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SURFACE CRACKS IN A PLATE OF FINITE WIDTH

* UNDER EXTENSION OR BENDING™

by

F. Erdogan and H. Boduroglu™®
Lehigh University, Bethlehem, PA

ABSTRACT

In this paper the problem of a finite plate containing collinear -
surface cracks is considered. The problem is solved by using the line
spring model with plane elasticity and Reissner's plate theory. The
main purpose of the study is to investigate the effect of interaction
between two cracks or between cracks and stress-free plate boundaries
on the stress intensity factors ‘and to provide extensive numerical
results which may be useful in applications. First, some sample results
are obtained and are compared with the existing finite element results.
Then the problem is solved for a single (internal) crack, two collinear
cracks and two corner cracks for wide range of relative dimensions.
Particularly in corner cracks the agreement with the finite element
solution is surprisingly very good. The results are obtained for semi-
elliptic and rectangular crack profiles which may, in practice, corre-
spond to two limiting cases of the actual profile of a subcritically
growing surface crack.

1. introduction

surface cracks are among the most common flaws in structural com-
ponents, particularly'in welded structures. Under cyclic loading or
under static loading in the presence of corrosive environment any sur-
face flaw has the potential of subcritically growing into a surface
crack. Analysis of the structure containing such flaws is needed for
modeling and prediction of the corresponding crack propagation rate. A
review of the subject and a number of articles dealing with the analysis

of the surface crack problem in plates may be found in [1]. At this
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boint the analytical treatmént of the problem apbéérs to be intractable.
Therefore, the reliable solutions of the problem seem to be based oh
numerical techniques, most notably on the finite element method (see,
%or example, [2] for the solution of a wide plate containing a senii-
élliptic surface crack). In recent years, however, there has beeén some
renewed interest in the application of the line spring model which
was first described in [3] to the analysis of surface crack problems.
Thé method was used in [4] in conjunction with Reissner's plate theory
and the stress intensity factors for a semi-elliptic and a rectangular
surface crack were calculated for a wide plate under tension or bending.
The semj-elliptic'érack results described in [h] compare very féVorabiy'
with the finite element solution given in [2]. |

In this paper the general problem is considered for a plate having
a finlte WIdth Analytically, it is knoWn that if the stress flelds
of more than one crack or that of a crack and a stress-free boundary
of the plate interact, there would be some magnification in the stress
intensity factors. The problem may therefore be important in plate
structures having more than one initial surface flaw or having a flaw
near or at the'boundary.. Extensive finite element results for a single
éentral or corner surface crack in a plate of finite width are given
in [5] and [6] . Empirically developed expressions for stress intensity
factors based on the results given in [5] are also described in [7]:
']'he present study was undertaken partly to show that the 1ine spring
model may be used for cracks in finite plates, particularly for corner
cracks Just as effectively as the infinite plate and partly to sUpplé-i
ment the results given in [5] and [6] by, for example, considerlng the
cases of a rectangular crack proflle and collinear surface cracks.

2. The General Formulation of the Problem

The problem under consideration is described in Fig. 1. It is
assumed that x1x3 and x,x, planes are planes of symmetry with respect
to loading and geometry and the léngth of the plate in X, dTrec%}oﬁ is.
relatively long compared to the width 2b so that in formulating the



perturbation problem one may assume the plate to be infinitely long.
Even though the numerical results are given for uniform tension in Xy
direction and cylindrical bending in x2x3 plane applied to the plate

away from the crack region, as will be seen from the formulation of the
problem, there is no restriction on the external loads provided in
the ;bsence of any cracks the membrane and bending resultants in X X3
plane can be obtained for the given plate geometry and the applied loads.

The problem is formulated for the collinear cracks shown in Fig. 1.
The single central crack and the edge or the corner cracks are_then
considered as the special cases. One of the advantages of the line
spring model is that the crack profile (as described by the function
L(xl) giving the crack depth) can be arbitrary. However, the actual
crack morphology studies indicate that for a given length 2a and a
depth Lo the crack profile may be bounded by a semi-ellipse and a rec-
tangle. Hence, in this paper the calculated results will be given only
for thesé two limiting crack shapes.

Ordinarily, the problems of in-plane loading (as expressed as a
generalized plane stress problem) and bending of a plate are uncoupled.
Consequently, the corresponding through crack problems can be solved
independently. For the plate geometry shown in Fig. 1 the plane elasti-
city and plate bending solutions are given in [8] and [9], respectively.
In the case of surface cracks, because of the absence of symmetry in
thickness direction, the membrane ahd bending problems are'cléafly
‘coupled. As in [9] in this paper, too, a transverse shear theory is used
- to formulate the bending component of the problem. The particular
theory used is that of Reissner's [10] which is a sixth order theory
and accounts for all three boundary conditions on the crack surfaces
separately.

Referring to Appendix A for normalized quantities and, for example,
to [11] for the general formulation, the basic equations of the plate
problem may be expressed as follows:

Vi =0, o (1)

Viw = 0 , _ , (2)

..3.-



kV2p = p =w=0 |, ' | (3)

€ 5-va-a=0 , (L)
32 .92, "

Oux = 357 (he) , o =5y (he) 4 oy = - axay (h¢) (5)
M, = oo [ gi~ + v §3~ + g-(i-v)z ;i?;'] : (7
n, = By B g o S0 ®
ny = ) 2L ) B2 28 (9)

v =3 5 (1=v) gs ¥ gi : (10)
v, = 3 —-(l-v) ~§§ | - (11)

where, in the usual hotation, F (or ¢) is the Airy stress function,
NlJ Mlj, and V., (i,j=1,2) are the membrane, bending, and trahsverse
shear resultants, B1 and 82 are the components of the rotation vector,
Uys u2 and u3 arée the compohents of the d|splac¢ment vector; a is a
length parametér repiesenting the crack size (a =a for 0<c<d<b and a’ =g
for c=0,; d<b, Flg.bi), E and v are the elastic constants; the constants
x and A are defined in Appendix A, ¢ and Q are auxiliary funct ions
" defined in [11], and the dimensions h, a; b, c, and d are shown in Fig. 1.
Because of symmetry, it is sufficient to consider the probiem for
0<x4<b, 0§_><2<°'° only. Thus; thé membrane and bending problems of the
plate must be solved under the following boundary and symmetry conditions
stated in teriis of thé nofmalized quantities (Fig. 1 and Appendix A):

u(0,y) =0, N _(0,y) =0, Ogy<= , (12)

Nxx(b'ty) = o’ ny(b'a\/) = 0, Oiy«’é ’ ) (]3)

k-



N, (x,0) = 0, Osx<b', | (14)
1 ' oo |
Nyy(x,O) =5 [o,(x) +alx)] , e'<xd' (15a)
v(x,0) = 0, O<x<c', d'<x<b' ; (15b)
QX(O’Y) = 0? Mxy(o,y) =0, VX(O,\/) =0, 05_Y<°° ’ (]6)
Mex(B5¥) = 0, M (btyy) =0, v (b'y) =0, Ozy<= Y
My (£:0) = 0, ¥, (x,0) = 0, 0sx<b' s
W (6,0) = g [, () =m0 ], etexcd (19a)
sy(x,O) = 0, O<x<c', d'<x<b' . - (19b)

The conditions stated above refer to the perturbation problem in which
the crack surface tractions are the only nonzero external loads. Conse-
quently, in addition to (12)-(19) it is required that

Nyy(x,w) =0, ny(x,w)‘= 0, 0<x<b' , | ' (20)
Myy(x,w) = 0, Mxy(x,w) = 0, vy(x,w) =0, O<x<b' . (21)

The input functions o_ and m_which appear in (15a) and (19a) are
defined by

o N =. © 2 7 .
‘om(x) sz(xl,O)/h, m_(x) 6M22(x1,0)/h - (22)
where Nij (x1,x2) and Mij(x1’x2)’ (i,j=1,2) are the membrane and moment

resultants in the plate under the actual applied loads in the absence

of any cracks. The functions o(x) and m(x) are unknown and are defined

6M(x1) ~ 6M{a*x)

by N(x.) 2
1 - N(a“'x) , m(x) = = 7 (23)

o(x) = = =%

where the membrane load N(xl) and the bending moment M(xI) represent
the stress component ozz(x1,0,x3) in the net ligament c<x1<d,

-h h .
2<x3<-2- L.

