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SURFACECRACKSIN A PLATE OF FINITE WIDTH

UNDER EXTENSION OR BENDING_

by

F. Erdogan and H. Boduroglu _

Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the problem of a finite plate containing collinear
surface cracks is considered. The problem ls solved by using the line
spring model with plane elasticity and Reissner_s plate theory. The
main purpose of the study is to investigate the effect of interaction
between two cracks or between cracks and stress-free plate boundaries
on the stress intensity factors'and to provide extensive numerical
results which may be useful in applications. First, some sample results
are obtained and are comparedwith the existing finite element results.
Then the problem is solved for a single (internal) crack, two col|inear
cracks and two corner cracks for wide range of relative dimensions.
Particularly in corner cracks the agreement with the finite element
solution is surprisingly very good. The results are obtained for semi-
elliptic and rectangular crack profiles which may, in practice, corre-
spond to two limiting cases of the actual profile of a subcritically
growing surface crack.

1. introduction

Surface cracks are among the most common flaws in structural com-
!

ponents, particularly in welded structures. Under cyclic loading or

under static loading in the presence of corrosive environment any sur-

face flaw has the potential of subcritically growing into a surface

crack. Analysis of the structure containing such flaws is needed for

modeling and prediction of the corresponding crack propagation rate. A

review of the subject and a number of articles dealing with the analysis

of the surface crack problem in plates may be found in Ill. At this
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point the analytical treatment of the p_blem appears to be intractable.

Therefore, the reliable solutions of the problem seem tO be based Oh

numerical techniques, most notably on the finite element method (see,

for example, [2] for the solutlon of a wide plate containing a semi- :

elliptic surface crack). In recent years, however, there has been some

renewed interest in the application of the line spring model which

was first described in [3] to the analysis of surface craCk problems,

The method was Used in [4] in conjunction with Reissner's plate theory

and the stress intensity Factors For a semi-elliptic and a rectangular

surface crack were calculated For a wide plate under tension or bending.

The semi-elliptic crack results described in [4] compare very favorably

with the finite element solution given in [2].

In this paper the general problem is considered for a plate having

a finite width. Analytically, it iS known that if the stress fields

of more than one crack or that of a crack and a stress-free boundary

of the plate interact, there would be some magnification in the stress

intensity factors. The problem may therefore be important In plate

structures having more than one initial surface flaw or having a ?taw

near or at the' boundary. Extensive finite element results for a single
!

central or corner surface crack i'n a plate of finite width a're given

in [5] and [6] . Empirically developed expressions for stress intensity

factors based on the results given in [5] are also described in [71,
The present study was undertaken partly to show that the line spring

model may be used for cracks in finite plates, particularly for corner

cracks just as effectively as the infinite plate and partly tO supple-

ment the results given in [5] and [6] by, for example_ considering the
cases of a rectangular crack profile and col linear surface cracks.

2. The General Formulation Of the Problem

The .problem under conslde_a_ion is described in Flg. l. it is

assumed that XlX3 and x2x3 planes are pianes of symmetry with respect z

to loading and geometry and the te_gth of the plate in x2 direction iS
relatively long compared to the width 2b so that in formulatihg the

-2-



perturbation problem one may assume the plate to be infinitely long.

Even though the numerical results are given for uniform tension in x2 ,

direction and cylindrical bending in x2x3 plane appliec! to the plate
away from the crack region, as will be seen from the formulation of the

problem, there is no restriction on the external loads provided in

the absence of a6y cracks the membraneand bending resultants in XlX3
plane i can be obtained for the given plate geometry and the applied loads.

The problem is formulated for the col linear cracks shown in Fig. 1.

The single central crack and the edge or the corner cracks are then

considered as the special cases. One of the advantages of the line

spring model is that the crack profile (as described by the function

L(x 1) giving the crack depth) can be arbitrary. However, the actual

crack morphology studies indicate that for a given length 2a and a

depth L° the crack profile may be bounded by a semi-ellipse and a rec-

tangle. Hence, in this paper the calculated results will be given only

for these two limiting crack shapes.

Ordinarily, the problems of in-plane loading (as expressed as a

generalized plane stress problem) and bending of a plate are uncoupled.

Consequently, the correspondlng through crack problems can be solved

independently. For the plate geometry shown in Fig. I the plane elasti-

city and plate bending solutions are given in [8] and [9] , respectively.

In the case of surface cracks, because of the absence of symmetry in

thickness direction, the membraneand bending problems are clearly

coupled. As in Eg] in this paper, too, a transverse shear theory is used

to formulate the bending component of the problem. The particular1

theory used is that of ReissnerJs [10] which is a sixth order theory
and accounts for all three boundary conditions on the crack surfaces

separately.

Referring to Appendix A for normalized quantities and, for example,

to Ell] for the general formulation, the basic equations of the plate
problem may be expressed as follows:

= 0 , (1)

v4w= 0 , (2)
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_v2_- _ - w= 0 , (3)

l-v
-_-v2_- _= o , (4)

Oxx = _ (he) , (_yy= _ (h@) , Oxy = @xBy (h@) (5)

Bx _+ 1-v B_ = ___ 1-v ___ (6)

a _)2 B_ K= BxB-'-'_] ' (7)

Myy = _ [_+ v _- _ (l-v)2 _] , (8)

a(l.-v)[2 _25+ ._(l-v)(B2_ _2_s.Mxy = _ BxBy _ B-_- Bx-'x2_jJ ' (9)

_w + _ De _ (10)
vx= _-_T(I=v)_-. Bx'

= aw. __(l-v) _ _ (1i)
Vy _y 2 _ + 3y

where, in the usual notation, F (or @) is the Airy Stress fuhction,

Nij, Mij, and V I, (i,j=1,2) are the membrane, bending, and transverse

shear resultantS, BI and B2 are the components of the rotation vectOi',

uI, u2 and u3 are the components of the displacement vector, a* Is a

length parameter representing the crack size (a*=a for O<c<d<,band a*=d

for c=O, d<b, Fig. 1), E aridv are the elastic constants, the constants

and _,are defined In Appendix A, £_and _ are auxiliary functions

defined in [11], and the dlmensiofish, a, b, c, and d are shown in Fig. I.

