levels. The nor•inal node for this
rethod is one in which iteration errors are reduced successively until all lie
within a given tolerance band--termed fully converted. I ►; the real-tire
version of the technique, each execution (corresponding tc a civer, tire- point)
is treated as an iteration atterptinr, to convene the errors, kith an
appropriate rcdification to the C'royden update, the rethod reduces to a
variety of predictor corrector, where predicted values are usEG to evaluate
the yodel and are then corrected by the invertEa Jacobian cLtained frcr.:
Froyden. The corrected values forr.. the :-asis for the next prediction and arE
output to the control syster hardware. The Froyden alccrithr utilizes chanres
in both iteration variables and errors, a.; well as the current inverse 	 r
Jacobian to coripUte changes to that ratri). required to attain converr-cr,ce.

Parallel ization Considerations

Mthou,h the algorithr appears corIputa±icnally cor,piex, the ccrrur,ication of
data between the different elerents is quite ranageable. This, coupled %Ath
the flexitility afforded Ly ar, irplici' r.odel fcrr:ulatien, rakics the technique
an attractive candidate for paralleliz,ition. In this c'iscussicn, it trill Lc
assured that the transfer of data Lett.eer parallel processors car, cnl. Occur
once per tire step.

For a given arrangement of model segments on the available processors, a set
of iteration variables necessary to solve the set of distributed equations in
a simultaneous fashion can be identified. Each processor must be capable of
calculating updated values of the iteration variables required on that
processor, and it must compute errors associated with the values of iteration
variables calculated in the model. This specifies which elements of the
vectors involved are to be computed on a given processor.

13

i

®	 s	 O

p.

H

ORIGINAL PAGE
IOF POOR QUALITY

Figure 4 shows the inter- and intra-processor data flows required by thr
real-tire technique. This diagram also shows the arrangement of program
components on one of the parallel processors. The solid lines lying within the
boundaries of the processor indicate data flow between elerients on that
processor. The double lines show data that must be transferred to other
processors and be received from them. In the arrangement shown, the operations
performed	 Broyden depend on the distribution of iteration variables amcnc
the processors.

Matrix elements
Correction

Error values	 I elements
i	 Incremental

	

Iteration	 Calculated	 values

	

Update variables	 Model	 Values	 Error	 Broyden
step	 ; calculation

IL	 Error values)	 lL	 J) I I L
Incremental

values
Matrix elements

Single lines = Intra processor data transfer
Double lines = Inter processor data transfer

Figure 4	 Data Flow Requirements - Coresident Broyden Algorithm

This dizgrar illustrates the source of a destabilizing Effect of the parallel
inpler.:entation. Data is collected frcr both the error an6 Croyden vector
calculations but is delayed in its effect on the r.atrix fcr a full cycle, as
it is exchanged anonc the processors. Data distributed frcr, tl-:e error
calculations and used in the iteration variable update is, of course,
und:layed.

Chile this technique provides improved execution rates, it suffers f ror a
rajor deficiency. As nore processors are added and the rcdel is distributes
further, ;reatcr rurters of iteration variables are recuired. This loads to
tiring penalties that overwhelr.i the improvement derived fron parallelizaticn.
This appears to Le a furdarental liritation of synchronous data transfer
applied to this technique.

An alternative approach was devised where the Prcyden alooritl:r could LC

executed sirultareously Oth the rerainder of the sirulaticn. At least half
the processors are used for Croyden, which reduces tle „ur_er of iteratior,
variables required in a given processor ccnfiruration. Since the allocation of
Croyden computations is no lonner connected to the r.cdel arranc,erert, it car,
be distributed in such a way as to balance the ccr,puting load arcnc the
processors. The cost of this approach is an additional full cycle delay it the
ratrix calculation. The fact that faster update rates are achieved Goes tend
to corpensate this effect.

14

J

ORIGINAL PAuC: ES

OF POOR QUALITY

Figure 5 shoes the arrangement of two processors where the Broyden algorithm
is executed simultaneously with the remainder of the technique. An additional
penalty is the need for greater transfer capability.

This arrangement proved to be capable of achieving adequate real-tire
performance applied to the rTIIPS specified by]NASA-LeRC; narely, eight to ter.
11CC8000 processors serviced by synchronous data transfer. Data presented later
in this report documents the results obtained.

Error values

Iteration	 Calculated
Update variables	 Model	 Values	 Error

step	 calculation

Error values
	 Correction

elements
Incremental

Matrix elements
	 values r-

Broyden
Single lines = Intra processor data transfer

Double lines = Inter processor data transfer

Figure 5	 Data Flow Requirements - Simultaneous Broyden Algorithm

Parallel Model Allocation

The basic strategy implemented is to allocate the model segments in sonE
fashion and then identify the iteration variable set required to evaluate the
model, based on a set of optional parallelization schemes. Figure 6 shows, in 	 }
schematic, a typical arrangement of model segments allocated among several
parallel processors being controlled by a host computer. This device would
also handle the data distribution and program downloading tasks. Figure 7
shows lists of iteration variables associated with two of a number of parallel 	 '.
processors. The iteration variables are required for certain computations in
segments allocated to that processor. Other segments compute provisional
values of the iteration variables. The error tern is the difference between
the iteration variable and the provisional value computed by the model.

In the synchronous data transfer mode, the iteration variables required on
more than one processor must be computed on each processor from data that is
obtained from the other processors. The data transfer requirements represent
significant fraction of the overall execution time required for a given
parallel configuration. The overall time increment required is the largest of
the individual processor elapsed times plus the time required to transfer
data. An underlying consideratin in the choice of the paral l elization scheme
is a need to minimize the amount of data that must be transferred between
processors.

15

ORIGINAL PAGE 19
OF POOR QUALITY

kp

PE rl	 FAN (AVERAGE)

PE A^2	 FAN (1D)

HIGH COMPRESSOk

0	 CONTRUL

0	 DATA COLLECTION/

DISTRIBUTION

u

	

	 UTILITIES FOk COMPILATION,

DOWNLOADING, ETC.

pE N8	 DUCT HEATER

DUCT NOZZLE

Figure 6	 Simulator Functional Structure

PE #1 - FAN (AVERAGE) 	 PE #6 - LOW TURBINE

ITERATION VARIABLES REQUIRED 	 ITERATION VARIABLES REQUIRED

RPMI	 RPM1

WCFN	 PTLT

0	 0
0	 0
0	 0

COM91 UTED ITERATION VARIABLES	 COMPUTED ITERATION VARIABLES

WCFN	 RPM1
0	 PTLT

0	 0
0	 0
0	 0

Figure 7	 Parallel Implementation of the Technique

16

P.41-1

ORIGINAL PAGE t9
OF POOR QUALITv

Model segments are arranged on the processors in such a way as to rinimize the

number of iteration variables required. Using synchronous data transfer the
number of iteration variables increases rapidly with the number of processors
utilized as r.:ore variables become unknown on the processor where they are
needed. Due to this effect, improvements in the time increment are small and,
in fact, disappear as the number of processors increases.

While iteration variable update and error calculations must reside on the
processor where the iteration variable is required or calculated, the Broyden
matrix update calculations can be placed on separate processors. The reason
for this is that the matrix calculation can be based on data that was obtained
during earlier iterations. The numerical stability of this simultaneous

approach is a key factor in the achievement of real-time capability on the
RTIIPS configuration.

By allocating model segments to less than half of the available processors,

the number of iteration variables is kept to a reasonatle level. The reraininc
processors are used for Eroyden and the matrix update. The distribution of
this corputing task is adjusted so as to attain a Ualar,ce . Letween it and the
rerainder of the technique.

Automatic Se(7nent Allocation

This facility is intended to distribute the r.,odel arcng available processcrs

while maintaining a given order of execution. The order cf execution is
determined by either the default arrargerent of the original serial r:odel or
an order supplied by the user.

The first step in the allocation, process is tc find the total execution, tire

required for all segments. This quantity, divided ty the rur.,Ler cf processors,

is taken to Le a targ et processor execution tire. In accordance 0th, the
user's c,osen allocation option, segments are placed on a riven processor
until the target tine increment is exceeded. Vher, this fact is cetected, t1-.e
next processor is utilized, and so on, until all availatle processors arc

user'. The first atterpt will, in General, fail to achieve the original tar•r,et.
That value is increased ty a selected fractional ar;ount, and the allocation is
repeated until the criteria is satisfied.

Two allocation options are provided. In Option C, the given scrrent order is
used to allocate serr.ents on a giver processor, as shown in Firure C. The

rirectcnal indications denote the manner in which secr..ents are V allccated usinr

the given orderinn data. In 0 tion 1, serr..ents are allocated cr succcssive
processor, rather than sequentially, as in Opticn C.

Paralle l frcyder, f,lrc rithr

A trey elerent of the parallel real-tire sirulation technique is the ranner ir,

which the Eroyden ratrix update is distributed ancnr the processors. Tte
Coroyden alrorithr rakes use of several vectors ccr.1putcd fror •, ether elencrts of

the quasi-t;ewton rethod to corpute charges to the inverted JaceLian ratrix.
The follo0no vectors of increrental quantities terin the f.rcyCor, process:

w

17

ORIGINAL. PAGE IS
OF POOR QUALITY

OPTION 0

PROCESSOR 1	 2	 3

OPTION I

PROCESSOR 1	 2	 3

NOTE: ARROWED LINES INDICATE THE SEOLIENTIAL ORDER
Of THE ALLOCATED SEGMENTS

Figure 8	 Allocation Options

-^
Ax -	 X^ -	 Xt

11f^	 = f 	 - fi-i (15)

In the parallel irplerer,taticn, elerents of these vectors are ccrputed crr, the
processors where the iteration variable associated with the elerernt is

calculated, and hence, cohere the error tern, is corputed.

The terra "cc-resident" is used tc descrike a parallel scher.e in which the
Froyden algorithr occupies the sane processors as the rcdel and its Lasic
Gua i-t:e%Aon a lgori thr. Figure 4 shcws this arrangerert scherat ica l 1 , . !k
version in %;hich Lroyden executes sirultanecusly vith the rcdel, etc., cr its
cwr processors will Le discussed.

The increrertal cuartities corputed or; a riven processor are crer • atcd cf, L;
the current inverted Jecobian riatrix to create irditiidual cortriLutiors to ti c
Groycen correction vectors:

18

a

OF	 vy

K = Af	
A-1
	

(1G)

AXk = ax e . A-1 T

	
(17)

where the subscript "k" denotes the contribution of one of the processors. It
is made up of individual eler,ents calculated frori the incrErental quantities
available on the processor and the rows or colur.ns of the r..atrix associated
with the iteration variables calculated on the processor.

The matrix update step requires full vectors of each of the four quantities
cited above in Equations 14 to 17. Therefore, the individual contriLutiors tc

the correction, vectors (Equations 3. and 4) rust be transferred to eacl. of the
processors. In the second stage of the process, the full vectors are cerpctcc:

on each processor frori an array of individual ccntrituticns:

Axl=kAxk	 (1Lr)
T	 TAx = k ^x k

%;here "k" denotes that contributions from each of the processors are s(.r:rec'.
These two vectors and full vectors of the increr,ental c,uar,tities of Equations
14 and 15 (%;Hch also result frcr 6ata transfer ar:crr tit processcrs) arc
sufficient to cor,pute increments to the r-atrix elEr.erts.

Ax (Ax - AxI)
AA -1 =

(Ax T . Af)

The parallel version of the Qroyden update algorithm has procuced stWE-
response in Loth fully converged and real-tire r,odEs. Through various prorrar
input options, either the co-resident (model and update code sharin c a
processor) or the simultaneous version can to invoked.

The simultaneous version shown in Figure E can be furtVer distritutcc L',
splitting it into ttx parts and executin, then on scparatc processors. This is
numerically identical to the Lasic parallel approach; and does not irract
staLiiity. Finally, follo%;in, this line of reasonin g fcrtter, the rr•c,deil
update can Lc distributed among its own set of processcrs in such a t,a, as tc
Lelar.ce the execution tine requirerent Letween the r..cdel and Lpdatc. In this
cede, the ncdel execution, tine Leccrcs the controllinc factor. TH s approach

provides the r,cst effective distritution cf the overall cerputinr tasl..

19

(1J)

ORIGINAL PAGE IS
OF POOR QUALITY

Summary of the Parallel Technique

In the parallel version of the real-time simulation technique, the overall

computing task is divided among the processors. These include the four major

elements of the process. Figure 4 shows the arrangement of these elements on a

single processor. The elements are (1) an iteration variable update, (2) model
execution (3) error calculation, and (4) Broyd•?n matrix update.

