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ABSTRACT 

Problems associated with sub synchronous motion at approximately 450 Hz for 

FPL turbopumpe ts the subject of this study. The basic model for the HPOTP 

is discussed including the structural dynamic model for the rotor and housing, 

component models for the liquid and gas eeals, turbine-clear~nc~ excitation 

forces, and impeller-diffuser forces. Linear and nonlinear analyues are 

carried out to meet the fol1owil'~ obj ectives: 

(b) !rovide an explanation for the observed subsynchronous motion via 

nonlinear simulation results. 

(c) Evaluate proposed hardware changes in the HPOTP to remedy current 

difHculties. 

The analysis results support the following conclusions: 

(a) The current HPOTP is marginally stable and is subject to excessive 

synchronous bearing loads due to its proximity to the second 

critical speed. 

(b) Observed subsyncrronous motion can be s'mulated by transient models 

which include bearing-clearance nonlinearities. Tl.~se nonlinearities 

generate forced subharmonic response at observed frequencies for the 

models considered. Bearing clearances and very light damping are 

sufficient to develop subsynchronous motion in an otherwise (zero-

bearing-clearance) stable model. 

(c) Replacing the boost-impeller labyrinth seals with "damper" seals 

without stiffening the rotor reduces synchronous bearing loads, and 

improves stability, but it does not necessarily eliminate sub synchronous 

motion. 

(d) By linear analysis, replnciug the current main impeller \vith a shrouded-
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inducer impeller eliminates both synchronous and sub synchronous 

problems associated with the Eecond critical speed. 

(e) Replacing the ~urrent rotor with a stiffened rotor without 

changing seals eliminates sub synchronous motion but does not 

necessarily reduce synchronous bearing loads. 

(f) Replacing the current rotor with a stiffened rotor and replacing 

the current boost impeller labyrinth seals with damper seals 

sharply reduces synchronous bearing loads, increases rotor stability, 

and eliminates sub synchronous motion. 

ii 



LIST OF FIGURES 

1. SSHE poto7erhead component arranBement and local rotor 
coordinate systems • • • . • • • • . 

2. HPOTP r~tating assembly . 

3. Undamped, zero-running-speed, nominal-rotor/housing modes 
associated with the first and second critical speed .... 

4. Bearing reactiono for the nominal (cur~e~t) linear model 
with speeds out to 40,000 cpm .•.•••..•.• .... 

Sea). Bearing reactions for the nominal linear model with speeds 
out to FPL . . . . . . . . . . • . . 

S(b). Pump accelerometer levels in the X-Z and Y-Z planes •• , . 
Sec). Turbine accelerometer levels in the X-Z and Y-Z planes • . , ... 
6. 

7. 

8. 

9. 

10. 

11. 

12. 

Bearing reaetio'.lS for the nominal rotor model with "damper" 
seal coafftcients for the boost-impeller seals • • • • 

Bearing reactions for the nominal rotor model with seal 
coefficients for a shrouded ind'icer • . • • . . 

Undamped, zero-running-speed, stiffened-rotor/housing modes 
associated with the first and second critical speeds 

Bearing reaction magnitudes versus running speed for the 
stiffened-rotor model with labyrinth boost-impeller seals .... 
Bearing-re&ction magnitudes versus running speed for the 
stiffened-rotor model with damper seals for the booat impeller 

Bearing-reaction magnitudes versus running speed for the 
stiffened-rotor mod~l with reduced-stiffness damper seals for 
the boost impeller . . . . . . . . • . . . . . . . . . 

Yamamoto's model for synchronous response with Laaring 
clearances .... I • • • • • • • • • ., • • • • • 

13. Synchro~ous-r8sponse character:stics for Yamamoto's model with 

2 

2 

2 

19 

19 

20 

20 

22 

22 

24 

2S 

25 

25 

30 

increasing bearing cleara~ces . • . . . • • . . . . 30 

14(£1). Bearing 2 reaction magnitude versus time at FPL for the nominal 
nonlinear model . . . . . . . . . . . . . . . . . . 32 

l4(b), Turbine X-Z plane acceleration magnitu~e versus time for the 
nominal nonlinear model . . . . . . . . . . 32 

15. Turbine X-Z plane acceleration spectra at FPL and higher speeds 
£.or the nominal nonlinear model . . . . . , . . . . . . . 34 

iii 

• 



16. 

17. 

18. 

Bcuring 2 reaction magnitude Bt 29,500 cpm for the 
nominal nonlinear model . . • • • • • • • 

lJrbine X-Z plane acceleration spectra At FPL and higher 
speeds for nonlinear model number 2 

. . . . ~ 

Bearing 2 reaction magnitude at 29,500 cpm for the nominal 
nonlinear model with damp~r seals at the boost impeller • • • • • 

19. Bearing 2 reaction magnitude at speeds above FPL for the 
nominal nonlinear model with damper seals at the boost 

20. 

impr~ller • • • . . • • • • • • • . • " • • ., • • • • • • 

P-.:-aburner X-Z accelerometer spectrum at FPL for the nominal 
nonlinear model with damper seals at the boust impeller 

2l(a). Bearing 2 reaction ~agnitude versus time at FPL for the 
stiffened rotor with labyrinth, boost-impeller, wear-ring 

... 

seals .................... 
2l(b). Turbine acceleration level versus time at FPL for the stiffened-

page 

35 

35 

36 

36 

39 

rotor with labyrinth, boost-impeller, wear-ring seals . . • . .. 39 

22(a). Bearing 2 reaction magnitude versus time at F?L for the 
stiffened rotor with damper-seal designs fnr the boost-
impeller wear-ring seals . . . . . .. ...•.... 

22(b). Turbine acceleration level versus time at FPL for the stiffened­
rotor with damper-seal designs for the boost-impeller wear-
ring seals ~ . . . . . . . , . . . . . . , . . . . . . . . . . . . 

23(a). Bearing 2 eaction magnitude versus time at FPL for the 
stiffened-rotor/boost-impeller damper seal configuration ..... 

40 

40 

41 

23(b). Turbine X accelerution level versus tiule at FPL for the stiffened­
rotor/boost-impeller ddmper seal configuration . . . . . . . . .. 41 

iv 



LIST OF TABLES 

page 

1. HPOTP imbalance distribution ......... . , , . , •• lS 

2. Turbopump configurations for linear analysis ........ 17 

~. Linear OSI, whirl frequency, 2nd critical-speed locatjon 
and FPL bearing reactions • • . • . . • • • • . . . • . • 27 

A.l Input data for boost-impeller damper-seal calculations 

A.2 Calculated rotordynamic coefficients and leakage for boost 
impeller seals .•.•... • . • . 

A.3 Input data for the high-pressure turbine seal and the turbine-

A.4 

A.S 

A.6 

interstp~e seal . . . . • • . • • • • • 

Calculated rotordynamic coefficients and leakage for the high­
pressure turbine seal and the turbine-interstage se, 1 • , . • 

Rocketdyne-calculated rotordynamic coefficients for labyrinth 
seals and shrouded-inducer seals at HPL . . . , . . • . . . • 

Rocketdyne-calculated rotordynamic coefficients for labyrinth 
seals and shrouded-inducer seals at FPL • , . . . . . • . . , 

v 

47 

47 

.48 

, , . 48 

. , . 49 

.. , 49 
j 
'I .. 