“5e



In the bending problem the solution of the differential equations
(2)-(4) satisfying the symmetry conditions (16) and the regularity
conditions (21) may be expressed as follows [9]:

wix,y) = %-I (A YA, e ™ cosax da

+ %-J (C coshBx + csz|nth) cosBy d8 , (24)

' 2 1 gL . 2 s ) ; ;
a(x,y) = ;-f B.e sinax da + ;-I 82‘S|nh r,X singy d8 , - (25)
0

Ppix,y) = %-[ [-A +(2Ka-y)A Je™® cosax da

+ %-[ [-(c1+2KBC2)c05h8x-c2xsinth]cosBy ds, (26)

[o]

where Ai(a)’ Bi(d) and Ci(B)’ (i=1,2) are unknown functions and

" % - - % ;
ry = [a® + ;T%%;y 1, ry = (82 + ;1%%;y ] : (27)

By substituting from (Zh)-(zé)jinto (7Y, (9)=(11) and by using five
homogeneous conditions (17) and (18) five of the six unknown functions
may be eliminated. The mixed boundary condition (19) would then deter-
- mine the sixth. |

Similarly from the plane stress solutfon of the plate satisfying
the conditions (12), (14) and (20) the stresses and the y- component
of the displacement may be expressed as [8]

oo

'[ h1(a)(l-ay)e-“y cosax da

Nxx(st) =

2
kg
[ [h, (8) coshexssxh 4(®)sinhaxlcossy ds , (28)

S



©

f h (a)(l+ay)e s cosax do

Y]
©

[(h2+2h3)cosh8x+8xh3s inhBx]cosBy dB, (29)
(]

:;N

V‘Nyv(x’y) -

+
SR
——

J ath(a)e_ay sinax da

(o]
C

%-f [(h +h3)8lﬂhBX + th3cosh8x]s'n8y d8 , (30)

0

A

ny(x,y)

+

<0

vix,y) = 3_[ 1 (H'K + ayle ™ cosax da

T+v T

(o]

[ [( 2 '*K h )costh + xh,sinhBx]sinBy dB . (31)

3

In this case the unknown functions h], h2 and h3 are determlned from

the remaining boundary condttlons (13) and (15).

3. The Integral Equations

If we now replace the mixed boundary conditions (15) and (19)

respectively by

;; v(x,0) = g1(x) 0<x<b , ’ (32)
3% By(00) = g,(x) , oxxab | (33)

it is seen that by using (17), (18), (13), (32) and (33) all nine
unknown functions Ars Bi’ Co» (i=1,2) and hj’ (j=1,2,3) which appear
in the formulation of the problem given in the previous section may be
‘expressed in terms of the new. unknown functions 9 and g,- From the
definitions (32) and (33) 1t also follows that conditions (15b) and

(19b) are equivalent to



gi(x) =0, O0<x<c' , d'<x<b', (i=1,2) , (34)
di
[ sitex=0, (=) . (35)

cl

The functions 94 and g, may now be determined from the two remaining
conditions (15a) and (19a). Referring to [8] and [9] for details, the
following integral equations may be obtained from these two conditions:

dl

a_(x)
LICR j[—-— Ltk () = Ky (x,o0)Jg, (E)de =, (36)
c'
dl
m(x) _ a*(1-v2) (03 1y _ be(1-v) [ + ]
6E 2rhA™ 1+v t-x T T+ v (t-x)° = (t+x)?®
cl
+ Tﬁ"'[?l_ (v]t=x|) + o K (Y|t+x|)] + k, (x,t)
- m,(x) | |
- kzﬂx,-t)}gz(t)dt = clex<d' , (37)

where K2~is the modffied Bessel function of the second kind, the
Fredholm kernels k,(x,t) and kz(x,t) are given in Appendix B and the
constant y is given by

h | ‘
Y = TFOITEE | | : (38)
The functions o(x) and m(x) which appear in (36) and (37) are
. defined by (23) and represent the membrane and moment resultants of
the tensile stress gy in the net ligament c’'<x<d'. By using the plane
strain solution for an edge crack occupying (h/2)-L<x3§h/2 in a strip
of thickness h (Fig. 1) under membrane load N(x]).and bending moment
M(xI) (applied in Xa%3 plane) and by expressing the rate of change of
the potential energy in terms of crack closure energy and the change of

compliance, o{(x) and m(x) may be expressed in terms of the crack opening
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displacement 2v(x,0,0) and the crack opening angle 28 (x,0) as follows
(see [1] and [4] for details):

o(x) = Efy,, (x)v(x) + Ytb(X)By(X)] , - (39)

m(x)

6E [y (x)v(x) + v (X)By (x)] , (4o)

where the functions Yij (i,g=t,b) depend on the local crack depth L(x)
and hence are implicit functions of x. The algebraic expressions of
these functions are given in [4] . From (32), (33) and (34) by observing
that "
x X ‘
v(x,+0) = f 9;(t)dt , 8 (x,+0) = f g,(t)dt , (41)

c' c!

and by using (39) and (40), the integral equations (36) and (37) may

- then be expressed as

X d!
ytt(x)f gl(t)dt - %—;J [-t—l—x-f tlx + ky(x,t) - K, (x,-t)]g1(t)dt
c! c! .
’ X
)| g0t = Lo b, crexcar (52)
c! '
X X ) d!
th(X)f gy {t)dt + Ybb(x)f g (e - Sly) f {?:3 =
c' . c' c'
] b (1-v)
* t+x) B l+vv [ (t=x)? (t+x)3] * l+v[ t=-x Z(Ylt-xl)
+ o G (rlen)] + 1 Get) = gy, =) g, (1)t
= BE Mo(x) , clex<d’ . (43)

From the following asymptotic behavior of the Bessel functlon Kz(z) for

small values of z



Kz(z) = g%-- %-+ 0(z210g z) , . o (bb)

it can be shown that, as in (42), the integral equation (43) has a
simple Cauchy type singular kernel. We also note that the system of
singular integral equations (42) and (43) must be solved under the
additional conditions (35).