Because of syiiimetry,it is sufficient to consider the problem for

O<_x1<b, 0.<_x2<=Only. Thus, the membrarieand bending problems of the

plate must be solved Under the follOWing boundary aiidsynlmetryconditions

stated in terms of the noi_mallzedquantities (Fig. I and Appendix A):

u(0,y)= 0,N (O,y)= O,O<_y_=, (_2)
xy

Nxx(b' ,y) = 0, Nxy(b' _y) = 0, O<._y<o=, (13)
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Nxy(X,O) = o, o<__x<b', (14)

N (x,O) = _1 [-_=(x) + (r(x)] , c'<x<d' , (15a)o YY

V(x,O) = O, O<__x<c',d'<x<b' ; (15b)

Bx(0,y)= 0, Mxy(O,v)= O, Vx(O,y)= O, O<_y<=, (16)

Mxx(b',y) = O, Mxy(b',y) = O, Vx(b',y) = O, O<__y<=, (17)

Mxy(X,0)= 0, Vy(X,0)= o, O<_x<b', (]8)
1

Myy(X,O) = _ I-moo(x) = m(x) ] , c'<x<d' , (19a)

By(X,O) = O, O<_x<c', d'<x<b' . (19b)

The conditions stated above refer to the perturbation problem in which

the crack surface tractions are the only nonzero external loads. Conse-

quently, in addition to (12)-(19) it is required that

N (x,=) = O, N (x,=) = O, O<x<b' , (20)
yy . xy --

Myy(X,=) = O, Mxy(X,=) = O, Vy(X,=) = O, O<__x<b'. (21)

The input functions _= and m= which appear in (15a) and (19a) are

defined by

o=(x) = Nz2(Xl,O)/h, m=(x) = 6M;2(Xl,0)/h2 (22)

O0 oo

where Nij (x 1,x 2) and Mij(x 1,x2), (i,j=1,2) are the membraneand moment
resultants in the plate under the actual applied loads in the absence

of any cracks. The functions o(x) and re(x) are unknownand are defined

by N(Xl) N(a'x) 6M(xI) 6M(a'x)
: o(x) = h = h ' re(x) = _'Z - hz (23)

where the membrane load N(x1) and the bending moment M(x1) represent

the stress component o22(Xl,0,x 3) in the net ligament c<xl<d,
h h

- _<x3< _-- L.
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In the bending problem the solution of the differential equations

(2)-(4) satisfying the symmetry cOnditions (16) and the regularity

conditions (21) may be expressed as follows [9]:

2 [ (Al+YA2)e-_yw(x,y) = _ cos_x d_
0

+ _ I (ClC°ShBx + C2xsinhBx) cosBy dB , (24)
0

a(x,y) = _ Ble sin_x d_ + - B2 Sinh r2x sin6y d6 (25)• _

o o

,(x,y) = T ['AI+(2K¢-Y)A2]e'_Y COS_X d_
O

+ _ j" [-(Cl+2KBC2)coshgx'C2xsinhBx]cos_y d6, (26)
o

where Ai(_) , BI(_) and Ci(B) , (i=1,2) are unknown functions and

2 ]_ _r1 = [_ + _ , r2 = [B2 + ] , (27)

By substituting from (24)-(26) into (7), (9)-(11) and by using flve

homogeneous conditions (17) and (18) five of the six unknown functions

may be eliminated. The mixed boundary condition (19) would then deter-

mine the sixth.

Similarly from the plane stress solution of the plate satisfying

the conditions (12), (i4) and (20) the stresses and the y-component

of the displacement may be expressed as [8]
oo

2
=e

J hi (_.) (1-_y)e "_y cos_X dotNxx(X,y) = .. _-
o= O

. 2_ I [h2(B)c°shi3x+6xh3(8)sinhBx]c°sBY dB , (28)11".
O
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co

. 2 I hl (_) (I+_y)e'_Y cos0_x d_Nyy (x, y) = _-
O

o_

_ + 2_ I [ (h2+2h3)coshl3x+Sxh3sinhSx]cosl3y dS, (29)
o

€o

Nxy(X,y ) = - 2_ I c_yhl (_)e'C{Y sin_x dot
o

00

+ 2_rI [(h2+h3)sinhl3x + 13xh3c°sh6x]sinBy d6 , (30)
o

E 2 I h-_'l(I+K + _Y)e'_Y cos_x d_1Tv v(x,y) = _ _ " 2
O

=[ h2 I+K+ _ ('E "+ T h3)c°sh6x + xh3sinhBx]sin6y dB • (31)
o

In this case the unknown functions h1, h2 and h3 are determined from
the remaining boundary conditions (13) and (15).

3. The Integral Equations

If we now replace the mixed boundary conditions (15) and (19)

respectively by

_-._-v(x,O)= gl (x) O<x<b (32)

_- 13y(X,O) = g2(x) , O<__x<b, (33)

it is seen that by using (17), (18), (13), (32) and (33) all nine

unknown functions A{, Bi, Ci, (i=i,2) and hi, (j=1,2,3) which appear
i.n the formulation of the problem given in the previous section may be

; expressed in terms of the new unknown functions gl and g2" From the
definitions (32) and (33) it also follows that conditions (15b) and

(19b) are equivalent to
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, _ d'<x<b' (i=1,2) (34)gi(x)= 0 O<x<c', . , ,
d i

(x)dx= 0 (i=],Z) (35)gi
C I

The functions gl and g2 may now be determined from the two remaining
conditions (15a) and (!ga). Referring to E8] and Eg] for details, the

following integral equations may be obtained from these two conditions:

dI %(x)
_(-J_" _I [t'_+ t+=l+ k1(x,t) - k1(x,,t)]gl (t)dt = _ , (36)

cw

d I

" 2_hl" {E_ ( + t_x ) " I+ v' _ + (t+x) 3 ]
C i

4 l I Kz(Ylt+xl)] + k2(x,t)+ _ [_ Kz(yIt'xI)+

%(x) (37)
- k2.(x,-t)}g2(t)dt= _, c'<x<d' ,

where K2"is the modified Bessel function of the second kind, the

Fredholm kernels k1(x,t) and k2(x,t) are given in Appendix B and the

constant y is given by

h (38)
Y = 12(1.vZ)a, •

The functions o(x) and re(x)which appear in (36) and (37)are

defined by (23) and represent the membrane and moment resultants of

the tensile stress o22 in the net ligament c_<x<d '. By using the plane

strain solution for an edge crack occupying .............. in a strip

of thickness h (Fig, .l) under membrane load N(xI) and bending,moment

M(x 1) (applied in x2x 3 plane) and by expressing the rate of change of

the potential energy in terms of crack closure energy and the change of

compliance, _(x) and m(x) may be expressed in terms of the crack opening
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displacement 2v(x,O,O) and the crack opening angle 2By(X,O) as follows
(see F1] and [4] for details):

_, (_(x)= E[Ytt(x)v(x)+ Ytb(X)By(X)] , (39)

m(x) = 6E[Ybt(X)V(X)+ Ybb(X)By(X)], (40)

where the functions Yij' (i,j=t,b) depend on the local crack depth L(x)

and hence are implicit functions of x. The algebraic expressions of

these functions are given in [4] . From (32), (33) and (34) by observing
that

X X
p

v(x,,0)=j g1(t)dt,By(X,+0)=I gz(t)dt' (41)
C I C a

and by using (39) and (40), the integral equations (36) and (37)may

then be expressed as

x dB

f J" ,Ytt(x) gl (t)dt - _ [ _ . _ . kl(×,t) - kl(x,-t)]g l(t)dt
C i C I

X

f ,+ Ytb(X) g2(t)dt = gaoo(x) , c'<x<d' , (42)
C I

x x d'

I I a,'_(1-v2)f f3+v(I_Ybt (x) gl (t)dt + Ybb (x) g2 (t)dt 2xh },_ "1-_ t-x
C s C i C I

l+v _ + ] + I-_v[ t-_ K2(YIt'xI)

1
+ _ KZ(yIt+xI)]+ kz(x,t)- k2(x,-t)}g2(t)dt

I
•.. = _ m=(x) , c'<x<d' (43)

From the following asymptotic behavior of the BesseI function K2(z) for
small values of z
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2 1
Kz(z) = _2"- _- + O(z21og z) (44)

it can be shown that, as in (42), the integral equation (43) has a

simple Cauchy type singular kernel. We also note that the system of

singular integral equations (42) and (43) must be solved under the

additional conditions (35).