I. INTRODUCTION 

A discussion of the rotordYl'Amic characteristics of the HPOTP is expedited 

by a review of figures 1, 2, and 3 which illustrate, respectively, the SSHE 

powerhead and turbopump arra.ngement, the rotating assembly, and two of the 

zero-running-speed, coupled, rotor-ho~9ing modes fo: the current (unstiffened-

rotor) turbopump. The two modes of figure 3 involve relatively small mot~on 

of the housing with large rotor motion corresponding to the first and second 

bending modes of the rotor. The 179 Hz mode is dominated by the overhung-

turbine displacement, while the maximum displacement of the 530 Hz mode is 

at the main impeller, with relatively small motion at the turbines. The 

modes of figure 3 are caL:ulated for the bearing stiffnesses l~i = 500,000 

lbs/in. The calculated linear critical speeds for the turbcrump including 

gyroscopic coupling, seal forces, impeller forces, etc. are at approximately 

12,500 cpm (208 Hz) and 32,500 cpm (540 Hz). 

Initial rotordynamics problems with the HPOTP involved sub synchronous 

motion at approximately 200 Hz associated with the first critjcal speed. This 

problem was eliminated by changing the turbine interstage s~al from A stepped-

labyrinth confiGuration to a constant-clearance, honeycomb-stator seal. The 

turbopump still displays subsynchronous motion in the 250 Hz frequency range 

at start up, and sub synchronous motion associated with the first critical 

speed continues to be of concern at higher power levels. 

The second problem associated with the HPOTP involves sub synchronous 

vibrations at approximately 400-420 lIz. This motion tended to initiate \Vhen 

the running speed reached the appropriate excitation frequency, and persisted 

as sub synchronous motion \Vhen the running speed was increased. A failure and 

explosion of the HPOTP occurred in a test run when the running speed first 

-1-
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traveL sed the maximum-ampiitudc frequency rango nnd tilen was reduced to and 

remained at the now synchronous frequency, The failure was attributed to 

an inadequate bearing-carrier design which caused unequDl load sharing of 

the bearings. Subsequently, redesigned bearing carriers eliminated the 

"400 Hz" sub synchronous motion. The general f~eliug W,8 that the new 

bearing carrier designs caused a more equal load sharing and mai,ntained 

the correct axial bSlll'ing preloads, thus realizing the "expec"ted" radial 

stiffness of the bearings and elevating the rotor second critical speed. 

The bearing-carrier redeSl)n was sliH':'cient to yield a reliable pump 

for RPL operations; however, demonstration of FPL capability has been impeded 

by repeated occurrence of subsy~~~ronous motion in the 450-500 Hz frequency 

range. The incidence of this motion rarely occurs during initial operation 

at higher power levels, but tends to develop after an accumulation of time 

and develops more rapidly with higher synchronous vibration levels. H0wever, 

once a unit begins to "whirl", it ~vill repeatedly whirl, generally Hith 

progressively increasinr, severity. The frequency of the subsynchronous 

motion is sometimes at a fixed fraction of running speed ranging from 88 to 

95%. This "tracking" characteristic is in marked contrast to the earlier 

"400 Hz" phenomenon ~vhere the \vhirl-frequency of the sub synchronous motion 

remained constant, relatively independent of running speed. 

Post-run inspection of turbopumps has revealed that, although the balls 

in Rome bearings, primarily bearing 2, appear to be unblemished, their 

diameters have in fact, been reduced by as much as 0.17 mm in some cases. The 

calise of this dimensional attrition is unknmvn, but has been ascribed to either 

exceG3ive radial loads or the absence of radial loads which leads to skidding. 

At various times, the following hypotheses have been put forward to 

explain the observed "450 Hz" sub synchronous motion: 

-3-



(a) Motion associated with the oecond-critical-specd modeshape of 

figure 2 is marginally ticablc, with the destabilizing forces 

provided by impeller-diffusor interaction forces (1). The 

principal deficiency of the linear-stability-analysis approach 

is the predicted whirl frequency of 530 lIz versus observed 

whi rl frequencies ar(.'ltnd 450 Hz; hence, a linear model with 

nominal bearing coefficients predicts "supersynchronous" motion 

instead of subsynchronous motion. The bearing stiffness coefficients 

of linear models must be reduced substantia:ly below current 

estimates to yield sub synchronous motion at the correct whirl 

frequency. 

(b) The subsynchronous motion arises from bearing-stiffness asynunetry 

which rotates at the cage precessional speed and yields an 

adrlitional forced excitation at approximately 90% of running speed. 

This is the only hypotheses whicJ-. explains the "tracking" observed 

in the data and was put forward by Bernie Rowan at Rocketdyne 

before his untimely death. The problem with this explanation is 

that, according to Rocketdyne, back~.,ard-whirling motion would be 

excited, and the backwards modes are predicted to be heavily damped. 

The phenomenon of bearing-stiffness asynunetry exciting sub synchronous 

motion had been investigated by Yamamoto [2], who demonstrated 

experimentally that insertion of a single large ball into a ball 

bearing could yield stable, forced-sub synchronous motion. 

(c) The sub synchronous motion is a nonlinear phenomenon arising from 

motion in and out of the bearing dead-band* clearances. To the 

*Clearances provided between the outer cnse of the bearing and the housing to 
allow axial slipping. 
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author's knowledge, Steve Winder at MSFC first suggested this 

mechanism following the "lIOO lIz" UPOTP explosion. Simulations 

by the author (1] show that the bearing dead-bands can lower 

the peak vibration amplitudes into the operating range, as 

predicted by Yamamoto [3]. However, no demonstrat:f.on has been made 

that the bearing clearances yield a lower whirl frequency than predicted 

by linear analysis. 

The present report uocuments the results of (a) linear analysis to characterize 

the nominal model and (b) nonlinear transient tdmu1ations which suppC"rt the 

hypotheses that bearing dead-band clearances are principally responsible for 

the obsen;ed subsynchronous motion. No analyses were carried out to examine 

Rowan's hypothesis of rotating assymetry. 

Hnile the cavsas of subsYllchronous motion remain uncertain, the f01l01,;ing 

hati":'~ modifications are being undertaken and cionsidared: 

(a) The rotating assembly is being stiffened in t.he vicinity of bearings 

1 and 2. 

(b) The current labyrinth designs for the boost-impeller wear-ring seals 

are being replaced with damper seals which use a roughened stator and 

a smooth rotor. A swirl brake to reduce the inlet tangential velocity 

is also being implemented for the inlet seal. 

(c) Replacement of the current unshrouded inducers with shrouded inducers 

has been suggested, with the seals at the outer surface of the inducer 

developing relatively large stiffness and damping. 

The consequences of these changes on the rotordynamic characteristics of the 

HP9TP are examined in this study. 

Continuing uncertainties exist as to the correctness of models for the 

individual force clements of the rotordynamic model. The author carried out 

a systematic examination of the literature concerning "'Jest" component models 

-5-



at the start of this study [4], and the preceding Phase B report [5] uti1iRed 

the best available models and best available current estimates for parameters 

of these modc19. The currant report provides a review of the changes und 

advances whict have been made in component ~ode1s of seal forces and again 

Qresents parameters for a "best-available" rotordynamic model. 