The allocation of these tasks is eased on the requirements associated with the

model segments residing in the processor. These are the iteration variables
required on a processor and the error terms computed on them.

While iteration variable update and error calculations must reside on the
processor where the iteration variable is required or calculated, the Broyden

update and matrix calculations can be placed on seprrate processors as shown
in Figure 5. The reason for this is that the matrix calculation can be based
on data that was obtained during earlier iterations. The numerical stability
of this simultaneous approach is a key factor in the achievement of real-time
capability.

By allocating model segments to less than half of the available processors,

the number of iteration variables required is reduced. The remaining

processors are used for Broyden and the matrix update. The distribution of
this computing task is adjusted so as to attain a balance between it and the

remainder of the technique.

Data Distribution Requirements

In understanding the parallel implementation of the technique, the data flow

requirements among the several components are the most important
consideration. Figure 10 is intended to illustrate these requirements. The

double lines show data that must be transferred from one processor to another
when the parallel version of the technique is implemented.

The technique requires that the errors calculated from a given model execution

must be transferred to the other processors prior to their use in updating the
iteration variables. If data is transferred synchronously, at the beginning of
a cycle only, this fact requires that the update step be executed first, prior

to the execution of the model. In the conventional, serial implementation, it
takes place at the end of the cycle. Numerically, they are identical. However,
data output from the simulation is delayed by a full cycle in the parallel

implementation, a fact that should be compensated for by providing an
additional stage of prediction for those variables that are to be output.

The next data transfer requirement of the parallel implementation is
associated with the Broyden update. Two vectors must be generated from the two
change vectors computed in ERROR and the inverse Jacobian matrix. Each
processor computes a contribution to each of the elements of the Broyden
vectors. These vectors are distributed among the processors where, on the next

cycle, they are summed to produce the required vector elements. The updates
for those matrix elements required on the given processor are then computed.

20

-- - ^ --(V.l

The final data transfer path identified is also a requirement of the matrix
update. The two change vectors are required in the matrix update step; but,

instead of only those elements computed on the processor and used in the
Broyden vector computations, the matrix update requires that the entire change

vector: be available. These are transferred among processors in a manner

similar to that required for the errors.

The parallel Broyden algorithm requires that not only the rows of the inverse
Jacobian matrix, which are necessary to update the iteration variables, but

the columns, as well, which are necessary for the transpose operation, be
available on a given processor. A choice exists in the manner by which the
column data is obtained. It can be computed directly on the processor where it

is required, or it can be obtained from the row data computed on other
processors. these two options are termed resident and distributed,
respectively.

Data Transfer

Ficure : illustrates the two data transfer tEChnicues that %:ere investigated

in the contract. Synchronous data transfer was used to distriLute vectors ar,

natrices of data aronn the processors once per yodel update; that is, once for
each tre point ccrputed. In addition, the number of iteration variaLles

required is reduced Ey transferrinc rcdel variaLles cer.putcd cr, cnc proccsscr
to another in an asynchronous rar,ner.

Finure 1L skvs the data transfer paths required fcr ttc parallel
irplenentatien of the real-tire sirulaticn techniquE. This sccticn descriLes
the algorithr.s Ly which the tires required to perfo. ,n data transfer operations
are computed.

The first case that ► ;ill to era lyzed is a vector ^,hese cicrer:ts are
distributed anonn the processors. It is necessary to rakc the ertire vector
available on all the processors. The vector elerents cr, cech proccssor rust Lc

transferred to each of the other processors. The total transfer requircrer,t is
Siven Ly:

	

1: = E	 `'ECTChpROC * ((;P000 - 1) = NI TV * (MPROC - 1)
NPROC

where:

VECTORPROC -
number of vector elements on a processor

NPROC	 -	 number of processors

NITV	 -	 length of the vectors =	 NPROC VECTORPROC

The anour,t is reduced by the fact that part of the overall %ecter is ulreac'

resident cr the processor where it is cerputcd.

21

1

	

-	 _^-a. ^A .^^^^ .fir ^ M _♦ i^ S -	 -

	

_" - `__	
.. ._-	 _	

_	
^.	 • Ti=+: jam.

ORIGINAL
PAGE T,IOF 'oOR ()

MC68000
► Processor

3

MC68000
	

MC68000

Processor
	

Processor

1
	

2

Asynchronous
	 Synchronous

data transfer
	 data transfer

Data bus

Host processor

Figure 9	 Parallel Processing !architecture

Matrix elements

Error values

	

Iteration	 Calculated

	

Update variables	 Model	 Values	 Error
step	 calculation

Er •; r values

Correction
elements

Incremental 	 I (^
values t--

-.^Broyden

Incremental
value s

Matrix elements

Single lines = Intra processor data transfer
Double lines = Inter processor data transfer

Figure 10	 Data Flow Requirements - C.resident Broyden Algorithr.

22

- Ey

OF POOR

This forr..ula is used to compute data transfer requirements for the error
vector and the incremental vectors required by the Croyden algorithm. The
total is then:

t;= 3*MTV* MPROC- 1)

Transfer requirements for the Eroyden correction vectors computed from the

incremental vectors are complicated by the fact that pieces of each vector
elenent are conputed on each processor. Using similar reasoning, the Eroyden
correction vector distribution tine is given by:

td = 2E	 VECTORPROC * LITV * (NPROC - 1)
MPROC

_ 11 * NI TV 2 * (t^PROC - 1)

The factor of two arises fron the fact that there are two correction vectors
that nust be transferred. If the natrix elerents required for the iteration,
variable update and the Eroyden correction vector caiculaticns are calculated

on the processor where they are used, they require no distribution.. If tl.e
option is chosen to only compute the retrix elements that correspond to the

error terr.,s, then F gure 1C shovrs that the entire ratrix r..ust Le transferred,
less those elements that already are available on a Riven processor. Dzta that
rust be transferred to pore than one other processor rust also be included.
This requirement is Given ty:

h =EKIN - t'ITVC) * t!I) VP,

NPRCC

where:

NITV	 =	 total number of iteration variables

t'ITVC =	 number of iteration variables computed cn the processor

t'ITVt? =	 nunt.er of iteration variables required on the processors.

l;hen the simultaneous fora of the Eroyden algorithm as shc%;r. in Figure 11 is
requested by the user, the data distribution requirenents are r.:cdified. In

particular, the two increrental vectors now crust be distrituted to all the
?royden processors. These operations require:

t; = 2 * MTV * 11PRCCC

23

W

ORIGINAL PA
GE 19

OF POOR Q

Error values

Calculated

FModel	 Values

Error values ftorrection
lements

Iteration
Update variables

step

Incremental

Matrix elements
values

Broyden
Single lines = Intra processor data transfer

Double lines = Inter processor data transfer

	

Figure 11	 Data Flow Requirements - Simultaneous Broyden Algorithm

where:

	

NPROCE	 =	 nurter of processors used fcr Croyden.

Distrit:ution cf the error vector still requires:

N = NITV * WPROC - 1) .

t'atrix distriluticn tc those processors trhere the iteration variables are
updated anounts to transferrinc,:

N = VITV * N1TVR

where: i,ITVP, = totel nuraer of iteration varialles required items.

In th e simultaneous mode, r^atrix elerents crust also be distributed tc the
other Croyden processors. This count is Civen Ly:

	

fi
t
	 (NITV - VITVC) * 11ITVC
NPRCC

Finally, when the Broyden correction step is run sir.ultaneously 0th the

ratrix update step, the matrix rust Le completelyy distributed, Loth rots and
columns frcn the catrix updating processors tc Jose conputine the correction

vectors.

These operations are counted ty the followinv sunr.,aticn:

	

N = 2:	 2 * MTV * t'ITVC - 111TVC2
t;PROC

24

P

Asynchronous Data Transfer

An asynchronous data transfer approach has resulted in substantial execution

time improvements over the synchronous scheme originally treated. This method
utilizes "crosstalk" between the processors to transfer data resulting from
model calculations on one processor to another where that data is required for
other calculations. This approach represents an alternative to the use of
iteration variables as a means of communicating this data.

In this scheme, only the basic set of iteration variables required for the
sequential model is allocated. It is assumed that the iteration variable
update step will be synchronized so that all the model executions begin
simultaneously. This ensures that the results of the iteration variable update
will be available for "crosstalking" to processors other than the one where
the update takes place.

Figure 12 shows the schematic arrangement of segments in an asynchronous
crosstalk scheme. The segment on the receiving processor must be delayed by an
amount which is the difference between the ending time of the sending segment
and the beginning time of the receiving segment.

In order to prevent contention between processors for precedence in the

crosstalk hierarchy, the processors have been ranked in ascending order of
their identification number. Crosstalk is only allowed to occur from
lower-numbered to higher-numbered processors. Since this is the direction in
which the default segment sequences are allocated, there is no requirement for
crosstalk in the opposite direction from that preferred. For other segment
arrangements, variables that must be crosstalked "upstream" are identified as
iteration variables, rather than crosstalk variables, and are treated in the
same way as the basic set of iteration variables associated with the
sequential model.

The remainder of the data transfer requirements in this arrangement are

accomplished synchronously. The only difference between this scheme and the
purely synchronous methods discussed earlier is the elimination of iteration
variables as a means of communicating data between model segments. Instead,
the values of the iteration variables are transmitted asynchronously to the
processors requiring them.

25

ORIGINAL PAGE 18
OF POOR QUALITY

TRANSFER OF INTERATION
VARIABLES AT TIME - 0

MODEL EXECUTION TIME

SENDING	 TRANSFER OF A
SEGMENT	 CALCULATED VARIABLE

TIME 1

Z4

ORIGINAL RECEIVING
SEGMENT LOCATION

TIME 2

DELAY TIME

DISPLACED RECEIVING
SEGMENT LOCATION

1	 1
1	 1
1	 1
1	 1

DELAY TIME

^	 1
^	 I
I	 ^

SENDING (LOWER RANKING)
	

RECEIVING, (HIGHER RANKING)
PROCESSOR
	

PROCESSOR

Figure 12	 Illustration of Asynchronous Data Transfer Crosstalk

26

o

Vi. COK?UTER PROGRAM

The methodology developed in this contract has been implemented in a digital

computer program. It is intended that the program be utilized in the design
and programming of the RTMPS. The two primary tasks performed by the program
are:

(1) Validation of the real-time simulation technique in its parallel
implementation.

(2) Determination of real-time performance of various parallelization

approaches.

The program consists of two major elements. These are the model (including the

real-time simulation technique) and the emulation of a generalized parallel
processing system. It is written in the FORTRAN programming language and
executes on conventional serial processors.

Program Structure and Operation

The Parallel Processor Engine Model (PPEM) program executes as a self-
contained subset of the SOAPP simulation system.

Input/output and program control functions are provided by SOAPP system

utilities. In addition, the model can be executed using the SOAPP version of
the evaluation technique.

The turbofan engine subroutine employs low-level functions to perform the

basic arithmetic and program control functions. In these routines, timing.
storate data is collected and stored for use in parallelization routines. Data
flow information is also provided in the engine subroutine, which describes
the inputs and outputs of the model segments. Ir response to user-supplied
parallel processor specifications, the program designs the arrangement cf the

model and the evaluation routines that implement the real-time technique. It
then executes the simulation as it would run on the target system.

Multiple execution capability is provided. Each task is completely independent

of those that precede it. Input parameters retain previously specified values
unless altered by the user. A task may consist of several individual cases.
SOAPP provides automatic parameter cycling through input specifications. This
capability is used to execute arrays of parametric variations, as well as
transient cases.

A case consists of an allocation and configuration step, a fully converged

steady-state point, and, optionally, a transient. The first two steps are
executed only on the first point of a case. Subsequent executions on a given
case compute successive transient points until the user-specififd elapsed time
has expired.

27

t

Jk

f,

Timing data used in this program was taken from reference 1. Data bus
specifications were received from NASA-LeRC. Generally, an eight-megahertz

processor clock rate and a data transfer rate of one megahertz were assumed.

The timing algorithms are based on reducing the four model's equations down to
the level of assembler code. Each instruction is represented as a reference to
a low-level FORTRAN function. In these functions, both timing and storage
increments are added to running totals and stored for later use. Data
transfers between registers and memory are bookkept at a higher level.