After solving the integral equations (42) and (43) for gl and g2
the Mode I stress intensity factor K at the leading edge of the crack

may be obtained by substituting from (39)-(41) into the following expres-

sion giving K in a strip containing an edge crack of depth L and sub-

jected to the membrane load _ and bending moment m [4]:

K(x) - _ Eo.(x)gt + m(x)gb'l (45)

where gt and gb are functionsof L/h and are obtained from the correspond-

ing plane strain solution. From the resultsgiven in [12] the expressions

for gt and gb valid in O<L/h<_O.8may be obtained as follows:

gt(s) = _vr_s(1.1216 + 6.5200s 2 - 12.3877s 4 + 89.0554s 6

- 188.6080s 4 + 207.3870s 10 - 32.0524s 12) , (46a)

gb(s) = _ (1.1202 - 1.8872s + 18.0143s 2 - 87.3851s 3

+ 241.9124s4 - 319.9402ss + 168.0105s6) , (46b)

where s = L(x)/h.

We now note that for O<c'<d'<b the solution of the system of singu-

lar integralequations is of the form

G.(x)
' c'<x<d' (i=1,2)

gi(x) = (x.c,)½(d,.x)½ ' ' ' (47)
J

where the bounded unknown functionsGI and G2 may easily be obtained

by using the technique described, for example, in [13] •
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The general crack geometry shown in Fig. 1 has two special cases•

The first is the case of a symmetrically located single crack along

-d'<x<d', (i.e., c'=O, d'<b'). In this problem by using the symmetry

considerations and by observing that gi(t) = -gi(-t), (i=1,2), the

integral equations (42) and (43) may be somewhat simplified as follows."

x d'
1

Ytt(x)I gl(t)dt " 2"_ I [tl--_+ kl(X't)]gl(t)dt
-d' -d'

X

I _=(x) -d'<x<d' (48)+ Ytb(X) g2(t)dt = _- , ,
-d I

x x d'

_'bt(X)[ gl(t)dt + _bb(X).I gz(t)dt 2whd(l"v2)k_+ [ [3+Vl+v t-x1
-d' -d' -d'

4K(1-v) 1 4 1 K2(YIt_xl) + k2(x,t)]g2(t)dtl+v _ + 1+v t-x

I m=(x) -d'<x<d (49)

By using (44) it may again be shown that (49) has a simple Cauchy kernel

and the solution of the integral equations is of the following form:

F.(x)
gi(x) = I -d'<x<d' (i=1,2) (50)(d,2.x2)½'

The second special case is that of corner cracks for which O<c'<d'=b'.

In this case it may be shown that as x and t approach the end point b'

simultaneously, the kernels k1 and k2 in (42) and (43) become unbounded.

As shown in [8] and [9] the singular part of these kernels may be separ-

ated and may be shown to be
L

1 6(b'-x) 4(b'-x)2
kls(X't) = kzs(X't) 2b'-x-t (2b'-x-t) z + _Zb'V-x-t) s ' (51)

where
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k.,(x,t) = kis(x,t) + klf(x,t) , (1=1,2) (52)

and klf and k2f are bounded. Together with the Cauchy kernel 1/(t-x) in

(42) and (43), (51) constitutes a generalized Cauchy kernel. It may

be observed that the generalized Cauchy kernel kg(X,t) = 1/(t-x)+kis(X,t)

has the property that kg(X,b') = O, kg(b',t) = 0 and consequently gl(t)

and g2(t) are nonsingular at t=b' E8_ . Also, in this case the single-

valuedness conditions (35) are not valid and, as pointed out in E81 ,

are not needed for a unique Solution of the integral equations.

4. The Results

First, some sample problems are solved in order to compare the

results obtained from the line spring model in this paper with that

obtained from the finite element solutions given In [51 and [61 . In _5]

the single symmetric semi-elliptic surface crack problem iS considered

for a finite plate under uniform tension or cylindrical bending (i.e,,

c=O, d<b, Fig, 1). It is assumedthat the half length of the plate is

l=hd. Figures 2 and 3 show the comparison of the normalized stress

intensity factors calculated along the crack front by the two methods.

The normalizing stress intensity factor KN shown in these figures is
:defined by

and is the stress intensity factor at the location x 1 = O, x2 = O, x3 =

Lo, (i.e., the end points of the minor axis) Of a flat elliptic crack

(with semi axes d and Lo) in an inflnlte solid subjected to uniform

tension 022 = o= in x2 direction (c=O, Fig. 1). Note that, considering
the Simplicity of the line spring model, the agreement is not bad. one

may also note that at the intersection point of the crack and the plate

surface x = Xl/d = 1 the results based on the line spring model would
not be expected to be very good. Furthermore, at the singular point on

the free surface the power of the stress singularity seems to be less

-12-



than 1/2 [14] . Hence, theoretically the stress intensity factor defined

on the basis of conventional 1/2 power should tend to zero as the point

on the crack front approaches the free surface at an angle of _/2. Thus,

strictly speaking, the bounded nonzero stress intensity factor given by

the finite element solution at the surface do not seem to be correct either.

Figures 4 and 5 show the comparison of the stress intensity fac-

tors for a corner crack having the profile of a quarter el llpse and

Obtained from the line spring model and the finite element solution given

Tn [6] . It should be noted that the finite element results are obtained

for a finite plate in which the half length is equal to the total width

of the plate and the crack is only on one corner (see the insert in

Fig. 4). However, since the crack length-to plate width ratio in bothU
cases is relatively small (2a/2b = 1/10 in line spring and 2a/b = 1/5

in finite element solution), the stress intensity factors for the two

geometries should be approximately equal. The figures again show that

the agreement is quite good.

The calculated stress intensity factors are given in Tables 1-11.

All stress intensity factors were calculated as a function of x = xl/a* ,

(a*=d for a single crack, a*=a for two cracks, Fig. I) defining the

location along the crack front and of the relative dimensions of the

crack and the plate. The following notation and normalizing stress

intensity factors are used in presenting the results:

Kb (x)
_b22(r,O,x1) ~ , x = x /a* (54)I '

Kt (x)
ot22(r,0,x 1) ; , x = xl/a* (55)

where supscripts b and t correspond to plates under bending and tension,

respectively, 022 is the cleavage stress around the crack front, r and e

are the usual polar coordinates at the crack front in x2x3 plane (Fig. 1)

and Kb and Kt are the corresponding Mode ! stress intensity factors.