In summary, the results reported :in this study were carried out to 

meet the following objectives: 

(a) develop the best-available model for the HPOTP in terms of forces 

developed by seul!>, impellers, turb1.nes,· etc., 

(b) examine the linear dynamic characteristics of the HPOTP in terms 

of stability and synchronous-r~sponse predictions, 

«(!) evaluate and develop explanations for the observed "450 Hz" sub­

synchronous motion, and 

(d) evaluate the prospects of proposed hardware modifications for 

improving the dynamic characteristics of the HPOTP. 

The following chapter briefly describes the structure and components of the 

rotordynamic (!'.Odel, with succeeding sections describing the results of 

linear and nonlinear analyses. 
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II. TUE ROTORDYNAHICS MODEL 

Introduction 

This section briefly reviews the elements of the HPOTP rotordynamic mod~ls 

used in this study. Some of the actual "numbers" used to define the model 

are provided in Appendix A. 

Structural Dynamics Model 

The structural dynamics model of the rotor and the housing form the basic 

framework of the turbopump ~nodel. Both the housing and rotor structural 

dynam~cs models used here were developed by Rocketdyne. A general three-

dimensional finite-element approach was used to model the HPOTP housing 

without the rotor. A lumped parameter model was developed for the ~otor 

using bea~ structural elements and lumped masses and inertias. The rotor-

dynamics model uses modes from the !~ousing model (without the rotor) and 

free-free rotor modes. The current (unstiffened) rotor model was developed 

by Bernie Rowan several years ago. The stiffened-rotor model was provided 

in 1983 by Robert Beatty. 

Bearings 

The bearings are the structural elements which tie the rotors and housings 

together. As illustrated in figure 2, there are two sets of bearings. The 

net load from each set is transmitted through a plaCe-cylinder structure to 

the housing. The bearings in a bearing set are axially preloaded against 

each other, but are not designed to accept axial thrust loads from the turbo-

pumps. A balance-piston arrangement at the discharge of the main impeller 

absorbs axial thrust, and radial clearances are provided at the bearing outer 

races to allow the bearing? to slip axially without developing excessive 

axial loads. 
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Experience and limited test data [6] for the SS~1E bearings indicate 

a nominal stiffness of approximately .5 X lOG lbs/in which is approximat~ly 

one half Qr the values pr~dicted hy A. B. Jones-based analysis [7]. This 

nominal value was used throughout the current study. Prior analyses [5] 

examined the influence of feasible chaIlges in the bearing stiffnesses and 

show the expected results, viz., the first and second critical speeds move 

up and down as the bearing stiffnesses are increased or decreased. 

The bearings are in series with the intermediate structure which 

transmits their load to the housing. The values used for those local 

stiffnesses are 

Ks1 = Ks2 = 2 X 10 6 1bs/in 
(1) 

K = Ks4 = 'I X 10 6 lbs/in s3 

The radial cleara~ces provided at the bearings to permit axial motion 

provide an essential "dead-band" nonlinearity. The clearance values used 

throughout most of this study nre 

(2) 

where Pond T denote pump and turbine bearings. 

Liquid Seals 

Liquid wear-ring seals are provided at the inlet and discharge of the boost 

impeller. The current inlet seal is a stepped labyrinth design with four 

cavities. The current discharge senl is a three segment, stepped seal. Each 

constant-radius seal segment has a series of circumferential grooves. 

ExpE!rience and limited test data [8] have shmm that labyrinth or serrated 

seals of the type currently employed on the impeller inlet and discharge yield 

stiffness and damping coefficients which nre substantially smaller than 

corresponding values for smooth constant clearancF seals. Replacing the current 

grooved ~1ost-impe1ler wear-ring seals with plain a~. .r seals has the potential 

-8-



for a beneficial increase in stiffness and damping in the lIPOTP. In fact, 

as the following discussion explains, various additional possibilities exist 

for optimizing seals. 

The force-motion model for liquid seals has the form 
. x X x 

(~) . 
Y Y Y 

In this model (X,Y) are the components of the relative motion between the rotor 

and housing. Black, et a1. [9, 10] were responsible for most of the analytical 

developments related to the analysis of seals leading to the definition of 

stiffness, damping, and added-mass coefficients. His analysis demonstrates 

that the "cross-coupled" stiffness coefficient, k, arises sole:y due to fluid 

rotation within the sen1. As a fluid element proceeds axially along an 

annular seal l shear forces at the rotor accelerate or decelerate the fluid 

tangentially until an asymptotic value is reached. For a seal with the same 

directionally-homogeneous surface-roughness treatment on the rotor and the 

housing, the average asymptotic tangential velocity is Rw/2 where R is the 

seal radius and w is the rotor running speed. 

The cross-coupled stiffness coefficient k acts in opposition to the 

direct damping coefficient C to destabilize rotors. Hence, steps which can 

be taken to reduce the net fluid rotation within a seal will improve rotor 

stability by reducing k. The modifications t"hich have been undertaken for 

the boost-pump im~eller seals propose to increase net damping by the following 

physical mechanisms: 

(a) The analysis of von Pragenau [11] has recently predicted that the 

asyr"ptotic tangential velocity can be modified if a different 

surface roughness is used for the rotor and stator elements. Rough 

rotor/smooth stator and smooth r'1tor/rough stator combinations yield 

-9-



higher and 10\0[er llsymptotic values, respectively. Von Pragenau 

calls the rough-st.:ttor/smooth-rotor configuration a "damper seal" 

because of its enhanced stability characteristics. The rougtness 

has the additional potential benefit of reducing leakage. Damper 

seal configurations are presently under consideration for both the 

inlet and discharge seals of. the boost impeller. Analysis by Childs 

and Kim [12] based on a finite-length solution [13] yield predictions 

which are consistent with von Pragenau. Rocketdyne develops the 

desired roughnuss on both boost--impeller seals by a knurled 

indentatior. pattern on the stator. 

(b) If the inlet tangential velocity can be reduced, the high axial 

velocities in a cryogenic seal ~re such that the fluid may proceed 

through a seal without substantially increasing its tangential 

velocity. An anti'~vortex web has been introduced at the inlet to 

the boost-impeller inlet seal to reduce the inlec tangential 

velocity and yi~ld a reduced k. This practice has been followed 

previously for the labyrinth seals of high pressure compressors [14]. 

Tests o£ an annular seals in \vhich the stator has the knurled roughness 

pattern used by Rocketdyne and a smooth rotor have recently been carried out 

at TAMU. The results, \vhich are documented in [15], show good agreement 

between theory [12] and experiment with respect to k and C, but a serious 

underprediction of K and H. For the present study, calculated 'Jalues are 

used for k, C, m, and H, but calculated values for K are corrected upwards 

based on the results of [15]. For calculation, inlet tangential velocity for 

the dIscharge seal is assumed to be asymptotic, i.e., Rw/2. However, the 

swirl web at the inlet seal is assumed to be eEfective in reducing this value 

by a factor of two. Seal coefficients used in the rotordynamic calculations 

-10-
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are provided in Appendix A. 

Gas Seals 

The HPOTP turbines are shrouded, and single-cavity tip seals are provided to 

reduce leakage between the turbine shroud and the stator. The interstage 

seal between the turbines uses a honeycomb stator element with B smooth rotor 

and inlet anti-vortex ribs to reduce the inlet tangential velocity component. 