After solving the integral equations (42) and (43) for g, and g,
the Mode | stress intensity factor K at the leading edge of the crack
may be obtained by substituting from (39)~(41) into the following expres~-
sion giving K in a strip containing an edge crack of depth L and sub-
jected to the membrane load ¢ and bending moment m [4]:

K(x) = /F'EU(X)gt + m(x)g, ] | ' (45)

where 9¢ and g, are functions of L/h and are obtained from the correspond-
ing plane strain solution. From the results given in [!2] the expressions
for g and g, valid in 0<L/h<0.8 may be obtained as follows:

g, (s) = /s (1.1216 + 6.5200s2 - 12.3877s* + 89.0554s6

- 188.6080s" + 207.3870s10 - 32.0524s12) | | (46a)
g, (s) = vms (1.1202 - 1.8872s + 18.0143s2 - 87.385(s3
+ 241.9124s% - 319.9402s5 + 168.0105s6) , (46b)

where s = L(x)/h.
We now note that for O<c'<d'<b the solution of the system of singu-

lar integral equations is of the form
Gi(x)

‘ L crexed , (1=1,2) , |
(x=c")¥ (4" mx)¥ e (47)

g;(x) =

where the bounded unknown functions G1 and szmay easily be 6btainéd
by using the technique described, for example, in [13] .

-10~-



The general crack geometry shown in Fig. 1 has two special cases.
The first is the case of a symmetrically located single crack along
-d'<x<d', (i.e., ¢'=0, d'<b'). In this problem by using the symmetry
considerations and by observing that gi(t) = -gi(-t), (i=1,2), the
integral equations (42) and (43) may be somewhat simplified as follows:

X )
Ytt(X)I g,(t)dt - %;f [E%I*' kg (x,t)]g, (t)dt
_dl. _dl
X
+ ytb(x)J gz(t)dt = %-ow(x) , -d'{x<d',, | - (48)
-d'

X d’
d(1-v?) 34y 1
‘th(X)[ 91 (t)dt + Ybb (X)J gz(t)dt - 27h ;:"4 I [ ].’.: t=x
_dl _,dl _dl

b (1- 1 o
) Kl(+vv) T=x)3 © T Tox KZ(Ylt-xl) + kz(x,t)]gz(t)d;

= dem (x) , ~d'x<d . | (49)

By using (44) it may again be shown that (49) has a simple Cauchy kernel

and the solution of the integral equations is of the following form:

g;(x) = 2372%52;;- , =d'<x<d' , (i=1,2) (50)
The second special case is that of corner cracks for which O<c’<d'=b'.
In this case it may be shown fhat as x and t approach the end point b'
simultaneously, the kernels k1 and k2 in (42) and (43) become unbounded.
As shown in [8] and [9] the singular part of these kernels may be separ-
ated and may be shown to be

| e ) el bt b x)?
kys (x,t) = kZS(x’t) = B -x-t (26 -x-t)Z © [2b'=x-tJ° ° (51)

where



ki (x,t) =k, (x,t) + koo (x,t) , (i=1,2) (52)
and k]f and k, ¢ are bounded. Together with the Cauchy kernel 1/(t=x) in
(42) and (43), (51) constitutes a generalized Cauchy kernel. It may
be observed that the generalized Cauchy kernel'kg(x,t) = 1/(t-x)+kis(x,t)
has the property that kg(x,b') = 0’_kg(bi‘t) =0 and consequeritly gi(t)
and g, (t) are nonsingular at t=b' [8] . Also, in this case the single-
valuedness conditions (35) are not valid and, as pointed out in [8] ,
are not needed for a unique solution of the integral equations.

4. The Results

First, some sample problems are solved Ih order to comipare the
results obtained from the line spring model in this paper with that
obtained from the finite element solutions given in [5] and {6] : In [5]
the single symmetric semi-elliptic surface crack problem is considered
for a finite plate undér uniform tensioh or cylindrical bending (i.e:,
'c=0, d<b, Fig. 1). It is assumed that the half length of the plate is
£=5d. Figures 2 and 3 show the compériSOh of the rormalized stress
intensity factors calculated along the crack front by the two methods.
The normalizing stress intensity factor Ky shown in these figures is
‘defined by
Ky = 0L JEWK) k= VTR o (53)
éhd is the stress intensity factor at the location Xy = 0; Xy = 0;'x3 =
Lo, (i.e., the end points of the minor axis) of a flat elliptic crack
"(with semi axes d and L'o') in an infinite solid subjected to uniform
tension o,, = 0 in xz'directidn (¢=0; Fig. 1). Note that, consideting
the simplicity of the line spring model, the agreement is not bad. Ona
may also note that at the intersection point of the crack and the plate
surface x = x,/d = 1 the results based on the line spring model would
not be expected to be very good. Furthermore; at the singular point on
the free surface the power of the stress singularity seems to be less

-12-



than 1/2 [14] . Hence, theoretically the stress intensity factor defined
on the basis of conventional 1/2 power should tend to zero as the point
on the crack front approaches the free surface at an angle of 7/2. Thus,
strictly speaking, the bounded nonzero stress intensity factor given by
- the finite element solution at the surface do not seem to be correct either.
, Flgures L4 and 5 show the comparison of the stress intensity fac~
tors for a corner crack having the profile of a quarter ellipse and
obtained from the line spring model and the finite element solution glvén
in [6] . 1t should be noted that the finite element results are obtained
for a finite plate in which the half length is equal to the totai width
of the plate and the crack is only on one corner (see the insert in
Fig. 4). However, since the crack length-to plate width ratio in both
cases is relatively small (2a/2b = 1/10 in line spring and 2a/b = 1/5
in finite element solution), the stress intensity factors for the two
geometries should be approximately equal. The figures again show that
the agreement is quite good.

The calculated stress intensity factors are given in Tables 1-11.
All stress intensity factors were calculated as a function of x = xl/a*,
(a*=d for a single crack, a*=a for two cracks, Fig. 1) defining the
location along the crack front and of the relative dimensions of the
crack and the plate. The following notation and normalizing stress
:intensity factors are used in presenting the results:
K, (x)

°b22(r’0’x1) — ,» X = x,/a% (54)

Kt(x)
V2rr

e

e

(r,0,x,) » X = X /a% N (55)

%422

where supscripts b and t correspond to plates under bending and tension,
lrespectively, S99 is the cleavage stress around the crack front, r and 6
are the usual polar coordinates at the crack front in X9X3 plane (Fig. 1)
and Kb:and Kt are the corresponding Mode | stress intensity factors.

The results are given for uniform membrane load N22 = N, and cylindrical

-13-



bending moment M22 = M_ away from the crack region. The normalized

stress intensity factors shown in the tables are defined by

K, (x)
k. (x) = t

X
G0 = k) s (56)

to

N |
Ko = () b g(s)) s =L/m (57)

oM, |
Koo = (52 ‘/F, 9,(s,)) + s = L/h (58)
where L is the maximum crack depth and the functions g and g, are
given by (45) and (46). One may note that gt(s ) and gb(s ) are the
shape factors obtained from the corresponding plane strain solution of .

a plate with an edge crack of depth L, and, for the values of L /h shown
in the tables, are given by [12]

s, = L/h 0.2 0.4 0.6 0.8
9, (s,) /s, 1.3676 | 2.1119 4.035 11.988
gy (s,) /s, 1.0554 1.2610 1.915 597

Table 1 shows the normalized stress intensity factors at the deep-

est penétration point of a centrally located single semielliptic surface
crack (i.e., c=0, d<b, Fig.

1) in a plate under uniform tension N, or
bending M.