The results are given for uniform membrane load N22 = N= and cylindrical

-13-



bending moment M22 = M= away from the crack region. The normalized

stress intensity factors shown in the tables are defined by

kb (x) Kb (x) Kt (x) "= %--_-,kt (x) Kto , (56)

N

Kto = ('_-) _- gt(So ) ' so = Lo/h , (57)

6H

Kbo = (h-'_=) vrh gb(So) ' So = Lo/h (58)

where L° is the maximum crack depth and the functions gt and gb are

given by (45) and (46). One may note that gt(So) and gb(So ) are the
shape factors obtained from the corresponding plane strain solution of

a plate with an edge crack of depth LO and, for the values of Lo/h shown
in the tables, are given by [12] .

So--Lo/hto.I0.4•0.60.8gt (So)I _rV_'-'%'oSo 1.3674 2.1119 4.035 II.988

gb (So) / _vr_-s--s 1 0554 1.2610 1.915 4,5910

Table 1 shows the normalized stress Intensity Factors at the deep-

est penetration point of a centrally located single semielliptic surface

crack (i.e., c=O, d<b, Fig. 1) in a plate under uniform tension N or

bending M=. Here the crack profile is given by

L2 x 2

0

€
or

L(x) = LoV_2- , (x = xl/a* , a* = d) (60) "

-14-



and hence x=0 is the deepest point on the crack front. This is also

the point where k t assumes its maximum value. For b/h = 10 relatively

complete and for other plate dimensions some sample results showing

the variation of_the stress intensity factors along the crack front

are shown in Tables 2 and 3. Similar results are shown in Tables 4

and 5 for a single surface crack with a rectangular profile (i.e., for

L(x) = Lo, -l<x<l). One may observe that, as expected, generally the

stress intensity factors for the rectangular crack are higher than that
for the semi-elliptic crack.

The results for two collinear seml-elliptic surface cracks (Fig. 1)

are shown in tables 6 and 7. Here the crack profile is defined by

(Fig. 1)

Xl"CC+a)
L(x) = L° ' x = .....a " , -i<x<1 . (61)

Table 6 shows the value ki(x_), (i=b,t) and the location x = x_ of the

maximum stress intensity factor for various crack geometries in a plate

for which b = 1Oh and a = h. The factor O = a/(a+c) determines the crack

location. Table 7 shows some sample results giving the distribution of

the stress intensity factors along the crack front for two extreme crack

locations considered. The skewness in this distribution does not seem

to be very significant.

The results for a plate containing two corner cracks havrng a pro-

file oF a quarter ellipse are shown in Tables 8 and 9 (Fig. 1). In

this case the crack profile (or the crack depth) L is defined by

xI-(c+a)L(x) = L /1-( 2 x = -1<x<1 (62)o _ a ' "

i Table 8 shows the normalized Mode I stress intensity factors at themaximum penetration point of the crack which is on the plate boundary

x = b' (i.e., for x 1 = b or x -- 1 or L = Lo). Some results showing the

distribution of the stress intensity factors are given in Table 9. The

results were similar for all crack geometries in that for plates under



tension and for those having shallow cracks under bending the maximum
stress intensity factor was on the boundary x = b'., whereas for deep

_, cracks in plates under bending K was maximum at the surface x.I = c or

x = c' (F!g. I). For corner cracks with a rectangularprofile results

t._ similar to those shown in Tables 8 and 9 are given in Tables 10 and 11.

For this crack geometry too one may note that generally the stress

intensity factors for rectangular cracks are higher than those for the

elliptic cracks.

From the formulation of the problem it may be seen that all result_

in the surface crack problem are dependent on the Poisson's ratio v

of the plate. The stress intensity factors given in th{s paper are cal-

culated for v = 0.3, However, as shown [9] , since the stress intensity

factors are not very sensitive to the poisson's ratio, the results

given in Tables 1-11 should be valid for nearly all structural materials.
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Appendix A

The definitionof normalizedquantities

x = xl/a* , y = x2/a, , z = x3/a* , (A.])

u = u_/a* , v = u2/a* , w = u3/a* , (A.2)

F

@ = _ , 8x = 81 , By = 82 , (A,3)

axx = _11/E , ayy = a221E , _xy = a12/E ' (A.4)

NQ • Ma •

NaB = _' M_B = h--_E' (_,IB)= (x,y) , (!,j) = (1,2) , (A.5)

Vx = VI/hB , Vy = V2/hB , (A.6)

5 E E _.k, 12(].vg)a,2/h2B = _-2(i+v) ' _ = _, ,= • (A.7)

b' = b/a* , c' = c/a* , d' = d/a*

In the problem describedby Fig. I, a* = a = (d-c)/2for O<c<d<b and

a* = d for c = O, d<b.
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Appendix B

The Fredholm kernels k 1 and k2 which appear in the integral
equations (36) and (37)

k l(x,t) = I e'(2b"t)8l+hSb'e "28b'-e'gSb'{'[l+(3+28b')e'zSb']c°shSx
o

-28xe "28b' sinhBx-_Sx sinhSx+(3-28b'

+e'Z_b')coshSx][l-ZB(b'-_)]}d8 , (B.])

f 1+e "28x - (2b ' -t-x) 8k2(x,t) = {E- 3+Vl+v l+vl'v 8(b'-t)] l-e'28b , e
o

1 2_(1-v) l+e "2r2x (132e-(b'-t)r2 . -(b'-t)8)e-(b'-x)r 2
l+v e-2r2b'i 13r2ej 1-

28 2b'82 l+e "2b '13 4

+ [(l-v T$_ 1.e-2b'l_)(l+e'213x) + _ {<83(l+e'213x)

+ -_-f32x(1-e "213x) " 1---_v13( l+e "213x) } ] D1 D1e- (2b' -t-x) t3

- - _ I [Dle-(b'-t)8+ D2e (b"x)13 e (b'-t)r2] - 82r2(l+e'2r2x)

+ O2e-(b"t)r2 ] 1-e'2b'13 _(b,.x)r2
1-e "2b'r2 e }d13 , (B.2)

213 e-2b'8) l+e "2b' r2 8)
D1 = _ r2(l" .2b,r2 2(l+e -2b'1-e

l+e'2b'B [1-(b'-t)8]-(l-v)[_ (b'-t)-_:82](1 e -2b'8)+ Ky2 " '

(B.3)
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2 +e.2b, r2
28 1 (l-e -2b_13) - KIB2(1-_)(I-e "2b'8) , (B.4)

D2 = _ 1.e-2blr2

'13. (3+v
D = 4b'62e -2b ,_ 6 + 2_83)(1-e -4b'13)

l+e.2b vr2

+ 2B2Kr2 i,e '2bl'r2' (|.e.2b,(3)2 (B.5)
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Table I. The normalizedstress intensityfactors at the maximum
penetrationpoint (x=O)of a sYmmetricallylocated
single semi-ellipticsurfacecrack in a plate under uni-
form tensionor bending (v=O.3).