A floating-ring shaft seal is provided at the turbine discharge to restrict 

leakage of the hot turbine gases towards the lox within the pump. The flow 

across this seal is choked. 

Rotordynamic coefficients for the tip seals use Rocketdyne calculations. 

Nelson's [16] method is used for the turbine interstage seal and the high-

pressure turbine seal. His analyses apply to constant-clearance or convergent 

taper geometries, account for the development of tangential velocity within 

the seals, ~nd different but directionally-homogeneous surface roughness on 

the rotor and stator. 

A constant-clearance configuration was originally used for the turbine 

interstage seal. More recently, Rocketdyne has replaced the constant-

clearance configuration ,.,rith a convergent taper. Computed rotordynamic 

coefficients are provided in Appendix A for both configurations. 

The "floating-,:ing" nature of the high-pressure turbine seal is 

such that its full reaction force can not be transmitted to the pump housing. 

Specifically, the seal is d~signed to slip before any appreciable force can be 

transmitted. To compensate for this situation, the calculated seal rotor-

dynamic coefficients are arbitrarily reduced by a factor of 5. Calculated 

values are provided in Appendix A. 
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Turbine Clearance Excitation Forces 

Clearance-excitation forces ore developed by turbines due to the dependency 

of lo~al efficiency on local clearances. The destabilizing force is modeled 

by 

F X 

F 
Y 

X 
(4 ) 

Y 

where T is the turbine torque, D is the average pitch diameter of the turbine 
p 

blades, H is the average height, and S defines the change in turbine efficiency 

due to uniform changes in clearance. Again, the components (X,Y) of Eq. (4) 

define the displacement of the turbine relative to the housing. Thomas initially 

identified this destabilizing phenomenon [17], while Alford [18] subsequently 

and independently developed the same model. Test results for shrouded turb~nes 

have yielded values for B on the order of 0.6 [19]. The value of 0.4 is used in 

this s:=udy. 

The dimensions of the JiPOTP turbines are 

D = 9.57 in, H = .496 in 
p 

The torque and clearance-excitation coefficient (6 = 1) are listed below 

w (cpm) 

FPL 30,960 

HPL 

T (in -lb) X lOll 

6.20 

2.48 

l<.r (lb/in) 

13,060 

5,230 

Note that the KT values are for both turbine stages with f3 = 1. 
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Impeller-Diffuser Forces 

A test prJgram has been under way at the California Institute of Technology 

for some time to measure the static and dynamic forces experienced by a 

pump imp~ller in either a volute 0: a vaned diffuser. Chamieh et 01. [10] 

have defined the following model on the basis of static measurements of an 

impeller within a vaned diffuser: 

F X 

F 
Y 

c 

[

-Z.O 

-0.7 

0.71 

-z.oJ 
X/R2 

Y/R2 (5) 

where R2 is the impeller radius, p is the fluid density, V2=R2W is the impeller 

tip velocity, and A2=2nR2bZ is the exit flow area. Note that the direct­

stiffness coefficient in Eq. (5) is negativa, i.e.~ the impeller-diffuser 

force causes a reduction in rrtor stiffness, From Eq. (5), the dimensional 

impeller-diffuser coefficients are defined by 

2 PA2V2 
K = K71 -2R

2 
= K* (npb2R/)W2 

k = k*(npb2R2
2

)W 2 
(6) 

More recently, Cal. Tech. researchers [21] have reported preliminary results 

for an extension of the model provided by Eq. (5) to include direct and cross-

coupled dampirig terms. However, rotordynamic analysis of the HPOTP sugges ts 

that the proposed values are unrealistically high. In particular, the 

proposed direct damping value is large enough to eliminate any possible 

rotordynamic problems. The cross-coupled damping coefficient acts like a 

"gyroscopic-stiffening" element <111', also seems to be too large, since it 

would elevate the predicted whirl frequency to 638 Hz. In view of these 

uncertainties, the original simple model of Eq. (6) was used for rotor-

dynamic calculations with the damping model of [Zl] discarded. 
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The dimensions of the two impellers arc provided below: 

Main Impeller: R2 = 3.35 in, b2 = 1 in 

Boost Impeller: R2 = 2.60 in. b2 = .270 in 

The following coefficients result 

Main Imne11er Boost Impeller 
FPL MPL FPl.. tIPL 

w (cpm) 30,960 19,841 30,960 19,841 

P (1<g/m 3) 1,137 1,137 1,114 1,114 

1< (lb/in) -7.8f-X10 lt -3.2l,X10 't -1. 28X10 1t -5,2' 

It (lbl in) 2.76X10 lt 1.13X10 't 4,480 1,840 

Fixed-Direction Side Loads 

The hydrodynamic side loads are assumed to be proportional to speed squared. 

The proportionality constants are listed below 

1< (X - z) 1< (Y - z) 
1bs·sec2 1bs·sec 2 

Boost Impeller -2.806 X 10- 5 4.950 X 10- 6 

Nain Impeller 7.281 X 10- 5 6.117 X 10- 5 

Turbines 0 2.379 X 10- 5 

These coefficients yield a total main-impeller side load of 960 1bs at FPL. 

The side load is used in the nonlinear analysis and, by its interaction 

with the dead-band clearance and imbalance magnitude, has a significant 

influence on rotor response. 

-14-
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Balance-Piston Stiffness nnd ilnmp1nc Coefficients 

Tho balance-piston stiffness is modeled by tho quadratic relBt~onship 

KZ Q -431.97 w ~ .3542 w2 (7) 

~.,.,here W is the running ~peed in rod/sec. HOl.,.,nver, KZ is neve.':' ol1o~.,.,ed 

to fall below 200,000 lbs/in. Eq. (7) fits Winder's graphical dath [22]. 

Balance-piston damping is 'L1pld at 15% of critical for all speeds. Axial 

motion of the rotor is only coupled to tho housing in the nonlinear model. 

The linear model does not include this feature. 

Imbalance Distribution 

The imbalance distribution used in all cases consisted of the following 

a] . .i.3ned imbalances: 

Location Hagnitude 

(a) Boost Impeller .1273 gm cm 

(b) Hain Impeller 10.18 gm cm 

(c) Hid-turbine 12.73 gm em 

Table 1. HPOTP imbalance distribution. 

While considerable uncertainty exists concerning the particular imbalance 

distribution in a given turbopump, the distribution of table 1 provides 

aJequate excitation for the modes of interest. 
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LINEAR ANAl.YSIS 

Introduction 

As notee. above, bearing tI(.ead-l~andtl clearancos are the significant known 

nonlinearity which influences rotCJ_dynomics. If the daad-band cl'Hlranc~s 

are neglected, a linear model results. The present chapter concerns 

results of '~.near analysis for various models of HPOTP turbopump configurations. 

The following chapter concerns nonlinear-analysis results which differ in 

'~any respects from linear predictions. The linear analysis results of the 

present section provide an efficient and helpful characterization of the 

turbopUlllp'S rotorctynamic characteristi.cs. 