Comparisons with known benchmarks reveal that a 15-percent increase in the
time increment can be expected in a typical "real" implementation when this
timing method is utilized.

The computer program and its operation are fully documented in the Parallel
Processor Engine Model Program User's Manual, which is delivered as a
companion volume to this Final Report.

Additional Capability

Several optional features were included in the program developed in this

effort whose effect on the results obtained was not determined. The most
significant of these is the capability to specify the size of a minimum matrix
element that will be utilized in the computations. Since much of the iteration
matrix tends to be insignificant, it is intended that the much smaller time it
takes to make the test, compared to the multiply operation that is disabled,
will result in an appreciable reduction in the time increment required for the
matrix computations. This is a major element of the overall requirement.

While the use of scaled fixed-point arithmetic provides a kind of scaling
effect on the error terms, the use of a separate normalizes applied to the
error might result in better performance of the technique. Two forms of
normalization have been provided. The first divides the error difference by
the iteration variable itself to form a nondimensional quantity. The second
method provided uses the largest matrix element of the row associated with the
error; that is, the larggest ppartial derivative, as the normalization divisor.
Both schemes tend to rationalize the matrix so that the process of scaling it

can be performed with more precision. This, in turn, may improve the precision
of the update and reduce the size of the residual errors. However, this is
achieved at the cost of an increase in the time increment requirement.

28

i

VII. RESULTS

In order to demonstrate the capabilities of the algorithms implemented, a
series of program tests were executed. In general, these were broken down into
two groups. First, the real-time execution rates for a wide range of parallel
configurations were computed by the program. From this data, a target
configuration was chosen which was used as the vehicle for the second group of
tests. These were concerned with the accuracy and stability of the technique
as implemented on this configuration.

Configuration Survey

It was recognized early in this work that the use of a detailed emulation of

the parallel processing systems under consideration would be invaluable in
examining alternative approaches. This FORTRAN program, executing serially,

allows the user to evaluate a wide range of parallel arrangements.

Based on the timing data collected from the model and the evaluation routines,
and the arrangement of simulation functions chosen by the user, a time
increment requirement is computed as the sum of the largest execution time of

the processors plus the time required to transfer data among the processors. A
large matrix of configurations was executed using the NASA-LeRC Real-Time

Multi-Processor Simulator as the target. In these runs, the model was
distributed among one to eight processors. Four variations of the parallel
technique were executed in both the synchronous and the asynchronous data
transfer modes. This resulted in a total of 64 different configurations being
evaluated. The synchronous data transfer mode which produced the minimum time
increment, and which lies within the design parameters of the RTMPS, utilizes
five processors. The model is distributed between two processors. The
simultaneous Broyden function is implemented on the remaining three
processors. The time increment for this configuration is .0244 seconds. This
represents a reduction factor of 54 percent, based on the one-processor

requirement of .0536 seconds. Figure 13 tabulates the results obtained from
this study. The co-resident Broyden algorithm produces reduction factors

consistently inferior to the simultaneous version. As discussed earlier, the
co-resident approach distributes the model among more processors and, hence,
requires more iteration variables.

Figure 13 also shows that the differences between the resident and distributed

matrix options are relatively small. This tradeoff is strongly dependent on
the relative magnitudes of the processor clock rate and the data transfer

rate. Therefore, hardware with characteristics other than those used in this
study might yield different results.

As can be seen from these results, the use of asynchronous data transfer, in
some form, offers a significant improvement in the update rate possible with
this technique. A miminum value of .0159 seconds was obtained for an

asynchronous configuration consisting of nine processors.

29

ORIC:":AL PAGE 19
OF POOP, QUALITY

Figures 14a through 14f show typical results obtained in this study. The first
three show the overall time increment required, the simulation execution time,
and the data distribution time for the simultanous Broyden, distributed matrix
update, synchronous data transfer configuration as functions of the number of
processors utilized. The next three figures show this data for the
simultaneous Broyden, resident matrix update, asynchronous data transfer
configuration. The most important characteristic of this data is the

comparison between the trends for the two data transfer modes. The ability of
the asynchronous mode to provide a reduction in the overall execution time is
the most significant finding of this study. Not only is the execution time
increment reduced as more processors are added, but, in addition, the data
distribution time increment is less than the synchronous requirement by an
order of magnitude for a like number of processors.

The configuration employing synchronous data transfer and six processors, and
requiring a time increment of .0252, was chosen as a base for further
investigations. The basic characteristics of the parallel version of the
real-time technique were determined through the use of typical transient

disturbance tests. In addition to the engine parameters chosen to illustrate
the respone, the root-mean -squared error, computed from each of the individual
error terms, is used to give a quantitative estimate of the relative accuracy
of the technique.

Serial implementation time increment = .0536

Data

1'-h

Synchronous	 transfer- Asynchronous
^.	 mode	 .r

Broyden
o	 algorithm	 rr	 o

r	 r	 ^	 r	 r

Coresident

Simultaneous

o^
M a20

2

X04913518

X

6

;Z.0244.0252

7 7

0257 .0251

9 10

0159 .0161

` oX

CO a20

Number of processors

Time increment required

Figure 13	 Configuration Survey Summary

30

4 A

0171t11NAL PAia',- IS
PPEM CONFIGURATION SURVEY OF POOR QUALITY
SYNCRONOUS DATA TRANSFER

SIMULTANEOUS BROYDEN ALGORITHM
DISTRIBUTED MATRIX OPTION

man PARALLEL PROCESSOR ENGINE MODEL man	 6677729VUI (ST

0-080

..... 	
_Iq

-..4. * :-' 71-

0.052 L
T 7

tML'

....	 .	 1.

0-04 T
7F	 77

La rd

: tnz 0-044'

-j L

a0-040 -1

j—
LAJ

..

:7 Z

7=

	

0-03	

L.

7

7	 ^7'7'
; . : t 7w.7Ei T

0-032-
m

U7

-4-	
:7 7j1. 1.4	 f	0.026	

41,

1	

Jf	 T

T".

1,-	 71'

0-024-1

0	 2	 4	 6	 8	 to	 12	 14	 to
NUMBER OF PROCESSORS

Fi qure 14(a) PPEII Configuration Summary	
31

Ii
r_;.__

ORIGINAL PAGE 19

* OF POOR QUALITY

4 A

0.036

0.034

0.032

r
Z

0.030
OC
VZ

0.026
Z0

-*c 0.026

0.024

0.022

0.020

i

0.016

0

32

PPEM CONFIGURATION SURVEY
SYNCRONOUS DATA TRANSFER

SIMULTANEOUS BROYDEN ALGORITHM
DISTRIBUTED MATRIX OPTION

son PARRLLEL PROCESSOR ENGINE MODEL man 	 8677729VUL (ST 11

2	 4	 6	 8	 !0	 12	 14	 16

NUMBER OF PROCESSORS

Figure 14(b) PPEM Configuration Sumnary

T 'L tt

. t . Std

wR ILA
rt :tt?'SS • .S—

i'i
r.:

_

T.z^ : z :, t I ^;:EE T	 ^.

Til

r•" t .17 - '' ,r•.sTf	 .+^	 ♦ •^ f I "T

t rti.	 _ .i,	 ri t

LLI .7

zi

ft ,i:	 c:c	 Tr r#
t r ?:....

Ri
^r r s 	 .M

-'fi't_'t

J	
t^

^	 t	 L'	 f	 t'^	 t^
t

f t^	 f

? t	 ^vt	 r`	 s ett{f iJ ^ tj-'	 h (: cl ^r^.

J.

'
tcc•^
t

..i....
.L.r'Z
	 1	 .- , ..	 :;	

._L	 ti	 ._	 •	 t..	 I-

k	
w.	 ..	 •T	

.^rf, I='[Nit	 1 .^ 7: _: : :+f T.:
t

(
t	 ..

»^

,;,.^ - ^	 r	 ;::T ^t
	 • :S'	 ..::..i.•	 •;r`.^tTZrSi	 ,f"

^.t..' ^`.- -t '̂ rj
J--^.'.I

i	 -

„.^,^;^^ 	 PPEM CONFIGURATION SURVEYOR IGIN)
OF POO Q } ' "Ty

	

	 SYNCRONOUS DATA TRANSFER
SIMULTANEOUS BROYDEN ALGORITHM

DISTRIBUTED MATRIX OPTION
•	 man PARALLEL PROCESSOR ENGINE MODEL man 	 8677729VUI (ST	 i

0.032'

0.036

:.r.

n t ^i_

^4z
.

t

tts

Ji

tl^^ r ^ 3 r

t`
	 .j

t
^

.
,

y

ft(
^^ r..^ ,..a

i ^
! .2 t . •t11 ^ t ^;. 'Lt 1 it t .^- »)

'tT t . •f.. 1: 'L ::	 , :^:-	 :i

sat _ ^+ +! 'tJ ,"fit •.

_

» t-•
'''#'

lt:..
(r

_t

i'.. F	 , .L"•t1

^'S r rt: G r tt' a^

t~-r
Z -..

t-• -:':^i.^^.^rs_
.' - L•r .^: L, .:L: ^. .'t2.. »!. t

j-
t	 t }

^ ^

L'
rc

r:. t:i 'n 'ts:u^ ^: ,^: t L r ^::	 - t ,,•, -I:
t t_ ..

},i: t' L#:TL L 3Lt; !
^ .;"'

4.
s# 'i.;1

L,
a ._

f 1 •,.
^Lt

i. L	 o:^

jt^
L l

^^:Ii' • '!

t:

E t

,,.^

_

i

' ^' r

r

-t'- ^ »

^.r: ^n

.mo. 's

,z

s

'Ft • u

t s ^t

t?...

-.'t:is

^4 '

:^ ,	 ...f . ;

 i

.t	 .: :s :}.::: -

2 :t t

_:t..^:. 1 L .L Mt ^['.^ L	 ti .1: {: is:• 1'11 •.t^ tf• ^.. t	 't.:.

0.026'

y^
y 0.024

tâ^t
ltY

Z
0.020'

N
Z0
s 0.016m

HN0
a 0.012
d
c]

2	 4	 6	 8	 10	 12

NUMBER OF PROCESSORS

Figure 14(c) PPEtt Configuration Sunmary

0.008

0.004'

0.000'
0 14

	
18

33

. '” 4
A

.028

0.024-f'`

4

Wi

—j
cc
LAJ
40

'T.
74

F-4 :I! 	3,:%

0.016

ORIGINAL PAGE 19	 PPEM CONFIGURPTION SURVEY
OF POOR QUALIV	 ASYNCRONOUS DATA TRANSFER

SIMULTANEOUS BROYDEN ALGORITHM
RESIDENT MATRIX OPTION

6 a	 was PARALLEL PROCESSOR ENGINE MODEL mom	 $877729VU1 (ST

	

-#4-4444oAJIL;	 04	 4. iqlrr4=4r4.

r t

4L L	 77—

.44 	.14 	 ! 1

M,

w i..

77, a7

..	
7:

	

... 2 t ^f	
'••{'_^ — i^' ,^	 tt^ t •r i;	 t ` !;• ^ ^'

^,
^

^ 	t^^^ 	 i—•^• .,d.,,^^....^.,, •'1

+

!:vr

	

------- 	

t

.	

'.T
m:

...	

T:

7AL

41 4—

7 7f	 ,.	 ,t^ ^

0.010

0	 2	 4	 B	 a	 10	 12	 14

NUMBER OF PROCESSORS

Figure 14(d) PPEI I Configuration Sumnary
34

567

f

4
S

' t t

r ..

.t.

_	 t _ _..

:+

M-

1...

=t. s t j
4.1

t	
4

't-

t r	 f^!'
-tL'	 t	

:Z.	 .i:	
it'	 ..ZS	 ..r. ..-

j7
11	 .t-.. •	 ..i....

1117 t 	 t'	 i	 ::St	 r	 i t_	 . 'i-t S
L

i

:r :,i • r~ 	 t	 *-.t..i:^.	 u	 r r	 !:t:S, t yj ^"'

!	 r . t	 Ha- ..

.:.

y

-

`	 +	 r	 i	 r	 r 's	 utt

'r 'S.' '.t...	 t	 t.t	 L	 t	 .^	 ,	 ^. .;r- t	 - _ t...

:t .1

^.-

..1'	 ^'.1'•. ^	 ':i	 .t^' ::.i	 .^	 'tZ	 tit-.•	 ^.

i	 i	 ,

^

.--k^-^

1•.	 T ^^.t' ^.