............ I ,

L = 0.2h L = 0.4h L 0.6h L° = O.8hb d o o o

h h kb(O) kt(O) kb(O) kt(O) kb(O) kt(O) kb(O) kt(O)
,,, , ,

0.5 .709 .729 .308 .390 .0518 .175 -.0290 0.0503
0.6 .737 .755 .342 .421 .0705 .192 -.o257 .0555
o.8 .777 .792 .398 .470 .1o4 .221 _-.o188 .0648
1 .805 .818 .443 .508 .132 .246 -.0121 .0730

4/3 .837 .848 .501 .559 .174 .282 -.0014 .0848

I0 2 .876 .884 .584 .630
4 .930 .934 .723 .752 .390 .464 .0726 .155
6 .953 .956 .800 .819 .499 .556 .127 .203
8 .967 .969 .853 .865 .592 .634 .190 .256
9.5 .975 .976 .885 .893 .659 .689 .249 .305
9.61 .976 .977 .887 .894 .664 .693 .254 .310
9.8 .977 .978 .891 .898 .672 .700 .264 .318

.... ,,,,,, , ,

0.5 .709 .729 .308 .390 .0519 .175 -.0290 .0503
0.6 .738 .755 .342 .421 .0706 .192 -.0256 .0556
0.8 .778 .792 .399 .470 .IO4 .221 -.0188 .0649

8 I .8o5 .818 .444 .5o9 .133 .247 -.012o .o731
2 .877 .885 .586 .632 .246 .341 .0189 .I05
4 .932 .936 .730 .758 .400 .472 .0774 .159
6 .957 .959 .814 .830 .525 .576 .144 .216

7.69 .971 .972 .867 .876 .626 .66o .223 .282
7.84 .972 .973 .872 .880 .635 .667 .233 .290

o.5 .71o .729 .307 .391 .o521 .176 -.0289 .o5o3
0.6 .738 .756 .343 .422 .071oi .192 -.o256 .o556
0.9 .794 .807 .424 .492 .122 .235 -.o152 .0693
1.2 .827 .839 .483 .543 .160 .270 -.0051 .0807

6 1.5 .851 .861 .530 .583 .196 .3oi .0046 .o91o
3 .915 .92o .681 .715 .341 .423 .0531 .137
4 .930 .934 .723 .752 .39o .464 .0726 .155
5 .953 .955 .8o2 .818 .5o7 .560 .136 .2o8

5.77 .963 .964 .839 .850 .576 .616 .187 .250

, 5.88 .964 .965 .844 .855 .587 .625 .197 .258
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Table 1 (cont)

= 0.6h L .=.O.8h.b Lo = 0.2h Lo.= O,4h. Lo. o

h"I h _<.(o) k_(o) kb(o) kt CO)%(0) kt (0) %(0) kt (0)
0.5 .711 .730 .309 .392 .0528 .176 -.0289 .0504
0.666.755 .771 .366 .441 .0839.204-.0231 .0591
0.8 .780 .795 .403 .474 •106 .223 -.0184 .0653

4 l .809 .821 .450 .514 .137 .250 -.0112 .0738
1.33 .843 .853 .512 .568 .183 .289 .0006 .0866
1.5 .856 .865 .540 .591 .204 .307 .0068 .0929
2 .886 .893 .608 .650 .265 .358 .0257 •111
3.92 .951 .953 .800 .815 .519 .565 .152 .218

0.5 .716 .735 .316 .398 .0557.179-.0287 .0508
0.6 .747 .763 .355 .431 .0768 .197 -.0249 .0564
0.8 .791 .804 .421 .488 .I17 .232 -.0166 .0671
0.9 .808 .820 .450 .513 .136 .248 -.0121 .07222
1.0 .823 .843 .477 .537 .156 .265 -.0072 .0774
4/3 .864 .872 .561 .608 .224 .321 .Oil8 .0961
l.9 .916 .919 .701 .726 .385 .450 .0754 .150
1.96 .920 .924 .718 .740 .411 .471 .0903 .162
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Table 2. Distribution of the stress intensity factors along
the crack front in a .plate containing a single sym-
metric semi-elliptic surface crack (b/h = lO, v =
0.3, x = Xl/d).

Ji Lo/h 0.2 0.4 0.6 0.8

x b/h = 10 , d/h = 0,5 , v = 0,3

0.929 0.628 .547 1.428 1.340 ].191 .152 ,0486 .444
0.828 .672 .609 1.392 1.349 1.154 .156 .0314 .472
0.688 .694 .656 1.361 1.364 .123 .162 .0113 ,510
0.516 .704 .691 1.336 1.376 .0924 .169 -.0061 .512

_ o.319 .708 .715 1.318 1.385 .0672 .173 -.0187 .5o2
O.lO8 .7o9 .727 1.3o8 1.39o .o535 .175 -.o276 .503

0 .709 .729 1.307 1.390 .0518 .175 -.0290 .503

b/h = 10 , dlh = I , _ = 0.3

0.929 .631 1.545 ].5051_9, I 7=J2o1o o9
0.828 .709 1.639 1.496 1.4261.239 1.2151 .0621 .0677
o.688 .7561.71o|.48o1.4571.2o9 1.226I .o396 .o718
0.516 .783 1.762 1.464 _.482 1.177 1.236 I .0183 .0729
o.319 .7981.7981.4511.4991.1491.243 I .0163.0724I I I I
0.I08 .804 _.816 .444 .507 _.134 !.246 !-.0103 .0728

0 .805 1.818 .443 .508 1.132 .246 I .0121 .0730I

b/h = 10 , d/h = 4 , v = 0.3

0.929 .623 .535 1.561 11420 1.402 !.285 .168 .121
0,828 .739 .661 1.626 1.517 .420 !.339 .163 137
0.688 .819 .763 1.666 1.601 .426 .387 .144 .150
0.516 .875 .844 1.695 1.671 .418 .425 .120 .156
0.319 .910 .901 1.713 i.722 .402 .451 .0953 .156
0.108 .927 .930 1.722 t.748 .391 .463 .0756 .155

0 .930 .934 1.723 1.752 .390 .464 .0726 .155

b/h = 10 , d/h : 8 , v : 0.3
"" '' I '

0.929 .622 .533 .571 i.423 .453 I316 .238.170
0.828 .747 .667 .665 .542 .513 I_403 .260 .209
0.688 .837 .778 .735 .653 560 1.487 .261 .240
0.516 .901 .868 ,791 .749 .586 1.558 .245 .256
0.319 .944 .931 .830 .821 .593 1.607 .219 .259
0.108 .965 .965 .850 .860 .592 1.631 .194 .256
0 .967 .969 .853 .865 .5921.634.190 .256

I
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Table 2 (cont.)

