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PREFACE

This report documents the technical results obtained from navigation system
definition studies performed under Tasks 5 and 15 of Contract NAS5-26546,
"Tracking Data Acquisition System (TDAS) Study". Task § (TDAS System Archi-
tecture) and Task 15 (Alternative User Navigation Technigues with TDAS) were
part of a two year pre-Phase A concept definition study for TDAS as the pro-
posed successor to TDRSS, currently under development.

SCOPE OF WORK

The TDAS study covers a fifteen year planning period, {1995-2005). Potential
missions to be flown in this time frame include free fiyers, support vehicles
and a space station/platform. Much of the TDAS requirement will be to support

Tow earth orbit (LEO) missions in terms of communications, navigation and TT&C,

Additional requirements could stem from user mission activities in higher
(e.g., synchronous} orbits, and in support of inter-orbital transfers of mate-
rials and men for maintenance and repair in space, or for retrieval of plat-
forms and experiments.

This report is Volume VI of nine volumes constituting the final report for

the TDAS pre-Phase A study, Volume tities, largely self-explanatory, are
given below:

Volume I Executive Summary

Volume 11 TDAS User Community Characteristics

Volume III TDAS Gommunications Mission Madel

Volume IV TDAS Space Segment Architecture

Volume V TDAS Ground Segment Architecture and Operations Concept
Volume VI TDAS Navigation System Architecture

Volume VII TDAS Space Technology Assessment

Volume VIII  TDAS Frequency Planning

Volume IX TDAS Cost Summaries
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OVERVIEW OF VOLUME VI

The navigation architecture aspect of this study involves examination of
TDAS-based tracking alternatives for providing user orbit and time deter-
mination (OD/TD). Two-way range and doppler tracking as implemented in

TDRSS is also an alternative for ground-based navigation support with TDAS.
However, the primary focus here will be on one-wa¥ range and doppler tracking
methods, specifically:

. Forward Link Beacon Tracking (FLBT) - with on-board processing of

independent navigation signal transmissions broadcast continuously
by TDAS spacecraft,

o  Forward Link Scheduled Tracking (FLST) - with on-board processing
of navigation data received during scheduled TDAS forward 1ink ser-
vice intervals, and

s Return Link Scheduled Tracking (RLST} - with ground-based processing
of user~generated navigation data during scheduled TDAS return link
service Intervals.

This study addresses system configurations and requirements to support each
method and assesses the potential navigation performance as a function of

user orbit, TDAS constellation options and other parameters. Results are

then compared with accuracy requirements in the TDAS mission model. Impacts
of the above alternatives on both TDAS and users are evaluated and key issues/
tradeoffs are identified. The study also considers TDAS satellite tracking
for two options (BRTS and VLBI)* to identify system configuration impacts of

the TDAS constellation options and compare potential tracking accuracy per-
formance. '

* BRTS - Bilateration Ranging Transponder System
VLBI - Very Long Baseline Interferometry.
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MAJOR FINDINGS

Results of the study are summarized in Section 6. The major conclusions
are:

o  TDAS Beacon Tracking {FLBT) will satisfy all users in the TDAS
mission mode] with position accuracy requirements down to 10 m.

0 Scheduled tracking alternatives (FLST, RLST) can also meet the
accuracy requirements except at low altitudes where performance
is sensitive to: '

- Drag Uncertainty
- Frequency of Tracking and/or
- Frequency of Navigation Data Uploads (RLST/only)

] A two or three satellite TDAS constellation impacts performance
as follows:

-~ Selecting two satellites leads to tradeoff between coverage
and accuracy. Increased satellite spacing improves coverage,
but a point is reached where performance in high inclination
orbits begins to degrade (130° spacing appears better than
162°),

- Selecting three satellites provides full coverage and up to
a 2:1 advantage in navigation accuracy over two satellites.

» Projected TDAS tracking'accuracy requirements (25 m-position and
2.5 mm/sec-velocity) can be met with VLBI tracking but not with
a minimal* BRTS configuration.

* 2 Bilateration Ranging Transponder System (BRTS) sites per TDAS spacecraft.
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SECTION 1
INTRODUCTION*
1.1 BACKGROUND

By the 1990's, NASA missions will require extending TORSS capabilities for
user tracking and orbit determination in terms of greater speed, accuracy
and throughput efficiency. Requirements are also expected to increase for
on-board, real-time navigation data (orbit, time and attitude) to support
mission operations, e.g., data annotation, antenna pointing, rendezvous
etc,

A review of technology trends has jdentified various techniques (existing
or under investigation) which cowld potentially support future orbit and/

or time determination needs using ground-based or quasi-autonomous methods.

These can be broadly categorized according to the measurement technology
employed:

. RF Signal Detection (range, range-rate, range-difference)
LLASER Reflection (range}
0 Optical (angie)

A summary description of the varjous techniques is included in Volume II
of the TDAS Study Report (1].

With TDRSS, RF methods are the basis for providing user tracking services.
The focus in this volume will be on extensions to these techniques to

support TDAS user navigation and TDAS satellite tracking.

The primary technique for TDRS and usar orbit determination (OD) via TDRSS
utilizes ground-derived two-way range and/or doppler data and requires a

* A glossary of acronyms is provided in Appendix F.
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coherent forward and return 1ink during scheduled tracking intervals (see
(2] and Figure 1-1a). This technique can also support user time determina-
tion (TD), since clock calibration parameters (bias, drift) may be estima-
ted simultaneously in the 0D process.* An alternate tracking technique is
also offered, which employs one-way duppler data measured at the ground
from user transmissions during scheduled MA return 1ink service (see [2]
and Figure 1-1b), User clock calibration cannot be perfarmed with this
method (only oscillator calibration). An advantage, however, is that re-
turn 1inks are more plentiful and easier to schedule than a coherent two-
way 1ink {20 vs 2).

The improved coverage and faster, centralized data collection available
with TDRSS shouid substantially increase the throughput efficiency, of
ground-based 0D/TD with these techniques. However, achieving the capacity
for multi-user support with rapid turnaround or near real-time requirements
will depend on computational enhancements at the TDRSS/0SCF. A current
goal with hardware upgrades in process and propecsed software developments
is to achieve, by the late 1980s, a 10 minute turnaround between the end
of a tracking pass and an updated orbit computation. [4]

An on-board Q0/TD capability would provide timely navigation data and also
relieve TDRSS ground requirements for routine mission support. A one-way
technique has been developed in which a TDRSS user would extract doppler data
during schaduled MA forward link service for on-board 0D only (see [5,6]

and Figure 1-1c). Ground tests are planned for 1984 to demonstrate the
approach and associated user equipment enhancements: doppier extractor,
stable oscillator and navigation computer (hardware/software). [7] Further
developments will depend on test results and user initiatives.

¥ Clock calibration is also possible with separate two-way measurements
once the orbit is determined. [3]
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With respect to future navigation performance, inquiries were made, as part

of the TDAS study [1b]¥, to determine potential user position and time accu-
racy requirements. Aside from Topex-type missions”, the most stringent posi-
tion accuracy requirement is fn the 10 m (lo) range. This pertains to advanced
resource observatjon type missions and a proposed space station. The most
stringent time accuracy requirement (relative to UTC) is 1 usec (lc), which
applies to several classes of missions.

1.2 TDAS NAVIGATION ARCHITECTURE GOALS

In accordance with the preceding discussion, the goals of the navigation
architecture study are as follows:

] Reduce ground requirements for routine two-way tracking support
) Support user on-board orbit and time determination

* Provide users timely access to ground-derived navigation data,
and,

) Meet navigation accuracy requirements (> 10 m) of TDAS mission
model.,

1.3 TASK ASSIGNMENT

The TDRSS two-way tracking technique is a candidate for ground-based sup~
port of user navigation in the TDAS era. This study will examine alterna-
tive one-way tracking techniques that also support user orbit and time
determination with TDAS. The specific alternatives to be studied are:

* Appendix A provides a summary of the TDAS mission model and navigation
requirements.
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. Forward Link Beacon Tracking (FLBT) - based on low power signals
continuously broadcast by TDAS satellites to permit range and
doppler measurements for on-board use,

0 Forward Link Scheduled Tracking (FLST) - based on ground origi-
nated signals during scheduled contact periods which permit
range and doppler measurements for on-board use.

] Return Link Scheduled Tracking (RLST) - based on user generated
signals during scheduled contact periods for ground-based range
and doppler measurements.

The study shall include a system Tevel definition and requirements assess-
ment for each configuration. An accuracy analysis based on applicable
error models shall be performed for comparison of navigation performance
among alternatives and agafnst requirements {n the TDAS mission model.
Impacts an both TDAS and users and key tradeoffs will be identified and
compared,

1.4 OVERVIEW OF METHODOLOGY

g N e gy

The methodology followed in pursuing this task is summarized in Figure 1-2. n
| The first step was to define the tracking configuration in terms of functions g
and system elements needed to support each alternative. The second step
! was to consider signal processing aspects beginning with a definition of
the tracking signal in each case, then a 1ink performance analysis to iden-
- tify EIRP and/or G/T requirements and finally estimation of the measurement
E, accuracy for range and doppler-(range-rate) data types.

The third step was to address TDAS satellite tracking to identify p.ssible :
system configuration impacts of TDAS constellation alternatives and to de-
5‘ termine representative estimates of potential ephemeris accuracy. The
- analysis focused on two options:
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° BRTS Tracking - the primary technique for TORS tracking [8], and

(] VLBI Tracking - proposed as a BRTS enhancement or eventual
replacement. [9]

The fourth step was to evaluate potential user navigation performance in
terms of 0D/TD accuracy for the three tracking alternatives. Cases for
evaluation were derined to assess both two and three satellite TDAS con-
stellations, several classes of user orbits, different tracking schedules
and two algorithms for tracking data processing (sequential and sliding
batch).

The last step was to summarize the study data, compare navigation perform-
ance results with requirements defined in the TDAS mission modal and then
integrate the key findings in terms of a proposed system architecture to
support user navigation functions.

1.5 OVERVIEW OF THE REPORT

Results of the efforts outlined above are presented in succeeding sections
and in serveral appendices which contain much of the supporting detail.
Section 2 describes the functions and system elements defining the config-
uration for each tracking alternative. Section 3 and Appendix B cover the
signal processing analysis aspects. Section 4 and Appendix C consider the
TDAS satellite tracking analysis. Section 5 and Appendices D and E present
results of the navigation performance evaluation. Section 6 contains the
summary data and study conclusions.
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]* SECTION 2

USER TRACKING CONFIGURATION DEFINITIONY

: The proposed TDAS architecture design [la,d] extends TDRSS data relay capa-
% bilities with enhanced SMA services for multiple access users and more SA
channels (KSA + WSA + LSA) for single access users, This section defines
L the system configurations for supporting one-way user tracking (FLBT, FLST
3 or RLST) assuming (for description purposes) that it fs provided at S-Band.

; In practice, however, the scheduled tracking alternatives (FLST or RLST)
could also be accomodated via the SA sorvices, as necessary. On the other

i : hand, beacon tracking (FLBT} must be a generally available broadcast ser-

“ vice and thus fs not compatible with the SA services. While FLBT operation

[ in a totally independent band is a possible option, frequency spectrum and

.- user/system equipment considerations tend to favor S-Band reuse.

The following two subsections present the system functions and major ele-
ments needed for supporting each aiternative, A comcluding subsection
compares tracking signals and data handling interface requirements for
the user, space and ground segments,

e maammn o e e

2.1 FORWARD LINK TRACKING (FLBT/FLST) ?

An overview of the major functions fnvolved with the two forward link track-
ing alternatives is shown in Figure 2-1. Tracking signals are uplinked from
[ the ground at Ky~band, relayed by one or more TDAS satellites and received
[ at S-band by the user for on-board processing., The fundamental differences
between beacon and scheduled tracking relate primarily to the gignal avail-
abil1ity and format (discussed in Section 3).

1, *A glossary of acronyms is given ia Appendix F.
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The beacon signal 1s assumed to be generated by a TDAS ground terminal for
broadcast by each TDAS satellite using a single element of the 60 element
SMA antenna array. Users would receive continuous tracking signals while
within a beacon antenna's +13° field of view. The corresponding upper
limit on user altitude for 100% coverage exceeds 3100 km for all TDAS con-
stellations considered.”

In the scheduled mode, signals for tracking are available only during an
allocated contact period as part of normal SMA seryice. Since each TDAS
can support two SMA forward channels [1d], up to four simuitaneous users
theoretically could be supported with a two satellite TDAS constellation
depending on channel scheduling policy.

A block diagram of essential elements in the forward link tracking configu-
ration is shown in Figure 2-2, For FLBT support, a separate (beacon) sig-
nal generator is employed at the TDAS ground station and a dedijcated Ky~
to-S Band repeater 1s needed in each TDAS satellite [1d]. For either FLBT
or FLST, the user requires a stable frequency standard, range and doppler
extractors, a decoder for (ancillary) navigation data and a computing
facility for on-board 0D/TD processing. Also, the required ancillary data
(time reference information, TDAS ephemerides, 1ink calibrations, etc.)

1s generated by the ground segment and incorpbrated in the tracking signal.

2.2 RETURN LINK TRACKING (RLST)

An overview of the major functions involved with this alternative is shown in
Figure 2-3. During scheduled return 1ink intervals, user S-band transmissions
for tracking are relayed to the ground {(at Ky-band) by the assigned TDAS satel-
lite. Range and range-rate (doppler) data are measured at the ground and ancil-
Tary data {timing™™, position estimate, etc.) 1s decoded, The tracking data is
processed to determine the user's orbit and clock parameters (e.g., bias, drift).

*

Lower altitude coverage 1s governed by the zone of exclusion size for a

given constellation (See [1d] for details).

** This includes the user's current time and a sync word for range ambiguity
resolution at the ground.
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To support users with on-board navigation data requirements, the ground
also generates orbit and time prediction data for subsequent upload to the
user during a scheduled forward 1ink service interval, Such prediction
data could comprise algorithm coefficients for Keplerian arc and/or poly-
nominal curve fitting models [10,11]} and the applicable time intervals.

A user receives the ground-derjved navigation data and computes orbit and
time prediction between uploads. The intery+1 between uploads is an impor-
tant factor considered in the navigation performance evaluation (see Sec-
tion 5).

A block diagram of the essential elements in the return 1ink tracking con-
figuration is shown In Figure 2-4. For the ground segment, the same types
of equipment used for two-way tracking support and user orbit verification
could also be used for RLST functions. A ground computing capability would
also be necessary for user OD/TD and prediction data generatfon with ade-
quate turnaround. The user requires a stable frequency standard, means

for ancillary data generation and formatting, and a womputing facility for
navigation data interpretation and propagation between uploads. There
would be no impact on the TDAS satellite configuration with this option.

2.3 TRACKING SIGNAL AND DATA HANDLING INTERFACES

The multiple beam antenna and switch enhancements for TDAS spacecraft pro-
vide the capability for simultaneous, direct transmissions between the
space segment and several ground stations [1d,e]. This provides possibil-
jties for direct control of user spacecraft by the mission control centers
(MCC) 1nstead of interfacing through the Network Contrei Center (NCC) and
White Sands (WSN) terminal as in TDRSS (see Figure 1-1),

Figure 2-5 i1lustrates options for tracking signal and navigation data
flow with each of the one-way alternatives., Since the beacon signal for
FLBT is a general resource, it is assumed to originate at WSN, the assumed
control point for TDAS spacecraft [le]. Navigation data computed on-board
can be received by a TDAS ground terminal at the NCC directly and by MCCs
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with direct space/ground access. Additfonal interfacility transfer of
data can occur to support MCCs without direct spacd/ground access or for
general coordination and/or verificatfon functions. The Tatter jncludes
WSN which has control of TDAS spacecraft facilities (e.g., SA antenna/tele-
scope pointing).

With FLST (see Figure 2-5b) the user tracking signal 1s imbedded in the
normal uplink data communication traffic so it can emanate froin either the
NCC or a cognizant MCC. Navigation data computed on~board can be distri-
buted in the same manner discussed above for FLBT.

With RLST (see Figure 2-5c) the user tracking signa) is Imbedded in the
normal downlink data communication traffic, so it can be received by either
the NCC o» cognizant MCC, Ground processing for user 0D/TD can occur at
the Orbit Support Computer Facility (0SCF) or at the MCC with subsequent
interfacility data transfer as noted above. Since the two-way tracking
with ground-based processing is also a TDAS alternative, Figure 2 & is
included for comparison with the RLST data flow.
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SECTION 3

TRACKING SIGNAL CHARACTERISTICS

The one-way alternatives for user navigation are distinguished by tracking
signal generation, transmission, and/or processing aspects. This section
presents: a tracking signal definition far each case (including a candidate
beacon signal); results of 1ink performance analyses to assess EIRP and G/T
tradeoffs; and estimates of the measurement accuracy for range and range-
rate (doppler} tracking data.