:t:
i•	 •t-

u'^::, -t	 ^	 L:	 .`rs 1	 ^^^	 ^	 .'	 t	 it	 t	 ^	 t i 	t 4	 i.	 t t `! (i.n t;.	 `. «.

t •i t, . i	 '"	 ,	 ut	 t ^	'L'	 ".	t ! i.^	 ^ r t r it;:
i:?r

"`
j. t	 n	 .t r.:	 r,	 .^	 ^f

is

ORIGINAL
PA s 19	

PPEM CONFIGURATION SURVEY

°F p0°R Q	 ASYNCRONOUS DATA TRANSFER
SIMULTANEOUS BROYDEN ALGORITHM

RESIDENT MATRIX OPTION
nun PARALLEL PROCESSOR ENGINE MODEL nan 	 6677729VU1 (6T	 16 8

0.026

0.024

0.022

0.020

rc
w

ac

i--
c O.Oi9

VW
x
W

0.011

0.012

6	 9	 10	 12	 14	 16

NUMBER OF PROCESSORS

Figure 14(e) PPEti Configuratiot, Sumary

_oI

ORIGINAL PAGE IS

OF POOR QUALITY	 PPEM CONFIGURATION SURVEY
It

	

	

ASYNCRONOUS DATA TRANSFER
SIMULTANEOUS BROYDEN ALGORITHM

RESIDENT MATRIX OPTION
6 8
	

now PARALLEL PROCESSOR ENGINE MODEL was	 8677729VU1 (ST	 1)

^0.004

W

0.003
t—

0.001

0

0.002

0.002

0.004

0.005

0.004

Ul

!K "t _'7f

• it s •[.2.'. :;:: -•'au

♦ r,J M. ^.t. tf7
N 4'	 a t

+

Sa	 z clt —f 	ii t jj/ ttl

1
i.._L _.2

i
_	 «'^^^

Nis. , rs . {	 t .

M.

:ca t

!T
«lfk z tl:

f
•Z

'1:' ~ F' ^• t t_
E:

1^

.=^1̂	
'^'	 ^	 t---'^ "ter-

t	 -1731•-..:it'I. L i 1.t
f

t j
!z t :.:	 'I...t.,a..

i• L
a t t^

1	 t	 t	 ^.t	 t_
t	 ^	 r^--1`""r"'	 ^	 r .^^

' 1'	 I
z

.: I: - t
.ji

t..2
t i

4.-
..

•
Sri ,--.

•:' :t. I"':

i. c: f	 .s I t	
i s	

.^	 1	 t

^.tt. t s:: zry I :2' :U "1" 1 :^	 ^.	 t

t t: u :i I^»} 2 j t F» >{

TT

'^ •t t	 2 E	
t	 a.	 ^^

.1: t:.

:U'
L4

cwt ^^	 1 ^^
{

36

2	 4	 6	 8	 10	 12
NUMBER OF PROCESSORS

Figure 14(f) PPEM Config :tration Summary

Z0
m 0.003

F—
_N

O

C

c 0.002

14	 16

ORMINAL P_

Accuracy
	 OF P%O- it (QUALITY

The effects of time increment and precision on the Figure-of-Merit

defined below were determined using the base configuration. The FOM
computed as an average root-mean-square error (RMSERR) made up of
contributions from each of the individual er •or terms generated by

model.
2

RMSERR
N
	(ERROR)	 / N

(FOM)

is

the

FOM	 51	
(RMSERR x DT)

=
T

E DT
T

Where:

ERROR	 -an individual error term
N	 -number of iteration variables
DT	 -time increment
T	 -transient time

The effect of the size of time increment on the level of error associated with
the real-time technique is documented in Figure 15. As can be seen, there is

little change in the FOM, as the time increment is reduced below .025 seconds,
however, the FOM does begin to show some increase at the largest stable time

increment (.035 seconds).

The use of time increments greater than .035 seconds results in unstable
operation and failures during transient, low power operation. At this point,
the ratio of time increment to smallest time constant, a measure of the

simulation's stiffness, is well over 100. This far exceeds the capability of
any other explicit technique.

It is possible that the unstable responses found at larger time increments are
more related to model quality than to limitations of the technique. In fact,
this explicit technique may be A-stable, within the applicable range of the
nonlinear model. Experiments utilizing small control input perturbations yield
stable responses for a time increment of 1 second, which is the maximum value
allowed by its scale factor. The results of this experiment are in line with
operation in the fully converged steady-state mode. The process by which
non-disturbed transients utilizing very large time increments converge is

numerically identical to the steady-state mode, which is A-stable. Therefore,
the real-time technique can be said to be similary stable, although model
inconsistencies will be more likely to cause transient failures as the time
increment is increased.

37

The randomness introduced by the quality of the model utilized is illustrated
by the data point at a time increment of .025 in Figure 15. When runs are
executed with slightly different increments near .025, an FOM of approximately
.003 is obtained, more in line with the rest of the data. Examination of the
run which produced the higher FOM reveals a much greater error during a
particular portion of the transient than is evident in other sirilar runs.

Fifteen - bit arithmetic precision was assumed for the cases discussed above.
Greater precision is more costly in terms of update rate, so that the
capability of the technique to tolerate relatively low-precision operations is
an important characteristic recommending its use. Figure 16 shows the effects
of varying arithmetic precision. Twenty-four bit precision represents typical
32-bit floating point precision, while 30-bit precision is afforded by the use
of scaled 32-bit integer operations. As can be seen, some improvement results
in the FOM as precision is increased, but it is unlikely that the use of
slower 32-bit operations can be justified on this basis as long as execution
rate is the limiting factor.

The FOM described above is an appropriate method for comparing the relative
accuracy of the real-time technique. In order to validate this technique,
however, it is necessary to compare its results with those obtained from a
source not affected by the residual errors associated with the real-time
technique. This source is a version of the simulation in which the iteration
errors are fully converged. This is the normal form of the general
Gear-Broyden method, of which the real-time method is a special case.

By comparing the responses obtained from the two sources, a qualitative
appreciation of the accuracy of the real-time technique is obtained. Since the
FOM measured from the fully converged method is negligible it comparison to
that obtained using the real-time technique, the effect on the real-time
responses that produce a typical FOM can be visualized.

The data shown in Figures 17a through 17n was obtained from the same
configuration as described earlier. The fully converged version employed the
identical iteration variables as that required for the parallel, real-time
emulation. Comparison of the two responses shows that they are nearly
identical.

Over certain intervals of time, the real-time technique exhibits oscillatory
instability which is not evid,,nt in the fully converged results. This
phenomenon is virtually certain to be the result of local model discontinu-
ities, probably in the turbine flow parameter map data. Similarly, the
response following discontinuous changes in the control fuel flow exhibits
higher-than-average errors. In both instances, the corrections provided by the
Broyden update take place over several increments of time; and, while that is
occurring, the residual iteration errors will be larger than normal.

The most important aspect of the results shown is that for responses in the
frequency spectrum associated with gross power changes in the turbofan engine,
the real-time technique provides adequate accuracy. Localized errors in the
responses to very rapid or noisy control system inputs are expected in any
real-time method . The key to the technique's capability is that these
responses are bounded and, in fact, damp out very quickly. The self-correction
provided by the Rroyden algorithm provides much more reliable results than
other explicit methods operating on stiff, nonlinear engine models.

38

V

1
2
3
4
5
6

ORIGINAL PAGE IS
OF POOR 0'-lALl'Y

FIGURE OF MERIT AS A FUNCTION OF TIME INCREMENT
O	 was PARALLEL PROCESSOR ENGINE MODEL sum	 S677C22HEi (ST 0)

O on PARALLEL PROCESSOR ENGINE MODEL nan 	 S677C22HEi (ST 0)

O	 nz PARALLEL PROCESSOR ENGINE MODEL nwn 	 6677C22HEi (ST 0)

e	 n^n PARALLEL PROCESSOR ENGINE MODEL man	 8677C22HEi (e T 0)

d	 nnn PARALLEL PROCESSOR ENGINE MODEL wow	 S677C22ME1 (ST 0)l

8 was PARALLEL PROCESSOR ENGINE MODEL nnn 	 S677C22HEi (ST 0);

0.009 	
"r

t	 t	 r	 f.

^7 i ,	 -	 r	 t	 t w t'T	 ^^

0-008- z_ 	r	
-fi ^-i f ! ;	 r	 r 1	 f-

1 M^-

0.007	 r f—=-I	

r
a j ri	 i_	 -	 f i-, —	 -T -i- -t-	 -A-

}	 (8
0.006	 L	 _ L a-	 -	 -1 --, x + --	 -1-- .:

r	 r	 ,	 I	 t, 	 t

	

L	 - -
0.005- 1---^^`	 1

LL.
	

'

I 	 - !	 - -- -- -	 -	 - r- -
t

	 f s	 i;	 r	 -- I	 ---
0-004-:1r_:_'	 _i	 11	 -

	

!	 !	 l	 f

0.003

	

t	 !	 ,	 t	 i	 {	 {	 I
T

,	 i	 t.-+--^_.-1-..^-.?- -: t	 ^--y.__r..^_ J..,:i ^ -T. ' (--•f---lam-	 ^-	 -'	 ;	 '	 -	 r T:	 -^

0.002	 -^-	 l	 ;	 7	 ► "	 ^' .^

	

1	 {	 1.	 i t -i44	
l	 —^	 L. --

,

A

0.000	 —

	

0.008	 0.012	 0.016	 0.020	 0.024	 0.028	 0.032	 0.036	 0.040

TIME INCREMENT

Figure 15	 Error Measured by the Figure-of-Plerit as a Function of the Time

	

Increment	
39

A

S	 ^_o

.. t.:^S.r t G: T`.
Y

is 2I

Rir

r

Wit:

#

r:
2: r 1

L:i

^
^ ^.^'^^^,r• —

Vii". 4 tl

i t

Mi

-
t;

:F4

..

: - _
:

^r
1

_ ::^
s

__ =
I

_
^_

J _
r

-

rt _ 2

HKI
.-fir=.'

s

•^^^ :: ii.. ... 1:
"_ - lZ3 _

i.

•^
i.' Hit.~ _ -^

El471L C.
MT

;

t .I «

J

:u tl_

.LY:2'.
:.:

:~
•

.1
µ •I

try
-;?Y{I::

.2:. r r Ir
2.	 I

ry»rc

{

.y

f^''I

1 0
2 O
3 Q
4 e
5 d
6 8
7 6

ORIGINAL PAGE IF
OF POOR QUAUTY-

FIGURE OF MERIT RS R FUNCTION OF PRECISION
n_ n PARALLEL PROCESSOR ENGINE MODEL &no S677730IDI (ST 0)
was PARALLEL PROCESSOR ENGINE MOOED 9'r9 S677730I01 (ST O)
ns n PARALLEL PROCESSOR ENGINE MODEL was S677730I01 (ST 0)
nnn PARALLEL PROCESSOR ENGINE MODEL nn* S677730I01 (ST 0)
was PARALLEL PROCESSOR ENGINE MODEL n en S677730I01 (ST 0)
was PARALLEL PROCESSOR ENGINE MODE',, mum S677730101 (ST O)

na• PARALLEL PROCESSOR ENGINE MODEL nnn 6677730101 (ST 0)

0.005

X
L-Cl
Uj 0.004
C7

L^

0.003

0.009

0.008

0.007

0.006

0.002

0.001

0.000

14 16	 18	 20	 22	 24	 26	 28	 30

BITS

Figure 16	 Figure-of-Merit as a Function of Precision
40

a/

ORIGINAL PAGE 19
OF POOR QUALITY

R .

a	 .

1 O

10

9

8

7

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
nnn PARALLEL PROCESSOR ENGINE

1I

MODEL son	 S677C19BN1 (ST	 1)

F. 4:J'L^
11

'

--	 -- I -	 -	 -~t 4-- I	- - -	 -

I	
I	 _ _, ^I--- I	L	 -

i
6

z0
c
w

5

-	 f

3

2

1

0	 4

k

•	 i

I	 I

8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(a) Comparison Between Fully Converged and Real-Tine Results

41

ORIGINAL PAGE:

OF p00ij QUALITY

COMPARISON BETWEEN FULLY-CONVERGED RND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - RERL-TIME
1 O	 n on FRRRLLEL PROCESSOR ENGINE MODEL n o n 	 S677CI96NI IST	 1)

0.002 -- _

 - —r- -	 i-	

-

I	
r	 i 	 1	

1

I	
J1 -_^ -	 -	 T..