'kb I kt kb I kt kb .I kt kb ktLo/h O.2 O.4 O.6 O.8

x b/h = 10 , d/h = 9.8 , 9 = 0.3

t
, 0.929 .629 ".538 1.597 1.442 .508 .355 .312 .225
p 0.828 .753 .673 1.692 1.562 .572 .446 .341 .270
P 0.688 .844 .784 1.763.675 .626 .536 .345 .305
0 0.516 .909 .875 1.822 .775 .658 .614 .328 .323

i 0.319 .952 .939 1.865 ).851 .670 .669 .298 .3240.108 .974 .9731.888 .892 .672 .697 .268 .319
0 .977.9781.891.898.672 .700 .264 .318
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Table 3. Distribution of the stress intensity factors
along the crack front in a plate containing a single
symmetric semi-elliptic surface crack (b/h = 2,4,6;
_=o.3).

kbkttkbktlkbktikbfktlLo/h O.2 O.4 O.6 O.8

x b/h = 2, d/h = I, v = 0.3
. .. ...,

0.929 .646 .559 1.542 ,421 .306 1.232 I .0941 0.0752

0.828 .726 .654 J.533 .456 1.271 1.240 1.0736 .0768
0.688 .774 .726 1.517 .487 1.z381.249 I .0492 .0796
0.516 .801 .779 1.500 .511 1.2041.257 I .0261 .0793
0.319 .816 .814 1.486 .527 1.174 1.262 I .0077 .0777
0.108 .823 .832 1.478 .536 1.158 1.264 J-.0053 .0774

0 .823 , .834 ,1"477-537. t.1561.2651-.0072.0774

b/h = 4, d/h = l, v = 0.3

Ii ........._,ol0.929 .634 548 .512 1.397 .278 .0833 .0668

0.828 .7131.642 .504 1.432 .245 _2201 .0694
0.688 .760 1.713 .488 1.463 .214 .230 I .0414 .0733
0.516 .787 1.766 .471 1.488 .182 .240 I .0198 .0741
0.319 .802 1.801 .458 1.505 .154 .246 I .0028 .0734

0.108 .808 1.819 .451 1.513 .139 .249 I-.0094
.450 1.514 .137 0 12 .07380 809 .821 .O737• .250 [-. I

b/h = 6, d/h = 1.2, v = 0.3

o9_963_smsIs_!4o:!_96l_,!o9_,o7_3
0.828 .717 .645 1.523 1.446 1.266 1.234 I .0732 .0754
0.688 .770 .722 _.513 1.483 1.237 ].247 I .0501 .0796
0.516 .801 .778 1.501 1.512 1.206 1.258 _ .0277 .0808

0.319 .819 .817 t.490 !.532 t'178 1.266 / .0096 .0802
0.108 .827 .836 /.474 t.541 1.162 1.27o 1-.0032 .0806

-.0051 .08070 .827 .839 1.483 J.543 J.160 /.270 !
., , . , . . • • |
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Table 4. The normalized stress intensity factors at the center
(x=0) of a single symmetric rectangular surface crack
in a plate under tension or bending (u=0.3).

L = O.2h L = 0.4h " L = 0.6h L = 0.8h
b d o o o o '

h h kb (0) kt (0) kb(0) kt (0) kb (0) kt (0) kb (0) kt (Q)

0.5 .765 .784 ,34o. .429 .o607 '.194 '-.0316',0599
io 2 .915 .922 .652 .699 .284 .388 .026! .122

5 .970 .973 .847 .868 .544 .611 .134 .222
9.8 .999 .999 .987 .989 .914 .927 .557 .603

785'0.5 .766 . .340 .429 .0608 .194 --03!6 ,0599
1 .853 .865 .496 .563 .154 .276 -.0105 .0851

8 4 .963 .966 .814 .84o .487 .562 .I04' 195
7.84 '998 .998 .982 .985 .892 .907 .503 _554

|" ' .i .

0.5 .766 .785 .341 .429 0.0610 .194 -.o316 .060o
6 I .855 .867 .498 .566 .155 .277 ,.0103 ,0854

3 .951 ,955 .767 .797 ..414 .500 .072! ,165
5.88 ,997 .998 .975 .978 857 .878 .434 ,491

, • ,,| i, •

0.5 ,768 .787 .343 .431 0.06!9 .195 .0315 .0602
! .859 .870 .505 .57! .159 .281 -.Q095 .0863

4 2 930 .936 ,690 .732 ,320 .419 ,0370.133'
3.92 .996 .996 .959 .965 .797 .826 .341 .408

0.5 .776 .794 .352 .439 .0655 .198 -.0312 .0609
I .880 .890 .545 606 .186 .304 -.0041 .0923

2 1.5 .941 .945 .7i0 .749 .334 .432 ,0395.135
!.96 .990 .991 .916 .927 .666,.7!5 .205 ;285

-26-



Table 5. Distribution of the stress intensity factors along
the crack front in a plate containing a sTngle sym-

metric rectangular surface crack, x = Xl/d.

kb kt kb II, kt kb kt kb kt,, ,,,,

Lo/h 0.2 0.4 0.6 0.8

x . b/h = 2, d/h = 1, v = 0.3

0.929 .585[.618.233 .3341 .0289.159I-.02950.0458
0.828.7371.759.354 .4401 .0798.209I-.0261.0619
0.6881.8141.829 .439 .514I .122 .248I-.0190 .0741
0.516 .852 1.864 .495 .562 1 .154 .276 I-.0120 .0831
o.319 .871 1.881 .528 .591 I .174 .294 I-.O070 .0890
0.108 .879 1.889 .543 .605 I .184 .302 I-.0044 .0920

0 .880 ].890 .545 .606 I .186 .3o4 I-.OO41 .o923.... i

b/h = 6, d/h = I, v = 0.3

0.929 .566 1.601 .210 .314 .OlSl .149 -.0302 .0439
0.828 .715 .738 .321 .411 .0623 .194 -.0283 .0586
0.688 .789 .806 .399 .480 .0996 .228 -.0227 .0694

0.516 .827 .841 .451 .524 .127 .253 -.0169 .0773
o.319 .846 .858 .482 .551 .145 .269 -.0127 .0825
0.108 .854 .866 .496 .564 .154 .276 -.0105 .0851
0 .855 .867 .498 .566 .155 .277 -.0103 .0854

b/h = lO, d/h = l, v = 0.3

I! '0.929 .423' .470 .112 1.228 -.o172 .108 I-.0293 .0309
0.828 1.574 1.6o9J.19]1.298 .0o38 .138 I-.0343 .0417
0.688 J.667 1.694 1.252 J.352 .0250 .160 I-.0350 .0492
0.5161.7211;7441.2971.390 .0421 .177 1-.0339 .0545
o.319 1.7511.7711.3251.415 .o539 .188 I-.o325 .0580
0. I08 1.764 1.783 J.339 1.427 .0599 .193 I-.0317 .0597

o 1.7651.784J.340 1.429 .0607 .194, .1"0316 ;0599
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Table 6. The locatlon x=x* and magnitude kb(x*) and kt(x* ) of the
normal i'zed stress intensity factors in a plate containing
two coil inear semi-el i iptic surface cracks, D=a/(a+c)"