The analysis procedure used here is basically the same as that outlined 

in reference [23]. Modal coordinates based on the ze~o-running-speed coupled 

rotor-housing modes are used. Gyroscopic coupling and forces due to seals, 

turbine clearance-excitation, the interaction of impellers and diffusers, 

damping, etc. couple the modal coordinates via modal stiffness, damping, and 

inertia matrices. The onset speed of instability for a turbopump configuration 

is defined by calculating the comp1e): eigenvalues ·::>f the system dynamic matrix 

at various speeds. Synchronous-respunac amplitudes of bearing reactions and 

accelBTation levels of accelerometers maul!ted on the turbopump housing due to 

imbalance are calculated. 

Table 2 provides the distinguishing characteristics of the six turbopump 

configurations ~hich are ana1yze~ in this section. Except as otherwise noted, 

the six turbopump models are identical and use the nominal parameters of the 

preceding section and Appendix A. 

Parameters of the "nominal" model were selected to represent the current 

flight configurations. \~thout additional damping, the nominal model predicts 
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a. 

b. 

c. 

d. 

e. 

f. 

-
Boost-Impeller 

Rotor '\fear-Ring Seals 

Nominal Nodel current Labyrinth 
--

Nominal Hodel current Rocketdyne 
with Damper Seals Damper 

r-

N'Jminal Hodel current Laybrinth 
\vith Shrouded Inducer 

Stiffened Rotor stiffened Labyrinth 

Stiffened Rotor with stiffened Rock~tdyne 

Damper Seals Damper 

Stiffened Rotor with stiffened "Optimized" 
Otimized Damper Seals Damper 

Table 2. Turbopump configurations for line~r analysis. 

4"'"''''' ~ 

?-lain 
Impeller 

Unshrouded 

Unshrouded 

Shrouded 

Un shrouded 

Unshrouded 

Unshrouded 

~- - --
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an OSI \Onset Speed of Instability) at 17,200 'pm. Hence, the model WIlS 

"tuned" by adding concentrated linear damping at the main impellf1t'. This 

damping develops forces which are proportional to the relative velocity 

between the rotor Bnd housing at this location. The linear dampinG 

coefficient, C c 5 1b sac/in, was sufficient to elevate the OS! to 30,480 cpm 

and is used for all models. No damping is provided at the bearings. The 

configurations of table 2 were selected to characterize the current flight 

configur~tion6 and examine the consequences of the following changes to this 

configuration: 

(a) Replace the labyrinth, boost-impeller, wear.-ring seals with damper 

seals. 

(b) Replace the unshrouded inducer with a shruuded inducer. 

(c) Stiffen the current rotor. 

(d) Stiffen the current rotor and use damper seals fot' the boost-impeller 

wear-r.in~ seals. 

(e) Stiffen the current rotor and use "optimized" damper seals for l~e 

bo06t impeller. 

Results for these configurations are provided below. 

Current Flight Configuration 

Figure 4 illustrates the bearing reactions for running speede from 5~000 to 

40,000 cpm. The first aud second critical speeds are clearly evident, with 

the second critical speed having very little damping. Figure 5 (a) illustrates 

the same results for speeds from 5,000 cpm to FPL. Figures 5 (b) and (c) 

illustrate predicted acceleration levels for accelerometers mounted on the 

housing at the pump Dnd turbine ends of the turbopump. Clearly, FPL 1s quite 

near the predicted second critical speed. Also, while the bearing reactions 
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are responsive to the "rotor" critical speeds, the housing accelerometer levels 

may respond more sharply to rotor-housing combined modes. This is particularly 

true for the first critical speed at approximately 12,500 cpm. However, the 

predicted accelerometer levels are quite responsive to motion associated with 

the "rotor" second critical speed at approximately 32,500 cpm. 

The above results support the following conclusions with respect to the 

dynamic characteristics of the HPOTP: 

(a) Response. The proximity of the second critical speed to FPL is a 

continuing cause for concern with respect to excessive bearing 

loads. Even modest losses of bearing stiffnp~Q~q are sufficient to 

drop the second critical speed into the operating range. 

(b) Stability. Based on the prior "400 Hz" experience with this turbo}lc1mp, 

the second critical speed appears to be lightly damped and subject 

to instability. 

Changes in the turbine-interstage seal coefficients for the current 

(convergent-tapered) and prior (constant-cleardTIce) configurations made no 

appreciabl8 difference in the rotordynamic characteristics of the nOffi~nal 

model with respect to second-critical speed response. 

Seal Notlifications \vith the Current Rotor 

Boo.ot Tmpe1..C.eJt WeaJl-1UJ1.g Sea..to 

Figure 6 illustrates the predicted bearing reactions which results with damper 

seal configurations for the boost impeller, and a comparison of this result 

with the nominal-rotor-model results of figure 5 (a) indicates a sharp reduction 

in peak bearing-reaction magnitudes. Additionally, the OSI is increased from 

30.480 to 36,350 cpm. 

SliJWlide.d I ndUc.eJL Sea..to 

Figure 7 illustrates the results for the shrouded inducer configuration. Stated 
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Figure 6. Bearing reactions for the nominal linear 
model with "damper" seal coefficients for 
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briefly, the second critical speed is simply eliminated fo~ this configuration, 

and the OS1 is increased to 59,950 cpm. 

Stiffened Rotor Result~ 

Figure 8 illustrates rotor-housing mode shapes which are dominated by the rotor 

motion and correspond to the first and second rotor critical speeds. Observe 

that the modeshapes are similar to those of figure 3 but that the natural 

frequency ~ssociated with the second critical speed has been increased f! Jm 

530 Hz to 558 Hz. This increase is the expected result associated with an 

increase in rotor stiffness. However, the corresponding result for the over­

hung turbine mode is a decrease from 179 Hz to 168 Hz, which is certainly not 

expected. Bob Beatty at Rocketdyne feels that the results for the original 

rotor model are in error because of a low mass estimate in the turbine disks. 

Specifically, the mass due to goldplating was not accounted for in the original 

analysis. 

S.UO oe.J1e.d- Ro.tolt/Boo6:t-lmpe ... teVL- Lab!J.'L-LI~th-Se.cLt Mode.t 

Figure 9 illustrates the bearing-reaction-magnitudes versus spe::d results \oJhen 

the nominal rotor structural-dynamic-model data is replaced with the stiff-rotor­

model data. Observe that the second critical speed is elevated from approximately 

32,500 cpru to 35,000 cpm, and that the FPL bearing loads are reduced. The OS1 

is increased to approximately 40,000 cpm. 

SUO 0 e.J1e.d - Ro.tolt/ B00.6.t-1 IlIPe..UVl. VanJ/J(!}L Se.a.e 

Figure 10 illustrates the bearing-react ion-magnitude versus speed results for 

a stiffened-rotor/damper-seal configuration. By comparison to figure 9, the 

second critical speed is elevated to 42,000 cpm, and the peak bearing-reaction 

magnitudes are decreased. For this configuration, the OS1 is increased to 

approximately 45,000 rpm. 

SUO 0 e.1le.d Ro:tolt/ Ite.duc.e.d -S.UO OI1e..M Boo.6.t - T 11I/Je.UVl. Vam/J(!}L Se.ct.t6 

The predicted direct stiffness of a damper-seal configuration for the boost­
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impeller discharge sen1 is comparable to that of the bearings and acts to 

markedly ceduce the amplitude of relative rotor motion at the seal location. 