	

1	 i
0.002 - - -' -'--	 — ---- - -	 _7 i

4
0.001	 I	

f_	
Z^ —

1	 ^	 i

0.001- I 	i	 I	 '--i-

ex	
I	 ,

CD	 I	 J

W	 I	 ^	 S 1
O .O O 1	 (I	 r	 j -i

Ln
ar

1

0.001-

CD	 I	 -J

0.001 ; I^ _	 I	 I	 4 I	 I	 j

-- -	 I	 -	 t	 I	 II 	 '

C•000	 — -

0.000-_ _	 J T^- i -' } _	 1l	 I_

0.000

0	 4	 8	 12	 16	 20	 24

TIME

26	 32

Figure 11(b) Conparison Between Fully Converged and Real-Tine Results

42

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
nm• PARALLEL PROCESSOR ENGINE MODEL Now	 SS77C198N1 (ST

WFON	 VS	 TIME	 (ST

" 0 .50c
O

LL

_j

0.400

0.900

0.80a

0.700

0.60C

0-30C

0.201

0-10(

0-00(

0

7 77ti L -4

77'

V44
L

V7 ,
61	 *	 . 	 '_'	

IrV
F.

t:

XL"
F

7 W_

Z

7*	 1

"7:

A,

'j

L

.7

t7,
J_41:....	

91,
7:

T

77t-.-;7
I	 . 	 p

4	 a	 12	 16	 20	 24	 28	 32

TIME

Figure 17(c) Comparison Between Fully Converged and Real-Time Results

43

^I

0.004

0.000

0

44

4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(d) Comparison Between Fully Converged and Real-Tine Results

ORIGINAL PAGE [S-
OF POOR QUALITY

COMPRRISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMRRY FUEL FLOW TRRNSIENT

CAL 1 - FULLY-CONVERGED. CRL 2 - RERL-TIME
2	 n o* PARALLEL PROCESSOR ENGINE MODEL nnn 	 S677C19BN1 (ST	 1)

r—; - r	 :'	 T

0.036-- —j

0.032-

0.028

^) I

OF P00o'

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CRL 2 - REAL-TIME
2 O	 am* PARALLEL PROCESSOR ENGINE MODEL won 	 S677C198N1 (ST	 1)

	

2 Q WF8N	 VS	 TIME	 (ST	 1)

L	 1'	 t1	 t'	 i

S	 •,	 i. t Na 77

r
=y	 , i t	 Y t

	

0.900	 f .. u t2.	 i t	 ii	 t	 tc ri	 f f	
tT	

t	 r	 w
777t

^ -^f-H t "^' t'.,'.'} ^`^	
: ^;Z ..^-., y	 `j'^	 ^ L• t . 1y.. t^ ^'..— .^	 r i t ^	 .' ^ 	 l	 t-•^.1i

	

0.800	

; .^ }
	 ? ' JTr..	 :..	 T	 ?	 i ., k j '^ ^ ^	 t ` 1.

	 l ' - ,

	

0.700	 r ;—i--
1 I _	 ^.	 i i	 _	 i	 ► 	 ..t	 ^^'t	

^—t —^_ ^___
7

---^	
. ?	 f	 r	 ^	 t	 ^.	

^	 ^	 is	 ^	 ^	 !	 _ ^	 ^..	 ,	 .;

0.600

0.500'	 ? i-	 t -!'	

..	
.,
	

^`	 '°	 7, 	 t	 -r

CD

l	 ^

	

W 0.400—;	 -

i

0.300-

	

Du i	'	 _ ..^,..	 ; ^ ..._•-_ _	 ^.. _ 1.	 ._, ^_ ^	 i	
-- ; -- -	 - - —	 ,"._i

	

.—I	 t	

.—^

0.200-

A.—.

	

t	 —	 ,	 }	

t- I

0.100

0.000-1- J

0	 4	 8	 12	 i6	 20	 24	 28	 32

TIME

Figure 17(e) Comparison Between Fully Converged and Real-Time Results

45

..

i

O

_

	

	 ORIGINAL PAGE 19
OF POOR QUALITY

COMPARISON BETWEEN FULLY—CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 — FULLY—CONVERGED. CAL 2 — REAL—TIME
i O	 rum PARALLEL PROCESSOR ENGINE MODEL nnn 	 S677C1SBN1 (ST	 1)

2 p	 mum PARALLEL PROCESSOR ENGINE MODEL nww	 S677CISBN1 (ST	 1)

ix
Co
f-

a 0.640
0J

D
0.660

CLcn

0.840

0.800

0.760

0.720

0.600

0.560

0.520

0.480

0

I
a t 'n:: r t wr

:.. ?:fr	 M

-'t77 7 ^

},	 t	 . — --^
Y' 1	 ^

ITT	
r	 It	 1'

' F	 t	 11	 I
t'it_	 r

jam

^

	

JT^

	 i

lit i

Tt	 t	 r

i	 i .-tom ^I'...:::t t_ t t t	 t, ,	 ^	 }	 2-	 t-	 r2	 :

-	 ^.•^-	 -^	 -t	 ; —^--,	 :#- -.—..^	 t ` fir

J	 '.-	 .. 1	 ;	 ^ {	 ^'mot •.T	 _{ {•.. ^:.	 (..	 --'t

t i	
t

_L

!

t^ !- t.^_

^	 a
-I	

I	 .•	 V -^	 i^_ I^	 t	 t

t:	 ^	 .. I	 :r	 '	 t :!	 ''	 1	 1 ^^	 3	 t :^

't.'	 a^ aiI (rte,

-t' t	 l	 t7"^'^
tI..t .t	 {	 t	 I.	 ,	 .1	

t^::: t^	 j i	 I .	i	 I	 '.	 f.	 7"
t

46

4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(f) Conparison Between Fully Conver qed and Real-Time Results

t

of

ORIGINAL PACE 13

OF POOR QUALITY

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
1 O	 mum PARALLEL PROCESSOR ENGINE MODEL mom	 S677C19BN1 CST	 1)

2 ED	 mum PARALLEL PROCESSOR ENGINE MODEL no n 	S677C19BN1 CST	 1)

tW.t 0.800
N

cc
0

0
= 0.76C
co

0.960

0.920

0.860

0.840

0.720

0.68C

0.64C

0.600

0

.
_ .»^ f :- 4^ ::fi ^-% •	 ,,.:

im
:;^ ^^ u Vic..

:r
r:t "f	 ::» _' rt2 t	 1 t	

.^,
t - r	 r: tc _

If	

IL

^t t . t» Y r T
fa

UF
.L j ^f ^.;. t	 ,

t ^	 t, r	 t

jj _ » +' r 1	 # }... .ice
_ .

t

^...
r

F
-r-

is 1
r	

"^ F7	 i

f

:^

t I

t	 .t {L:

1

ir	 ^.	 1

^` :tom	 !

1

}

f	 !f

r

t

^-

i
i

4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(g) Comparison Between Fully Converged and Real-Tine Results

47

o^

N.
ORIGINAL PAGE 19

OF POOR QUALITY

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
1 O	 n rn PARALLEL PROCESSOR ENGINE MODEL nu n 	 S677C198N1 (ST	 1l
2 O	 nnn PARALLEL PROCESSOR ENGINE MODEL nnn 	 S677CI98NI (ST	 Il

1 100	 1 j	 t	 j	 ,
-- . (.-.-r	 1 a ^.	 _ .t L ^	 j	 ^	 ^ ^	 ^ 1

'j7''
t	 ^ ^ I!tL — t f ^

1.000	 t -^	
,	 _	 n:	 }	 rt`- "')_	 :	 ! !

0.900 , -- i--a...1:;.::.!_ • -	 ::	 , .:w	 i

LAJ

+ -{- ^-= j r t	
-r

1	 4	 1

_ l

LLJ

W-	 I^.	 ,^	 1	 '^	 ^'I	 ^	 :-'} r--._tom--^• 	 i s '

0.400

0.3CO	 t	 L,:::.	 .f z	 j } }

J.

0.20c
-7.T7

.20	 ^.,! 	 ► . 1 '0

0	 4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(h) Conparison Between Fully Converged and Real-Tine Results
48

b.1

ORIGINAL PACE b Fj

OF POOR QUALITY

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
1 O	 nnn PARALLEL PROCESSOR ENGINE MODEL was 	 S677CI98NI (ST	 1:

2 O now PARALLEL PROCESSOR ENGINE MODEL nnn 	 S6771'C198N1 (ST	 1)

L	 .I{ "^' ^'	 4	 tj L' 1..	 2. r1	 r.Y ^ ^	 '^i.	 ^ '} _` t

	

1 .000	 :^	 t f t	 t,	 t	 i	 r
t ^,	 7 t.	 z	 '

	

0.900	 '1	 1	 - T	 fi t _`^	 ,_ __r	 3	 i

-r	
t	 j

	

0.800 	 ,.: -^ --^	 --	 ► -	 -	 -

	

0.700	 ^- -	 j

W	 j
I	

(_	 '	 r	 1	 I	 ^	
_	 .r

1--
	 } T	 ^.	 ((I	 I	 f	 j

	

N 0.600	 -•--^-	 r	 _`	 ^.-... , ._.r r_ - ,	 -	 _^	 t -	 -,	 -	 ^- r—:—^

.zW,

co 0.500

0.400

t	 t	 f	 T.	' 	 !	 i

	

0.300	 -	 ;:

0.200-

0.100

0	 4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(1) Conparison Between Fully Converged and Real-Tine Results

49

ORIGINAL PAGE 19
Of POOR QUALITY

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-- CONVERGED. CAL 2 - REAL-TIME
1 O	 own PARALLEL PROCESSOR ENGINE MODEL no n 	 S677CI90NI (ST	 1)

2 O	 was PARALLEL PROCESSOR ENGINE MODEL mum 	 S677CI98NI (ST	 1)

+7

W

H 0.600
W
d
t-

W 0.500
w
0v

0.400

0.900

0.800

0.700

0.200

1.000

0.300

0.100

0

{-	 • ^	 4
T^t	 t	 ,

i	 t	 ,

f	 r

,^	 «^	 ,
ifr

14
r	 f t r

f -f-	 ,--^	 r^^ -•
t, ^	 : ^,	 to	 .^:,,^1 ^^	 t,

2	 r

1	 —ILL

'	 3	
1 .3_^

t	 t	 11. ,^
1.1

t ,..

_ l

=--^

f r	 f	 -t	 i)	 j i	 r

1	 ^^
`7

7

t

,	 _.1 t 7 f	 f	 'IS
it..

4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(j) Comparison Between Fully Converged and Real-Time Results

s0

J

rw f

E •

	 OF POOR QUALITY	 — — — - -

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - REAL-TIME
1 O	 nwx PRRALLEL PROCESSOR ENGINE MODEL was	 S677CI98NI (ST	 1)
2 G1	 mum PRRRLLEL PROCESSOR ENGINE MODEL won	 5677CI98N1 (ST	 1)

0.100

0

0.200

0.300

0.70(

0.801

0.901

1.001

El

`L; 	 T-
- r G 11	 tf	 t	 ^.

1 r	 -1 y	 1	 1	 I_
iln MIN=

- :1 -c I'I ^-t- r ^}	 -c	 ^	 1	 1	 i	 r	 t	 r

I

(—

I •
• r ,. r II	 ^	 1	 ^^f

i , tt. 71	 ;	
tt
	 1	 '	

t	
•'	

1	 :r	 1.

ti

- ^_ ...t
Jjj,, 1A-

_i

i
_ t 1^ t.	 1 1 {) f	 1	 t	 1,^	 _	 ._

t T J
	 —'.t r t {-	 t t	 r

771 1	
t.	 1t j	 f	 t	 l

L	 -- t—
!
I

r.::::

:f
I

t

,	 t	 ,	 i1	
r	 ,...	 1

t.'

{ 1^c
t	

-^—A	

t	

r -1.1	

--1 	 f

4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(k) Comparison Between Fully Converqed and Real -Tine Results

51

W

N[^ 0.60(
W
C
CL

t—

X

W 0.50
r—U
D

0.40C

Wt

o^

ORIGINAL PAGE IS
OF POOR QUALITY

COMPARISON BETWEEN FULLY-CONVERGED AND REAL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED. CAL 2 - RERL-TIME

	

(9	 a•n PARALLEL PROCESSOR ENGINE MODEL man	 S677CISBN1 (ST

	

z E)	 nnn PARRLLEL PROCESSOR ENGINE MODEL was	 S677CISBNI (ST

0.440

0

0 .520

0 .480

0-76(

0.72(

0 .68C

0-80(

LJ
7

I

L

17,

:L 7- T

777

..

t f	
-V 7.—,—	 7

7 1

7t.
7 7,7

j

7_7 n7.7.