L = 0.2h L = 0.4h L = 0.6h L = 0.8h
D o o o o

I, ., kb (x*) kt (x*) kb (x_) kt(x*) kb (x*) kt (x*) kb (x*) kt (x*)

0.112 x* 0.2 0.05 .929 .319 .929 .929 .929 .929

k(x*) .831 .839 .649 .554 .409 .308 .138 .I07

0.125 x* 0 0 .929 .040 .929 .I08 .929 .516

k(x*) .812 .824 .522 .518 .287 .523 .867 .756

.250 x* 0 0 _.929 0 .929 0 .929 _.516

k(x*) .807 .820 .509 .512 .275 .248 .0822 .735

0.5 x* 0 0 -.929 0 -.929 0 -.828 .516

k(x*) .811 .823 .521 .517 .285 .251 .0858 .0744

0.75 x* -0.50 0 -.929 -.050 -.929 -.108 -.929 -.688

k(x*) .818 .829 .550 .528 .310 .259 .0951 .786
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Table7. Distribution of the normalized stress intensity
factors along the crack front in a plate contain-
ing two collinear semi-elliptic surface cracks,

_1 _ = [Xl-(c+a)]/a (Fig. 1).

,, ,, , , |, ,|,,, ,,,

Lo/h O.2 O.4 O.6 O.8

, _ b/h=lO, d/h=1, D=a/(c+a)=O.112, v=0.3

o9 9688is96i!649sos4o93o8,38,07
0.828 .766 1.689 .623 .527 .351 .300 .106 .102
0.688 .805 1.754 .584 .541 .297 .294 .0720 .0975
0.516 .824 1,798 .548 .550 .289 I.246 .0411 .09 5
0.319 .831 J.827 .519 .554 .204 .285 .0175 .0858
o.1o8 .8311.839.50o.553.178.28o .0013 .0829
0 .829 1.839 .494 .550 .173 .278 -.0016 .0821

-0.108 .8261.835.491 .546 .172 .275 -.0o04 .o814
-0.319 .8161.814.492 .532 .184.269 .0117.0809
-0.516 .7991.776 .500 .512 .209 .261 .0293 .0818
-0.688 .769 1.721 .513 .484 .240 .250 .0516 .0814
-0.828 .720 1.649 .526 .450 .270 .239 .0751 .0780
-0,929 .6401.553.533 .413.303 .229 .0949.0758

,, ,,, , , ,

b/h= 10, d/h= I, D=a/(c+a)=0.75,_=0.3
• ,, ,. ,, L ,,,,,,_ .

0.929 .6371.5511.5211.404J.288.217 .0872.0698
0.828 .7161.6451.5141.440i.254.227 .0678.0721
0.688 .7641.7171.4991.472!.224.237 .0446.0757
0.516 .7931.7711.4841.498i.192 .247 .0225 .0763
0,319 .809 1.807 1.472 1.516 i.164 .254 .0050 .0753
0.I08 .816 1.826 1.467 1.526 L.14g .258 -.0075 .0754
0 .818 1.829 1.467 1.528 1.148 .258 -.0093 .0755

-0.108 .818 1.828 1.469 1.528 .151 .259 -.0073 .0755 ....
-0.319 .814 1.812 1.480 1.522 .169 .258 .0057 .0760
-0.516 .801 .778 1.497 1.509 .200 .253 .0243 .0778
-0.688 .776 .727 1.517 1.488 .236 .247 .0481 .0786
-0.828 .730 .657 1.538 1.460 .272 .240 .0735 .0766
-0.929 .651 .563 1.550 1.427 .310 .235 .0951 .0757.

,m, , i ,, i | ,
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Table 8. The normalized intensity factors on the edges (x=+b') of
a plate containing two symmetric corner cracks having a
profile of a quarter ellipse (Fig. l).

= = 0.4h L = 0.6h L = 0.8h
b a Lo O.2h L° o o

_- kb(b,) kt(b') kb(b')....kt(b,) kb(b') kt(b')kb(b') kt(b,)

0.25 .775 .790 .380 .485 .0975 .219 -.0172 .0678
0.3 .797 .810 .415 .485 .120 .239 -.0117 .0743
0.4 .828 .840 .473 .535 .159 .271 -.0014 .0857

2 0.5 .852 .862 .522 .477 .197 .303 .0089 .0963
0.6 .872 .880 .568 .616 .234 .334 .0199 .I07
0.7 .889 .896 .610 .652 .273 ,366 .0321 .lib
0.8 .905 .910 .653 .688 .317 .401 .0470 .131
J,

0.26 .777 .792 .384 .459 •102 .223 -.0152 .0700
0.4 .821 .833 .463 .527 .156 .269 .0003 .0873
0.6 .858 .867 ,539 .593 .215 .319 .0179 .106

4 0.8 .883 .890 ,597 .642 .264 .361 .0336 .121
l .901 .907 .644 .683 .310 .399 .0492 •!36
1.2 .916 .921 .685 .718 .354 .435 .0657 .150
I.4 .929 -933 .722 .750 .398 .471 .0838 .166
1.6 .939 .942 .756 .779 .443 .508 .105 .184

,., ,

0.27 .781 .796 .391 .464 106 .226 -.0140 ,0714
0.3 .792 .806 .410 .481 .ll9 .237 -.0105 .0755
0.6 .856 .866 .536 .591 .214 .319 .0187 •I07

6 0.9 .889 .896 .613 .657 .281 .376 .0409 .128
1.2 .910 916 .669 .705 .337 .422 .0609 .147
1.5 .926 .930 .713 .744 .387 .464 .0809 .165
l.8 .938 .941 .750 .776 .434 .503 •I02 •183
2.1 .948 .950 .782 .803 .479 .540 .124 .202

2.4 .956 .958 .811 .828 .523 .576 .149 .223

.28 .785 .799 .397 .470 .llO .230 -.0129 .0727
0.4 .821 .833 .462 .526 .156 .269 .0004 .0875
0.8 .879 .887 .589 .636 .260 .358 .0343 .122
l.2 .908 .914 .665 .702 .334 .420 .0607 .147

8 1.6 .927 .932 .718 .748 .394 .470 .0846 .168
2 .941 .944 .760 .784 .447 .514 .I08 .189

2.4 .951 .953 .793 .813 .494 .554 .133 .210
2.8 .959 .961 .821 .837 .538 .591 •158 .232
3.2 .965 .967 .845 .85B .580 .626 ,186 .255

... , ,
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Table 8 - cont.