Beyond a certain point, increasing the seal's direct stiffness becomes 

counterproductive in that the effectiveness of the seal's damping is limited 

in reducing synchronous-response amplitudes. Tests of seal stator configura-

tions (15] suggest that seals can be developed with increased net damping and 

substantially decreased direct stiffness coefficients. The results of figure 

11 illustrate the consequences of a 50% reduction in the predicted direct 

stiffness coefficient of the boost-impeller damper seals. While the bearing 

reaction magnitudes are relatively unchanged. The OSI for the arrangement is 

sharply elevated to 62,000 cpm. 

S~~Y AND CONCLUSIONS 

Table 3 contains a summary of the pertinent results for linear analysis. 

An assessment of the results presented in figures 6 through 11 and table 3 

supports the following conclusions: 

CWULen,t Roto/t 

(a) Modification of the boost impeller seals ha~ the potential for 

significantly reducing bearing reactions at FPL; however, the 

second critical speed remaias only slightly above FPL and any 

loss of bearing stiffness will drop it into the operating range. 

(b) The damper-seal modification yields a predicted increase of the 

OSI by 19%. 

(c) The shrouded-inducer design eliminates both the second critical 

speed and the stability problem. 
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2nd Critical (1SI Hhirl FPL Bearing Reaction (lbs) 

Configuration speed (cpm) {,:pm) Freq. (Hz) I 

1 2 3 

Nominal 32,500 30,480 536 553 635 667 

Nominal with Damper 34,000 36,350 576 251 349 513 
Boost-Impeller Seals 

Nominal with Shroud- critically 60,000 80 80 85 56 
ed Inducer Seals damped 

Stiffened R.otor 35,000 40,154 583 305 314 229 

Stiffened Rotor 42,000 45,000 I 701 64 82 90 
,-lith D&mper Seals 

I 

Stiffened Rotor 62,000 44,000 700 82 99 102 
with 50% stiff-
ness Damper Seals 

~---.---- .. --. - - ----- -- - - --- - - - - - - -- - ---- - -- - _ .. -

Table 3. Linear OSI, whirl frequency, 2nd critical-speed locati~n, and FPL bearing 
reactions. 
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(a) Stiffening the rotor, without changing the scals, yields a 

substantial elevation of both the OSI (32%) and the second 

critical speed (29%), and a sharp reduction in FPL bearing 

loads. Assuming that the utructllral dynamic models accurately 

reflect the relative stiffness of the two rotors, stiffening 

the rotor provides R marked improvement in the rotordynamic 

characteristics of the tllrbopump. 

(b) Boost-impeller damper seals provide a cignificant additional 

improvement in the dynamic characteristics of the BPOTP, primarily 

in reduction of FPL bearing loads. 

(c) Reducing the direct stiffness of the boost-impeller damper seals 

mainly acts to elevate the OSI with minimal increases in FPL bearing 

loads. 
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NONLINEAR ANALYSIS PROCEDURES AND RESULTS 

Introduction 

As noted previously, the bearing "dead-band" clearances provide the essential 

nonlinearity in the HPO'~P model. -rhe bearing clearances interact with the 

effects of side lOfuls and rotor imbalance to yield significantly different 

results for a nonlinear model than those predicted by linear models. 

Figure 12 illustrates the analytical mod~l used by Yamamoto [31 tn 

investigate the influence or- bearing clearances on rotordynamic response in 

the absence of side loads. For zero bearing clearances, the model of figure 12 

reduces to a simple Jeffcott model with viscous external damping. Figure 13 

illustrates the response characteristics for a progressive increase in the 

ratio of bearing clearance to imbalance eccentricity Q = cIa. The results are 

for a damping ratio of 2.5%, and indicate that the speed location ~t maximum 

bearing reactions is reduced by increasing a. Moreover, the drop in amplitude 

for speeds above the maximum bearing-load can be precipitious. The response 

characteristics of figure 13 can give rise to "jump" phenomena with the 

synchronous vibration level jumping either up or down for very small changes 

in running speed. Flight data for the HPOTP have demonstrated sudden step 

increases in accelerometer levels. 

From these results, one would anticipate that bearing clearances could 

easily drop the peak-bearing-load running speed lccation associated with the 

second critical speed into the operating range. In fact, parametric studies 

of the bearing clClrances clearly confirm this result [1]. They also confirm 

that peak-bearing-load speeds can be reduced below FPL for sufficiently large 

clearances. Hence for a given running speed, a nonlinear model with bearing 
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Figure 12. Yamamoto's model for synchronous response with 
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Figure 13. Synchronous-response characteristics for 
Yamamoto's model with increasing bearing 
clearances. 
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clearanceo can yield oith~r Dubutnntially larger or smaller bearing reactions 

than the linear model. 

The nonlinear simulation resulto of this section were developed for the 

following purposes: 

(a) develop an explanation fur the observed 450 Hz whirl frequency, 

and 

(b) evaluate the effectiveness of proposed hardware remedies for 

improving the rotordynamic characteristics of the HPOTP. 

Current Rotor Configuration 

The ~onlinear model was verified by comparison to results from the linear model, 

e.g., the second-criticaL-speed location at 32,500 cpm was obtained for ~ero 

bearing clearances. Figure 14 illustrates the Learing 2 reaction magnitude 

and turbine acceleration signals at FPL for the nominal model with the bearing 

clearances of Eq. (2). Observe the "clipping" of the bearing reaction magnitudes 

in figure 14 (a), which results from motion through the beat'ing dead-band. 

Motion in and out of the dead-band results as a combination of static displacement 

due to side loads and elliptical orbits due to imbalance. Bearing clipping 

generates a nearly periodic impulsive loading at the bearings that excites the 

beating motion which is evident in the accelerometer signal prediction of figll~e 

14 (b). Spectrum analysis results of the accelerometer signals at FPL and two 

higher speeds are providf( in figurcl 15 and reveal a sub synchronous signal at 

26,500 cpm (443 Hz). Both the synchronous and subsynchronous signals are 

observed to decrease as the running speed increases. Observe that the frequency 

of the sub synchronous motion is consistent with frequencies observed in test 

datu as apposed to the linear predictions of 530 lIz. The lineur model corres-

ponding to the result of figure 14 is lightly damped but stable. The nonlinear 
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model remains in a limit cycle motion with f3ub~)Y~lchronous components until 

the clearance-excitation-force coefficients at the main impeller nrc increuDcd 

to 250% of their nominal values, but then diverge exponentiQ11y. Based on 

these observations, the subsynchronous component of figure 14 is deemed to 

be the result of bearing nonlinearities and not the result of an instability. 

Ho,,,ever, the nonlinear sJbharmonic motion can only be developed for light 

.t2..tor damping, and the rotor is certainly unstable for zero bearing stiffnesses 

which is the case,when motion is within the dead-bands. 

The subsynchronous motion of figures 14 and 15 arises at speeds above the 

maximum synchronous response speed predicted by Yamamoto's model in figure 13. 

This statement is supported by the results in figure 16 which shows the bearing 

2 reaction magnitude predictions at 29,450 cpm. Observe that the synchronous 

bearing-reaction magnitudes are significantly higher than the subsynchronous 

amplitudes of figure 14 (a). 