3.1 FORWARD LINK TRACKING (FLBT/FLST)

3.1.1 Tracking Signal Definition

On-board navigation by user spacecraft, as defined, requires that the
recefved forward 1ink signals provide the means to make range and range~
rate measurements, Table 3-1 details the possible signal characteristics
for two different modes: Forward Link Beacon Tracking (FLBT) and Forward
Link Scheduled Tracking (FLST). Users may perform doppler only tracking

of the signals to obtain range-rate values, but the signals are modulated
by pseudonoise {PN) codes to also allow estimation of range delay. A chip
rate of 3.0778 Mcps is assumed here in keeping with current TDRSS practice,
although higher chip rates are perhaps possible. The employed PN codes are
unique to each user in the case of FLST and unique to each TDAS satellite in
the case of FLBT. The signals are also modulated by data, providing the user
with, as a minimum, the TDAS ephemeris and the timing information necessary
for clock synchronization purposes. It {is assumed that, in addition to on-
board navigation capabilities, user spacecraft will also possess Viterbi
decoders to permit convolutional coding of the forward 1ink data and a con-

sequent 5 dB coding gain. Current technology has already placed such decoders
on VLSI chips.

Forward Link Beacon Tracking: The ground-generated beacon signal is con-
ceived to be transmitted to user spacecraft by a single element of the
60-element TDAS SMA antenna array. Due to the large beamwidth of a single
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element, the beacon is available to all users within the TDAS field of view
(¢13°). In supporting more than one user simultaneously, however, adjust-
ment of the transmit frequency to compensate for doppler shifting between
TDAS and the user is not feasible, The conseguent search in frequency
required for a user to acquire the beacon signal may be significantly
reduced by orbit predictions from prior tracking intervals. Coordination
with other modes of tracking would provide a basis for such knowledge,
Beacon signal acquisition 1s discussed further in Section 3.1.3,

The beacon signal 1s assumed to comprise PN modulated BPSK data transmitted

at a data rate of approximately 100 bps. Such a low data rate {is consis-

tent with: the EIRP provided from a single TDAS SMA antenna element, Tow :
gain user antennas, and system noise temperatures. The data would be assem-

bled into frames of roughly 1000 bits, each frame contajning, for example:

. TDAS ephemeris parameters

- Keplerian ar¢ parameters
- ephemeris reference time
- age of data

o - AT
A

[ TDAS timing and Tink calibration parameters

- PN code epoch
- polynomial correction coefficients
- age of data

Sn T mwmrTTI U

0 Frame overhead

- frame synchronization word
= arror contro] field

(] Miscellaneous data

- almapac parameters for other TDAS satellites
- health of all TDAS satellites.

Vi-3-3




The data is assumed to be synchronous with the PN code, allowing bit syn-
chronization of the data to resoive range ambiguity, e.g., [12,13].

Forward Link Scheduled Tracking: This mode is discussed based on data for
navigation derived from scheduled forward Tink SMA transmissions. The sig-
nal structure is assumed to be the same as in TDRSS. Separate, simultaneous
command and range channel signals are transmitted using staggered quadriphase
shift keying (SQPSK) as the modulation technique. The command channel con-
tains all data and is asynchronously medulated by a short (1023-chip) PN
code, thus permitting rapid acquisition; the range channel 1s acquired sep-
arately and is modulated by a lTong (256 x 1023-chip) PN code to allow the
resolution of range ambiguity. Since data 1s contained only in the command
channel, unbalanced SQPSK modulation is em.loyed, maintaining the ratio of
power in the command channel to that in the range channel at 10 dB. The
command and range channel PN codes are time-synchronized so that acquisition
of the command channel's short code assists in acquisition of the range chan-
nel's long code. Acquisition of both the carrier frequency and PN codes is
further aided by doppler compensation so that the carrier frequency receivad
by the user is within a predictable tolerance.

3.1,2 Link Performance

Assessment of the error contribution in range and range-rate measurements

due to thermal noise depends on the received C/Ny, the ratio of signal power

to noise spectral density. Table 3-2 shows the TDAS SMA forward link budget .
used 1n this study. The TDAS satellites act as relays from the ground to

the user spacecraft, comprising a two-1ink communication system. Since the

weaker of the two Tinks constrains the overall communication performance,

only the satellite-~to-user link is considered here. Reasonable values are

assumed for the polarization and miscellaneous system losses; the path loss

is calculated assuming a satellite-to-user distance of approximately 41,000

km. The ratio C/N, for the forward 1ink is thus parameterized by the user ?i L
spacecraft's antenna gain and system noise temperature (G/T) and the EIRP ":Q
emitted by the TDAS satellite. ig E
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The maximum data rate that can be supported at a given bit error rate is
also a function of the received C/No. If a desired 10-% bit error rate,

a 5 dB gafn obtained from convelutional coding, and a 3 dB margin are
assumed, Figure 3-1 shows the achievable data rates as a function of user
6/T, parameterized by several representative TDAS power levels, For the
beacon case, decoding 100 bps ancillary data implies a user G/T requirement
> =32 dB/°K. This is not a very stringent requirement considering that a

0 dB antenna gain and a 1000° K receiver system noise temperature is easjly
attainable.

3.1.3 Beacon Signal Acquisition

The requirements for user acquisition of the beacon signal are affected

by its frequency uncertainty due to doppler shifting. As an example, the

Motorola 2nd generation TDRSS user transponder design [14] specifies a

minimum C/Ng of 33 dB-Hz for acquisition in 20 seconds with a probability

of .9, assuming a frequency uncertainty of 1.5 kHz and a two channel search . ,
in time and frequency. Figure 3-2 shows the user G/T and TDAS EIRP required o
to surpass this threshold. HWith a single-element EIRP of 25.9 dBW for the N
beacon signal, the user G/T must be greater than approximately -27 dB/°K i
to meet the conditions of the Motorola design. The uncertainty in frequency '
and time for the beacon will lead to longer acquisition times, but this

may be acceptable in the case of beacon acquisition.

P
[

To ameliorate the signal acquisition task, future user transponder designs
might use more than two channels to effect the PN code acquisition. Figure
3~3 shows a 3-channel configuration. All three channels could be used in
acquiring the beacon with a resultant decrease in acquisition time. When
scheduled service begins, one channel may remain dedicated to tracking the
beacon while the remaining two channels dcquire the doppler compensated for-
ward 1ink scheduled service. Use of the three channels could be directed

by the user's on-board computer in various handover scenarios, as suggested {j
in Figure 3-4, Furthermore, the acquisition search in time and frequency i
could take advantage of past tracking data to optimally conduct the search. {] E'
V1-3-6 hE
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o
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FIGURE 3-4:
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3.1.4 Tracking Data Measurement Accuracy

From the analyses of Appendix B, measurement wtryrors for both FLBT and FLST
modes were estimated and are shown in Table 3-3. The thermal noise calcu-
lations assume that the user G/T equals -27 dB/°K as a baseline valug;
code and carrier loop parameters are assumed to be in keeping with current
design practice. It can be seen that the range error is dominated by sys-
tematic delay errors encountered in the ground-to-TDAS link. These are
assumed to be roughly the same as specified for TORSS, with a total sys-
temapic delay of 10 meters conjectured if a routine and thorough system
calibration capability is implemented [15].

Range~-rate error for FLBT {s dominated by thermal noise, reflecting the
relatively low power of the beacon signal. Increased beacon power and, of
course, higher user G/T values would diminish the error, For FLST, phase
noise introduced by the ground frequency standard and the voltage~-controlled
oscillators (VCO's) on-~board the TDAS satellite are major components of the
total range-rate error, The estimated phase noise contribution is derjved
from consideration of possible TDAS mixing frequency schemes, as detailed

in Appendix B. The alternative of a Kz~band ground-to~-TDAS Tink versus the
Ky=band 1ink used in TDRSS introduces additional phase noise fnto range-rate
measurements due to the larger frequency multiplies Involved, thus domina-
ting the total range-rate error. Use of a crystal oscillator disciplined

to the ground cesium frequency standard would, however, improve the ground
contribution to phase noise. To estimate the impact, the analysis of
Appendix B.3 was applied using the crystal oscillator phase noise spectral
density for frequencies less than 1000 Hz and that of the cesium oscillator
for frequencies greater than 1000 Hz as an approximation to the possible
ground phase noise spectral density. This Jeads to a ground contribution
of roughly .3 mm/s with a Ku-band pilot tone and roughly .6 mm/s with a
Ka-band pilot tone. In comparison to the pessimistic values cited in

Table 3-3 (1.8 and 2.0, respectively), the improvement is significant.
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3.2 RETURN LINK TRACKING (RLST)

3.2.1 Trackjng Signal Definition

As a one-way navigation option, RLST involves the ground tracking of non-
coherent transmissions by user spacecraft using the S-band multiple access
return service. The signal structure is assumed to be consistent with
TORSS DB1 Mode 2 2] and is shown in Table 3-3. As with forward link
tracking, an ultra-stable oscillator is required on-board the user space-
craft to provide an accurate time and frequency standard. The user-unique
2047-chip Gold codes on the I and Q channels are not long enough to resolve
range ambiguity; the data must therefore be synchronously modulated by the
PN codes to allow bit and frame synchronization at the ground receiver to
eliminate the ambiguity. To support one-way navigation, the data must
contain the user's PN code epoch and timing information.

3.2,2 Link Perfcirimance

In order to evaluate the measurement errors in Return Link Scheduled
Tracking due to thermal noise, the link budget of Figure 3-5 was used to
caluclate C/Ng. As in the calculations for forward Tink tracking, the
stronger TDAS-to-ground link is neglected here. The budget assumes a G/T
figure of ~14.1 dB/°K per element of the 60-element TDAS SMA antenna array
with the 60 elements providing a theoretical combiner gain of 17.7 dB.
The received C/Ng, at the TDAS satellite (approximately equal to that
recefved at the ground) is thus a function of the user EIRP, If a 10-5
bit error rate, a 5 dB convolutional coding gain and a 3 dB margin are
assumed, Figure 3-5 shows the return link achievable data rate plotted
against user EIRP. For example, a 1000 kbps user would require an EIRP

= 0 dBW.

3.2.3 Tracking Data Measurement Accuracy

Table 3-5 summarizes the RLST measurement errors estimated using the tech-
niques of Appendix B. Salient performance characteristics of the Harris
wide dynamics demodulator were used to model the ground receiver's response

VI-3-14
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to thermal noise. As a baseline value, the user spacecraft is assumed to
transmit an EIRP of 2 dBW, thus yielding a nominal C/Ny of approximately
40,4 dBW at the demodulator. Systematic errors in range and range-rate
measurements are estimated as for the forward 1ink tracking modes. Again,
TDAS systematic delays dominate the range error value.

Range~-rate error is seen to depend most on phase noise introduced by the
ground frequency standard. This result, however, pessimistically disregards
the possible use in TDAS of a phase-locked crystal oscillator disciplined

to the cesium frequency standard. If such a method were employed, the

phase noise spectral density of the ground standard would be improved,
reducing its phase noise contribution to range-rate errors. Calculations
using the phase noise spectral density mentioned in Section 3.1.4 yield a
ground contribution of .9 mm/s for a system using a Ky-band pilot tone and
1.5 mm/s with a Kz-band pilot tone. This compares to the quoted results

of 5.7 mm/s and 8.6 mm/s, respectively. With this approximation, thermal
noise becomes the dominate range-rate error source for RLST. %
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SECTION 4

TDAS TRACKING ANALYSIS

Accurate knowledge of TDAS satellite ephemerides {is necessary for user
navigation support and TDAS orbit maintenance functions. This section
presents a preliminary analysis of TDAS satellite tracking to:

] Identify potential system configuration and operational impacts
of TDAS constellation alterpatives, and

] Estimate potential tracking accuracy based on BRTS and VLBI tech=-
niques.

An overview of the elements considered in pursuing this analysis is given
in Figure 4-1,

4.1 TRACKING CONFIGURATIONS

Several constellation/network options identified in the TDAS study [ld,e],
are {llustrated in Figure 4-2. Satellite spacings as well as frontside/
backside deployments were chosen to assess possibie coverage improvements
and data distribution alterpatives for servicing multiple earth stations
in CONUS. Distributed, direct access Tinks to/from CONUS are achieved by
satellite crosslinks and/or multi-beam antenna enhancements on the TDAS
satellites.

In terms of TDAS tracking, however, the various constellatjon options can
be reduced to two situations: frontside and backside satellites. The
following subsections discuss BRTS and VLBI tracking configurations to
support either case,
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FIGURE 4-2:
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4.1.1 BRTS Tracking

Analogous to the TDRSS implementation, two-way range and range-rate tracking
data (R,ﬁ) are assumed to be acquired with Bilateration Ranging Transponders
(BRT) operating at pairs of automated ground stations (one pair per TDAS).
Tracking transmissions originate at White Sands (WSN) with replys from a
co-1ncated BRT and one at a geographically displaced site. A typical data
rate would be 1-5 observations per minute for 5 minutes every hour, as
expected for TDRSS. [8].

Figure 4-3 1ists some geometrically compatible station pairs® that cover
four of the TDAS locations considered. (see also Figure 4-4) Two satel-
lites are at TDRS locations and a third (at 100°W) fs in full view of CONUS.
The fourth is a backside satellite (at 98°E) which requires a satellite-
satel]ite crosslink in the BRTS configuration if WHS is the base location
for originating transmissions. This impacts tracking accuracy, since meas-

urements are also affected by uncertainties in the frontside satellite orbit,

The last two BRTS configurations suggested for backside TDAS tracking in
Figure 4-3 employ two backside stations to offset the cross]ink impact. In
the first approach, one station is configured to emulate WH5 for tracking
data generation and measurement, but this would add a significant overseas
hardware and maintenance requirements. In the second approach, each two-way
measurement made between WHS and a backside station pair (Sz, Sp") is
differenced with a corresponding measurement (M) made between WHS and

the backside TDAS. The effect is to cancel systematic uncertainties in the
crosslink and frontside space/ground 1ink. However, this also increases

the noise error due to the additional measurement (M7), although increasing

the data rate sufficiently may permit additional data smoothing to offset
this. .

* Political issues regarding potential overseas sites were not considered,
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4,1.2 VLBI Tracking

The VLBI technique is under investigation as a possible BRTS enhancement
[9] with potential for high accuracy TDRS tracking. The fundamental VLBI
measurement data type 1s equivalent to the difference in range (aR) between
a signal source and two receivers displaced along a known baseline. For a
typical measurement, wideband RF signals are received at tw) sites, mixed
down to baseband and recorded over a prescribed interval. Signal phase
coherence and time synchronization are maintained at each site with an
ultra-stable frequency standard, Subsequent crosscorrelation of the two
signal streams determines the relalive difference in time of arrival which
equals (after converting to distance) the geometric range difference plus
measurement errors (random and systematic). Investigators at GSFC using
signals sampled from celestial radio sources by several VLBI stations
report capabjlities for AR measurement precision in the 0.3-3 cm range.

(20]

For the TDAS application, tracking signals asscmed to originate at WHS are
relayed by the satellite constellation to automated VLBI ground stations.
Recefved signals are time tagged and buffered and, on command, returned via
TDAS to WHS for processing. A representative measurement data rate would
be one processed pair of VLBI observations (aR) every hour per station set.
Nominally, one set of three stations with adequate baseline geometry would
be needed per TDAS satellite.

Figure 4-5 1ists some geometrically-compatible 3 station sets that cover

the 4 TDAS satellites considered-(see also Figure 4-4). The statfon sets
are grouped in terms of Tong and moderate baselines, the Tatter of interest
in a CONUS~based VLBI network for frontside TDAS tracking. For the backside
satellite, no significant impact on measurement accuracy due to the cross-
link would be expected, since the equivalent time-of-arrival differencing

in the signal processing tends to cancel common path uncertainties.
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Relative errors between sf;tions (e.g., clock synchronization and baseline
uncertainties) are a general concern, since they can have a significant
impact on TOAS 0D accuracy., A possible alternative to relieve stringent

r' calibration requirements at each station is to periodically include VLBI

' differences, i.e., AVLBI measurements in the tracking process. For this,
f additional VLBI observations derived from a known celestial radio source

‘ are subtracted from TDAS VLBI observations made for the sama station pair,
The effect 1s to cancel station time synchronization errors and reduce
effects of station survey errors on TDAS 0D accuracy.

i Of course, the AVLBI alternative would fnticducy a4d/tional equipment com=-
plexity at each station to also receive celestfal source signals. Dada
hand1ing requirements would also be increased. Equipment <ampiextiy amd

s operational aspects are important 1ssues especially $er baciside VL8]
tracking since 3 remote stations per TDAS arg {nveived compdred to 1 fcov
perhaps 2) for BRTS.