77' .

tz^
!IF

.

Lim
. I

r'7

F7

t,

r	 I7!1

.

. it -

t

;J ;:f

52

4	 a	 12	 16	 20	 24	 28	 32

TIME

Figure 17(1) Comparison Between Fully Converged and Real-Time Results

ca

0.56C

Uj

La 0 .64C
cl.
x
Uj
I
_j

0.60C

0

ORIGINAL PAGE IS
OF P00r QUALITY

COMPARISON BETWEEN FULLY—CONVERGED AND REAL—TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 — FULLY—CONVERGED. CAL 2 — RERL—TIME
1 O	 man PARALLEL PROCESSOR ENGINE MODEL nun 	 S677C19BN1 IST	 1l

2 ED	 mum PARALLEL PROCESSOR ENGINE MODEL nnn 	 S677C198N1 (ST	 1I
i

D.7 6 01 ^ • t	
T	

.t'.,+	
j	 IT.	

.r	 ,'.'t1 :I^ LC	
"..£"'. .._.r	 + j.

0.720 _ +	 +f^.i
it-	 r i:{	 *'. T , J	 ', t	 T j	 + t	 t. ^ I f	 1	 t

t.	 J i_ r. r —_	
ftT ` f 	r S

0.680-'^--^

0.640	 r =+	 -	 -^ -	 r	
4̂
- s-	 '__, ^-1 _	 J:	 y

_.^ 4.–I	 '	 .`	 `. r	 '	 _•t	 t^ '	 T	 _I

Lai
1	 '

0.600 r
rN4 'a.

t

-i	 i	 j	 t	 i	 !	 i	 1	 t	 a	 __

t	 ,.	 .;	 ^^	 fJ -,	 ^	 l	 i	 I	 t

Z 0.560- I 	 t	 1.	 r	 _	 r

cr
t	

1

x	 }	 T—	 ?-,	 ^,	 1	 1	 r	 1 j—

0.520- 7 i 	t	 ,	 a	 ____ t	 ..I	 _	 _	 i

-fi` 1 -j	 +	 1	 ^ f
	 1	 t	 I :^ ^	 -^	 f- 1	 r	 I	 ^`	 i

0.480	 rTC	 '	 —	 s

I

t j f ^- j_ }:«	 f '!	 i f tom` 1 t: t	 i	 f	 r	 I	 1
0 .440

F -{	 ' 'i	
- `	

+	
f	 is	 `

1_	
{	 l	 I	 j	 1

0	 4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17(m) Comparison Between Fully Converged and Real-Time Results

53

_. o

URIGINAL PAGE 19

OF POOR QUALITY

I	 (D

2 a]

COMPARISON BETWEEN FULLY—CONVERGED AND REAL—TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 — FULLY—CONVERGED. CAL 2 — REAL—TIME
now PARALLEL PROCESSOR ENGINE MODEL sun	 S677C199N1 IST
now PARALLEL PROCESSOR ENGINE MODEL was	 S677C199N1 (ST

Uj

Uj
2:

Uj

_j

FE:.

0.920

^117

L	
t	 4

in.

	

- -4	 .

^
t

7
"T

17' tv	 1 n,.4

0 .840'
:-: L-	

_ T
-7	 .	 -7-

,	
1	

T

:_^^	 - , 7717 - t	 77%.*	
F- .7^ _M

7-

0.800

A*

f:

7

Y
71^

0.760-
4	 77,	 77-

	

7-	 3

:4
f

0.720-
L1.
	

L•:	

-	

..	77-

	

.......... +:	 A;

7	 _777t.-.:7

	

0.680 7—F— T7 T-777i 7t

t

	0 .640 	

T; 77'! T F

-7, T r.
-

	

0.600	 4
7

'I.	
f

-	

—

"7

t

f^4 44 Hfl_
r

	

0.560	
- f

0	 4	 a	 12	 16	 20	 24	 28	 32

TIME

Figure 17(n) Comparison Between Fully Converged and Real -Tine Results

54

ORIGINAL PG 19
OF POOR QUALITY _---

COMPARISON BETWEEN FULLY-CONVERGED AND RERL-TIME
PRIMARY FUEL FLOW TRANSIENT

CAL 1 - FULLY-CONVERGED, CAL 2 - REAL-TIME
1 O	 nnr PARALLEL PROCESSOR ENGINE MODEL nNn 	 S677C198N1 (ST	 1)
2 O	 nu• PARALLEL PROCESSOR ENGINE MODEL was	 8677CISBNI (ST	 1)

0.76C

0.720

0.68C

0.48C

0.44C

0.40C

0

- ^a

'r ^ t •'^ T̂ ^• . '1t-

i

.+1,_^	 µ^ }	
♦ 	 t ... t̂	 '	 ^^'^'...^'`^"'^	 't Y 1	 t-• .

It^^r	 3
t1

I
Tt[`» r j `y' 3	

i	 '1`	 t.:(•

t 7 I1

x:11. •:

tY» ; 'r«
^^

:I r .r
_

t

-_...t	 .^i	 _:^:	 .:f:	 :}.^

«	 ;	 I	 t	 7 .:-4-
M zt

.. ---^

i	 _	 i	 t	 r}	
i	

{	 r	
i

j	 i	 '-7-	 3
t	 r^	

1	 _

c

11 r

r,

t { r	 T	 -'	 }

7. (

r-

^.

_	 t-

3

77}	
i

-1

{	 j
4	 8	 12	 16	 20	 24	 28	 32

TIME

Figure 17 (o) Comparison Between Fully Converged and Real -Time Results

55

, 0.64C
d'

t-

C
W

0.600

W
Jz
z 0.56C
m
C

0-52C

_O

ORIGINAL PAGE 19

OF POOR QUALITY

Use of the Emulation Pro ram to Estimate Cost Comparisons
Between Parallel and Serial Processing

The reduction in required time increment demonstrated with the parallel
real-time technique is offset by the need for several, rather than one,

processors. In addition, the increased complexity of parallel software will
result in greater cost. Eliminating this nonrecurring expense from

consideration, a comparison can be made based on an estimate of the cost of
greater execution rate capability if serial processors are utilized. If the

test of parallel processing is taken to be proportional to the number of
processors required to achieve a given speed-up factor, then the ratio of
serial to parallel cost can be obtained and plotted versus the speed-up
factor. Figure 18 shows a typical representation of this cost comparison based
on results obtained from the program. It has been assumed that the cost of
faster serial processors is proportional to the ratio of the execution rates

squared. From this data, it can be seen that the use of asynchronous data
transfer is considerably more cost-effective than synchronous.

Assumptions: (1) Serial cost a (DT/DT)l
(2) Parallel cost a processors

Cost 	 Serial cost	 (3) Hardware cost only
effectiveness	 Parallel cost

2

— 15 processors

4 processors
asynchronous	 High-speed data
®	 transfer

9 processors
asynchronous

® 5 processors
synchronous	 i

2	 3	 4	 5
Speed-up = base DT/parallel DT

Figure 18	 Cost Effectiveness Presentation

56

with the parallel
processors. The cost
1-1/2 to perhaps 2 in
e even more costly

It appears that the limiting speed-up factor achievable

technique occurs at around five, utilizing fifteen or so
effectiveness of this approach might be in the range of
an advanced application, where a serial approach would b

than the square law used to produce the figure.

Based on these considerations, it appears that the most cost-effective

application of the parallel technique would be in systems requiring relatively
high update rates or the ability to perform other computational tasks on the
same processors used by the model. The former might include real-time
simulations supporting control system bench testing. The latter implementation

might utilize part of the overall cycle time to execute the parallelized model
and evaluation routines. The remainder of the time would be used for fault

detection and control law execution. An array of 15 MC68000-type processors
operating at an overall update time of 20 milliseconds, would leave about la

milliseconds on the 15 microprocessors for control tasks. This would be
sufficient to support algorithms consistent with the level of accuracy of the
engine model.

VIII. CONCLUSIONS

Summary

1) Parallel microprocessors employing synchronous data transfer are
capable of providing real-time simulation capability for turbofan
engine applications. A speed-up factor of over 100 percent can be
achieved using five processors.

2) The real-time simulation technique utilized is capable of stable

operation when implemented on NASA's RTMPS.

3) Asynchronous data transfer greatly enhances the real-time performance

of the parallel technique. A speed-up factor of over 20C percent can

be achieved using nine processors.

4) Sixteen-bit scaled-integer arithmetic provides adequate precision for

the technique if the nonlinear model is consistently well defined.

5) The simulation technique utilized here in either its real-time or
fully converged modes can be sucessfully parallelized to any degree

desired if high-speed asynchronous data transfer between the
processors is employed.

Sixteen-Bit Precision

Practical applications of the technology discussed in this report will require

the use of 16-bit microprocessors, employing 32-bit internal architecture.
Therefore, the question of the technique's ability to function stably when
utilizing this kind of processor is crucial.

A few comments concerning the quality on the nonlinear model utilized in this
program are appropriate. First, the scaling convention used does not fully
exploit the 16-bit word. In fact, the values resulting could be termed signed

15-bit integers. The use of biases on all the variables would enable the
recovery of that extra bit's worth of precision. As can be seen in Figure 16,

this would be a significant improvement in the performance of the technique.

r
E:

s,

57

(;9_

A second observation that can be made is that the inception of instability, at

time increments larger than .035 seconds, does not occur until relatively low

power operation is attained. The quality of the turbine and compressor flow
maps in this regime is questionable, as they are based on practice at least
ten years old. Using models based on more modern map-fitting and validation
tools would have to result in improved stability characteristics.

Further enhancements to the technique are possible which would tend to improve

the precision of the Broyden update algorithm, a key factor in the technique's
numerical stability. While these would incur some penalty in execution time,
the need for extreme reliability would dictate that all possible steps be

taken to ensure it.

On the basis of the results obtained in this program, there is every reason to
believe that 16-bit architectures can reliably support the parallel

implementatin of the real-time technique, providing that a modelling practice
suggested by the foregoing discussion is followed and adequate processor
execution rates are employed to ensure small enough tine increments.

In order to support this thesis, a comprehensive set of numerical experiments,

employing simulations of real external disturbances, would have to be
performed as an important part of the system certification process. Stability
would have to be demonstrated under all possible sets of external effects.

Stability

The use of 15-bit precision tends to reduce the stability margin afforded by
the use of 32-bit data representations. The characteristic failure mode
associated with the technique is one in whi%:;. nominally stable operation
becomes unbounded in the vicinity of certain model inconsistencies. This
property of the technique is related primarily to the Broyden algorithm. Under

the influence of models that may be locally ill-conditioned and with limited
precision available in real-time, the ratio of increments used to update the

matrix may become indeterminate to a degree that causes a breakdown in the
process. This can be prevented establishing a lower limit on the size of the

denominator factor used in the matrix update. However, if this tolerance is
set too large, the algorithm will fail to provide updated inforriation to the
matrix. In this event, model nonlinearities will eventually cause failures
similar to those discussed above.

Dynamic Characteristics of the Technique

The accuracy and stability considerations discussed in the preceding sections

certainly affect the operation of the real-time simulation in a closed-loop
environment where it interfaces with hardware systems. However, the dynamic
characteristics of the real-time simulation itself, viewed as an element of a

closed-loop test bench, are of equal importance. The most significant
c; ,,aracteristic of digital real-time simulation is the time delay associated
with the discrete process involved. While relatively low-frequency model
inputs experience little distortion due to the delay, frequencies approaching

the simulation update rate generate considerable spurious responses. If the
response of the system is substantially affected, erroneous tests can by

executed--and, at worst, unstable system response results.

58

_^4 a!w - . ^+ ^^ ^ ! Jr y ... • - __ _. ^.^a^^e^!R.! -; ^_*. ^-t- . tip

riv

Generally, the delayed signals produced by the simulation are compensated by

extrapolating their values ahead in time somewhat before being transmitted to
the system. Predictive compensation does not eliminate the problem but does

improve the dynamic accuracy of the model insofar as the real system is
concerned.