A second nonlinear model configuration which yielded a substantial 

<:lubsynchronous vibration component was obtained by doubling both the imbalance 

magnitudes and the destabilizing force coefficients at the main impeller, 

adding damping at the bearing (2 lb s/in), and increasing the damping at t~e 

main impeller to 15 1b s/in. This configuration is predicted to be linearly 

stable at FPL. Spectral Lnalysis results for this configuration at FPL and 

two higher speeds are presented in figure 17. In this case, the subsynchronous 

component increases with running speed, while the synchronous component decreases. 

Figures 18 through 20 illustrate resultq for the nominal nonlinear rotor mode2 

with damper seals at the boost impeller. By comparison to figure 16, observe 

that the damper seals significantly reduces the RPL synchronous loads and the 

constant side loads on bearing 2. By comparison to figure 14 (b), figure 19 
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demonstrates that the damper seals significantly alter the nature of the 

sub synchronous motion, but tend to increase the "c.Lipping" of the bearing 

reactions. Presumably, the clipping motion is increased because of the 

direct stiffness of the damper seals which tends to counter the side loads 

and center the bearings within their clearances. The spectra of figure 20 

demonstrate that the sub synchronous motion remains significant for the 

nominal rotor model with boost-impeller damper seals. 

Stiffened-Rotor ~esults 

The results of the preceding section examine the consequences of a change 

in the current boost-impeller wear-ring seals from a labyrinth to a damper-seal 

dedgI'; ~Yith no stiffening of the rotor. Conversely, the frames of figure 21 

illustrate the consequences of introducing the stiffened rotor without changing 

the seals. Observe that the FPL bearing reactions and acceleration levels have 

actually increased as compared to the nominal model of figure 14 which contradicts 

the linear predictions. Introducing the stiffened r.otor elevates the second 

critical speed and eliminates motion in and out of the bearing dead-bands. Pre­

sumably, at some higher running speed, the dead-band motion and associated sub­

synchronous motion would return. Fourier analysis of the acceleration signal of 

figure 21 (b) shows synchronous and twice synchronous components but no sub­

synchronous. 

At present, the stiffened-rotor and boost-impeller damper seals are 

a "package-deal" in that all modified units will incorporate both changes. 

Figure 2 illustrates predicted FPL results for this configuration. Observe 

by comparison to figures 14 and 21 th~t the bearing -2 reaction magnitude and 

the turbine -x accelerations are both reduced substantially. Fourier spectrum 

analysis of the accel. signal of figure 22 (b) reveals synchronous and twice­

synchronous components, but no subsynchronous. 
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Concerning the vibration characteristics at RPL, the resu~ts of figure 23 

i1luGtrate a sharp reduction in the bearing -2 reaction magnitude as compared 

to figure 16. Fourier analysis of the turbine acceleration signal of figure 

23 (b) reveals no sub synchronous components. 

One precautionary note is emphasized with respect to the encouraging 

bearing-reaction predictions of figures 22 (a) and 23 (a). The model is set 

up so that the boost-impeller seals and bearings are exactly centered. Hence, 

the seals act to unload the bearing alternating and constant loads. However, 

if the centers are radially displaced the seal stiffness would act to increase 

the stead:'-state bearing reaction magnitude. 
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CONCLUSIONS 

Linear and nonlinear analyses of the HPOTP support the following 

conclusions: 

(a) By linear predictions, the second critical speed of the current 

(unstiffened-rotor) HPOTP is only slightly above the FPL running 

speed and is lightly damped. Even a modest loss of bearing 

stiffness is sufficient to drop the second critical speed into 

the operating range and yield a prediction of excessive bearing 

loads. 

(b) Based on prior test experience, the HPOTP appears to be lightly 

damped. 

(c) The sub synchronous motion which is evident in test results can 

be obtained in a nonlinear model due to bearing clearances. Motion 

in and out of the dead-band clearances excites subharmonic motion 

for a stable but lightly damped model. 

(d) A whirl frequency of sub synchronous motion at 440 Hz is predicted 

by the nonlinear model for the current rotor which is consistent 

with test results but at odds with a linear prediction of 530 Hz. 

This whirl frequency reduction results solely from the bearing 

clearances, and does not require any stiffness reduction in the 

model at the bearings or elsewhere. 

(e) Bearing clearances can drop the peak-vibration running speed into 

,the operating range yielding a prediction of excessive bearing 

loads at RPL. 

(f) Incorporation of damper seals into the boost impeller seals with 

the current rotor markedly reduces predicted synchronous bearing 
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londs, but increases bearing-reaction clipping and sub synchronous 

motion at FPL. 

(g) Introducing a stiffened rotor without changing the boost-impeller 

scala elevates the rotor critical f~eed nnd eliminates subsynchronous 

motion at FPL; however, predicted bearing-reaction magnitudes at 

FPL remain high. 

(h) A stiffened-rotor/boost-impeller wear-ring damper seal configuration 

eliminates subsynchronous motion in the operating range and markedly 

reduces synchronous bearing reactions. 
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APPENDIX A: INPUT DATA 

~ ~tor: Eigenvalues and Damping Fac~ 

The rotor eigenvalues an~ eigenvectors used here are based on a model 

by B. Rowan. Thc free-free eigenvalues ,used are listed below. 

A C 
1 0 A7 r::I 3724 Hz 

A2 '" 0 A8 c 4389 Hz 

A3 c 426 liz A9 = 6600 Hz 

A4 c 970 Hz AlO c 7397 Hz 

A5 = 1561 Hz All C 10396 Hz 

A6 c 2698 Hz Al2 c 11916 Hz 

One-half percent of critical damping was used for modes three through twelve. 

Zero damping was used for modes 1 and 2. 

Stiffened Rotor: Eigenvalues and Damping Factors 

The rotor eigenvalueb and eigenvectors used here are based on a 1983 

model provided by Robert Beatty of Rocketdyne. 

Al = 0 A7 = 3211 Hz 

, 
/\2 = 0 A8 = 3787 Hz 

A3 '" 451 Hz A9 c 4722 Hz 

A4 = 1053 Hz AlO = ·5571 Hz 

1'5 = 1779 Hz All = 6879 Hz 

A6 = 2998 Hz A12 = 7604 Hz 

One-half percent of critical damping was used for modes three through twelve. 

Zero damping was used for modes 1 and 2. 

Housing Eigenvalues and Damping Factors 

The case eigenvalues and eigenvectors are based on a 1982 Rocketdyne 

structural-dynamic model. The eigenvalues used in the study are 
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A C c1 45 Hz \61:1 351 Hz 

Ac2 c 86 Hz \7 c 432 ll:r 

A c 
c3 III Hz AcS C 

l.68 Hz 

\4
c 300 Hz Ac9 c 488 Hz 

AcS c 310 Hz Ac10 c 542 Hz 

One-half percent of critical damping was used for all housing modes. 

Seal Rotordxnamic Coefficients 

Experience has sho\m that turbopump seals have a very significant 

influence on rotordynamics. Because of the HPOTP modeshapes, the turbine 

se~~~ have a predominant influence on the first-critical response and 

minimal influence on the second-critical response. Conversely, seals at the 

boost or main impeller have a significant influence on motion associated with 

the second critical speed, but minimal influence on motion associated with 

the first critical speed. To improve rotordynamic response, the following 

seal changes have been implemented or con,tidered: 

(a) The turbine interstage seal was first changed from a stepped laby-

rinth to a constant-clearance/honeycomb-stator configuration, and 

then to a convergent-taper/honeycomb-stator configuration. 