4.2 TDAS TRACKING ACCURACY
Information about TDAS orbits is assumed to be provided for user 0D/TD on

a recurring basis. User navigation performance is then a function of TDAS
orbit uncertainties 1n the interval between updates {i.e., prediction inter-

val errors). To_assess potential orbit prediction errors, an accuracy ana- E
) lysis was made of TDAS tracking with the BRTS and VLBI techniques. The -
- following subsections discuss the error medelling approach and the major E
" results. Additional details are given 1n Appendix C. |

4,2.1 Error Modelling

In this study it was assumed that TDAS QD is performed for a prescribed i
epoch via batch processing of tracking observations taken over a given data
e arc (or tracking interval). The epoch solution propagated beyond the end

i of tracking (EOT) is the satellite orbit state in the prediction interval. |
Orbit prediction error covariances were evaluated using the ORAN program,

VI-4-9
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a linear covariance analysis tool [16, 17]. ORAN was configured to compute
sate]lite orbit uncertainties versus time from epoch, given the following
input data:

(3 Initial State Vector - A1l TDAS were assumed to be in 5°, circular,
geosynchronous orbits with epoch location at the nominal longitude i
indicated in Figures 4-3 and 4-5. 3

o Tracking Station Locations - Stations pertaining to a given TDAS
and tracking technique are identified in Figures 4-3, 4 and 5
with specific locations as tabulated in Appendix C.4,

. Tracking Schedule - BRTS observations were assumed to occur at
1/min for 5 mins/hr and VLBI observations at 1/min to 1/hr*.

('} Tracking Error Model - VaJues are stated in Table 4-=1. A1) local
and dynamic errors were treated as systematic consider error
sources in the analygis.

BRTS measurement errors are consistent with values used for TDRS 0D analyses )
_ 18] assuming comparable equipment and 1ink quality, Station errors were g
’;'§’ improved by 3:1 assuming better site survey capabilities in the TDAS time-
%g frame, o
| :§i VLBI measurement errors were considered at two levels: a baseline model ;L
3 consistent with values used in studfes of a Deep Space Network (DSN) tracking :
" application to TDRSS [19] and a reduced model which reflects achieved ‘e
‘E% : capabilities with VLBI stations observing celestial radio sources [20]. :ﬁ'
{? ' Station errors were taken to be the same as BRTS for the baseline model and E
; an order of magnitude better for the reduced model. 1 |

e — .
0D performance was evaluated as a function of VLBI data rate. (See Appendix C.3).
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The tropospheric and solar pressure errors reflect modelling inaccuracies
and are standard values used in TDRS 0D studies [18,19], although some
improvement may be possibie. The gravitational errors are conservative
since further improvements are 1ikely by the TDAS timeframe,

4,2.2 Error Analysis Results

TDRS studies indicate that the choice of tracking interval and reference
epoch can significantly impact both definitive and predictive 0D accuracy,
A recent study [18] of TDRS tracking via BRTS evaluated orbit position/
velocity uncertainties over a 24 hour prediction interval™ as a function
of each parameter, Results show that a judicious combination can be
selected in which the maximum uncertainty in the prediction interval is at
or pear a minimum.

In the TDAS study it was decided to also consider $e prediction interval
as a selectable parameter. The basic ratfonale is that a sequence of
shorter prediction intervals with better accuracy may be traded off against
more frequent 0D processing for user navigation data updating, In both
BRTS and VLBI analyses efforts were made to identify multiple combinations
{epoch/tracking interval/prediction interval) which, taken together, yield
better accuracy over a 24 hour period than any one alone.

4.2.2.1 BRTS Tracking. TDAS position uncertainty was computed over a 24
hour prediction interval as a function of tracking interval and epoch for
both frontside {100°W} and backside (98°E) cases. Figure (4-6) presents
results plotted from the end of tracking (EOT) for several tracking inter-
vals with a commen epoch (sateilite local noon) assumed in each case.**

* The 24 hour interval was considered since TORS OD is planned to be per-

formed only once per day.

** Epoch times are stated as Greenwich Mean Time. The tracking configura=-
tions are based on Figure 4-3: frontside tracking - Configurations I
and [I; backside tracking (Option 1} - Configurations III and IV (T100
means TDAS @ 100°W is the relay to/from the backside TDAS @ 98°E).

VIi-4-12
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IGURE 4-6: TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL \
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In the frontside results shown in Figure (4-6a), the peak uncertainty is

due primarily to solar pressure modelling error, the leading error contri-
butor, Consequently, the peak value turns out to be an oscillatory func-
tion of epoch with a 12 hour cycle over epoch time of day. As observed in
Appendix C however, even the lowest peak values exceed, by at least 30%,

the pesition uncertainty for the 18 hour tracking case in tha 12 hour

period after EOT (see Figure 4-8a), Also, because of the 12 hour cyclic
property, approximately the same error profile occurs with epoch placed

at Tocal midnight. Thus, orbit predictions from two 18 hour tracking
intervals with epochs at noon and midnight could be concatenated to produce
a comparatively flat prediction error profile over 24 hours. Comparison

of the maximum prediction uncertainties and primary contributors for contin-
unus and concatenated cases {s shown in Table 4-2, o

Fe ; backside case shown in Figure 4-6b, the results are also dominaﬁpd
by solar pressure effects. However, they also reflect the frontside TDAS Yo
orbit uncertainty which was assumed in this analysis to be constant (at

the 100 m Tevel) correspondinig to the concatenated 12 hour prediction i
results discussed above. No significant benefit is apparent from using a

similar approach in this case based on 36 hour tracking, since the peak sl
uncertainty over 24 hours s nearly the same as over 12 hours. A compari- \
son of the peak values and primary error contributors can be made from the
data in Table 4-2. Corresponding peak TDAS velocity errors are in the SR
8 mm/sec and 19 mm/sec range for the frontside and backside tracking cases, '
respectively.

The preliminary observation here is that the orbit prediction uncertainty
over 24 hours for the backside TDAS (with tracking configuration Option 1%)
is apparently more than double that for the frontside TDAS. Certainly
further analysis is warranted however, to evaluate possible improvements
that alternative configurations and/or processing approaches may yield, e.qg., ;

* Tracking configuration options are defined in Figure 4-3, -
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. Backside tracking configuration Options 2 or 3* which utilize
another backside station,

. Joint data processing for frontside and backside TDAS 0D that
accounts for mutual error source correlations that an independent
solution (assumed here) does not.

4,2.2.2 VLBI Tracking. TDAS position uncertainty was computed over a
24 hour prediction interval as a function of the VLBI tracking interval
and TDAS location for two error models defined earlier in Table 4-1. One

1s a conservative (baseline) error model and the o*ther is a more optimistic
(reduced) error model.

Figure 4-7 presents results for the baseline model plotted from the end of
tracking (EOT) with a common epoch (satellite local noon) assumed in each
case. The results in Figure 4-7b indicate that VLBI! tracking performance
ts relatively insensitive to TDAS location, frontside or backside.

As shown in Appendix C, solar pressure modelling error is a major contri-
butor for the Tonger tracking intervals (> 18 hours). Since this effect

is also cyclic with epoch time of day, essentially the same error profiles
result with epoch selected at local midnight. Thus, if the prediction
interval segments for 18 and 36 hour tracking are concatenated appropriately,
a significantly Tower prediction uncertainty over 24 hours could be achieved
than with any individual case alone.**

With the shorter tracking and prediction intervals (< 12 hours), measurement
and local error sources (noise, bias and station survey) are dominant ele-
ments. As iTlustrated in Figure 4-7a however, the prediction uncertainty
increases significantly as the tracking interval decreases. While a slight
improvement in prediction performance can be achieved by also estimating

* Tracking configuration options are defined in Figure 4-3.

*Results with VLBI bias estimation are given in Appendix C.3. These shaw
that prediction segments for 18 and 12 hour tracking segments would give
somewhat better accuracy that the 18 and 36 hour combination.
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f FIGURE 4-7; TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL \

VS. VLBI TRACKING INTERVAL AND TDAS LOCATION
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the VLBI measurement bias, no really significant benefit is apparent from

using shorter tracking and prediction intervals, when VLBI measurement and
local errors are at the levels assumed in the baseline model. However,

if a VLBI implementation can be realized with these errors at the level assumed
in the reduced model, a different situation emerges.

Figure 4-8 compares TDAS position uncertainties for short tracking and
prediction intervals for both error models. In the latter case, the lowest
position uncertainty over a given prediction interval occurs with & hour
tracking. As observed in Appendix C, this is essentially the cross-over
region between tropospheric and solar pressure effects with the latter
becoming significant for longer tracking/prediction intervals. Thus, a
sequence of short prediction intervals (e.q., 1 hour) could provide a
position uncertainty in the range of 10 - 15m,

Figure 4-9 shows examples of TDAS position uncertainty from using multiple

(concatenated) prediction segments over a 24 hour period., In the baseline

case (Figure 4-9a)+ the uncertainty ranges from 50 - 80m using 4 segments " l
based on 18 and 36 hour tracking or 50 - 70m based on 18 and 12 hour track- 3
ing with VLBI measurement bias estimated. In the reduced case (Figure 4-9b)+ ; '
the error ranges from 10 - 12m using 24 one hour segments based on 6 hour -
tracking intervals with epochs spaced one hour apart, A second curve based
on 5% tropospheric error shows the improvement (to 5 - 8m over 24 hours)

if better tropospheric error correction can be achieved., A comparison of
the peak errors and primary error contributors in each case is given in
Table 4-3, Maximum TDAS velocity errors corresponding to these position
error results are at the 6 mm/sec and 1 mm/sec levels for the baseline

and reduced error models, respectively.

* The assumed VLBI data rate of 1/hr (one &R pair/hr) is more representa-
tive that the 1/min rate assumed in Figures 4-7 and 4-8. Nevertheless, .
the computed results for these tracking intervals are identical with
either rate. Tables C-1 and C-2 in Appendix C show the jmpact cn pre-
diction uncertainty for other tracking intervals.
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The foregoing results 1llustrate the significant improvement in TDAS 0D
accuracy that the VLBI technique could potentially provide. Moreover, this
would apply to backside TDAS tracking as weil, since crosslink range uncer-
tainties are inherently cancelled out, It must be emphasized however, that
achieving a 10m capability implies having measurement and station survey
uncertainties #t 4 level consistent with the reduced error model and using
appropriate batch tracking/prediction interval combinations {or equivalent
scheme) for OD processing. Thus, important areas for further study fnclude:

. VLBI measurement precision (noise) with TDAS-based signals,

) Alternatives for VLBI tracking network calibration (time synchro-
nization and baselines)

- via AVLBI measurements (see discussion in Section 4.1.2) or

- via terrestrial microwave 1inks™ and a geodetic survey
recefver (e.g., GPS [21]),

] 0D processing options

~ Algorithm (batch vs sequential)
- Update rate vs predfctfon interval.

* This is applicable to CONUS-based tracking configurations (e.g., a con-
nected element interferometer network) currently under study for TDRS
[9]. Some preliminary results for TDAS are given in Appendix C.2.3.
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SELTION 5
USER NAVIGATION FERFRAMANCE EVALUATION

User navigation via TDAS is based on computing orbits and time from range
and range-rate measurements and known TDAS orbits. This section presents
an evaluation of potential navigation performance in terms of 0D/TD accur-
acy for the three one-way tracking alternatives defined in Section 2.

5.1 OVERVIEW OF APPROACH

Figure 5-1 gives an overview of the elements considered in the apalysis.
Cases for evaluation were defined to assess several types of user orbits
and the fmpact of TDAS constellation options, different tracking schedules
and two algorithms for tracking data processing (sequential and sliding
batch}.

Fitmw T Tz

To evaluate user 0D/TD accuracy two error analysis programs were employed:

¢  SEA Program {22] - for tracking based on sequential processing /
of measurement data, and

= Foaligll ¥~ - it U B
- b

) RDGT{?5 [23] - for tracking based on batch processing of measure-
ment data.

it ofiice8

Given a tracking schedule and nominal TDAS and user orbits each progranm 4
computes 0D/TD error covariances and sensitivities versus time with respect
to measurement noise and other applicable error sources. The following
subsections discuss the tracking configurations and methodology, the

error model1ing approach and the major results. Further detailed results
are contained in Appendices D and E. i
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5.2 TRACKING CONFIGURATIONS AND METHODOLOGY

TDAS constellation and user orbit types considered in the performance
evaluation are defined next. Then, tracking data c~heduling and procassing
options assumed for the three tracking alternative: (% 3T, FLST and RLST)
are discussed.

§.2.1 TDAS Constellations

The various constellation/network options considered in the TDAS study
were discussed in Section 4. For purposes of this evaluation the three
constellations shown in Figure 5-2 were selected. Option 1 1s analogous
to TDRSS with two satellites spaced 130° apart which provides 85-100%
coverage at altitudes down to 200 km.* Option 2 also uses two satellites,
but with the maximum allowable spacing, 162°**, which yields 98-100%
coverage, Option 3 has three satellites, two deployed as in Option 1

and a third on the backside, which together provide 100% coverage.

5.2.2 User Qrbits

Six orbits were selected to compare navfgation performance for various
‘orbit altitudes as shown in Figure 5-3. As is evident from Appendix A,
(Table A-1), they are alsc indicative of the majority of potential

user orbits in the TDAS mission model.

The low altitude (high drag) orbit types are of interest to determine
whether more frequent tracking data, available with FLBT, is of significant
benefit., The high and low inclination orbit types are of interest, since
their coverage and geometrical properties can differ significantly.

In the high inclination case, the % coverage is generally greater, but
opportunities for (good) doppler tracking can be reduced.. This occurs
whenever the user orbit normal points sufficiently toward a TDAS, thereby

* s . . y -
A detailed discussion of coverage characteristics as a function of

satellite spacing is given in [1d].

** This is to avoid earth occulation of the TDAS-TDAS crosslink.

VI-5-3

T ———

i -

——-
iy



€l

ORIGINAL PAGE I3
OF POOR QUALITY

FIGURE 5-2: TDAS CONSTELLATION OPTIONS CONSIDERED
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reducing the range change over a pass. In the 1imit, there is no range
change (zero doppler), yet full visibility.

5.2.3 Tracking Data Processing and Scheduling Methodology

One-way range and range-rate (R,R) are the fundamental data types employed
for user 00/TD with each tracking alternative. System configurations

and technical considerations for deriving these data were covered in
Sections 2 and 3, This discussion pertains to measurement scheduling

and processing aspects that were assumed for the performance evaluation.

Two algorithms for tracking data processing were considered: sequential
and sliding batch. In the sequential case, estimated parameters (e.g.,
position & velocity; ¢lock bias & drift) are updated after each measurement
and propagated forward between measurements and/or tracking passes.

For this analysis an extended Kalman filter was assumed to be employed.

In the sliding batch case, selected parameters are estimated for a pre-
scribed epoch via standard weighted least squares processing of tracking
observations taken over a given data span (T). Current estimates are
derived by propagating the epoch solution over a specified interval (P)
beyond the end of tracking and whatever computation/data handling interval
(C) is required. In other words, current estimates are predictions in

the interval, C to C+P, beyond the end of tracking. For each successive
batch the process is repeated with the epoch and tracking interval advanced
by P.*

Table 5-1 Tists the tracking algorithm and measurement scheduling options
considered in the performance evaluation for each alternative. Only
sequential processing was assumed for FLBT, since the sTiding batch approach
was felt to be inappropriate for on-board OD/TD in view of the tracking

data volume and associated computation/data handling requirements. For

FLST and RLST, two tracking schedule types were considered based on
acquiring data every other orbit (Schedule I) and every orbit (Schedule II).

* Since P>C, predictions for all batches extend at least 2C beyond the
data span. In a sense, 2C is a measure of estimate "staleness".
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For sI?ding batch uses, the tracking data span was considered as
a parameter to be selected with possible values ranging from 6-24 hours.

5.3 TRACKING ERROR MODELING AND COMPUTATION

In this study user navigation was evaluated from QD/TD error covariance
computations using the SEA and RDGTDS programs [22, 23]. Figure 5-4
11lustrates some hypothetical error profiles which indicate the peak
errors and time intervals of interest for the options considered:

" Sequential Processing - For FLBT and FLST, user 0D/TD accuracy
was defined as the peak error occuring over 24 hours with track-
ing intervals scheduled according to Table 5~1. For RLST,
this criterion also applies to ground-based operations, but
not necessarily for on-board navigation. Since navigation
data updates would be available only on a recurring basis,
user 0D/7D accuracy was defined instead as the peak error
in a prediction-only mode between uploads.

¢ Sliding Batch Processing - For FLST and RLST, user QD/TD accuracy
was defined as the peak error occurring over 24 hours in a series
of batch-derived prediction intervals (P), see Figure 5-4. This
is defined by the number of batches/day for FLST and by the
navigation data upload rate for RLST. In either case, the mini-
mum interval for P js governed by the 0D/TD computation/data
handling time (C) from the end of any tracking span.*

To obtain user QD/TD uncertainties as a function of various parameters
the SEA program was utilized for sequential processing cases and the
RDGTDS program for batch processing. Error covariances and budgets were
computed given the following input data (see Figure 5-5):

E3

In Figure 5-4, C=10 minutes (for RLST) is based on anticipated ground-

system processing capabilities [4]; C=90 minutes (for FLST) is based
on LSI-11 type on-board computing capabilities planned for evaluation
in a TDRSS forward 1ink doppler tracking experiment [7].
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FIGURE 5-4: PERFORMANCE DEFINITIONS FOR 0D/TD
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» User Location - A user was assumed to be 1n one of the orbits

(A-F} indicated 1n Figure 5-2 with an inftial location at 0°N,
0°E for the orbit selected.