Here the crack profile is given by

2 X,
P R (59)
o

or

L(x) = Lofi-x2 , (x = xi/a* , a*

= d)

(60)



and hence x=0 is the deepest point on the crack front. This is also
the point where kt assumes its maximum value. For b/h = 10 relatively
complete and for other plate dimensions some sample results showing
the variation of the stress intensity factors along the crack front
are shown in Tables 2 and 3. Similar results are shown in Tables &4
and 5 for a single surface crack with a rectangulér profile (i.e., for
L(x) = Ly -1<x<1). One may observe that, as expected, generally the
stress intensity factors for the rectangular crack are higher than that
for the semi-elliptic crack.

The results for two collinear semi-elliptic surface cracks (Fig. 1)
are shawn in tables 6 and 7. Here the crack profile is defined by
(Fig.‘I)

xl-(c+a)

L(x) = Lo/l—-—i?, x = — , -i<x<l, (61)
Table 6 shows the value ki(x*), (i=b,t) and the location X = x* of the
maximum stress intensity factor for various crack geometries in a plate
for which b = 10h and a = h. The factor D = a/(a+c) determines the crack
location. Table 7 shows some sample results giving the distribution of
the stress intensity factors'along the crack front for two extreme crack
locations considered. The skewness in this distribution does not seem
to be very significant.

The results for a plate containing two corner cracks having a pro-
file of a quarter ellipse are shown in Tables 8 and 9 (Fig. 1). In
this case the crack profile (or the crack depth) L is defined by

o STTRT - x]-(c+a) -
L(x)-Lo 1(2 ) X = —— T<x<1 . (62)

Table 8 shows the normalized Mode | stress intensity factors at the
maximum penetration point of the crack which is on the plate boundary

x =b' (i.e., for x, = b or x=1o0or L= Lo). Some results showing the
distribution of the stress intensity factors are given in Table 9. The
results were similar for all crack geometries in that for plates under

~15~



tension and for those having shallow cracks under bending the maximum
stress intensity factor was on the boundary x = b', whereas for deep
cracks in plates under bending K was maximum at the surface Xy =¢ 6r
x =c¢' (Fig. 1), _For corner cracks with a rectangular profile results
similar to those shown in Tables 8 and 9 are given in Tables 10 and 11.
For this crack geometry too one may note that generally the stress
intensity factors for rectangular cracks are higher than those for the
elliptic cracks.

From the formulatlon of the problem it may be seen that all results
in the surface crack problem are dependent on the Poisson's ratio v
of the plate. The stress jntensity factors given in this paper are cal-
culated for v = 0.3, However, as shown [9] , since the stress intensity
factors are not very sensitive to the Poisson's ratio, the results

given in Tables 1-11 should be valid for nearly all structural materials.
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Appendix A

The definition of normalized'quantities

x = x,/a% , y = xzfa* , Z = x3/a* , (A.I)
u = uJ/a* A NVELEE u3/a* , | (A.2)
$= —b= , B =8, ,8 =8 (A,3)
ahe v Bx T B By =By |
Tx = 9917E » Ouy = 929/E , Opy = O127E » (A.4)
Nus = RE* Mg = F2E » (08) = (x,y) , (i,5) = (1,2) , (A.5)
Vx = V1/hB R Vy = V2/hB R - (A.6)
B=Z oy € AT 0 A = 12(] v¥)ak2/h2 | (A.7)

b' =b/a* , ¢! = ¢/a* , d' = d/a*

In the problem described by Fig. 1, a%* = a = (d=-c)/2 for O<c<d<b and
a* = d for c = 0, d<b.
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Appendix B

The Fredholm kernels k1 and k2 which appear in the integral
equations (36) and (37)

(x,t) [m e L1 (3v28n1)e 2]
k, (x,t) = | 1+(3+28b')e coshBx
*1 1+ligh e 280" __-1Bb’
"ZBb' 3 '3 1
-28xe sinhBx-[28x sinhBx+(3-28b
+e 285"y coshexI[1-28(b'~t) 13ds , (8.1)
o ~28x
{3+ _ Iy . l+e -(2b'~t-x)8
kZ(X,t) —f{[ v T B(b'~t)] 'i":’e""_z"s—b—re
[0}
“2rox
_2¢(1-v) 1+e °72 2.-(b'=t)ry _ -(b'-t)By _-(b'-x)ry
W ZrgeT B Brae Je
-e
-2b'g
28 _ 2b'B2 l+e \ -2Bx 3 (7. 28X
6555 ]_e-Zb'B’(H'e ) * 1 1+\, (k83 (1+e =)
2 - - -t -
. ‘B'z""(' o2y | B(H ZBx)}-] ] D€ (2b'-t-x)8
-(b'-x)B -(b'-t)rz 2 =2rox -(b'-t)B
+ D,e 1- H_\)Br(l-l- )D[o
~2b'B
-(b'~t 1- -(b'-
+ 2e ( )l"Z] e_2b|r e ( X)!‘Z}dB , (B.Z)
l-e 2
-2b'r
zs -2b'B T+e 2 ~2b'g
Dy =Sz ry(l-e ) Ty 2(1+e )

J4e=2b"

+ —-’E}FYT"B' []‘(b‘-t)ﬂ]-(l-\)) [-g- (b"‘t)"KBZJ(]-e'Zb'S) ’

(8.3)



2 -2b!
o = 28 l+e 2b'ry
2 Y q.e~2b'r2

(1-"2'8) - g21-0) (1-"2"8) | (8.4)

0 = 1528 - G g 4 269) (1270 F)

]+e-2b'r2 ( _zb-B)z
2 ooy (ke
].-e 2

+ 282¢r (8.5)
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Table 1,

The normalized stress intensity factors at the maximum
penetration point (x=0) of a symmetrically located
single semi-elliptic surface crack in a plate under uni-
form tension or bending (v=0.3).

L = 0.2h L = 0.kh L = 0.6h L = 0.8h
b d (o] (o] (o] [0}
h h '
kb(o) kt(o) kb(O) kt(o) kb(o) kt(O) k, (0) kt(O)
0.5 | .709 { .729 | .308 | .390 | .0518| .175 {-.0290 | 0.0503
0.6 | .737 | .755 | .342 | .L421 | .0705| .192 |~-.0257 .0555
0.8 { .777 | .792 | .398 | .470 | .104 | .221 |~-.0188 .0648
] .805 | .818 | .4h3 | .508 | .132 | .246 |-.0121 .0730.
/ .837 | .848 | .501 | .559 | .174 | .282 |-.0014 .0848
10| 2 | .876 | .88k | .584 | .630
A .930 | .934 | .723 | .752 | .390 | .4é6Lk | .0726 .155
6 .953 | .956 | .800 | .819 | .499 | .556 | .127 .203
8 .967 | .969 | .853 | .865 | .592 | .634 | .190 .256
9.5 | .975 | .976 | .885 | .893 | .659 | .689 | .249 .305
.61 .976 .977 .887 .894 L6614 .693 .254 .310
9.8 { .977 | .978 | .891 | .898 | .672 | .700 | .264 .318.
0.5 | .709 | .729 | .308 | .390 | .0519| .175 {-.0290 .0503
0.6 | .738 | .755 | .342 | .421 | .0706| .192 |-.0256 .0556
0.8 { 778 | .792 | .399 | .470 | .104 | .221 {-.0188 .0649
8 1 .805 | .818 | .h44 | .509 | .133 | .247 {-.0120 .0731
2 .877 | .885 | .586 | .632 | .246 | .341 | .0189 .105
A .932 | .936 | .730 | .758 | .4oo | .472 | .077L .159
6 .957 | .959 814 | .830 | .525 .576 | .144 .216
.69 | .971 | .972 | .87 | .876 | .626 | .660 | .223 .282
.84 | 972 | .973 | .872 | .880 | .635 | .667 | .233 .290
0.5 | .710 | .729 | .307 { .391 | .0521| .176 }-.0289 .0503
0.6 | .738 | .756 | .343 | .422 | .0710| .192 {-.0256 | .0556
0.9 | .794 | .807 | .42k | .492 | .122 | .235 |-.0152 .0693
1.2 | .827 | .839 | .483 | .543 | .160 | .270 |-.0051 .0807
6 | 1.5 | .851 | .861 | .530 | .583 | .196 | .301 | .0046 .0910
3 .915 | .920 | .681 | .715 | .341 | .423 | .0531 .137
b .930 | .934 | .723 | .752 { .390 | .L64 | .0726 .155
5 .953 .955 | .802 | .818 | .507 | .560 | .136 .208
5.77 | .963 | .964 | .839 | .850 | .576 | .616 | .187 .250
5.88 | .964 | .965 | .844 | .855 | .587 | .625 | .197 .258
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Table 1 (cont)