In the synchronous parallel version of the real-time technique reported here,

the delay imposed is increased to two full cycles due to the constraint that
data is only transferred once per cycle. While approprite extra compensation
will alleviate this problem at lower frequencies, it is probable that the
stability characteristics of closed-loop systems employing this technique in
its parallel implementation will not be improved, even though higher update
rates are achieved. In any event, stability should not be a constraining

factor as long as maximum update rates are correctly specified in the design

of the closed-loop facility.

The use of asynchronous data transfer allows a return to the original, serial
delay effect. This property, coupled with the much higher update rates

resulting from the use of more processors, promotes this approach as a means
of achieving extremely high update rates.

Limitations

The application of asynchronous data transfer to a large array of processors
can yield, at best, the time increment required for the model plus the data

transfer time. This represents the limiting case for the technique. For this
model and a one-microsecond data transfer time, this value is not much less

than that acheived with nine processors--around .015 seconds. The use of very
high-speed data transfer devices coupled with an array of around 15 processors
night yield a configuration that achieved a .01-second update increment in a
cost-effective manner. Further reductions would be anticipated as faster
hardware is available at costs comparable with the hardware used as the basis
for this program.

The next generation of turbofan engine control systems will probably double

the current response requirements. In general, update increments of around
.005 seconds would be required for the fastest elements of models that might
be utilized in advanced control modes. This translates into a requirement for
an array of microprocessors numbering around 15 to 16, operating at processor

clock rates of around 20 to 30 megahertz. This system would be capable of
performing the full range of fault detection, scheduling, and compensation

functions.

Future Applications of Parallel Processing in Simulation

The promise demonstrated in this report leads naturally to speculation
regarding the future applications of the technique in areas other than the

traditional bench test or trainer role, in which real-time simulation is
generally cast. Iii particular, modern control systems rely, to some extent, on

a mathematical or numerical representation of the plant to perform both fault
detection and resource management functions. Currently, the microprocessor

hardware utilized in these systems can support only rudimentary mathematical
models. These are generally manifested as tables of nunberical data and simple
linear dynamic representations.

59

V

As the cost of microprocessors decreases,greater capability will become
available. The techniques demonstrated in this project offer one app roach to

achieving the greatest cost/performance benefit possible from these devices.
By distributing the mathematical model among several low-cost microprocessors,

the greater potential of nonlinear modelling could be utilized in fault
detection and in both steady-state and transient performance scheduling tasks.
Fault detection by the model would be achieved by comparing sensed values from
the plant to those of the model. On a short-term basis, failed control inputs

would be eliminated from consideration through this process. At the same time,
deterioration in the plant hardware would be determined from similar
comparisons and used to correct the model. At any point, then, a best estimate
of the current status of the plant would be available. The model could then be

utilized to perform steady-state and transient scheduling tasks, without
relying directly on measured plant parameters. Real-time nonlinear modelling
would also be useful in plant health analysis applications. The modelling
aspects, including the parallel implementation, are quite similar to that
required for a model-based control mode. It is likely that the first use of
these techniques will be in this sort of noncritical role.

IX. REFERENCES

1. McLaughlin, P., "A Technique for the Implementation of Nonlinear Models as

Real-Time Digital Simulations", Proceedings of the 1980 Summer Computer
Simulation Conference, Seattle, Washington, August, 1930.

2. Blech, R.A., and Arpisi, D.J., "An Approach to Real-Time Simulation Using

Parallel Processing", Proceedings of the 1981 Summer Computer Simulation
Conference, Washington, D.C., July 1981.

3. McLaughlin, P., "The Parallel Implementation of a Nonlinear Real-Time
Sin,, , lation Technique", Proceedings of the 1983 Summer Computer Simulation
Conference, Vancouver,	 ., July 1983.

4. Daniele, C.J. and McLaughlin, P., "The Rea l -Time Performance of a Parallel
Nonlinear Simulation Technique Applied to a Turbofan Engine," Proceedings
of the 1984 SCS Multiconference, San Diego, California, February 193 .

5. Gear, C.W., "Numerical Initial Value Problems in Ordinary Differential

Equations", Prentice Hall, 1971.

6. Broyden, C.G., "Quasi-Newton Methods and Their Application to Function
Minimization", Mathematics of Computation, 21, pp 568-581.

7. MC68000 16-Bit Microprocessor User's Manual, MC68000UM (AD2), Second
Edition, Motorola, inc., Jan. 1980 (Preliminary).

60

.O

ORIGINAL PAGE 19
OF POOR QUALITY

APPENDIX

THE REAL-TIME PERFORMANCE OF A PARALLEL, NONLINEAR
SIMULATION TECHNIQUE APPLIED TO A TURBOFAN ENGINE*

Carl J. Daniele

NASA-Lewis Research Center
Cleveland, OH

Peter W. McLaughlin
Pratt b Whitney Aircraft

East Hartford, CT

AB STRAC T

Under contract to NASA-Lewis Research Center, an
investigation into the real-time capability of the
parallel version of a nonlinear technique developed
earlier was undertaken. The technique was applied to
a typical turbofan engine model, similar to those
used in conventional non-real-time practice. A serial
FORTRAN program was written which emulates a variety
o' possible parallel processor architectures,
including the Real-Time Multi-Processor System being
developed by NASA-Lewis Research Center. This program
has been utilized to evaluate the technique in its
parallel implementation and to predict speed-up
factors that would be expected in practice. Results
which demonstrate the real-time performance of the
technique as a function of the number of processors
utilized are presented. The accuracy and stability of

the technique as a function of the update rate and
arithmetic precision is also documented.

iNTRO DUCT ION

This paper presents work accomplished under NASA
Contract NAS3-23283, "Parallel Processor Engine

Model", which was conducted for NASA-Lewis Research
Center in support of their Real-Time Multi-Processor
System. The principal objective of this effort was to
demonstrate the capability of the parallel version of
a nonlinear, real-time simulation technique developed
earlier (Reference 1). This technique, which is based
on those used in non-real-time dynamic simulation, is

well suited for parallel implementation.

This technique readily accommodates stiff models and
provides stable operation at time increments larger
than conventional explicit methods. However, its
computational requirements represent a significantly
greater cost than incurred by other approaches based

on linearized models. Therefore, its widespread use
has awaited expected advances in digital processing
technology.

The results obtained in the contracted effort were
directed primarily at the processor configuration
specified by NASA/LeRC (Reference 2) but also extend

to parallel concepts that lie beyond the capability
intended for that device. Using this capability, a
wide variety of parallel implementations of the model
and the real-time technique have been evaluated in
the course of the performance of the contract. The
intent of these studies is to determine the most
cost-effective arrangement of the model and the
real-time technique for a given parallel processor
architecture.

*This work was conducted under contract NA53-23283 for
NASA-Lewis Research Center.

REAL-TIME SIMULATION UTILIZING PARALLEL PROCESSORS

Recent experience with real-time simulations executed

in support of closed-loop bench control system
development testing has served to reinforce our
belief in this practice. The models used in these
tasks are based on a piece-wise linear approach,
however, and suffer from accuracy problems unless the
models are updated frequently. This is a
time-consuming and expensive process. Linear models
also tend to be less flexible in modelling the
effects of secondary control systems. Both of these

problems could be accommodated by the use of
nonlinear models.

Parallel processing offers an alternative approach to
real-time turbofan crgine simulation. Instead of
improving update rates by the acquisition of faster
serial processor,, slower, less expensive processors

operate on difft • ent parts of the computing task,
thereby achieving a reduction in the time each of
them consumes. The effective update rate of this

architecture is the longest of	 the individual

execution times.

The next generation of real-time turbofan simulations
will be required to execute models consistent with
the requirements of multi-loop control systems at
update rates several times greater than current
practice. At the same time, market pressures will
force the utilization of the most cost-effective

approaches available. It is quite possible that
arrays of low-cost microprocessors may offer an
economical means of achieving nonlinear real-time
simulation capability.

DESCRIPTION OF THE ENGINE MODEL

The performance aspects of the model used in this

program are defined in a conventional manner.
Component representations consist of co ,;-,b nations of
algebraic and tabular data. Pressures, temperatures,
and gas flows describe the conditions at the
interfaces between components. The model is defined
in a completely implicit fashion.

In order to provide the most stringent test of the
parallel technique possible, especially wit h regard
to precision, it was dccided to include fluid
co"tinuity effects. This provided time constants

which ranged from .00025 seconds up to 10 seconds for
transient heat transfer phenomena. With time

increments expected to be on the order of 10 to 3C
milliseconds, the stability of the technique is well
tested when applied to this model.

The model requires 18 iteration variables in its
evaluation. Twelve of these are state variables

representing rotor speeds, metal temperatures,
pressures, and actuator outputs. The remaining six
are required by the component performance representations.

61

URIGINAL PAGE 19

OF POOR QUALITY
ACCOMMODATION OF STIFF ELEMENTS IN THE MODEL

Gear's integration formula is applied to those states
whose time constant is large compared to the time
increment. For the stiff states associated with
continuity effects, however the use of the integral
form results in ill-conditioned Jacobian matrices.
Therefore, a differential form is chosen which, at
very large time increments (relative to the time
constant), essentially negates the dynamic effect and
degenerates to a simple iterative relationship.

Experience with this approach has been quite good.
Stable responses are obtained with 15-bit precision
at time increments varying from 1 up to 35

milliseconds. While current applications are well
served by real-time simulation update rates of 10 to
20 milliseconds, future models will be required with
response capability an order of magnitude greater.
Proof of the technique in the higher frequency regime
is an important consideration in its evaluation.

PARALLEL TECHNIQUE

Reference 1 details the development of the serial
version of the technique. It is a truncated version
of an implicit technique used in conventional
non-real-time dynamic simulation. In its real-time

manifestation, the technique demonstrates excellent
stability on very stiff models; but, since it is an
explicit method, it is not A-stable. In the range of
update rates experienced in current practice,

however, it provides evaluations of consistently
defined turbofan engine models with very high
reliability.

The technique is a quasi-Newton nonlinear solver,

where the inverse Jacobian is updated by Broyden's
method. Gear's stable second-order integration
formula reduces spurious response to negligible
levels. "he nominal mode for this method is one in
which iteration errors are reduced successively until
ail lie within a given tolerance band. This is termed
a fully converged emulation. In the real-time version
of the technique, each execution (corresponding to a

given time point)	 is treated as an	 iteration
attempting to converge the errors. Wit i, an
appropriate modification to the Broyden update, the
method reduces to a variety of predictor corrector,
where predicted values are used to evaluate the model
and are then corrected by the inverted Jacobian
obtained from Broyden. The cot r°-ted values form the
basis for the next prediction aria are output to the

control system hardware. The Broyden algorithm
utilizes changes in both iteration variables and
errors, as well as the current inverse Jacobian, to
compute the changes to that matrix required to attain

convergence.

Although the algorithm appears computationally

complex, the communication of data between the
different elements is quite manageable. This, coupled
with the flexibility afforded by an implicit model

formulation, makes the technique an attractive
candidate for parallel ization. In this discussion, it
will beassumed that the transfer of data between
parallel processors can only occur once per time step.

For a given arrangement of model segments on the
available processors, a set of iteration variables
necessary to solve the set of distributed equations
in a simultaneous fashion can be identified. Each

processor must be capable cf calculating updated
values of the iteration variables required on that
processor, and it must compute errors associated with

the values of iteration variables calculated in the
model. This specifies which elements of the vectors
involved are to be computed on a given processor.

Figure 1 shows the inter- and intra-processor data

flows required by the real-time technique. This
diagram also shows the arrangement of components of
the technique on one of the parallel processors. The
solid lines lying within the boundaries of the

processor indicate data flow between elements on that
processor. The double lines show data that must be
transferred to other processors and be received from
them. In the arrangement shown, the operations
performed in Broyden depend on the distribution of
iteration variables among the processors.

Matrix eMments

Error values	 C1p1eNmenrs
Incremental

11	
o,

values .
Uptlate variables	 Values	 Error

cl,.'u	 Mo^I	 cakulahon

Error

Incremental
values

Matrix elements

Single lines - Inds Processor data transfer

Double lines - Inter processor data transfer

Figure 1	 Data Flow Requirements; Coresident Broyden
Algorithm

While this technique provides improved execution
rates, it suffers from a major deficiency. As more
processors are added and the model is distributed
further, greater numbers of iteration variables are
required.	 This	 leads	 to	 timing penalties	 that
overwhelm the improvement derived from

parallelization. This appears to be a funddoental
limitation of synchronous data transfer applied to
this technique.