] TDAS Location ~ A1l TDAS were assumed to be in 5° circular,
geosynchronous orbits with initial location at the nominai
longitude 1ndicated in Figure 5-1 for the selected constellation
option (1, 2, or 3).

] Tracking Schedule = (R,ﬁ) measurement times were set up to
occun at the rate defined in Table 5-1.

® Tracking Model Parameters - Yalues are stated in Table 5-2

TDAS users were assumed to estimate, as a minimum, 8 basic parameters:

3 position and 3 velocity states and two clock states, bias and drift,
Unestimated parameters were treated as systematic (consider) error sources
in the analysis. $Since the analysis {s linear, the results for any parti-
cular error source may be scaled up or down to note the impact of different
a priori uncertainties.

Errors due to atmospheric drag were modeled with two interpretations of
uncertainty in the drag coefficient (Cp). For the highest altitude orbits
Cp was assumed not to be estimated, so 25% of the nominal value was taken
as the consider error, a typical choice [24,33,34]. At altitudes where
effects may be significant (e.g., orbits A,B,D,E) Cp was assumed to be
estimated, but fmperfectly. The residual component was treated as a
consider error with a lo value equal to 2.5% of the nominal Cp. In other
words reducing the a priori uncertainty by estimating Cp was assumed only
90% effective.

Values for uncertainties in the other dynamic parameters (GM, gravitational
harmonics and solar pressure coefficient) are undoubtedly conservative for
the TDAS time frame. Sequential processing results are based on the GEM9

errar model [35], resident in the SEA program. Sliding batch results were
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TABLE 5-2: TRACKING MODEL PARAMETERS

PARAMETER A PRIOR1 UNCERTAINTY
USER [ H,cC,L 500 M
ORBIT | H,C,L 1 M/sEC
ESTIMATED
USER (B 1 MSEC
cLOCcK 200 NSEC/SEC
USER ORBlTs 251
? ? USER ORBITS *
AL D, 2.5%
GRAY. CONST, GM 0.25 PPM
GRAV. HARMONICS (LUMPED) 1002 GEM9 ERROR OR
UNESTIMATED
SYSTEMATIC (12 x 12) v (GEM%-GEMY)
( ERRORS )
SOLAR RADIATION, CR 102
R 10 M
SYSTEM BIAasEs &
H R 1 MM/SEC
TDAS JH,C,L 25,23,40 M
ORBIT {H,C,L 3, 2, 3 MM/SEC
USERIRC @ 10-10 PARTS/DAY
RANDOM
MEASUREMENT RANGE il 5K
ERRORS RANGE RATE aj 5 MM/SEC
PARAMETER VALUE T
SEQU ; 108 12ree3 ?RB‘T=
=2 mé/secd (A,D
- USER VEL, § -
TRACKING R VEL. STATE Noise {10 12 y2/5e03 (8,c¢,E,F)
PROCESSO - -
L CLOCK RATE STATE NOISE 1076 NsEc?/sec?® (aLL)
PARAMETERS
BATCH:
~ TRACKING INTERVAL 6, 12, 18, 24 HOURS

* DRAG COEFFICIENT (Cp) IS ASSUMED TG BE PARTIALLY ESTIMATED WITH A RESIDUAL
UNCERTAINTY TREATED AS A CONSIDER PARAMETER.

(NOMINAL Cp = 2.0, USER AREA/WEIGHT = .00272 H2/KG)

\ s 8| STANFORD
Ll TELECOMMUNICATIONS INC.
VI-5-12
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derived with the GEM9-GEM? error model, the closest option resident in
RDGTDS.

Constant values assumed for TDAS orbit uncertainty correspond to lg errors
of approximately 50 m in position and 5 mm/sec 1n velocity. Results given
in Section 4.2 indicate that this accuracy level would still be fairly
conservative based on VLBI tracking for TDAS. It would be optimistic by
at least 2:1 for BRTS tracking”.

Errors in the tracking measurements (R.ﬁ) were definad in terms of random
errors and system biases., Values used for the random errors and the range
bias error are representative of the results given in Section 3 (see Table
3-3), The 1 mm/se¢ for range-rate bias was included only to observe poten-
tial sensftivity.

Frequency drift 1n the user's reference osciilator appears as a doppler
rate error which affects range-rate measurement accuracy and as a clock
bias acceleration error (E) which affects ranging accuracy. Oscillator
drift was defined as a consider error with a lo value of 10~10 parts/
day, a level consistent with currently existing quartz oscillator tech-
nolagy.[32]

Other modelling parameters involved in the analysis pertafn to tracking
data processor tuning for achieving "best" performance in some sense. In
the sequential case, state nofse parameters are used as an artifice for
adjusting the Kalman filter gafns to control the weight given to prior
estimates. The objective is to achieve a balance between uncertainties
introduced by new measurements and those caused by propagating prior esti-
mates with an imperfect dynamical model. The values shown in Table 5-2
were found to give good results fn various test runs™™ and were adopted

* This assdhes the minimal BRTS tracking configuration using two stations

per TDAS {see Figure 4-3).

** As implemented in the SEA program [22], state noise has no connection
with physical disturbance phenomena acting on the user gpacecraft or
clock, although in theory, there could be.

VI-5-13




as a baseline set for most cases considered. In the sliding batch case,

the tracking interval choice can be made with the same objective 1n mind.
Four durations given in Table 5-2 were considered in each case and the one
ylelding the lowest peak error in a 6 hour prediction interval from end of
tracking was selected,

5.4 NAVIGATION PERFORMANCE RESULTS

TDAS user navigation performance was evaluated in terms of potential 0D/TD
accuracy for each of the one-way tracking alternatives. Results were
obtained as a function of user orbit type, TDAS constellation option,
tracking schedule and two processing algorithms. This section presents a
summary and interpretation of the significant data, More detailed informa-
tion can be found in Appendices D and E.

5.4.1 Evaluation Cases

Potential cases for evaluation were defined by the six user orbit types ‘
in Figure 5-2 and three constellation options in Figure §-3. For each o
case, five subcases were defined based on processor type (sequential or .

s1iding batch) and tracking schedule (I, Il or beacon).* Altogether, 90 .
combinations were identified and 48 of these were evaluated as indicated j
in Table 5-3. ' Co

For each case, user position and time error profiles were computed for P
a 36 hour period (the last 12 hours in predict-only mode). From these '
the peak errors for assessing performance were determined as defined

in Section 5,3 and Figure 5.4, Appendix D presents error profiles and

corresponding tracking schedules for sequential processing. Appendix E

has corresponding results for s71iding batch processing, Results for

all cases were based on the nominal model parameters given in Table 5-2

except for certain processor tuning parameters noted specifically on

error profile plots in Appendices D and E.

* Recall Table 5-1,

VI-5-14 P
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5.4.2 Sequential Data Processing Results

Navigation performance data based on the eiror analysis results in Appendix D
are presentad in terms of user position and time accuracies as summarized

in Figures 5-6 and 5-8. Corresponding position and time error budgets

are given in Figures 5-7 and 5-9,

5.4.2.1 User Position Accuracy. Figure 5-6 11lustrates that in low
altituge orbits where drag is a factor, performance depends heavily

on frequent data availability. Beacon tracking is elearly superior

"in this respect. At higher altitudes this is not the case and all three
tracking alternatives can given comparable perfaormance,

With respect to the various TDAS consteilations, Option 3 gives typically
better performance due to better geometric distribution of the tracking
data available with three satellites., In the two sateilite constellatinns,
Optfon 1 with (130° spacing) is better in the high inclination orbits,
while Qption 2 (with 162° spacing) is better in Tow inclination orbits.
Although Option 2 provides nearly full coverage (> 98%), the performance
for high inclination users is sensitive to poor geometry conditions

for doppler tracking. This occurs twice a day when the user orbit normal
points in the general direction of each TDAS. Consequently a tradeoff
exists between maximum TDAS spacing (162"} for best coverage and lower
spacing to achieve better Q0 performance.

Figure 5-7 jndicates the major error componants affecting 0D performance.
Those due to unestimated (consider) parameters are: gravitatjonal! harmonics
(H), drag (D) and TDAS ephemerides (E). The noise component (N) is

the random ervor in user position which is controllable by filter tuning
parameters.* Ideally the filter should be tuned to reduce the impact

* By adjusting filter gains to partially deweigh prior estimates random

errors arising from measurement and a priori uncertainties do not
continuously decrease as the number of measurements increases. Rather
a "noise floor" (not necessarily constant over time) is reached,

which is controllable using velocity state noise tuning parameters,

{22, 37]
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FIGURE 5-6:
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s

of the dominant consider parameter(s} without excessively increasing
the noise component. Figure 5-7 suggests that the modelled filter is
somewhat overtuned for the 28°, 200 km orbit, about right for the 97°,
200 km orbit and undertuned for the higher altitude orbits.

In the high inclination, high altitude orbits (98°, 600/1000 km) gravitational
harmonic modelling uncertainty is typically the dominant error contributor.
This 1s also the case at Jow altitude with beacon tracking since filter
tuning acts more to suppress the drag contributfon. At low altitudes

with scheduled tracking, drag is the dominant contributor in all cases.

TDAS ephemeris error s typically a secondary contributor. A1l of the

other consider error sources identified in Table 5-2 are comparatively
insignificant including user oscillator drift.

Also indicated in Figures 5-6 and 5-7 are user requirements extracted
from the TDAS mission model (see Appendix A). Most would be met with
beacon tracking and in many‘cases with scheduled tracking based on error
analysis results using the assumed models. Meeting the more stringent
requirements would imply some improvement in key error sources. For
example, in the 93°, 600 km orbit with TDAS Constellation Optien 1,

the impact of gravitational harmonic modelling errors would have to
decrease by at least 5:1 and TDAS ephemeris error by 2:1. Filter re-
tuning would decrease the noise component so the net effect of all con-
tributors would be < 10 m. Such reductions could also Tead to meeting
the most stringent requirement (30 m) at a Tower altitudes assuming

no change in the modelled drag uncertainty,

5.4.2.2 User Time Accuracy

Figure 5-8 indicates that TD performance is uniformly better with beacon
tracking (< .25 pusec) than with scheduled tracking in all four orbits.
Nevertheless, performance with the scheduled aiternatives is sufficient
to meet the most stringent user time requirement (1 usec) ijdentified

in the TDAS mission model.
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( FIGURE 5-8: TDAS USER TIME ACCURACY VS TRACKING ALTERNATIVES \ |
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Figure 5-9 shows the error contributors affecting TD performance. With
FBLT, TDAS ephemeris errors tend to dominate., With FLST and RLST, in

the high altitude orbits, gravitational harmonic errors are also a primary
contributor. In the lower altitude orbits the TD errors due to the

drag uncertainty increase but are still secondary. User oscillator

drift is also a secondary source in all cases except for RLST if the
interval between navigation data uploads begins to exceed 3 hours.

5.4.3 S1iding Batch Data Processing Results’

Navigation performance data based on the error analysis results in Appendix E
are presented in terms of user position and time accuracies as summarized

in Figures 5-10 and 5-12. Corresponding position and time error budgets

are given in Figures 5-11 and 5-12, FLST results are shown for batch
intervals (P) of 1.5 and 3 hours.™ RLST results correspond to navigation
data uploads at ~ 1, 2 or 3 orbit intervals.

5.4.3.1 User Position Accuracy. Figure 5-10 indicates that user position ‘
grrors in low altitude orbits are substantially higher than the sequential b
provessing results, At higher altitudes hawever, 0D performance is E
comparable. In efther case no significant 0D performance difference
was observed with respect to the two satellite constellation options
(1 and 2) studied. W

Figure 5-11 indicates the major error contributors affecting 0D performanca.
At low altitudes drag is dominant even though a tracking interval of

only 6 hours was used, For the higher altitude orbits a longer tracking
interval (18 hours) was found to give better performance; consequently

user oscillator drift became a significant contributor along with gravi-
tational harmonic error,

See Figure 5-4. The assumed computation/data handling interval (C)
was 1.5 hours for FLST and 10 minutes for RLST as discussed in Section 5.3.
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( FIGURE 5-9: MAXIMUM USER TIME ERROR CONTRIBUTORS OVER 24 HOURS

VS TDAS CONSTELLATION AND TRACKING ALTERNATIVE
(SEQUENTTAL PROCESSING)
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FIGURE 5-11
MAXIMUM USER POSITION ERROR CONTRIBUTORS QVER 24 HOURS VS TDAS

CONSTELLATION AND TRACKING ALTERNATIVE (SLIDING BATCH PROCESSING)
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With respect to meeting user requirements these alternatives would not

be goed candidates in low altitude orbits. However, at the higher altitudes
all but the most stringent requirement (10 m) could be met based on

the error analysis results, Metting the 10M requirement would imply

some improvement in key error sources, e.g., a decrease in gravitational
harmonic errors by at least 4:1, TDAS ephemeris error by 1.5-2:1 and

user oscillator drift by 5:1.

5.4,3.2 User Time Accuracy. Figure 5-12 indicates that TD performance
is at best 2.5-3 usec. This 1s significantly lower than with sequentiai
processing and would not meet the most stringent time requirement of

1 psec.

Figure 5-13 shows that the dominant error contributors are the same
as for user position error -~ drag at low altitudes and user oscillator

drift at high altitudes.
5.4.4 Observations

A summary of user navigation performance based on the error analysis
results s given in Table 5-4, In addition, the following observations

can be made:

(] Sequential Procassing

- At Tow altitudes (e.g. <400 km) beacon tracking (FLBT)
provides significantly better orbit determination (0D)
accuracy than scheduled alternatives (FLST, RLST). The
latter are both highly sensitive to tracking frequency
and RLST to NAV upload rate.

- At higher altitudes all three alternatives provide compair-
able 0D performance.
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- Performance projections based on error source improvements
indicate that FLBT could satisfy all users in the TDAS
mission mode] with position accuracy reqts. down to 10m,
For this accuracy error sources requiring improvement
include:

-- gravitational harmonic modeling (> 5:1 reduction
in GEM-9 errors)

-= TDAS tracking accuracy (to 25m - pos., 2.5 mm/s -
val,)

- Time determination (TD) 1s better than 0.25 usec with
FLBT and better than 1 pusec with FLST and RLST.

. S1iding Batch Processing

- Results for FLST and RLST indicate that compared to sequential
processing:

-~ QD performance tends to be worse for low altitude
orbits (< 400 km) where drag is the dominant error
source and comparable to or slightly better in higher
orbits where user oscillator drift is also 4 major
grror sotirce.

-~ TD performance is worse (3 2.5 usec) for all orbits

considered and particularly sensitive to the tracking
interval duration.

yI-5-28

& T
At st

—0
| T

¥ .




ORIGINAL PAGE 9
TABLE 5-4 OF POOR QUALITY
SUMMARY OF USER NAVIGATION PERFORMANCE EVALUATION
el
AARIRG USER ORBIT
JATA EVALUATIN
PROCESSING ITEms 200 KN 60071000 KN
ALGORLTI i [ 97 98*
- .
® FLOT, FLST & RLET CAN GIVE
OREIT o FLBT {5 SIGHIFICANTLY BETTEM THAN FLST & RLST COMPARABLE RESULTS WITH :
ACCURACY o FLAT COULD MEET ALL REQUIRENENTS [N TDAS NISSTON APAROPRIATE FILTER TUNING
MOOEL, OEPENJING OM CUMSTELLATION USED, . :uvcgum WEET REQUIRENENTS
o ALL OPTIONS MEET ACCURACY o OPTION 3 KAS SLIGHT
s REGUTRENENTS ® ETIRNT Jromes e ACCURACY AOVANTAGE ;
O ™ o OPTION J OFFERS UP 70 211 DUE 70 POOX GEQMETRY i L ‘
ADVANTAGE RECURRIMG TWICE PER OAY PARABLE ."l
LEADING ERROR Al e B Ee D .
Hy Ko € :
JEOUEHTIAL |  CONTRIBUTORS ' T ’ .
{FLST —— ———— — - — e
RLST ’
Tine » FLBT [S SUPERIOR FOR ALL CASES [NINIMUM ACCURACY ¢ 0,25 uSEC)
ACCURACY ¢ FLST & ALST (MITH UPLOAD RATE ¢ 3 HOURS) ALSO MEET MOST STRINGENT REQUIREMENT (1 usac)
ty
i
™S, N
cms‘{z”ué;:m o ALL OPTIONS GIVE COMPARASLE RESULYS FOR A GIVEM TRACKING ALTERMATIVE E
¥
y
. i
CONTR BT ne Mo Eu Mg '
s (T » NEITHER FLST OR RLST MEET TOAS MISSION MOOEl. & BOTH FLST & RLST COULD
ACCURAGY REQUIREMENTS REQUIREMENTS > 30 M R
LEADING ERROR
- b d, Eo H
SLIDIHG CORTRIBUTORS ’
BATCH
FLST —— e —— e e e e § .
RLST :
A » MAKIMM ACCURACY FOR ANY ALTERMATIYE IS 2.5 uSec
LEADING ERADR
CONTRIBUTORS ™™ ¢ 0, E. H
o QRTION 1 (2 S/C, 120° APART); OPTION 2 (2 $/C, 162° APART): OPTICN 1 {3 S/C).
ERROR SOURCES: M = MEASUREMENT NOISEs £ = TUAS ORBIT UNCERTAINTY; 0 « RESIDUAL ORAG HODELLIHG ERROR,
H + GHAYT]ATIONAL MARMONIGS MODELLING ERAOR, 0  USEA OSCILLATOR CRIFT, :
{ARULIGERE) T [ TABLE HOT AECESSARILY IN QROER OF SIGNIFICANCE.) )
3
i
STANFORD J |

TELECOMMUNICATIONS INC,

-

St

\

VI-5-29

i S e 7 1




SECTICR 6

STUDY SUMMARY AND CONCLUSIONS

The TDAS navigation architecture study has focused on three TDAS-based
one-way tracking alternatives for providing user orbit and time determi-
nation (00/TD). This section presents a functional overview and require-
ments summary for each alternative, summaries of potential user navigation
performance and TDAS tracking accuracy, and the conclusions reached from
the study.