(b) The boost-impeller wear-ring seals have been changed (in test pumps) 

from labyrinth to constant-clearance seals with roughened stators. 

(c) Sealing surfaces are to be created at the outer surface of shrouded 

inducers for the main impellec. 

Rocketdyne-calculated rotordynamic coefficient values (1977) are used for 

labyrinth seals, viz., the turbine tip seals and boost-impeller labyrinth 

seals. Rocketdyne-calculated values are also used for th~ shroud~d-inducer 
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scals. However, TAHU calculated valuos arc uoed for the booot-impeller damper 

seols, the high-prcS6urc-turbinc, and the turbine interscagc oealo. The an8lyol0 

of Childs and Kim [12] is usad for incompreoslble-fluld seals and che analysis 

of Nelson [16] is used for gas scals. For completeness, input data for 'these 

calculations are also provided. 

Tables A,l and A.2 contain the appropriate data for the boost-impeller sea_s, 

while tables A.3 and A. 'I contain data for the high-pressure turbine seal al'l.d 

the turbine interstage seal. Data for the remaining seals nrc provided in 

table A.5 nnd A.6. 
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D L c~ uno y II X lor- til' Vi 
l'o\~er 

Scnl I.evol (1.n) (in) (in) .. - lb/f~ 1b noc:ltt 2 Pili cpm 

1'1't. 2.89 0.5 .006 .25 70.2 .373 2006 30 367 
Inlet 

HPt. 2.89 0.5 .007 .25 70.6 3B5 970 20,298 

r---f!!L. :1.3/.5 0.87 .004 1.0 70.2 .373 6505 30 367 
D1echnrgc 

20 298 MPL 3.345 0.87 . 00/.8 1.0 70.6 .373 3246 

*uoo c Ueo /(Rw/2) c Normalized inlet tangential velocity 

Turbulence Empirical Coefficients 

Stator: ms Q -0.136, ns c -.1357 

Rotor: mr c -0.25, nr c .079 

Table A.l Input data for boost-impeller damper saal calculations. 

Power K It C c H X 10~ m X 10 5 

Seal Level 11)/in Ib/in 1b Bcc/in Ib Bec/in 1b Bec 2/in 1b llec 2/in ! 
FPL 112,340 21,280 30. 1. 28 8.2 - 1.44 

Inlet (22/. 680) 

Discharge 

MPL 1.6,960 8,BOO 18. 0.72 6.86 - 2.16 
(93 920) 

FPL 732,220 369,800 280. 14.8 BO.6 20.00 
(1.46/. X 106

) 

MPL 332,100 151,690 163. B./I2 67.3 17.0 
(66 /,.000) 

Table A.2 Calculated rotordynamic coefficients and leakage for boost­
impeller seals. 

Direct stiffness values in parenthesiEl ,,,ere used in rotordynruuic 
calculations and are twice calculated values. 

I 
I 

I 

,ttIIP ) 

W 
Ib/acc 

8.37 

7.07 

B.2B 

7.57 



Turbine 1. S. II. P. Turbine 
111'L FPL MPL 

w (cpm) 20,283 30,376 20,283 

Pin (psia) 2,857 5,540 1,983 

l' in 
( °l~) 1,0211 1, '198 897 

Pex (paia) /.,354 4,261 45.6 

R Ideal gas 
g constant 532 '145 593 

IJ (lbm/ft"flcc) 1.02 X 10"5 1.44 X 10- 5 .92 X 10- 5 

., 
v spec. heat 

ratio 1. 385 1.371 1. !t 

R (in) 2.667 2.867 1.316 

L (in) 0.995 0.995 0.318 

USo(o)/RW 0.25 0,25 

Turbine I, S. Seal 

Constant (radial) clearance: Cin • Ccx •• 013 in 

Convergent tapar: Cin • 0.15 in. Cex = .010 in 

0.5 

lIira' coefficient rotor: rn r • -0.1634, nr •• 03757 

Hira' coefficient atator: rna P -.002512, na •. 01534 

H. P. Turbine Seah 

Radial Clearance MPL: Cin • .005. Cex •. 0016 

Radial Clearance FPL: Ci •. 0048, C a .0013 n ex 
Hirsl coefficJent rotor: m • -.170, n • 0.040 

r r 
Hirs' coefficient stator: ms • -0.143, na • 0.030 

Table A.3 Input data for turbine gas seals. 

Pmver I( X 10- 5 k 
Seal T,p,vel -1.1?Li.n 1b/in 

Turbine H.P. FPL 1. 965 4 1LI0 

NPL 1.016 1 560 

Turbine 1. S. FPL 2.02 9.440 
Canst. Clearance NPL .918 3 050 

Turbine 1. S. FPL 1. 05 10 000 
Conver,gent Taper MPL .420 3 880 

C 

1h/in 

2.51 

1. 39 

11.3 

6 56 

10.0 

4.80 

FPL 

30,376 

3,499 

111.9 

63,4 

530 

1.11 X 10- 5 

1. II 

1.:!~.6 

0.318 

0.5 

c 

1b/in 

.015 

.005 

.067 

.041 

.042 

.027 

I 

. 
w 

Ib/sec 

.0335 

MiA 

.7427 

.3000 

.6263 

.2557 

Table A.4 Rotordynamic coeffiCients and leakage for the high-pressure 
turbine seal and the turbine interstage seal. 



K k 

lb/in lb/in 

Boost-Impeller 1206. 71.0, 
Inlet (1abyri~~ 

Boost-Impeller 10,000. 5,470. 
Discharge 

(laby_rinth) 

Second-stage 6,207. 777. 
';'urbine Tip Seal 

1---

Fint-stage 5,739. 568. 
Turbine Tip Seal 

Shrouded Inducer 62,000 65,000 
(one seal) 

ORIGINJ~L P~;GE t~1 
OF POOR QUALIlY 

C 

lb sec/in 

.712 

5.26 

.738 

.547 

98. 

c 

lb sec/in 

4.43 Y. 10- 3 

63.3 X 10- 3 

22.3 X 10- 3 

20.3 X 10- 3 

0,0 I 
A.5 Rocketdyne-calculated rotordynamic coeffi:ients f0r labyrinth seals 
and shrouded-inducer selas at HPLj W = 20,218 c.:pm 

K " C c 

lb/in lb/in lb sec/in lb sec/in 
3 -Boost-Impelle't' 2610. 1760. 1.08 5.79 X 10 

Inlet (labyrinth) 

Boost-Impeller 27,690. 15,133. 9.33 131. X 10- 3 

Discharge 
(labyrinth) 

Second-stage 6,207. 4,560. 2.93 89.7 X 10- 3 

Turbine Tip Seal 

First-stage 5,739. 4,6l.0. 32.86 92.9 X 10- 3 

Turbine Tip Seal 

Shrouded Inducer 154,000 165,000 166.0 0.0 
(one seal) 

A.6 Rocketdyne-calcu1ated rotordynalnic coefficients for labyrinth seals 
and shrouded-inducer seals at FPL; W = 30,381 cpm. 
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