An alternative approach was devised where the Broyden
algorithm could be executed simultaneously with the
remainder of the simulation. At least half the

processors are used for Broyden, which reduces the
number of iteration variables required in a given
processor configuration. Since the allocation, of
Broyden computations is no longer connected tr , the

model arrangement, it can be distributed in such a
way as to balance the computing load among the
processors.

Figure 2 shows the arrangement of two processors
where the Broyden 1gorithm is executed
simultaneously with the remainder of the technique.

This arrangement proved to be capable of achieving
adequate real-time performance applied to the target
system specified by NASA-LeRC; namely, eight to ten
MC68000 processors serviced by synchronous data
transfer. Data presented later in this paper
documents the results obtained.

62

NI^AC10 MCIIVI"L:
f"OW"t LOC.IIW

U ^1I	 I
I

M LAI TOM

I	 I

l	 1

----MCIIVI"4 ^	 wllarfl:lf"TM"" ps"96 11"f11NIYf111000l/ tw 1roc IfW11
16840

ORIGINAL PAGE 19
OF F ^r^^t QUALITY

Errors value:	 In order to prevent contention between processors for
naratlon	 coic11W100	

precedence in the crosstalk hierarchy, the processors
update Van	 vaN+a+	 Error	 have been ranked in ascending order of their

stop	 "AO°'t	 calculation	 identification number. Crosstalk is only allowed to
occur	 from	 lower-numbered	 to	 higher-numbered

Errorvahns	 processors. Since this is the direction in which the
A f It	 ts	 e 11 +.A th r. is n^

	

^ fenTefioN	 a au	 seglnen sequenc	 ar ae	 o 	 ,	 e
^vu CorenBoon	 requirement for crosstalk in the opposite direction

from that preferred. For other segment arrangements,

+wtaam.etamema	 variables that must be crosstalked "upstream" are

8rop0en	 identified as iteration variables, rather than
crosstalk variables, and are treated in the some way

SirVewn" - invapr cessadautransfer, 	
as the basic set of iteration variables associated
with the sequential model.

DoL" Wm - Inter proceaaor dqa tranater

CONFIGURATION SURVEY

Figure 2	 Data Flow Requirements; Simultaneous
Broyden Algorithm

ASYNCHRONOUS DATA TRANSFER

An asynchronous data transfer approach has proven to

result in substantial execution time improvements
over the synchronous scheme originally treated. This
method utilizes "crosstalk" between the processors to
transfer data resulting from model calculations on
one processor to another where that data is required
for other calculations. This approach represents an
alternative to the use of iteration variables as a
means of communicating this data.

In this scheme, only the basic set of iteration
variables required Tor the sequential model are
allocated. It is assumed that the iteration variable

update step will be synchronized so that all the
model executions begin simultaneously. This ensures
that the results of the iteration variable update

will be available for "crosstalking" :o processors
other than the one where the update takes place.

Figure 3 shows the schematic arrangement of segments
in an asynchronous crosstalk :heme. The segment on
the receiving processor must be delayed by an amount
which is the difference between the ending time of
the sending segment and the beginning time of the
receiving segment.

I01A. 1f" OF 01114.7 1
V^Ikf 1.l low 0-----------

	

^	 llMGl"^L M[fIVMG
MOMi"1 IOC^IM]IT

	

NMI /MCUT.0%TOM	 T1W]
A

01LUI TOM - IOM 1
TOM J

UOWNI CAL CU 110 VMf1AOU

Figure 3	 Illustration of Asynchronous Data Transfer
Crosstalk

It was recognized early in this work that the use of
a detailed emulation of the parallel processing
systems under consideration would be invaluable in
examining all the possible alternative approaches.
This FORTRAN program, executing serially, allows the

user to evaluate a wide range of parallel
arrangements. In addition, the accuracy and stability
.)f the technique, operating with identical precision
as the target processor, can be directly evaluated.
Based on the timing data collected from the model and
the evaluation routines, and the arrangement of
simulation functions chosen by the user, a time
increment requirement is computed as the sum of the
largest execution time of the processors plus the
time required to transfer data among the processors.
A large matrix of configurations was executed using
the NASA/LeRC Real-Time Multi-Processor Simuiator as
the target. In these runs, the model wa!, distributed
among one to eight processors. Four variations of the
parai^el	 technique were executed 	 in both	 the
synchronous and the asynchronous data transfer modes.
This resulted in a total of 64 different
corfigurations being evaluated. The synchronous data
transfer mode which produced the minimum time
increment, and which lies within the design parameters
of the RTDS, utilizes five processors. The model is

distributed between two processors. The simultaneous
Brnyden function is implemented on the remaining
three processors. The time increment for this
configuration is .0244 seconds. This represents a
reduction factor of 54 percent, based on the
one-processor requirement of .0536 seconds. Figure 4
tabulates the results obtained from this study.

Serial implementation time Increment - .0536

Data
Synchronous — transfer — Asynchronous

mode d
tv p	 4) 0!	 rV 5r

g	 H Broyden y	
10

th IU	 a gon m
t	 1	 ^	 ¢i Lj

2	 2 	 7
^0/2510518	 0491	

Coresident	
0257

8	 5	 Simultaneous	 9	 10
0252	 024	 0159 01st

Number of processors
Time increment required

Figure 4	 Configuration Survey Summary

63

___ __ ia)

^o
0

ro

14	 la	 la	 to r:	 t4	 ra	 to	 10

PRECSN

Figure 5	 Merit as a Funct i on of Precision

W,

ORIGINAL PAGE" re;

OF POOR QUALITY
As can be seen from these results, the use of
asynchronous data transfer offers a significant
improvement in tije update rate possible with this
technique. A minimum value of .0159 seconds was
obtained for an asynchronous configuration consisting
of nine processors.

ACCURACY

The real-time technique is explicit, and hence,

manifests errors that are eliminated in an implicit,
fully converged implementation. It is appropriate to

measure this effe •.t in terms of the size of these
errors experienced by the model during simulation
operation. In order to provide a single
figure-of-merit, an average RMS error is computed
from a summation covering the entire test transient.
The errors are relati rely small and well within the
accuracy requirements of *he application.

Fifteen-bit arithmetic precision was assumed for the

cases discussed above. Greater precision is more
costly in terms of update rate, so that the capability

of the technique to tolerate relatively low-precision
operations is an important characteristic recommending
its use. Figure 5 shows the effects of varying
arithmetic precision. Twenty-four-bit precision
represents typical 32-bit floating point precision,
while 30-bit precision is afforded by the use of
scaled 32-bit integer operations. While a loss in

relative accuracy	 is	 evident	 as	 precision	 is

decreased, the absolute level obtained at fifteen
bits	 is more than adequate	 for	 the	 intended

applications.

STAB LIT Y

The use of 15-bit precision tends to reduce the

stability margin afforded by the use of 32-bit data
representations. The characteristic failure mode

associated with the technique is one in which
nominally stable operation becomes unbounded in the
vicinity of certain model inconsistencies. This
property of the technique is related primarily to the
Broyden algorithm. Under the influence of models Ott
may be locally ill-conditioned and with limited
precision available in real-time, the ratio of
increments used to update the matrix may become
indeterminate to a degree that causes . a breakdown in
the process. This can be prevented by establishinga
lower limit on the size of the denominator factor
used in the matrix update. However, if this tolerance
is set too large, the algorithm will fail to provide
updated information to the matrix. In this event,
model nonlinearities will eventually cause failures

similar ti those discussed above.

DYNAMIC CHARACTERISTICS OF THE TECHNIQUE

The accuracy and stability considerations discussed

in the preceding sections certainly affect the
operation of the real- t i ne Iimuwlttion in a closed-
loop envirionm--nt where it interfaces with hardware
systems. However, the dynamic characteristics of the
real-time simulation itself, viewed as an element of

a closed-loop test bench, are of equal importance.
The most	 significant	 characteristic of digital
real-time simulation is the time delay associated
with the discrete process involved. While relatively

low-frequency model inputs experience little
distortion due to the delay, frequencies approaching
the simulation update rate gener,te considerable

spurious responses. If the response of the syster, is
substantially affected, erroneous tests can be
executed--and, at worst, unstable system response
results.

Generally, the delayed signals produced by the

simulation are compensated by extrapolating their
values ahead in time somewhat before being transmitted
to the system. Predictive Compt^sation does not
eliminate the orobler but does improve the dynamic
accuracy of the model insofar as the real system is
concerned.

In the synchronous parallel versici of the real-tine

technique reported here, the delay imposed i;
increased to two full cycles due to the constraint
that data is only transferred once pet- cycle. chile
appropriate extra compensation will alleviate this

problem at lower frequencies, it is probable that the
stability characteristics 	 of closed-loop	 systems

employing this technique in its parallel
implementation will not be improved, even though
higher update rates are achieved. In any event,
stability should not be a constraining factor as long
as maximum update rates are correctl. , specified in
the design of the closed-loop facility.

The use of asynchronous data trans er allows a return
to the original, serial delay effect. This property,
coupled with the much higher update rates resulting

from the use of more processors, promotes this
approach as a means of achieving extremely high
update rates.

64

_^^r r. ter...► ,^. ,r ^	 ---	 • -	 _ ^^ ^,'-TC-------^«^. ..,.-..

ORIGINIAL

CONCLUSIONS

1) Parallel microprocessors employing synchronous
data transfer are capable of providing real-time
simulation capability for turbofan engine
applications.

2) The real-time simulation technique utilized is
capable of stable operation when implemented on
parallel processors.

3) Asynchronous data transfer greatly enhances the
real-time performance of the parallel technique.

4) Fifteen-bit scaled-integer arithmetic provides
adequate precision for the technique if the
nonlinear model is consistently well defined.

5) The simulation technique utilized here in either
its real-time or fully converged modes can be
successfully parallelized to any degree desired
if high-speed asynchronous data transfer between
the processors is employed.

REFERENCES

1. McLaughlin. P., "A Technique for the
Implementation of Nonlinear Models as Real-Time
Digital Simulations", Proceedings of the 1980
Summer Computer Simulation inference, Seattle,
as ing on, August.	 .

2. Blech, R.A. and Arpisi, D.J., "An Approach to
Real-Time Simulation Using Parallel Processing",
Proceedings of the 1981 Summer Computer
Simulation Conference, Washington, D.C., July,

3. McLaughlin, P., "The Parallel Implementation of a
Nonlinear Real-Time Simulation Technique",
Proceedings of the 1983 Summer Computer Simulation
on erence, Vancouver,	 ., July, 196J.

01

s

65

	GeneralDisclaimer.pdf
	0166A02.pdf
	0166A03.pdf
	0166A04.pdf
	0166A05.pdf
	0166A06.pdf
	0166A07.pdf
	0166A08.pdf
	0166A09.pdf
	0166A10.pdf
	0166A11.pdf
	0166A12.pdf
	0166A13.pdf
	0166A14.pdf
	0166B01.pdf
	0166B02.pdf
	0166B03.pdf
	0166B04.pdf
	0166B05.pdf
	0166B06.pdf
	0166B07.pdf
	0166B08.pdf
	0166B09.pdf
	0166B10.pdf
	0166B11.pdf
	0166B12.pdf
	0166B13.pdf
	0166B14.pdf
	0166C01.pdf
	0166C02.pdf
	0166C03.pdf
	0166C04.pdf
	0166C05.pdf
	0166C06.pdf
	0166C07.pdf
	0166C08.pdf
	0166C09.pdf
	0166C10.pdf
	0166C11.pdf
	0166C12.pdf
	0166C13.pdf
	0166C14.pdf
	0166D01.pdf
	0166D02.pdf
	0166D03.pdf
	0166D04.pdf
	0166D05.pdf
	0166D06.pdf
	0166D07.pdf
	0166D08.pdf
	0166D09.pdf
	0166D10.pdf
	0166D11.pdf
	0166D12.pdf
	0166D13.pdf
	0166D14.pdf
	0166E01.pdf
	0166E02.pdf
	0166E03.pdf
	0166E04.pdf
	0166E05.pdf
	0166E06.pdf
	0166E07.pdf
	0166E08.pdf
	0166E09.pdf
	0166E10.pdf
	0166E11.pdf
	0166E12.pdf
	0166E13.pdf
	0166E14.pdf
	0166F01.pdf