6.1 FUNCTIONAL OVERVIEWS AND REQUIREMENTS SUMMARY (2, 3)*

The proposed TDAS architecture design [la] would extend TDRSS navigation
and data relay capabilities to support:

[} beacon tracking (FLBT) via an independent beacon signal, and

. scheduled one-way tracking (FLST, RLST} via enhanced multiple
and single access (MA, SA) services.

A functicnal overview of each alternative is presented in Figure 6-1.

The beacon signal is assumed to be generated by a TDAS ground terminal for
broadcast by each TDAS satellita using a single element of the S-band MA
antenna array. Users would receive continuous tracking signails while within
a beacon antenna's %13° fiaeld of view. The corresponding upper Timit on
user altitude for 100% coverage exceeds 3100 km for all TDAS constellations
considered. Lower altitude coverage is governed by the zone of exclusion
{Z0E) size for a given constellation.

In the scheduled modes, signals for tracking are available only during an
allocated contact period as part of normal MA or SA service., Since each

* Numbers in brackets ( ) refer to preceding sections with full details.
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FIGURE 6-1: ONE-WAY NAVIGATION ALTERNATIVES -~ FUNCTIONAL OVERVIEMW
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TDAS can support two S-Band MA forward channels and efght SA channels,
up to 20 simultaneous users theoreticaily could be supported for FLST with
a two satellite TDAS constellation depending on channel scheduling policy.
Similarly, for RLST up to 20 simultaneous MA users theoretically could be
accomodated, since each TDAS can support ten return S-Band MA channels.

Table 6-1 11sts varfous system requirements for supporting each l-way
alternative. Table 6-2 summarizes characteristics of the tracking signals
assumed 1n each case fncluding estimates of metric tracking data (R, ﬁ)
accuracies based on transmission 1ink performance analyses.

The multiple beam antenpa and switch enhancements for TDAS spacecraft pro-
vide the capability for simultaneous, direct transmissions between the
space segment and several ground statfons [1d,e]. This provides possibil~
ities for direct control of user spacecraft by the mission control centers
(MCC) instead of fnterfacing through the White Sands (WSN) terminal and/or
Network Control Center (NCC) as in TDRSS.

Figure 6-2 1llustrates options for tracking signal and navigation data
flow with each of the one-way alternatives. Since the beacon signal for
FLBT is a general resource, it is assumed to originate at WSN, the assumed
control point for TDAS spacecraft. Navigation data computed on-board can
be received by a TDAS ground terminal at the NCC diractly and by MCCs with
direct space/ground access, Additional interfacility transfer of data can
occur to support MCCs without direct space/ground access or for general
coordination and/or verification functions. The latter includes WSN which
has control of TDAS spacecraft facilities (e.g., SA antenna/telescope
painting).

With FLST (see Figure 6-2b) the user tracking signal is imbedded in the
normal uplink data communication traffic so it can emanate from either the

NCC or a cognizant MCC. Navigation data computed on-board can be distri-
buted in the same manner discussed above for FLBT.
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With RLST (see Figure 6-2¢)} the user tracking signal is imbedded in the
normal downlink data communication traffic, so it can be received by either
the NCC or cognizant MCC. Ground processing for user QD/TD can occur at
the Orbit Support Computing Facility (OSCF) or at the MCC with subsequent
Interfaciiity data transfer as noted above., Since two-way tracking with
ground-based processing 1s also a TDAS alternative, Figure 6-3 provides a
comparison with the RLST data flow.
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6.2 USER NAVIGATION PERFORMANCE SUMMARY

To assess the potential navigation performance with each of the one-way
alternatives, user 0D/TD accuracy was evaluated as a functioen of various
parameters and compared with requirements 1n the TDAS mission model.
Figure 6-4 gives an overview of the elements involved in the analysis.

User Orbits and TDAS Constellations (5.2) - Options considered are shown

in Figure 6-5. Constellation Option 1 is analogous to TDRSS with two
satellites spaced 130° apart which provides 85-100% coverage at altitudes
down to 200 km. Option 2 also uses two satellites, but with the maximum
allowable spacing, 162°, which yields 98-100% coverage. Option 3 has three
satellites, two deployed as in Option 1 and a third on the backside, which
together provide 100% coverage.

The low altitude (high drag) user orbft types are of interest to determine
whether more frequent tracking data, available with FLBT, is of significant
benefit, The high and low inclination orbit types are of interest, since
their coverage and geometrical properties can differ significantly.

Tracking Schedules/Processing Algorithms (5.2) - For the FLBT mode, the
schedule was assumed to be continuous for a selected TDAS with metric
tracking data (R,ﬁ) processed sequentially. For the FLST and RLST modes,
the tracking schedule impact was assessed based on tracking every orbit
and every other orbit during a 10 min pass/TDAS. Also, navigation perfor-
mance was evaluated for both sequential and sliding batch® data processing.

Error Modelling - User OD/TD error was computed via covariance analysis
programs [22,23] given nominal TDAS and user orbits, a tracking schedule
and processing approach, and appropriate models of the %racking error
sources. The latter comnrised measurement errors and various systematic
errors, e.g., gravitational harmonic modelling error, drag modelling error,
TDAS ephemeris arror, user oscillator drift affects, etc.

* Details are given in Section 5.
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Table 6-3 11sts the baseline modelling assumptions made for these partic-
ular error sources and their relative impact on achieving a 40 M 0D accu~
racy with beacon tracking in the user orbits considared. In this case
gravitatfonal harmonic error dominates, so TDAS epheimeris error is only

a secondary effect, The projected requirements indicate the gravitational
model {mprovement required (in terms of GEM=9 errors) to achieve 10 M and
30 M accuracies in the noted orbits. At this level, the modeled TDAS
ephemeris error would also be significant so a reductien of ~2:1 is indi-
cated.

Navigation Performance With Sequential Processing (5.4.2) - Figure 6-6
shows the 0D performance (max error over 24 hours) with beacon tracking
for each TDAS constellation option along with user requirements identified
in the TDAS mission model (see Appendix A). Higher errors tend to occur
for Option 2 in near polar orbits particularly at low altitudes due to
recurring poor geometry.”

Error analysis results correspond to the basic modelling assumptions and
the projected results to the improved errors indicated in Table 6-3. Thus,
beacon tracking is projected to satisfy all user requirements in the TDAS
mission model down to 10 M,

Figure 6-7 shows the navigation performance with FLST for two assumed
tracking schedules and sequential processing. In contrast to beacon
tracking, the performance in low orbits is drag dominated and substantially
worse, At higher altitudes, results are comparable.

Figure 6~8 shows the navigation performance with RLST for the same tracking
schedules and two different nav data upload rates - 1.5 hours and 3 hours,
Again, performance is worse in low orbits (drag dominated), but is compara=-
ble at higher altitudes.

* This occurs about twice a day when the orbit norma! points toward a TDAS
?hige?y 1imiting the range change over the pass (poor doppler character-
stic).
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TD accuracy results® indicc4e that performance is uniformly better with
beacon tracking {< .25 usec) than with scheduied tracking in all orbits
considered. Nevertheless, performance with the scheduled alternatives is
sufficient to meet the most stringent user time requirement (1 usec) iden-
tifled in the TDAS mission model.

Navigation Performance With Sliding Batch Processing (5.4.3) - Results for
FLST and RLST indicate that compared to sequential processing:

’ 0D performance tends to be worse for low altitude orbits
(< 400 km) where drag is the dominant error source and compara-

ble to or slightly better in higher orbits where user oscillator
drift is also a major error source,

’ TO performance i1s worse (> 2.5 usac) for all orbits considered
and particularly sensitive to the tracking interval duration.

* see Section 5.4.
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6.3 TDAS TRACKING ANALYSIS SUMMARY

Information about TDAS orbits {s assumed to be provided for user 0D/TD on
a recurring basis. User navigation performance is than a function of TDAS
orbit uncertainties in the interval between updates (i.e., prediction
interval errors), To assess potential orbit prediction errors, an accu-
racy analysis was made of TDAS tracking with the BRTS and VLBI techniques.
An overview of the elements considered in pursuing this analysis is given
in Figure 6-9,

Tracking Configurations (4.1) - In terms of TDAS tracking, the various
constellations reduce to two situatjons: frontside and backside satellites.
Figure 6~10 illustrates configuration options for acquiring TDAS tracking
data with each technique.

With BRTS tracking, two-way range and range-rate (R.ﬁ) data are acquired
from transmissions originating at White Sands (WHS). These are returned i
by bilateration ranging transponders (BRTs) operating at pairs of automated o { .
ground stations (one pair per TDAS in the minimal configuration). For the

backside TDAS, transmissions are also relayed via the crosslink which
impacts tracking accuracy since measurements are affected by uncertainties
in the frontside satellite orbit.

With YLBI tracking, the fundamenta)l measurement data type is the difference i!
in range (4R) between a signal source and two receivers displaced along a ;
known baseline. For the TDAS appiication, signals received at each auto-

mated station would be returned to WHS for processing. Typically, one pro- ;
cessed pair of VLBI observations per hour per station set (three per TDAS) [ %
would be needed. Crosslink uncertainties are not a factor due to the
inherent differencing of common path components.

ol

3

Ls e -
—

nu.

Error Modelling (4.2.1) - TDAS OD was assumed to employ batch processing

of tracking observations taken over a given tracking interval. Orbit pre- %E ;
diction errors beyond the end of tracking were evaluated via a covariance - %
-
g

¥I-6-16 wk

¥ o



k-

L — Y
*

.

o

e d

ORIGINAL PACT 19
OF POOR QUALITY

FIGURE 6-91

TDAS TRACKING ANALYSIS - OVERVIEW

¢ == 8] STANFORD
_,Li TELECOMMUNICATIONS INC,

ERROR
MONELS
]
TRACKING
TDAS TRACKING
COrSELLANON )} CONLGUNTIONm] SGATION | P05/ R PrOILE
TERAATIVES 0PTIONS
T {COVARIAKCE
AHALYSIS)
FRONTSIDE S/C |:BRTS
BACKSIDE S/C H{1:3)

DPERATIDNAL, PARSHETERS:

= TRACKING SCHEDULE
- EPOCH {TIME OF DAY)
= TRACKING [NTERYAL
- PREDICTION [NTERVAL

BRTS *
CONFIGURATIONS: '
H

(ees) STATIOR L [(emT) ]

FROMTSIDE

yLal .
CONFIGURATIONS :

\ W ] STANFORD
Ll TELECOMMUNICATIONS INC,

n (n

FIGURE 6-10: BRYS AND VLBI CONFIGURATIONS FOR TDAS TRACKING

ToAS Toss Toas TDAS ToAZ TOAS

2(eRT) 1

-,

2 ear)

} {118) {17}
BACRSIDE

wes s
*s - 's{u -BaND (1)

K = K,-0AND

W = W -RAND FRONTSIDE BACKS{DE

VI-6-17



analysis program [16] given a nominal aorbit, tracking statfon locations,
tracking schedule and appropriate models of significant tracking error
sources (measurement noise and bias, station survey, solar pressure and
tropospheric uncertainties).

BRTS measurement errors were assumed consistent with TDRS 0D analyses [18].
VLBI measurement errors were considered at two levels: a conservative
baseline model consistent with values used in studies of a Deep Space Net-
work (DSN) tracking application to TDRS [19] and a more optimistic reduced
mode] which reflects achieved capabilities with VLBI stations observing
celestial radiu sources [20]. Statfon errors were taken to be the same as
BRTS for the baseline model and an order of magnitude better for the
reducad model .

TDAS Tracking Accuracy (4.2.2) - For evaluating performance, the first
criterfon considered was the peak error over a 24 hour continuous predic-
tion interval from the end of tracking. Analysis results indicate, how-
ever, that since solar pressure is so dominant, 0D accuracy can be signi- P
ficantly affected by the choice of reference epoch and duration of the ¥y [
tracking interval and prediction interval. Thus, in both BRTS and VLBI !
analyses efforts were made to identify multiple combinations (epoch/tracking
interval/prediction interval) which, taken together, yield better accuracy f
over a 24 hour period than any one combination alone.

Table 6~4 gives results for both frontside and backside TDAS 0D accuracy

via BRTS tracking using one 24 hour prediction interval and two concatenated
12 hour intervals. Multiple segments are effective for the frontside TDAS
but net the backside which is >2.5:1 higher. The prediction error is due .
primarily to the impact of the frontside TDAS position uncertainty assumed ;5 i
to be 100 M.

Table 6-5 and Figure 6-11 present the results for TDAS 0D accuracy with
VLBI tracking for both baseline and reduced error models., The reduced K

VI-6-18 A
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TABLE 6-4

MAXIMUM TDAS POSITION ERROR IN 24 HOUR PREDICTION INTERVAL WITH BRTS TRACKING
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f
TDAS (‘HUUHS

PREDICT! fs
IN ER\MI.S‘J
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24

POSITIOH ERROR

175

PRIMARY ERFOR
CONTR,B?TORS’

150 (sp)
80 ()
40 (s)

100°%

12+ 12"

110

80 (a)
60 (sp)
45 (5)

BACKSIDE

24

290

230 ¢s*)
175 (sp)
25 (8)

98°E

12 +12°°

280

220 (s")
165 (sp)
25 (n)
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( FIGURE 6-11: TDAS POSITION UNCERTAINTY IN 24 HOUR PREDICTION INTERVAL\
(BASED ON MULTIPLE VLBI TRACKING SEGMENTS)
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model results 1llustrate dramatically the benefit of more accurate measure-
ments since shorter tracking and prediction intervals can be used to off-
set the parvasive influence of solar pressure errors. Additional improve-
ment to the 5-8 M level would be possible 1f better tropospheric correction
(¢ 5%) can be achieved.

Rasults of the TDAS tracking analysis lead to the following observations:

. Orbit determination error for backside TDAS satellite tracking
via BRTS fs significantly higher (~ 2-3:1) than for frontside
tracking based on two BRT sites per satellite.

¢ VLBI tracking offers the potential for significantly improved
TDAS orbit accuracy (< 10m) for both front and backside satel- !
11tes

-~ This method is not sensitive to cross-link uncertainties, |
but tracking data from three stations would be required
for each satellite

- Realization of potential VLBI tracking accuracy requires:

=4, mmTIET

«-- (Calibration of tracking biases and station location/ :
baseline uncartainties (e.g., using aVLBI data)

== Judicfous selection of epoch (time of day), tracking
interval, and prediction interval combinations.

) Preliminary results for VLBI tracking with Conus-based sites also
indicate increased accuracy, although the shorter baselines may

reduce the potential improvement compared to that with intercon-
tinental baselines,

VI-6-21




6.4 CONCLUSIONS
Analysis of the study results leads to the following key findings:

»  TDAS beacon tracking (FLHT) will satisfy all users in the TDAS
mission model with position accuracy requirements down to 10 M.

®»  Scheduled tracking alternatives (FLST, RLST) can also meet the

accuracy requirements except at low altitudes where performance
is highly sensitive to:

- Drag uncertainty
- Frequency of tracking passes, and/or
- Frequency of navigation data uploads (RLST/only).

. A two or three sateilite TDAS constellation impacts performance
as follows:

- Selecting 2 satellites leads to a tradeoff between coverage
and accuracy. Increased satellite spacing improves coverage,
but a point is reached where performance in high inclination

orbits begins to degrade (130° spacing appears better than
162°).

-~ Selecting 3 satellites provides full coverage and up to a
2:1 advantage in navigation accuracy over two satellites.