• b a LO = 0.2h Lo = 0.4h Lo = 0.6h Lo = 0.8h

T T !kb(b'} kt(b') kb(b') kt(b') kb(b') kt(b') kb(b' ) kt(b' )

0.25 .772 .787 .376 .452 .0967 .218 -.0165 .0684
0.75 .873 .882 .576 .625 .249 .349 .0307 .If8
I .895 .902 .630 .672 .299 .391 .0483 .135
1.5 .922 .927 .704 .736 .378 .457 .0786 .163
2 .939 .943 .755 .780 .440 .510 .I06 .188lO
2.5 .951 .953 .793 .813 .494 .555 .133 .211
3.0 .959 .961 .823 .840 .541 .594 .160 .234
3.5 .966 .968 .848 .861 .584 .630 .188 .258
4.0 .972 .973 .869 .880 .624 .664 .218 .283
4.5 .976 .977 .888 .896 .664 .696 .252 .312

,,,,,,,, ,,

20 ] .895 .901 .629 .671 .298 .390 .0483 .135
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Table 9. Distribution of the normalized stress intensity
factors along the crack front in a plate containing

tWO (elliptic) corner cracks, x = [Xl-(c+a)]/a
(Fig. l).

kb Ikt kb ! kt kb kt kb kt

Lo/h 0.2 0.4 0.6 0.8

b/h = 2, a/h = 0.5, v = 0.3

0.999 .8521.862!.522J.577J.1971.3031.0089.0963
0.936 .846 t.856 .515 1.571 t.191 j.297 1.0073 .0936
0.784 .834 1.843 1,5o31.557 1.182 1.286 t.o050 .o883
o.558 .8241.8281.493J.543 1.177 1.274 I.oo64 .0834
o.279 .813J.8o81.4921.528J.184j.2661.o138.o805
-0.026 .799 1.777 1.498 1.510 J.204 1.257 1.0263 .0798
-0.329 .776 J.732 1.511 J.488 1.2311.248J.0450 .0794
-o.6oo .7361.669J.5261.46oJ.2611.24o1.0679.o768
-0.815 .668 1.583 1-537 1.427 J.2941.231 1.0882 .0748

-0.953 .549 1.46o1.532 J.390 j.336 1.232 t.l,2 .0772

b/h = 8, a/h = 0.8, v = 0.3

0.999 E.879 .887 .589 J.636 .260 .358"I.0343 .122
0.936 1.874 .882 .582 .630 .253 .351 .0317 .If8
0.784 1.866 .872 .570 .617 .242 .339 .0277 .112
0.558 8. 57 .859 .561 .602 .237 .326 .0281 105
0.279 [.844 .836 .557 .583 .243 .314 .o357 lOl

-0.026 !.825 1.800 .557 .559 .259 .302 .0489 0990
-0.329 i.793 1.746 .558 .525 .282 .286 .0677 0966
-0.600 .741 .671 .558 .481 .304 .269 .0896 0917
-o.815 !.658 1.573 .547 .428 .326 .249 .1o8 0869
-0.953 1.521 i.434 .502 .361 .345 .231 .127 0850
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Table lO. The normal ized stress intensity factors at the edges x : _-b'
of a plate containing two symmetric rectangular corner cracks,

b a I Lo = 0.2h L° ' 0.4h L° = 'O.'6h L = 0.8h '"o

h h kb(b,) kt(b,) kb(b,) kt(b,) kb(b,) kt(b,) kb(b') kt(b')
•,. .,.

0.25 .821 .835 .415 .494 .108 .238 -.0185 .0773
2 0.5 .895 .903 .581 .638 .223 .337 .0119" .I09

0.8 .954 .958 .754 .787 .388 .477 .0620 .156

0.26 .820 .835 .419 .497 .112 .242 -.0163 .0797
4 0.4 .860 .871 .507 .574 .174 .295 .0014 .0985

l .937 .942 .716 .755 .359 .453 .0595 .154
1.6 .976 ,978 .856 .876 .550 .617 .139 .227

,,,,,, , ,,,

0.27 .823 .838 .426 .504 .If7 .246 -.0149 0.0812
6 0.6 .891 .900 .589 .645 .240 .353 .0227 .120

1.6 .956 .960 .788 .817 .453 .534 .0983 .190
2.4 .984 .985 .902 .915 .648 .700 .202 .283

0.28 .827 .841 .433 .510 .122 .250 -.0136 .0826
8 0.8 .912 .919 .648 .696 .294 .399 .0409 .138

2 .967 .970 .833 .856 .525 .595 .133 .222
3.2 .988 .989 .927 .937 .714 .756 .255 .331

,,, ,,,,,,

0.27 .823 .837 .425 .503 .If7 .246 -.0150 .08ll

lO l .927 .933 .692 .734 .341 .439 .0573 .153
2.5 .974 .976 .864 .882 .581 .643 .165 .251
4 .991 .992 .943 .951 .761 .796 .302 .374
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Tab]e 11. Distribution of the normalized stress intensity
factors in a plate with rectangular corner cracks,

x = [Xl-(c+a)]/a. ._,

I I ILo/h 0.2 0.4 0.6 0.8

b/h = 2, a/h = 0.5, v = 0.3

0.999 .895 .903 .581 1.638 t.223 .337 t .0119 .109
0.936 .892 .901 .576 1.634 1.218 1.332 I .0102 .107
0.784 .887 .896 .564 1.623 1.207 .323 I .0059 .103
0.558 .879 .889 .548 1.609 1.193 .310 I .0003 .0967
0.279 ,868 .879 ,525 t.589 t.175 .295 I-.0057 .0902

-0.026 .851 .863 .493 1.561 1.153 .275 I-.0122 .0828
-0,329 .818 .833 .444 1.518 1.124 .249 t-.0195 .0739
-0.600 .756 .776 .370 t.454 1.08521.214 t-.0268 .0626
-0.815 .630 .660 .262 t.359 1,0373t.168 I-.0314 .0481

-0.953 .385 .434 .if5 1.229 -.00981.I07 I-.o26o .0284,, ,,, , , I I

b/h = 8, a/h = 0.8, v = 0.3

1o999.9_ .9_9.6481.696I._94.3991.o4o9.,38
0.936 .911 .918 .6k3 1.692 1.289 t.394 t .0383 .135
0.784 .907 .915 .633 1.683 1.277 1.384 I .0322 .129
0.558 .902 .910 .619 1.671 1.261 1.37o I .0249 .121
0.279 .894 .902 .598 1.652 1.242 1.353 I .0172 .114

-0.026 .880 .890 .567 1.625 1.217 1.331 1 .0086 .105
-0.329 .856 .868 .520 1.584 1.183 1.3oi I-.oo15 .0934
-0.600 .809 .824 .446 1.52o 1.137 1.26o 1-.o]33 .0792
-0.815 i.705 .729 .331 1.420 1.07591.205I-.0245 .o61o

-0.953 1.462 1.505 .160 1.270 1.00731.131 i-.o263 .0367i , , ,,, , ,- , '
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Fig. I The geometry of the plate with surface cracks
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Fig. 2 Comparison of stress intensity factors calculated by the
finite element and line spring methods in a plate containing
a symmetrically located semi-elliptic surface crack and sub-
jected to uniform tension,
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Fig. 3 Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
a single symmetric semi-el]iptic surface crack and subjected
to uniform bending.
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Fig. 4 Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,
Lo/2a = 0.4, b/2a = 5.
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Fig.-5 Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,

Lo/2a = 0.2, b/2a = 5.
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