b | 4 L = 0.2h L =0, | L =0.6h | L =.0.8h
b d o) o e] o
h| h T . - . . .
k, (0)" [k (0) [k (0) 1k (0). |k (0). ]k (0).[K,(0) [k (0)
0.5 | .711 | .730 | .309 | .392 | .0528| .176 |-.0289 | .0504
0.666{ .755 | .771 | .366 | .44l | .0839| .204 |-.0231 | .0591
0.8 .780 .795 .403 474 .106 .223 |~.0184 .0653
y | 1 | -89 | .821 | .450 | .514 | 137 | .250 [-.0112 | .0738
1.33| .843 | .853 | .512 | .568 | .183 | .289 | .0006 | .0866
1.5 | .856 | .865 | .540 | .591 | .204 | .307 | .0068 | .0929
2 | .886 | .893 | .608 | .650 | .265 | .358 | .0257 | .111
3.92| .951 | .953 | .800 | .815.| .519 | .565 | .152 | .218
0.5 { .716 | .735 | .316 | .398 | .0557| .179 |-.0287 | .0508
0.6 | .747 | .763 | .355 | .431 | .0768| .197 |-.0249 | .0564
] 0.8 | .791 | .80k | .421 | .488 | .117 | .232 |-.0166 | .0671
o | 0.9 | .808 | .820 | .450 | .513 | .136 | .248 |-.0121 | .0722
1.0 .823 .843 477 .537 .156 .265 |~.0072 .077h
k/3 | .864 | .872 | .561 | .608 | .224 | .321 | .0118 | .096]
1.9 | .916 | .919 | .701 | .726 | .385 { .450 | .0754 | .150
1.96 | .920 | .92h | .718 | .740 | .411 | .&71 | .0903 | .162

-22-



[eNoNoNoRole

Table 2. Distribution of the stress intensity factors along
the crack front in a plate containing a single sym-
metric semi-elliptic surface crack (b/h = 10, v =
0.3, x = Xl/d).

Ky, ke |k | K ky l k. ky, | ke
Lo/h 0.2 0.4 0.6 0.8
X b/h =10, d/h = 0.5 , v = 0.3

0.929 |0.628 |.547 |.428 [.340 |.191 152 | .0486 {.LLk

0.828 | .672 [.609 |.392 |.349 |.154 156 | .0314 |.472

0.688 | .694 |.656 |.361 |.364 [.123 |.162 | .0113 |.510

0.516 | .704 |.691 |.336 |.376 |.0924 |.169 [-.0061 |.512

0.319 | .708 |.715 |.318 |.385 |.0672 {.173 |-.0187 |.502

0.]08 0709 0727 .308 .390 00535 0]75 --0276 0503

0 .709 |.729 {.307 |.390 |{.0518 [.175 |-.0290 |.503
b/h =10 , d/h =1, v = 0.

0.929 .631 |.545 |.505 {.391 |.272 .205 .0809 |.0649

0.828 .709 |.639 {.496 |.h426 |.239 .215 .0621 |.0677

0.688 .756 [.710 |.480 |.457 |.209 .226 .0396 |.0718

0.516 | .783 |.762 |.h64k |.482 |.177 {.236 | .0183 |.0729

0.319 .798 |.798 |.451 |.499 |.149 243 L0163 {.0724

0.108 804 [.816 .44k | 507 !.134 .246 1-.0103 }|.0728

0 .805 |.818 |.443 [.508 [.132 |.246 |-.0121 |.0730
b/h =10, d/h =4 , v = 0.

0.929 .623 [.535 |.561 |.420 |.402 .285 .168 121

0.828 | .739 |.661 [.626 |.517 {.420 |[.339 | .163 |.137

0.688 | .819 |.763 |.666 |.601 |.426 |.387 | .144k |.150

0.516 | .875 [.84k4 |.695 |.671 [.418 |.h25 | .120 |.156

0.319 910 {.901 {.713 |.722 {.402 451 .0953 |.156

0.108 | .927 {.930 |.722 |.748 |.391 .463 | .0756 |.155

0 930 .934 |.723 |.752 [.390 |.464 | .0726 |.155
b/h =10, d/h =8, v =0.
.929 .622 {.533 |.571 |.423 |.453 .316 .238 .170
.828 | .747 |.667 {.665 |.542.{.513 |.403 | .260 |.209
.688 | .837 {.778 [.735 [.653 |.560 |.487 | .261 .2bo
516 | .901 |.868 |.791 |.749 |.586 |.558 | .245 |.256
<319 | .944 [.931 |.830 [.821 |.593 [.607 | .219 |.259
.108 .965 |.965 |.850 |.860 |.592 .631 .194 .256
0 .967 1.969 |.853 [.865 {.592 |[.634 | .190 |.256




Table 2 (cont.)

A B N Ky | % iy K

Lo/h 0.2 0.4 0.6 0.8

X b/h =10 , d/h = 9.8 , v =
0.929 .629 1.538 {.597 |.4k2 |.508 .355 .312 .225
0.828 .753 |.673 |.692 |.562 |.572 L4he .34 .270
0.688 | .84k4 |.784 |.763 |.675 |.626 |.536 | .345 .305
0.516 .909 |.875 |.822 {.775 |.658 614 .328 .323
0.319 .952 |.939 |.865 [.851 [.670 .669 .298 .324
0.108 | .974 |.973 |.888 |.892 |.672 |.697 | .268 .319

0 .977 {.978 |.891 |.898 |.672 .700 .264 .318
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Table 3. Distribution of the stress intensity factors
along the crack front in a plate containing a single
- symmetric semi-elliptic surface crack (b/h = 2,4,6;
v=0.3).