. Projected TDAS tracking accuracy requirements (25 M-POS. & 2.5

MM/SEC-VEL.) can be met with VLBI tracking but not with a mini-~
mal* BRTS configuration.

6.5+ RECOMMENDATION

Based on the study results beacon tracking is recommended as the prime
approach for routine navigation support. Scheduled tracking alterna-
tives, one~way and two-way, should also be considered for supperting
user navigation functions, as proposed in Table 6-6.

Fr—————
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APPENDIX A

TDAS MISSION MODEL

In Task 1 of the TDAS study [lb], a screened baseline of NASA plans was
used to generate scenarios of experiments/missions for the 1990 - 2005

time perfiod. An estimated flight schedule was established by first assign-
ing planned experiments, then candidate experiments and finally opportunity
experiments, Where planning data for the 1990s was unavailable, generic
experiments/missions were developed based on trends established in the
1980's planning data, Table A-1 1ists the adopted TDAS missfon model and
corresponding orbit data.”

Potential navigation accuracy requirements for the various experiments/mis-
sions were developed from user community survey data, subsequent conversa-
tions with designated points~of-contact and/or independent estimates. Table

A-1 11sts the position and time accuracy requirement: developed 1n each case.

Except for the TOPEX missfon, the most stringent pusition accuracy require-
ments 1s 10M. Time accuracy requirements were found to be no less than
1 usec.

For purposes of comparing user navigation requirements with estimated navi-
gation performance results, user orbits were divided into six categories
(A=F). Tables A-2 and A-3 show the distribution by category and number of
missions with a given requirement. Some missfons are counted more than
once, since the urbit range spans more than one category (see Table A-1).

* More detailed information is available in [1b].
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TABLE A-1

TDAS MISSION MODEL (1990 - 2005)

ORBIT® Poé%%lgﬁﬂ KQUI%EP'EHT
EXP ISSI0N ALTITUDE | INCLINATION | CATEGORY
ERIMENT/MISS] (o) (deg) i») {usec)
SPACE TELESCOPE 600 28.8 B r 200 1
?gmgzn A=RAY ASTROPHYSICS PACILITY a9 28,5 b » 1000 o
ASTROPHYSICS GENERIC (AG) « 1,2,344 LEO 28,5 8 . TED
VERY LONG BASELINE RADIO 400-4000 45 8. . Rl
INTERFEROMGTER {VLGRI)
ASTROPHYSICS | X=RAY OBSERVATORY X0 28,8 A 2 200 2100
COSHIC OPTICAL SYSTEM OF MOOULAR IMAGING 500 28 B . 1
COLLECTORS/300 HETER THINNED APERATUAE
TELESCOPE
LARGE OPTICAL/ULTRAYTOLET INTERFERLMETER 450 28,% 8 . "
ORBITING SUBMILLIMETER TELESCOPE 1000 SUN SYNC ] ¥ 780
LARGE AMBITNT OEPLOYABLE IR TELESCOPE 400-700 2850 '] “ 2100
{LADIR)
SoLiR SOLAR CYCLE AND DYNAMICS MISSION (5CADM) 574 28 or 98 Borg 2 1000 i
TERRESTRIAL | SULAR TERRESTRIAL GENERIC {SG) - 2 575 L B . :
SOLAR TERRESTRIAL GENERIC (5G) = 1,3 a00 87 ] "
TOPOGRAPHY EXPERIMENT {TOPEX) 111 §1,4 ¢ 30,1 ALT) 3 400
GLOBAL ENVIRONHENTAL GENERIC (EG) « 2,5.8 133 63 ¢ ‘ "
ENVIRGNMENT | OCEAN SYNTHETIC APERATURE RADAR (CQ5AR) 790 98 4 50 !
ENVIRONMERTAL GEWERIC (EG) = 1,3,4 790 98 £ " 4
5011, AND SHOW MOISTURE RESEARGH AND 400700 $0-98 B ark 160 »
ASSESSMENT MISSION
UPERATIONAL EARTH RESQUACES SATELLITE/ 705 9 4 10 4
AOVANCED LAKD OBSERVING SYSTEM
A
AESOURCES GENERIC (RG) » 1.2,J 706 98 4 . "
ADVANCED THERMAL MAPPING APPLICATIONS 820 97,8 3 50 .
SATELLITE
HAGRETIC FIELD SURVEY 20 g7 0 0 .
METEGROLOGY | OPERATIONAL METEGROLOGY SATELLITE (2) 33 98,7 F 500 2 160
SHUTTLE « ) 185-1310 28,557 AG 100 1 {FUTURE}
SHUTTLE « 2 185-1310 70-104 0-F . "
SPACE TELEOPERATOR MANEUVERING SYSTEM {TMS) 185~-1000 YARIOUS A«F " THD
TRANSPORTATIOR | ORQSTAL TRANSFER YEHICLE {OTV) LED=GED: |  VARIOUS AsF " .
HEAYY LIFT LAUNGH YENICLE (HLLY) 200-500 YARIOUS A8 or D, " "
BANNED ORBITAL TRANSFER VEHICLE (MOTV) LEC-GED YARIOUS AeF " "
SPACE STATINN/PLATFORM (2) 400 8.5 ;) 10-30 1

»

LEO = Low Altitude Earth Orbit

GEDO - Geostatfonary Earth Orbit

** For Clock Synchronization Only, Neaeds Hydrogen MASER Stability.

STANFORD

1]
SLI TELECOMMUNICATIONS INC.
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APPENDIX B
TRACKING DATA MEASUREMENT ERRORS: RANDOM COMPONENT

Random errors in the range and Doppler measurement data arise due to noise
in the tracking 1ink. This appendix estimates these errors for the three
one-way tracking alternatives based on the signal definitions and assump-
tions in Section 3. Parametric results are presented where applicable to
indicate the sensitivity to design parameters; e.g., TDAS EIRP and user G/T
or user EIRP. The results are presented as follows:

B.1 Thermal Noise in Range Measurements
8.2 Thermal Noise in Range-Rate Measurements
B.3 Phase Noise in Range-Rate Measurements

8.1 THERMAL NOISE [N RANGE MEASUREMENTS

The measurement of range in the systems considered here reiies upon the
acquisition and tracking of a pseudonoise (PN) ranging code. In all the
one-way navigation modes, the receivers exploit the correlation properties
of PN codes to produce an error signal which directs the timing correction,
The principal figure of merit is the variance of the timing error as a
function of the input ratio of signal power to noise density, C/Ng.

B.1,1 Forward Link Tracking

The Motorola 2nd generation TORSS user transponder design [14] is assumed
to apply to the users to be supported in the TDAS era. The design's code
tracking loop is a digital implementation of a 2nd order type I[I tau-dither
loop; a rate aided tracking loop configuration is also present, providing
a lst order tau-dither loop with frequency tracking from the carrier Toop.

Motorola expresses the variance of the tracking jitter due to thermal
noise as

B BrF .
a% i-c-mo [1 + 2 W;:I (CthS)2 ,
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where B 1s the closed loop bandwidth of the loop, either 1 Hz for the
independent tracking mode or .125 Hz with rate aiding, and Bl is the IF
filter bandwidth of 4 kHz. This result can be seen to stem from Hartmann's
analysis [25] of the tau-dither loop where the incoming PN coded signal is
alternately correlated with early and Tate versions of a locally generated
code replica,

Based on the forward 1ink budget in Figure 3-1, Figure 8-1 shows the RMS
range error ap in meters as a function of the user G/T, parameterized by the
TDAS EIRP. The mean square range error oﬁ is derived from the mean square
timing error a% by the simple conversion

Ul% = (C TC CTT)a = (dc UT)Z (meterS)ag
where c is the speed of light and T, is, again, the chip duration, assumed
here to be 1/3.0778 Mcps. From these curves the forward 1ink range errors
due to thermal noise are extracted for a user with G/T = =27 dB/°K for

both FLBT and FLST modes.

B.1.2 Return Link Tracking

For return link tracking, a ground receiver incorporating the Harris wide
dynamics demodulator (WOD) is envisioned. The WDD uses a delay-locked loop
to track the PN coded signal: early and later versions of the local PN
code are correlated simultaneously with the input PN code sequence. An
analysis of the exact implementation used in the WDD is not readily availa-
ble, but work by Simon [26] provides results applicable to a delay-locked
loop where the bandpass arm filters have bandwidths on the order of the
data rate. A linear analysis for the mean-square timing jitter, assuming

a large equivalent ioop signal-to-noise ratio yields

.. BL 1 .
=3 C/No . "S"'l'_' (Ch'lpS)zs

ag

—{ra
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RMS AAMGE ERROR [METERS)

[

FIGURE B-1: TDAS SMA FORWARD LINK: RANGE ERROR DUE TO THERMAL NOISE
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where Bl is the single-sided tracking loop bandwidth and S is the squaring
loss of the delay-locked 1oop. Simon shows that

D
SL = ZBanﬂ/RS
Kp + KL[--——-—-RdDm
where
Rg = data symbol rate = 1/Tg,
Barm = 2-sided arm filter noise bandwidth
Ry = symbol SNR = N—’“S Tss
o
Om = f Sq(f)|H(f)|2 df,
+m
S Sd(f)[H(F)|Y df
KD = oo ]
f Sq(f}H(F}|2 dF
+w
SO IH(F) |~ df
KL = ;: ’
[ IH(f)|2 df
Sq(f) = baseband power spectral density of the data,
and H(f) = transfer function of the arm filter.

In keeping with the WOD parameters, it is assumed that B_ = 4 Hz in the
tracking mode and that l-pole arm filters are used. The symbol rate used
for the calculation is assumed to be the maximum achievable data rate for

a given user spacecraft EIRP, as detailed in Section 3.2.2 and shown in
Figure 3-5. With the anticipated rate 1/2 convolutional coding, the

symbol rate Rg is found as twice the achievable data rate. The tracking
filters used in the WDD are chosen on the basis of symbol rate to optimally
bandlimit the input noise. The 3 dB bandwidth f; for the WDD is thus

VI-B-4
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8 kHz for all Rg < 4 ksps
fc ={ 39 kHz for all Rg < 26 ksps
300 kHz for all Rg £ 300 ksps

where Bif = 1 f¢ for a l-pole filter, H(f)= 1+J;/f . The parameter K
for a l-pole filter is found as: ¢

f T
Jfez
KL fcﬂ' -E

The other parameters in Simon's expression depend on the data modulation
format as well as the arm filter transfer function. Assuming equiprobabie
independent transmitted symbols — an assumption not strictly valid with
coding — the power density for the NRZ signalling format is given by

sind(nfTs)
Sq(f) = —_— H
alf) = Ts =72
ind(rfT
for biphase (Manchester) coding, B4{f) = Tg E-E-Sli—Efg). It can bz shown
(nfTg/2)
that
1 - 1o (1-e=2rR') for NRZ coding
2R’
Om =
1- ZJR' (3-4e'”R' + e=2mR) fap biphase coding
| - [B(3r2rR Je-2mR ]
4xR’
for NRZ coding
Om
KD =
| . (924(3tR Ja-™R' + (3+2rR)e-21R']
4R’
for biphase coding
B

where R' = fTg.
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Figure B-2 shows the above results expressed as an RMS range error in
meters versus the user EIRP corresponding to the return 1link budget in
Figure 3-5. The discontinuities appearing on the graph result from the
change in arm filter bandwidth with data rate. A user EIRP of 2 dBW is
assumed as a baseline value.

8.2 THERMAL NOISE IN RANGE-RATE MEASUREMENTS

Range-rate is estimated on the basis of a signal's observed doppler shift
in frequency due to the relative motion between the transmitter and
receiver, A carrier-tracking loop in the receiver provides the means to
extract the phase ¢ (in radians) of the recefved signal and thus the
received frequency, since ¢ = 2 m ft, By counting posit1vg—going zero-
crossings, N(t), over the averaging time Ty, an estimate g of the range
rate R is darived as.

B [N(t+Tav) - N(t)]= 5 e A So(t+Tay) - Sot)
Tay 2 Tay

where §¢(t) represents nofse fn the phase measurement and A is the carrier !,
wavelength, assumed to be known a priori for one-way navigation. Assuming ?;

Tay 1s long enough so that the phase samples are independent and identi- O
cally distributed, the RMS ranga-rate error is given by

"z A 2 + g2 z A .
Uﬁ 2rlay 1/0 o(t+Tay) " T a(t) 2 Tay V§-°¢ .

Here o4 s the RMS phase error in radians and one may identify V§E¢ as the
RMS doppTler phase error. The performance of the carrier-tracking loop in
the receiver thus determines the range-rate error due to tharmal noise.

In the results presented here, the doppler averaging time T,y 15 assumed
to be 1 second.
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B,2.1 Forward Link Tracking

The Motorola 2nd generation TDRSS user transponder's carrier-tracking loop
1s a 2nd order type II modified Costas loop. For Costas loops 1n general,
the mean square phase error is given by [27, 28]:

4B|.. 1
2 = o = 2
0‘¢ W/ o SL (r'adians) s

where 8| 1s the loop noise bandwidth and S_ 1s the Costas loop squaring
loss. The phase of a Costas loop, however, is twice the recejved signal
phase, so the thermal noise phase jitter oy that is of concern here is

8, 1

02‘..'.—-—.—-—

T/ * 3

For the Motorola design, Bl = 40 Hz and S = .73. With these parameters,
Figure B-3 shows the RMS one-way range-rate error anticipated for forward
Tink tracking assuming the link budget of Figure 3-1 and the various possi-
ble TDAS EIRP values, As before, a user G/T value of -27 dB/°K is used as
a baseline.

B.2.2 Return Link Tracking

The wide dynamics demodulator's lst order carrier-tracking Toop, shown

in Figure B-4a, has been analyzed by Weinberg [29], yielding the following
gxpression for the received mean square phase error:

. _BLTs 1 2

% * 55 Eg/Ng [l R TR J (radians)

B
Here

Ts = symbol duration,

Ep c

Ny symbol SNR = o Ts, |

« = 1-20Q(VZEp/Ng) +/—trr e ~Eb/No ,
0 TI'Eb/No
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T Y

FIGURE B-4: RLST: CARRIER TRACKING LOOP- ERROR DUE TO THERMAL NOISE
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HAROWE,
s
O T

(il L
\ {

SYMOOL "
5YnC

HORMAL 1 IAT | OH

DIGITAL
- DIGITAL Loor
¥eo FILICK

0

BUTCY

SYMBOL
SYNC

B} THERMAL NOJSE PERFORMANC

PERFORMANCE MEASURES RESULTS®
WIDE DYNAMICS 0

IDE DYNAMICS DEMODULATOR (PLL) 108 HRAD (6.2°)
PHASE ERROR, o = VA=
DOPPLER PHASE ERROR = V7 o, 154 MRAD. {8.8°)

- - -——t\——A
RANGE-RATE ERROR = 5o V7 oy

(L-WAY) 3,5 MM/SEC

SUMPTIONS ;
- BER = 10~5, 3 DB MARGIN, 5 DB CODING GAIN
~ Ep/llg = 4,3 DB (WORST CASE) = (C/Ng)/SYMBOL RATE

- K = .032, A FUNCTION OF Eg/No, LOOP BANDWIDTH AND SYMBOL RATE
= Tav = 1 SEC, DOPPLER AVERAGING TIME
- A = SMA WAVELENGTH (MM)

\ W) STANFORD
I TELECOMMUNICATIONS INC.

VI-B-10

1

R
LR,
gomae e o

[ Bl ]

o comat ETRE

e et e T e 2
o AT T T TS B e AT = ;xT-— l-



i henll

f o i

T

e

e S——— -n.-—-',

e

iy s reme—y —T ———
= . PR

ORIGINAL PAGE 19
OF POOR QUALITY

8 = I-Q(}‘Z Eb/NQ)l

and Q(x) = complementary Gaussian distribution function

5/

In the WDD, the loop bandwidth is adjusted proportional to the symbol rate;
for this calculation, it 1s assumed that By Tg s .03. If worst-case opera-
tion is assumed and the maximum achievable data rate is used for all values
of user EIRP, then Figure 3-5 shows that Ep/No 1s constant at 4.3 dB-Hz.

Consequently, the carrier tracking error is constant, as summarized 1in
Figure B-4b,

B.3 PHASE NOISE IN RANGE-RATE MEASUREMENTS

Additive thermal nofse introduced by the channel is not tha sole source
of random fluctuations that affect range-rate measurement precision. A
system's transmitting and receiving oseillators, system mixing chains, AM
to PM conversion in the channel, spurious vibrations, etc. all introduce
phase noise components into the signal which degrade the carrier-tracking
Tcop performance of the receivers. To estimate the impact of phase noise
on one-way navigation, consider first the doppler measurement process:
the phase value ¢ extracted by the carrier-tracking Toop {s sampled at
time t-Tay and at time t and then differenced, That difference A¢ is
reTated to the range-rate Ras R = (a/2rTay)ae. Since ae = o(t) -

o(t = Tay)» the transfer function describing the operation is simply

F(f) = 1g=J27fTay, If the {nput to the doppler extractor has single~sided

phase noise spectral density S¢(f), then the spectral density of ae is
given by

Sas(f) = [F(£)[2 Sy(F) = 4 sin2 (wfTay) Sy(F).