k } kt ky ’ k k I k k k

L/h 0.2 0.4 0.6 - 0.8

929 |.646 |.559 |.542 |.421 |.306 |.232 | .0941 0.0752
828 |.726 [.654 |.533 |.456 |.271 |.240 .0736 { .0768
.688 |.774 |.726 |.517 |.487 |.238 |.249 | .0492 .0796
.516 |.801 |.779 [.500 |.S11 |.204 257 .0261 .0793
-319 |.816 |.814 |.486 |.527 |.174 |.262 .0077 | .0777
.108 }.823 |.832 |.478 |.536 |.158 |.264 {-.0053 -.0774
0 -823 |.834 |.477 |.537 {.156 |.265 |-.0072 0774

=N NoNelNeNo)

b/h =14, d/h =1, v=0.3

.929 |.634 |.548 |.512 |.397 [.278 |.210 ! .0833 | .0668
.828 |.713 |.642 |.504 [.432 |.245 |.220 | .0642 . 0694
.688 |.760 [.713 |.488 |.463 |.214 |.230 | .ob1k .0733
516 |.787 |.766 |.471 |.488 [.182 |.240 .0198 | .0741
.319 |.B02 [.801 |.458 |.505 |.154 |.246 .0028 | .0734
.108 {.808 |.819 [.451 [.513 |.139 |.249 {-.0094 .0737
0 .809 |.821 |.450 |.514 |.137 |.250 [-.0112 .0738

[oNoNoNoNeNe]

b/h =6, d/h = 1.2, v = 0.3

.929 |.632 |.545 [.522 |.402 !.296 |.221 .0921 | .0723
828 |.717 |.645 |.523 |.446 |.266 |.234 | .0732 | .075k
688 |.770 |.722 [.513 |.483 |.237 |.247 | .o0501 - .0796
516 {.801 [.778 [.501 |.512 |.206 |.258 | .0277 | .0808
.319 |.819- |.817 |.490 {.532 |.178 |.266 | .0096 | .0802
108 |.827 {.836 |.b74 |.541 [.162 |.270 {-.0032 | .0806
0 .827 1.839 |.483 |.543 |.160 |.270 {-.0051 .0807
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'Table L,

The normalized stress intensity factors at the center
(x=0) of a single symmetric rectangular surface crack
in a plate under tension or bending (v=0.3).

b d Lo = 0.2h Lo = 0.hh Lo = 0.6h | Lo = 0.8h
ky (0) 1k (0) |k, (0) |k (0) ik, (0) k, (0) gb(o) k, (0)
0.5 [.765 [.784 [.360 |.k29 | .0607 |.19% -.0316 |.0599

jo| 2 |-915 |.922 |.652 |.699 | .284 |.388 | .0261 |.122
5 |-970 |.973 |.847 |.868 | .s4k |.611 | .134 |.222

9.8 1.999 |.999 |.987 |.989 | .914 |.927 | .557 |.603
0.5 |.766 |.785 |.340 [.429 | .0608 |.19% |-.0316 .0599

g |1 .853 |.865 |.496 |[.563 154 1.276 |-,0105 |.085]
4 .963 |.966 |.814 |.840 487 |.562 104 |.195
7.84 1,998 |.998 |.982 [.985 .892 |.907 .503 |.554
f0.5 |.766 |.785 |.341 [.h29 [0.0610 |.19k |-.0316 |.0600
6 | 1 .855 |.867 |.h98 |.566 | .155 |.277 |-.0103 |.0854
3 (-951 1.955 |.767 [.797 | .4k |.500 | .0721 |.165
5.88 1.997 |.998 |.975 |.978 | .857 |.878 | .434 |, 49
o.s [.768 |.787 [.383 [.431° |0.0619 |.195 |-.0315 |.0602
y | -859 1.870 1.505 |.571 | .159 |.281 |-.0095 {.0863
|2 .930 1.936 |.690 |.732 .320 {.419 .0370 |.133"
3.92 1.996 1.996 |.959 (.965 | .797 |.826 | .341 |.408
lo.5 |.776 |.79% [.352 |.439 | .0655 |.198 |-.0312 .0609
2 |1 .880 1.890 |.545 |.606 | .186 |.304 |-.0041 |.0923
1.5 {.941 |.945 [.710 |.749 334 |.432 0395 |.135
1.96 1.990 {.991 [.916 |.927 .666. [.715 .205 |{.285




Table 5. Distribution of the stress intensity factors along
the crack front in a plate containing a single sym-
metric rectangular surface crack, x = x1/d.

[eNeNoNe NN

Ko [ % | % | k¢ Ky K Ky Ke
L,/h 0.2 0.4 0.6 0.8
x _ b/h =2, d/h =1, v =0.3 |
0.929 |.585 {.618 {.233 |.334 | .0289 [.159 |-.0295. |0.0458
0.828 {.737 [.759 |.354 |.440 | .0798 |.209 |~-.0261 .0619
0.688 |.814 |.829 |.439 [.514 | .122 |.248 |-.0190 | .0741
0.516 |.852 |.864 |.495 |.562 | .154 |.276 |-.0120 | .0831
0.319 |.871 |.881 |.528 |.591 | .174 |.294 |-.0070 | .0890
0.108 |.879 |.889 |.543 |.605 | .184 |.302 |-.00L44 | .0920
0 {.880 |.890 |.545 |.606 | .186 |.304 [-.0041 | .0923
b/h =6, d/h =1, v = 0.3 |
0.929 |.566 |.601 |.210 {.314 | .0181 |.149 |-.0302 | .o439
0.828 |.715 |.738 |.321 |.k11 | .0623 |.194 |-.0283 | .0586
0.688 [.789 |.806 |.399 |.480 | .0996 |.228 |-.0227 | .0694
0.516 {.827 |.841 [.451 |.524 | .127 |.253 |-.0169 | .0773
0.319 |.846 {.858 |.482 |.551 145 }.269 {-.0127 .0825
0.108 |.854 |.866 |.496 |.564 154  .276 [-.0105 | .0851
0 |.855 {.867 |.498 |.566 | .155 |.277 {~.0103 | .0854
b/h =10, d/h =1, v = 0.3
.929 |.423 |.470 |.112 |.228 |-.0172 |.108 |-.0293 | .0309
.828 |.574 |.609 |.191 |.298 | .0038 |.138 |-.0343 | .0k17
.688 |.667 |.694 |.252 |.352 | .0250 |.160 |-.0350 | .0492
516 |.721 |{.7h4 [.297 |.390 | .o421 |.177 |-.0339 | .0545
.319 [.751 |.771 |.325 |.415 | .0539 |{.188 |-.0325 | .0580
.108 |.764 |.783 |.339 |.427 | .0599 |.193 |-.0317 | .0597
0 |.765 |.784 |.3k0 |.429 | .0607 |.19%4 |{-.0316 | .0599




Table 6. The location x=x* and magnitude kp(x*) and ke (x*) of the
normalized stress intensity factors in a plate containing
two collinear semi-elliptic surface cracks, D=a/(a+c).

L = 0.2h L = 0.hh L = 0.6h L = 0.8h
0 o . (o)

kb(x*) kt(x*) ky, (x*) ke (x%) [y (x*%) [k (x*) ky (x*%) |k, (x¥)

0.112 | x* 0.2 0.05 .929 .319 .929 .929 .929 .929
k (x*) .831 .839 | .649 .554 .kog .308 .138 .107

0.125 | x* 0 0 .929 .04o .929 .108 | .929 .516
k (x*) .812 824 | .522 .518 .287 .523 .867 .756

.250 | xx 0 0 [+.929 0 .929 0 .929 |+.516
k (x*) .807 .820 | .509 .512 .275 .248. .0822 | .735

0.5 X 0 0 |-.929 0 |-.929 0 |(-.828 | .516
k (x*) .811 .823 | .521 .517 .285 .251 .0858 | .0744

0.75 | x* -0.50 0 * |-.929 [-.050 {-.929 |-.108 |-.929 |-.688

k (x*) .818 .829 | .550 528 .310 .259 .0951 | .786

-28-



-

Table 7. Distribution of the normalized stress intensity
factors along the crack front in a plate contain~
. ing two collinear semi-elliptic surface cracks,
X = [x1-(c+a)]/a (Fig. 1).

Ikt ky, lkt ky lkt ky k,

L /h 0.2 0.4 0.6 0.8

x b/h=10, d/h=1, D=a/(c+a)=0.112, v=0.3

0.929 |.688 {.596 |.649 }.505 |.L409 |.308 | .138 .107
0.828 {.766 |.689 |.623 |.527 |.351 |.300 | .106 |.102
0.688 [.805 |.754 |.584 |.541 |.297 {.294 | .0720 {.0975
0.516 |.824 |{.798 |.548 |.550 |.246 |.289 | .0411 |.0915
0.319 |.831 {.827 |.519 |.554 |.204 |.285 | .0175 |.0858
0.108 {.831 |.839 |.500 |.553 |.178 |.280 | .0013 {.0829 °
0 .829 |.839 |.494 }.550 [.173 {.278 [-.0016 |.0821
-0.108 |.826 |.835 |.491 |.546 |.172 {.275 |-.0004 |.0814
-0.319 |.816 {.814 |.492 {.532 {.184 |.269 | .0117 {.0809
-0.516 |.799 [.776 |.500 |.512 |.209 |.261 .0293 |.0818
-0.688 [.769 |.721 |.513 |.48L4 |.240 |.250 | .0516 |.0814
-0.828 |.720 |.649 [.526 |{.450 |.270 |.239 | .0751 |.0780
-0.929 |.640 |.553 |.533 {.413 |.303 |.229 | .0949 |.0758

b/h=10, d/h=1, D=a/(c+a)=0.75, v=0.3

0.929 |.637 |.551 }.521 }.hok |.288 |.217 | .0872 |.0698
0.828 |.716 [.645 |.514 | 440 |,254 |.227 | .0678 |.0721
0.688 |.764 [.717 |.499 |.472 [.224 |.237 | .O446 |.0757
0.516 }.793 {.771 |.484 |.498 [.192 |.247 | .0225 |.0763
0.319 |.809 |.807 |{.472 {.516 |.16L4 |.254 | .0050 |.0753
0.108 |.816 |.826 |.467 |.526 |.149 |.258 {-.0075 |.0754
0 .818 1.829 |.467 |.528 |.148 |.258 |-.0093 |.0755
- -0.108 [.818 |.828 |.469 |.528 |.151 }.259 [-.0073 |.0755
-0.319 |.814 |.812 |.480 |.522 {.169 |.258 | .0057 |.0760
-0.516 |.801 |.778 |.497 |.509 {.200 |.253 | .0243 [.0778
-0.688 |.776 |.727 |.517 |.488 |.236 |.247 | .0481 |.0786
-0.828 |.730 {.657 {.538 |.460 |.272 |.2h40 | .0735 |.0766
-0.929 {.651 |.563 -550 427 1.310 |.235 | .0951 |.0757 .




Table 8. The normalized intensity factors on the edges (x=%b') of
a plate containing two symmetric corner cracks having a
profile of a quarter ellipse (Fig. 1).

b L_= 0.2h L = 0.5h L = 0.6h L_ = 0.8h
b §_ [0} (o] O Q .
[] ' ] [] ] ] 1 ] 5 H
h | b R BT Tk 67 They, BT Tk 57 Tk, BT Tk 7Y [k 67 [k, (67
0.25 775 .790 .380 185 .0975{ .219 |-.0172 | .0678
0.3 .797 .810 s .485 .120 .239 |-.0117 | .0743
0.4 .828 .840 473 .535 .159 .271 |-.0014 | .0857
2 0.5 .852 .862 .522 h77 .197 .303 | .0089 | .0963
0.6 .872 .880 .568 616 |  .234 .334 | .0199 | .107
0.7 .889 .896 .610 .652 .273 .366 | .0321 Jd18
0.8 .905 .910 .653 .688 L3171 .40l | .0470 | .131
0.26 777 .792 .384 .459 .102 .223 {-.0152 | .0700
0.4 .821 .833 463 .527 | .156 .269 | .0003 | .0873
0.6 .858 .867 .539 .593 .215 .319 | .0179 | .106
y (0:8 .883 .890 .597 .642 L2604 .361 | .0336 | .121
1 .901 .907 .64L .683 .310 .399 | .0492 | .136
.2 .916 .921 .685 .718 .354 435 | L0657 | .150
4 .929 .933 722 ".750 .398 471 .0838 | .166
.6 .939 .942 .756 779 443 .508 | .105 .184
0.27 .781 .796 .391 | .46k .106 .226 |-.0140 | .0714
0.3 .792 .806 Lo 481 119 .237 {-.0105 | .0755
0.6 .856 .866 .536 .591 214 .319 | .0187 | .107
6 109 .889 | .896 | .613 | .657 | .281 | .376 | .040o9 | .128
1.2 .910 .916 .669 .705 | .337 k22 | L0609 | .147
1.5 .926 .930 713 L7hh .387 46 .0809 | .165
1.8 .938 .941 .750 | .776 434 .503 | .102 .183
2.1 .948 .950 .782 .803 479 .540 | .124 .202
2.4 .956 .958 81 .828 .523 .576 | .149 .223
.28 .785 .799 .397 470 L1710 | .230 (-.0129 | .0727
0.4 .821 .833 462 .526 .156 .269 | .0004 | .0875
0.8 .879 .887 .589 .636 .260 | .358 | .0343 | .122
1.2 .908 914 .665 .702 .334 420 | .0607 | .147
8 {1.6 .927 .932 .718 .748 .394 470 | .0846 | .168
2 941 944 .760 .784 L4y 514 1 .108 .189
2.4 951 .953 .793 .813 .49k 554 1 .133 .210
2.8 .959 .961 .821 .837 | .538 .591 | .158 .232
3.2 .965 .967 .845 .858 .580 .626 | .186 .255
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Table 8 - cont.

b L = 0.2h L = 0.4h L = 0.6h L =0.8h
b a o) o ) o)
t 1 [] ¢ [} U ' t
| B g [k BT [k [k B) [Ky(b") [k () [k (b7) [k (6")
0.25 772 .787 .376 452 .0967| .218 |-.0165 | .0684
0.75 .873 .882 .576 .625 .249 .349 | .0307 | .118
1 .895 .902 .630 .672 .299 391 .0483 | .135
1.5 .922 .927 . 704 .736 .378 457 | .0786 | .163
10 2 939 943 .755 .780 .hho .510 | .106 .188
2.5 | .951 | .953 | .793 | .813 | .hok | .555 | .133 | .211
3.0 959 .961 .823 | .840 541 594 | (160 234
3.5 | .966 | .968 | .848 | .861 | .584 | .630 | .188 | .258
k.o .972 973 .869 .880 .624 .664 | .218 .283
b5 | .976 | .977 | .888 | .896 | .66k | .696 | .252 | .312
20 1 .895 .901 .629 671 .298 .390° | .0483 | .135