Since c§¢ 5 2}7 Sap (f) df, the input spectral phase noise density Se(f)
o

VI-B-11



contributed by the system can be seen to datermine the range-rate mean
square error due to phase noise,

In this analysis, only the effects of phase noise in the system oscillators
and YCO's as propagated through the system mixing chain are considered.

The key to the analysis, as discussed in [30], lies in characterizing a
carrier-tracking loop by its closed loop transfer function H(f). A l{near
analysis of the carrier loop shows that the loop's YCO output tracks the
carrier with noise contributions from two sources. One {s the input phase
Jitter lowpass filtered by H(f), the other, the YCO's own phase jitter
highpass filtered by 1-H{f). In other words, if the input phase noise
spectral density is Sg(f) and the phase noise spectral density of the VCO
itself 1s S3' (f), then the coherent referenca provided by the tracking

loop has phase noise spectral density Sg(f) = [H(F)|2 So(Ff) + |1-H(F)|2 S (f).

The simple analysis explained here has been validated by extending 1t to
model the two-way doppler tracking of TDRSS; the results are consistent
with other estimates of the doppler measurement error due to phase nofse,

The forward and return links are modeled in terms of the ground and user
oscillators, the tracking loops and their VCO's, and the frequency muiti-
plies comprising the mixing chains. [t is assumed that TDAS satellites

will operate in the same fashion as do TORSS satellites: a ground-generated
pilot tone is tracked on-board the TDAS satellite to provide the reference
tone for frequency-transition of the relayed signals, TDRSS uses a Ky-band
space-to~ground 1ink; in TDAS, both K,- and Kj-band frequencies are being
considered, Figure B~5 shows the models used here for the forward and
return 1inks, respectively. Both the user and ground station's oscillators
are assumed to be 5 MHz standards; the freguency multiplies required to
support return and forward 1ink service and a Ky~ or Kz-band space-to-ground
link are shown in the diagrams. The Ky-band uplink, downlink, and pilot
frequencies are taken from TDRSS; those for Kz-band are chosen arbitrarily.
S-band forward Tink service centered at 2106.406 MHz (as in TDRSS) and an
assumed IF frequency at the user spacecraft of 9.5 MHz yield a fixed
multiply value at the user oscillator, as shown in Figure B-5a. S-band
return Tink service centered at 2287.5 MHz similarly requires a fixed

VI-8-12
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(  FIGURE B-5: PHASE NOISE MODELS FOR TDAS FORWARD AND RETURN LINKS
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multiply value at the user oscillator in Figure B-5b. For return 1ink
tracking, an IF of 240 kHz into the ground carrier-tracking loop {s assumed,

The generation of high-frequency signals from the ground and user frequency
standards 1s pessimistically assumed to require frequency synthesizers and
hence tracking loops and their VCO's, Noise from VCO's, of course, is

also introduced at the pilot tracking loop on-board the TDAS satellite

and at the ground and user receivers' tracking loops. For simplicity,

all the tracking loops are assumed to be 2nd order with closed loop trans-
fer function

. Wl J VT wow
() Wne + J V2 wpw « we

where w = 2rf, wy 1s the loop natural frequency, and the single-sided loop
noise bandwidth 8 % 3%5== Each of the tracking Toops may thus be para-
4y2

meterized by its loop bandwidth. The following values are chosen on the
basis of present TDRSS practice, the Motorola 2nd generation TDRSS user
transponder design, and arbitrary selection:

H1(f) (ground frequency system): BL = 700 Hz,
Hz(f) (TDAS frequency system): BL = 262 Hz,
H3(f) (user frequency system): 8L = 700 Hz,
Hq(f) (user tracking loop): BL = 40 Hz,
Hg(f) (giround tracking loop}: B = 70 Hz.

To complete the mode], the single-sided phase noise spectral densities of
the ground and user frequency standards and the VCO's are approximated

as shown in Figure B-6. As in TDRSS, the ground frequency standard is
assumed to be an HP 5061A+004 cesium oscillator with 1ts phase noise spectral
density derived from the manufacturer's specifications [31]. The user
frequency standard Is assumed to be a precision guartz oscillator; its

phase noise spectrum is estimated from the specifications for the FTS

1150 quartz standard [32]. Note that wiiiTe the cesium oscillator provides
superior long term stability, its short term phase fluctuations are more
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severe than those of the quartz oscillator, In all the figures, the
spectral density is assumed to extend for offset frequencies beyond those
shown in the same manner as immediately before the end of the depicted
range. Only for the VCO spectral density will these high offset frequencies
be significant since only the VCO output is highpass filtered by transfer
functions of the form 1-H(f).

B.3.1 Forward Link Tracking

Figure B-7a explicitly shows the various filtering operations to which the
phase processes ¢CESIUM» ¢VCO» and ¢xTAL 1n the forward 1ink are subjected.
The ground-to-TDAS delay t; and TDAS-to-user delay t, are accounted

for by the appropriate phase shifts; r, and r, are approximated here as .14
seconds, corresponding to distances of 42000 kilometers, Inspection

of the diagram allows the transfer functions asseciated with the ground,
TDAS, an® user segments to be identified separately. This yields the

component single-sided phase noise spectral densities at the input to the
user's doppler extractor:

Sogup' ) = Sages gl 7 IHAFI I FhemIHley + vp) (K=Kt )) |2
- Sy (1 (F)Ha(FledHlxy + 5D (Kpmkap(F))]2
) [S“’CESIUM(f”Hl(f”z i 5‘”vco(ml-H1(f)'2]"
[Ha(F) 1 2[K8 - akpkaReha( )} + KE[ha(f)|2];
SorpastT) = Seyggl (1-Ha(f))Kg Ha(f)|2;
Soysenl ) * [S¢XTAL(f)|H3(F)|2 + S¢Vco(f)[].-Hg(fjjz](419.38)2]H4(f)

¥ S¢vco(f)|1-H4(f)|2;

whera Re{s} denotes "the real part of {«}",
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T

FIGURE B-7: DERIVATION OF TRANSMISSION LINK TRANSFER FUNCTIONS
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The phase noise variances corresponding to each of these densities is
obtained as simply a%x = 2 Z Soy (f) df; the range-rate variance due to

each component 1s similarly obtained as
Uﬁi = Z_g S¢X (f) 4 sin2 ('ﬂ'fTav)df

The results obtained from numerical integration are reported in Table 3-3,

8.3.2 RETURN LINK TRACKING

The necessary transfer functions are found from Figure B-7b in the same
way as in the preceding section. As previously, the single-sided phase
noise spectral density at the input to the doppler extractor may be

broken into its component elements accoraing to the phase noise sources:

s 2 ] 2 2 2,
Soyser’ ™ IF¢XTAL(f) Pia(r)|2 + Syl ) 11-H3(F) | (457.5) ]|Hs(f)| ;

(f) = (£)](1-Ha{f))Kq Hg(F)|2;

5 5
PTDAS *yco

5 = |§ 2 +5 1 2
sann’ " [%ESIUMIHI(HI dyco Hl(f”]"

|H5(f)[21K§|H2{f)]2 + Ke® - K5Kgl2 Re{Ha(f)1}cos2wry
+ 2 Im{Ha(f)}sin 2wry]

* Sgyegl ) 11-H5(£)|2;

where Im {+} denotes "fhe imaginary part of (e}".
Again, the range-rate variance “3 due to each component is

X
" o
¢ =2 [ S, (f) 4 sin2(nfTyy)df.
URX ‘ é ¢X( ) 51n (‘ﬂ’f av)

The results from numerical integration are shown in Table 3-5.
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APPENDIX C

TDAS TRACKING ANALYSIS -~ SUPPLEMENTARY RESULTS

.1 INTRODUCTION

An evaluation of the potential tracking accuracy for TDAS satellites was
made based on BRTS and VLBI tracking techniques. Section 4 presented a
brief description of each technique, possibie tracking configurations to
support frontside and backside satellites, and the error analysis modeling
approach and major resuits. This appendix provides supplementary results
for BRTS tracking in Section C.2 and VLBI tracking in Section C.3. Relevant
model1ling data used in the analysis are given in Sectien C.4.

€.2 BRTS RESULTS

TDAS position errors in the predictien interval are presented in Figures
C-1 through C-4 as a function of BRTS tracking epoch and tracking interval.

Figure C-l (Frontside TDAS) illustrates the sansitivity of TDAS positian
errors in the prediction interval as a function of epoch time. In all cases,
the minimum error bound fs about 100 m, regardless of epoch time, However,
the maximum error bound is cyciic with roughly a 12 hour period, and the

peak to peak variation diminishes with longer tracking intervals. To minj-
mize the position error in the 12 hour prediction interval, an epoch {s
chosen at the valley of the maximum error bound. Notes that the valley

epochs shivt as the tracking interval changes. Of the four tracking inter-
vals shown (18, 24, 30, and 36 hours), the 18 hour case has the lowest val-
leys (110 m), which occur near 18H30M GMT and sH3oM aMT. The 24, 30, and

36 hour cases all have valleys on the maximum error bound greater than 125 m,
which occur at epochs different from the 18 hour case. For example, the val-
Teys for the 24 hour case occur near 0H30M and 12H30M GMT, with a magnitude
of 140 m, For the 24 hour prediction interval, the valleys in the maximum
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FIGURE C~1: TDAS POSITION ERROR BOUNDS IN 12 AND 24 HOUR PREDICTION
INTERVALS VS. TRACKING EPOCH (BRTS TRACKING ~ FRONTSIDE TDAS)
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/ FIGURE C~2: TDAS PUSITION ERROR BOUNDS IN 12 AND 24 HOUR PREDICTION

INTERVALS VS TRACKING EPOCH (BRTS TRACKING - BACKSIDE TDAS)
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( | FIGURE C-3 \

TDAS POSITION UNCERTAINTY IN PREDICTIUN INTERVAL

VS, BRTS TRACKING INTERVAL
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. FIGURE C-4 :
TDAS MAXIMUM POSITION ERROR CONTRIBUTORS IN 12 HOUR PREDICTION
INTERVAL VS. BRTS TRACKING INTERVAL

so0 AL_TDAS @ 100°
EPOCHY  8673/21, tAHIOH
h g
I s T r
= 7 i 5P
T w0t ll 8 8 J TRACKING CCNFTEURATICHY
) b Ll < FGR 100701
- s s ¢ ' HlewHS, WHS-ALD
[ o FOR S80T3
Tal0fat=100, T100-08A
.
OATA ATE: 1/MIN FOR 5 MIN
3 a 5 a =5 "err hou
E o T ™ TR ] L
a 3
X
L " " “F
1
18 (L 0 16

TRACKING INTERVAL {HOURS)

1000 2L T0AS @ g8eg
EPOCH:  d8/3/21, S0

T T
N £p

T
£p

1 oy T
{4 (1 g
i | ¥ e

]
00 = TQTAL EARrCA
- MLSE
« SATS ZIAS

« GRAVITY

« SOUAR PRESSURE
= TROPOSPHIERE

= STATION

« STATION » TiOG

C
;%nnk-—n

POSITION ERRGR - Mo{M)

1___; T R

18 24 a0 k[:]
TRACKING INTERVAL (HOURS)

—
o

IR AL L] T
-

1

N| STANFORD '
. I TELECOMMUNICATIONS INC. J/

VI-C-5

LR TRET R, T
e



error bound are all above 140 m for all tracking intervals. Thus, for the
frontside TDAS (at 100°W), the best chofce is 18 hour tracking, 12 hour pre-
diction, and epoch of 18H30M, resulting in TDAS 1o position arrors between
100 and 110 m,

Figure C-2 demonstrates the same relationships for the backside TDAS at
98°E, for which the best choice {s 36 hour tracking, 12 hour prediction,

and epoch of 12H30M, resulting in TDAS 1o position errors between 210 and
250 m, However, note that the maximum error bound is relatively flat for
the 36 hour tracking interval and remains below 300 m over all epochs.

Thus, the epoch is not as critical for tha 36 hour tracking case as it is
for 18, 24, and 30 hour tracking cases in which the maximum errors fluctuate
widely (exceeding 400 m).

Figure C-3 illustrates the TDAS position errors from the end of tracking to
the end of prediction for a fixed epoch time. Figure C-3a is for TDAS at
100°W, with a tracking configuration using transponders at White Sands {WHS)
and Santiago (AGO). WHS-WHS denotes a roundtrip path from WHS transmitter-
to TDAS to WHS ground transponder and return to TDAS to WHS receiver. Simi-
Tarly, WHS-AGO denotes a roundtrip path from WHS transmitter to TDAS to AGO
transponder and return to TDAS to WHS receiver. The TDAS position errory
are plotted for 18, 24, 30, and 36 hour tracking intarvals, all for 24 hour
prediction intervals, based on an epoch time of 18H30M amT, Again, note the
best prediction interval occurs during the 12 hours after the end of the 18
hour tracking. Figure C-3b is for TDAS at 98°E with transponders an the
100°W TDAS (T100) and at Diego Garcia (DGA). T100-T10Q represents a round-
trip path from T100 to TDAS (98°E) and return to T100.* T100-0GA represents
a roundtrip path from T100 to TDAS to DGA transponder and return via TDAS

to T100.* The best prediction interval for the backside TDAS s during the
12 hours after the end of the 36 hour tracking.

For error analysis with existing ORAN capabilities the WHS-T100 1ink
was not modelled. Instead, separate WHS-T100 path delay measurements
were assumed to be subtracted from backside two-way BRTS measurements
made at WHS. ORAN was set up to use T100 as the terminal location
(analogous to WHS) with station errors equal to the position accuracy
for frontside TDAS tracking.
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Figure C-4 presents tha TDAS maximum error contributors in the 12 hour pre=-
diction intervals for 18, 24, 30, and 36 hour tracking intervals., Note the
position error scale is a log scale, Figure C-4A is for TDAS at 100°W, and
shows solar pressure, VLBI measurement bias, and station survey errors as
dominant, with magnitudes greater than 40 m. Ffigure C-4B 1s for TDAS at
98°E, and shows station errors and solar pressure uncertainties as the
domin. . * 2rror sources, with each contributing well above 100 m. Note that
the station error reflects uncertainty due to the frontside TDAS (T100)

tracking error assumed to be a constant 105m (H=26m, C =28 m, L = 98 m),
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¢.3 YLBI TRACKING

This section presents TDAS tracking accuracy results based on the VLBI
tracking technique. Subsections C.3.1 and C.3.2 discuss results generated
for the baseline and reduced error models defined fn Section 4 (Table 4-1).
Subsection €.3.3 presents some preliminary results for frontside TDAS
tracking using YLBI stations located only in CONUS. These three subsec-
tions show the effects of tracking interval, epoch time, prediction
interval, YLBI bias estimation, error sources, and data rate on TDAS
uncertainty.

c.3.1 Baseline Error Model Results

A composite plot of TDAS lo position uncertainty during the prediction
interval is shown in Figure C-5 for several trucking intervals - 3, 6, 12,
18, 24, 30, 36, and 42 hrs, all using a fixed epoch time of 18H3OM GMT,
Figure C-5A shows the error profile without VLBI bias estimation. For the
3, 6, 12, 24, 30, and 42 hr tracking, the position uncertainties rise t
above 100 m after a few hours in the pradiction interval. Only for the - .
18 and 36 hr tracking does the position uncertainty remain below 100 m

b e

for several hours in the prediction interval. As will be shown later, f (i
concatenation of several 18 and 36 hr tracking segments may provide 24 '
hours of prediction below the 100 m level. L

Figure C=5B shows the same cases as (-5A except VLBI bias is estimated.

The best choices of prediction intervals are thosea following the 12 and

18 hr tracking. These may be concatenated to provide 24 hours of prediction
below the 100 m level. Note that the position error is close to 200 m at
the end of the 36 hr tracking interval.

[
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FIGURE C-5 \

TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL VS VLBI
TRACKING INTERVAL
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Figures C-6 and -7 display the TDAS maximum error contributors for various
prediction and tracking intervals with and without VLBI bfas estimation.

As mentioned above, the 18 and 36 hr tracking intervals are the best choices
for either 6 or 12 hr prediction intervals. In Figure C-6A for 6 hr tracking
note that YLBI bias station survey and noise errors are domihant, while for
long tracking intervals (24, 30, and 36 hrs) solar pressure error {s dominant.
For intermediate tracking intervals (12, 18 hrs) VLBI bfas, solar pressure,
and station survey errors are dominant. As the prediction interval increases,
however, solar pressure ultimately dominater, N3% v:at in all of these
cases, the gravity and tropospheric effects are relatively insignificant

{(less than 20 m).