Table 9. Distribution of the normalized stress intensity
factors along the crack front in a plate containing
two (elliptic) corner cracks, x = [x]-(c+a)]/a
(Fig. 1).

kb kt kb kt kb kt kb kt

Lo/h 0.2 0.4 0.6 . 0.8

X b/h = 2, a/h = 0.5, v

0.3

0.999 |.852 {.862 |.522 |.577 {.197 |.303 }.0089 |.0963
0.936 |.846 |.856 |.515 |.571 {.191 |.297 |.0073 |.0936
0.784 (.834 |.843 |.503 [.557 |.182 |.286 |.0050 |.0883
0.558 |.82h4 |.828 |.493 |.543 {.177 |.274 |.0064 |.083k4
0.279 |.813 {.808 |.492 |.528 |.184 |.266 |.0138 |.0805
-0.026 {.799 |.777 |.498 {.510 |.204 }|.257 |.0263 |.0798
-0.329 {.776 |.732 |.511 |.488 |.231 |.248 |.0450 |.0794
-0.600 |.736 |.669 |.526 |.460 [.261 |.240 |.0679 |.0768
-0.815 }.668 |.583 |.537 (.427 |.294 |.231 {.0882 |.0748
-0.953 |.549 |.460 |.532 }.390 }.336 {.232 {.112 |.0772

b/h = 8, a/h = 0.8, v = 0.3

0.999 |[.879 |[.887 }.589 |.636 [.260 [.358 [.0343 [.122
0.936 |.874 {.882 |.582 [.630 |.253 |.351 |.0317 |.118
0.784 {.866 |.872 [.570 [.617 |.242 |.339 |.0277 |.112
0
0

.558 |.857 {.859 |.561 [.602 |.237 |.326 |.0281 |.105
.279 |.844 |.836 |.557 |.583 |.243 |.314 |.0357 {.101
-0.026 |.825 |.800 |.557 [.559 |.259 |.302 |.0489 |.0990
-0.329 |.793 |.746 |.558 |.525 [.282 |.286 |.0677 |.0966
-0.600 |.741 {.671 |.558 |.481 |.30L4 |.269 |.0896 [.0917
-0.815 |.658 |.573 |.547 [.428 |.326 {.249 |.108 |.0869
-0.953 |{.521 |.434 |.502 |.361 |.345 |.231 |.127 |{.0850
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Table 10. The normalized stress intensity factors at the edges x = ¥b'
: of a plate containing two symmetric rectangular corner cracks.

L = 0.2h L = 0.kh L = 0.6h Lo = 0.8h

b a o o o)

h h ] ] i ! ! !
kb(b') kt(b ) kb(b ) kt(b ) kb(b ) kt(b') kb(b ) kt(b )
0.25 | .821 .835 415 4ol .108 .238 |-.0185 | .0773

2 {0.5 .895 .903 .581 .638 .223 .337 |~.0119 | .109
0.8 .954 .958 .754 .787 .388 477 .0620 | .156
0.26 | .820 .835 419 497 112 .242 1-.0163 | .0797
i 0.4 .860 87 .507 .57k 174 .295 L0014 | .0985
I .937 .942 .716 .755 .359 453 .0595 | .154

1.6 .976 .978 .856 .876 .550 .617 .139 .227
0.27 | .823 .838 426 504 117 246 |-.0149 {0.0812

6 (0.6 .891 .900 .589 .645 .240 .353 L0227 | .120
1.6 .956 .960 .788 817 .453 .534 .0983 | .190
2.4 .984 .985 .902 .915 .648 .700 .202 .283
0.28 | .827 .841 433 .510 122 .250 |-.0136 | .0826

8 0.8 .912 .919 .648 .696 294 .399 .0409 | .138
2 .967 .970 .833 .856 .525 .595 .133 .222

3.2 .988 .989 .927 .937 L714 .756 .255 .331

| 0.27 | .823° .837 425 .503 17 .246  [-.0150 | .0811
,b 1 .927 .933 .692 .734 .341 439 .0573 | .153
2.5 974 .976 .864 .882 .581 .643 .165 .251

4 .991 .992 .943 .951 .761 .796 .302 .374
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Table 11. Distribution of the normalized stress intensity
factors in a plate with rectangular corner cracks,
X = [xl-(c-i-a) /a.

Lo/h 0.2 0.4 0.6 0.8

X o b/h = 2, a/h = 0.5, v = 0.3

0.999 {.895 [.903 |.581 |.638 }.223 |.337 0119 1.109
0.936 |.892 |{.901 {.576 |[.634 |{.218 |.332 .0102 {.107
0.784 |.887 |.896 |.564 {.623 |.207 |.323 .0059 |.103
0.558 |.879 |.889 [.548 |.609 |.193 |.310 .0003 |[.0967
0.279 |{.868 |.879 |.525 {.589 {.175 {.295 [-.0057 }.0902
-0.026 |.851 |.863 }|.493 |{.561 [.153 |.275 |-.0122 .0828
-0.329 |.818 |.833 |.444 518 [.124 |.249 |~-.0195 |.0739
-0.600 {.756 {.776 {.370 }|.454 |.0852 214 |~-.0268 |.0626
-0.815 {.630 |{.660 |.262 }|.359 {.0373 .168 {-.0314 |.0481
-0.953 }.385 |.434 |.115 |.229 -.0098.107 [-.0260 |.0284
b/h = 8, a/h = 0.8, v = 0.3

0.999 |.912 |.919 |.648 |.696 |.294 [.399 | .0409 |.138
0.936 |.911 [.918 |.643 |.692 |.289 |.394 | .0383 |.135
0.784 |.907 |.915 .633 |{.683 |.277 .384 .0322 {.129
0.558 |.902 |.910 [.619 |.671 |.261 |.370 | .0249 |.121
0.279 |.894 [.902 |.598 |.652 |.242 |.353 | .0172 |.114
-0.026 |.880 {.890 |.567 |.625 |{.217 {.331 | .0086 |.105
-0.329 |.856 |.868 |.520 |.584 |.183 |.301 |-.0015 |.0934
-0.600 |.809 |.824 |.h46 |.520 |.137 |.260 |{-.0133 }.0792
-0.815 }.705 {.729 |.331 |.420 {.0759{.205 {-.0245 |.0610
-0.953 |.462 |.505 |.160 }|.270 }.0073|.131 |-.0263 |.0367
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The geometry of the plate with surface cracks
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Comparison of stress intensity factors calculated by the
finite element and line spring methods in a plate containing
a symmetrically located semi-elliptic surface crack and sub-
jected to uniform tension.
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Fig. 3 Comparison of the stress intensity factors calculated by the

finite element and line spring methods in a plate containing
a single symmetric semi-elliptic surface crack and subjected
to uniform bending.
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‘Fig. &4 Comparison of the stress intensity factors calculated by the

finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,
Lo/2a = 0.4, b/2a = 5. :
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Comparison of the stress intensity factors calculated by the
finite element and line spring methods in a plate containing
elliptic corner cracks and subjected to uniform tension,
L°/2a = 0.2, b/2a = 5.
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