Figure C~7 is based on VLBI tracking with bias aship@tion. A8 rgtad bevDre,

the 12 and 18 hr tracking intervals are the bést c¢iivicas FoF eltners 6 o

12 hr prediction intervals. With VLBI bias estimated, athar related arrors

(station survey and tropospheric errors) are also reduced whereas noise and

solar pressure error increase, particularly noise. The overall resuit, b
however, is a decrease in the total error. .

Figure C-8 shows the sensitivity of the TDAS position error profile to epoch
time of day at the beginning of an 18 hr tracking interval with VLBI bias
estimation. For each pradiction interval (1, 3, ar 6 hr), the minimum and
maximum error bounds are plotted. The best epoch choices are 6H30M GMT
(TDAS local midnight) and 18H30M GMT (TDAS local noon). The minimum error
bound is in the 48-55 m range for all three prediction intervals., The
maximum error bound increases dramatically from 1 hr prediction to 6 hr
prediction when the epoch is not near 6130M or 18H30M, For these best
epochs, there is 1ittle change 1n maximum error bound as the prediction
interval increases from 1 to 6 hr.
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FIGURE C-6
TDAS MAXIMUM POSITION ERROR CONTRIBUTIONS VS VLBI TRACKING INTERVAL
(KITHOUT VLBI BIAS ESTIMATION)
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f FIGURE C-8 \

TDAS POSITION ERROR BOUNDS WITHIN PREDICTION
INTERVAL VS, TRACKING EPOCH TIME
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C.3.1.1 Impact of TDAS Location, Figure C-9 {llustrates that TDAS position

uncertainty is insensitive to TDAS geographic Tocation. Four prediction
profiles are plotted, based on TDAS longitudes of 10Q°W, 98°E, 171°W, and

41°W. Both the 18 and 36 hr tracking cases are shown. The small differences

among each set of four profiles can be attributed to geometrical differences
in the tracking station configurations.

€.3.1.2 Effect of VLBI Data Rate. Table C-1 is a tabulation of minfmum
and maximum TDAS position uncertainties as a function of data rate, tracking
interval, and prediction interval for an epoch of 18H30M GMT. For a 6 hr
tracking interval, the effect of data rate is dramatic with the maximum
error increasing by more than 2:1 as the data period increases from 60 sec
to 3600 sec. For a 12 hr tracking interval, the factor is about 20%. For
Tonger tracking intervals (18, 24, and 36 hours), there are virtually no
differences in posftion errors for data periods of 60, 1800, or 3600 sec.
This has significant operational importance since VLB! measurements data
collection and processing need occur no more frequently than once per hour.

€C.3.1.3 Prediction Interval Concatenation. Figures C-10 and C-11 demon-
strate how it is possible to concatenate several prediction segments to
achieve better TDAS position performance over a 24 hr period compared with
2 single segment. The 18 hr tracking segments are shown in Figure C-10A.
Two start times are indicated - S/C local midnight and S/C Tocal noon on
3/22. At the end of tracking of these two cases, the 9 hr prediction
profiles may be used, i.e., on 3/23 the interval between 0M30M and 9H3QM
and the second interval between 12H30M and 21H30M, Gaps from 9H3oM to
12H30M and from 21H30M to 24H30M may be filled using prediction intervals
based on 36 hr tracking starting at S/C local noon and S/C local midnight
on 3/21 and 3/22, respectively {see Figure C-10B). When a1l these segments
are concatenated in Figure C-11A, the result is a 24 hr prediction interval
in which the TDAS position error remains below 85 m.

The same procedure may be used when the VLBI bias is estimated (see Figure
C-11B). By concatenating muitiple prediction segments following 18 and
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TABLE C-1

TN

MIN/MAX POSITION UNCERTAINTY (M) IN PREDICTION INTERVAL
VS. VLBI DATA RATE AND TRACKING INTERVAL®

WITH BASELINE ERROR MODEL

PREDICTION TRACKING VLBI DATA RATE (SEC)
INTERVAL INTERVAL
(HOURS ) (HOURS ) 60 1800 3600
6 66/180 92/437 101/520
12 49/110 52/127 53/136
6 18 53/63 53/65 53/67
24 53/131 53/128 53/126
26 71/92 71/90 71/89
6 66/481 92/1108 101/1318
12 49/180 52/210 53/227
12 18 53/131 53/130 53/129
24 53/219 53/217 71/134
16 71/131 71/133 71/134

* TRACKING CONFIGURATTON:

EPOCH:

TDAS @ 100°W; STNS:

86/3/21, 18H3gM

\ m N| STANFORD
Ll TELECOMMUNICATIONS INC.

WHS~AGO, WHS-HAKW

Vi-C-16
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FIGURE C-10 \

TDAS POSITION UNCERTAINTY VS TIME AND VLBI TRACKING EPOCH

A) 18 HOUR TRACXING [NTERVAL

ORIGINAL PAGE 1Y
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TDAS POSITION UNCERTAINTY IN 24 HOUR PREDICTION INTERVAL
(BASED ON MULTIPLE VLBI TRACKING SEGMENTS)

100 4

POSITION ERROR —~ Jo (M)

ORIGINAL PAGE 19
OF POOR QUALITY

FIGURE C-11

(A) BASELINE ERROR MODEL

TRACKING CONFIGURATION;
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QATA RATE: 1/HR
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(B) BASELINE ERRUR MODEL WiTIt YLBI BIAS ESTIMATED
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E‘

12 hr tracking intervals, an error profile that remains below 70 m can be
obtajned. Also shown in Figures C-11A and B are the radical, cross track,
and a]oﬁg track components of TDAS position error. In both cases, the
along track component dominates.

c.3.2 Reducad Error Model Results

TDAS position uncertainties computed from the baseline and reduced error
models are compared in Figure C-12. Four tracking intervals were used =
1, 3, 6, and 12 hrs. For the baseline model, Tonger tracking intervals b
produce better prediction profiles, as observed in Subsection C.3.1.

However, for the reduced error model, shorter tracking intervals appear g
advantageous. A 6 hr tracking interval followed by a 1 hr prediction
interval seems to be an optimal choice. As will be demonstrated later,
1 hr segments may be concatenated to form a 24 hr prediction interval
with TDAS position errors between 10 and 12 m, a significant improvement
over the baseline model. '

TDAS maximum position errar contributors are shown in Figure C-13 for the
l, 3, 6, and 12 hr tracking intervals. Nota that the tropospheric error
contribution 1s significant here, but decreases, while the solar pressure
contribution increases with tracking interval. A crossover between these
two error sources occurs arcund a 6 hr tracking interval. A1l the ather
error contributors are relatively small in this region.

B =

€.3.2.1 Impact of Tracking Data Rate. Table C-2 1ists minimum and maxi-
mum TDAS position uncertainties as a function of data rate, tracking
interval, and prediction interval. For 1 hr tracking, the 3600 sec period

(1 measurement per hr) is inadequate for orbit estimation (number of measure-
ments less than the number of unknowns being solved for). For 3 hr tracking
the 1/hr rate produces a maximum error about twice that of the 1/min rate.
For 6 or 12 hr tracking, changing the data rate from 1/min to 1/hr has

Tittle impact on the results,

vI-C-19
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FIGURE C-12
TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL
FOR 1, 3, 6 AND 12 HOUR TRACKING INTERVALS
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f FIGURE C-13
TDAS MAXIMUM POSITION ERROR CONTRIBUTORS VS. VLBI

TRACKING INTERVAL FOR THE REDUCED ERROR MODEL
A) 1 HCIJ PREDICTION INTERVAL _
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O
TABLE C~2

MIN/MAX POSITION UNCERTAINTY (M) IN PREDICTION INTERVAL
VS. VLBI DATA RATE AND TRACKING INTERVAL*

NITH REDUCED ERROR MODEL

PREDICTION TRACKING VLBI DATA RATE (SEC)
INTERVAL INTERVAL
(HOURS) (HOURS) 60 1800 3600
1 96/114 333/398 X
] 3 14/16 19/23 23/29
6 11.5/18.7 11.6/18.9 11.7/19.3
12 11.6/15.1 11.4/14.7 11.2/14/4
1 96/212 333/740 X
3 3 14/27 19/43 . 23/56
6 11.5/18.7 11.6/18.9 11.7/19.3
12 11.6/28.2 11.4/27.6 11.2/727.1
T

TRACKING CONFIGURATION: TDAS @ 100°W; STNS: WHS-AGOD, WHS-HAW
EPOCH: 86/3/21, 1sH3gM

'

\ B| STANFORD '
! TELECOMMUNICATIONS INC.
E Lt R T S A el L A Y

Vi-C-22
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€.3,2.2 Prediction Interval Concatenation, Figure C-14 {]lustrates how
a saries of 1 hr prediction segments may be concatenated to form a 24 hr
pradiction profile, Each segment {s based on & hours of tracking data.

In (A), ti4 domipant error source 1s the tropospheﬁfc error (15%),* and
the profile is relatively flat over 24 hours with a mean TDAS position
error near 11,5 m. In (B), the effect of a possible reduction in tropo-
spheric error to 5% {s shown with TDAS position error reduced to the 5-8 m
level, Solar pressure {s the dominant contributor as 1s evident from the
12 hr cycle,

€.3.3 CONUS~Based VLBI Tracking Rasults

Some preliminary results on TDAS position uncertainty based on CONUS tracking
sites rather than global sites are presented in Figures C-15 and C-16. The
CONUS sites used were GSFC, HSN (Houston), and SUN (Sunnyvale). Figure C-15A
shows the pradiction error profiles generated with the baseline model for
6-48 hr tracking intervals In 6 hr steps. As observed in Section C.3.1,
longer {ntervals give better performance than shorter intervals with measure-
ment and station survey errors at the baseline model Tevels, Figure C~158
indicates that the maximum TDAS position error during a 6 hr prediction
interval is dominatad by either solar pressure or VLBI bias for the tracking
intervals considered.

Figure C-16 demonstrates how several prediction interval segments can be
concatenated to form a 24 hour predictiion error profile. In (A), with
segments based on 24 and 48 hr tracking intervals, the TDAS position uncer-
tainty ranges between 80 and 125 m. In (B), VLBI bias is estimated, and
the TDAS position uncertainty decreases to the 50-75 m level.

C.4 MODELLING DATA

Tables C~3 and C-4 1ist various modelling data used in the analysis.

T
A 15% uncertainty in tropospheric delay modelling was assumed in the

VLBI error model (Table 4-1),

VI-C-23
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f"— FIGIRE £-14

TDAS POSITION UNCERTAINTY Iif 2% #IOUR PREDICTION INTERVAL
(BASED ON MULTIPLE VLBI TRACKING SEGMENTS)

(A) REDUCED ERROR MODEL
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4 FIGURE C-15

TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL AND
ERROR CUNTRIBUTORS FOR CONUS BASED VLBI TRACKING

(A} POSTTION ERROR VS, TRACKING INTERVAL

g - TRACKING CONFIGURATION:
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' FIGURE C-16 '

ORIGINAL PAGE (%
OF POOR QUALITY

TDAS POSITION UNCERTAINTY IN PREDICTION INTERVAL WITH 24,

POSITION UHCERTAINTY (M)

POSITION UNCERTAINTY (M)
']

48 HOUR VLBI TRACKING INTERVALS FROM C0%.% RASED SITES

(A) WITH BASELINE ERROR MODEL

150

100

VL[ TRACKING CONFIGURATION:

50 - - TDAS AT 100°Y
- STNS: GSFCeHZN, GSFC-~SUN
- DATA RATE: L/HR

D ¥ 1 I T ] 1 1 L) Ll Ly T 1]
0 ] 12 18 24
TIME OF DAY (HR/GMT)
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APPENDIX D

USER NAVIGATION PERFORMANCE RESULTS - SEQUENTIAL DATA PROCESSING

TDAS user navigation performance was evaluated in terms of potential 0D/TD
éccuracy for the three one-way tracking ajternatives defined in Section

2, The objective was to assess several user orbit types and the impact

of two and three satellite TDAS constellations, the‘tracking schedule and
two algorithms Tor tracking data processing (sequential and sliding batch).
This section contains the detailed performance results based on sequential
processing of tracking data®. The error modeling approach and major find-
ings were praesented in Section 5.

Cases for evaluation were defined originally for three TDAS constellation
options (see Figure 5.2) and six user orbit types (see Figure 5.3). The
results that follow cover 12 cases: four of the user orbits {A, D, E and
F)** with each of the three TDAS constellations.” Each case is prasented
in a standard format:

* Tracking Schedule « This shows tracking contact intervals over
24 hours for Schedules I and II and for beacon tracking (see
Table 5-1). An accompanying user ground trace indicates coverage
outages due to a zone of exclusfon {if any).

(] Usar Position & Time Accuracy Profiles - These show the lo errors
corresponding to the 24 hour tracking schedules and a subsequent
6 or 12 hour pradiction-only interval.

Summary tables (D-1 thru D-4) included at the end of Appendix D record
the peak errors and identify the major error contributors for each tracking
alternative,

Performance results for sliding batch processing are in Appendix E.

** Individual cases are identified by a two element mnemonic; e.g., A2 indi-

cates user orbit Type A and TDAS constellation Option 2. Evaluation of

user orbit types, B (28°, 600 km) and ¢ (28°, 1000 km) remains to be come

pleted.
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FIGURE D-1
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FIGURE D-2 \

USER POSITION AND TIME ACCURACY WITH 1-WAY TDAS TRACKING ~ CASE Al
(SEQUENTIAL DATA PROCESSING)
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FIGURE B-3
CASE A2 TRACKING SCHEDULES
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USER POSITION_AND TIME ACCURACY WITH 1-WAY TDAS TRACKING -~ CASE A2

ORIGINAL

PAGE 18
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FIGURE D-4

(SEQUENTTAL DATA PROCESSING)
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FIGURE D-5
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FIGURE D-6 \

USER POSITION AND TIME ACCURACY WITH 1-WAY TDAS TRACKING - CASE A3
(SEQUENTIAL DATA PROCESSING)
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APPENDIX E

USER NAVIGATION PERFORMANCE RESULTS - SLIDING BATCH DATA PROCESSING

TDAS user navigation performance was evaluated for two of the one-way track-
ing alternatives (FLST and RLST) assuming sliding batch processing of track-
ing data, The error modeling approach and major findings were discussed in
Section §i this saction presents further details of the results obtained.

Cases for evaluation were selected from among tine TDAS constallation options
and user orbit types defined in Figures 5-1 and 5-2. The results that fol-
Tow cover half of the cases prasented in Appendix D for saquential processing

— the same user orbits types (A.,D,E,F) and two of the TDAS satellite con-
stellation options (1,2).

For each case considered, two types of user position and time accuracy pro-
files were generated: '

. Single Batch Profiles - These were computed to assess the sensie
tivity of user 0D/TD accuracy in the prediction mode to tracking
interval selection. Durations of 6, 12, 18, and 24 hours were
evaluated for each tracking schedule (I and II).* Figures E-1
and E-2 are examples. The tracking interval yilelding the lowest
peak error in the first 6 hours from end-of-tracking was selected
for generating sliding batch profiles in each case.

* Schedules I and II for a 24 hour tracking interval are identical to those

given in Appendix D for corresponding cases. Scheduled contacts for
shorter tracking intervals were simply deleted.

VI-E-1



® S1iding Batch Profiles -~ These are comprised of prediction inter-
val segments corresporiding to u sequence of single batch solutions,
as defined earlier in Figure 5-4, Twenty-four hour profiles were
constructed based on a batch interval (P) of 3 hours and a com-
putation/data handling interval (C) of 1.5 hours, Figure E-3
for Case Al {5 an example.”

Summary tables {E-1 thru E-4) included at the end of Appendix E record the
peak errors and identify the major error contributors for each tracking
alternative,

* The time-from-epoch scale on all plots has the same interpretation as in
Appendix D, i.e., the time elapsed since the user's initial Tocation,
(0°N, 0°E). Individual batch epochs were adjusted backward or forward

d?pending on tracking interval in order to fit a given prediction segment éﬁ
5 ot . -
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BRTS
CCNUS
DSN
EQT
FLBT
FLST
GPS
KSA
LSA
MA
McC
NASCOM
NCC
oD
0D/TD
0SCF
Pocc
RLST
SA
SMA
TD
VLBI
WSA
WSN
aYLBI

APPENDIX F

GLOSSARY OF ACRONYMS

Bilateration Ranging Transponder System
Contiguous United States

Deap Space Network

End of Tracking

Forward Link Beacon Tracking

Forward Link Scheduled Tracking
(NAVSTAR) Global Positioning System
Ky~Band Single Access

Laser Single Access

Multiple Access

Missian Control Center

NASA Ccimunication Network

Network Control Center

Orbit Determination

Orbit and Time Determination

Orbit Support Computing Facility (GSFC)
Project Operations Control Center
Return Link Scheduled Tracking

Single Access

S-Band Multiple Access

Time Determination

Very Long Baseline Interferometry
W-Band Single Access

White Sands (NM)

Differential VLBI (using two signal sources)
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FIGURE C-6
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