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THE CRACK-INCLUSION INTERACTION PROBLEM*

by

Liu Xue-Hui and F. Erdogan
Lehigh University, Bethlehem, PA

ABSTRACT

In this study the general plane elastostatic problem of interaction
between a crack and an inclusion is considered. The Green's functions for
a pair of dislocations and a pair of concentrated body forces are used to
generate the crack and the inclusion. The integral equations of the problem
is obtained for a 1line crack and an elastic line inclusion having an arbi-
trary relative orientation and size. The nature of stress singularity
around the end points of rigid and elastic inclusions is described. A ques-
tion of specific interest which is studied is the nature of stress singu-
larity around the point of intersection of the crack and the inclusion.
Three special cases of this intersection problem which have been studied
are a crack and an inclusion which are collinear and have a common end point,
a crack perpendicular to an inclusion with a common end point (the L con-
figuration), and a crack perpendicular to an inclusion terminating at its
midpoint (the T configuration). The problem is solved for an arbitrary
uniform stress state away from the crack-inclusion region. First, the non-
intersecting crack-inclusion problem is considered for various relative size,
orientation, and stiffness parameters and the stress intensity factors at
the ends of the inclusion and the crack are calculated. Then for the crack-
inclusion intersection case special stress intensity factors are defined
and are calculated again for various values of the parameters defining the
relative size and orientation of the crack and the inclusion and the stiff-
ness of the inclusion. :

(*) This work was supported by NASA-Langley under the Grant NGR 39 007 011
and by the U.S. Department of Transportation, Office of University .
Research under the Contract DTRS 5682-C-00014.
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1..  Introduction

In studying the fracture of multi-phase materia]s; structures composed f
of bonded dissimilar solids, and welded joints it is necessary to take into
account the effect of the imperfections in the medium. Generally such imper-
fect1ons are in the form of either geometric d1scont1nu1t1es or mater1a1
inhomogeneities. For example, in welded Jo1nts various shapes of v01ds,
cracks, notches‘and regions of lack of fusion may be mentioned as examples
for the former and variety of inclusions for the latter. From the viewpoint
of fracture mechanics two important classes of imperfections are the planar
flaws which may be idealized as cracks and relatively thin inhomogeneities
which may be idealized as flat inclusions with “sharp" boundaries. In both !
cases the edges of the defects are lines of stress singularity and, conse-
quently, regions of potential crack initiation and propagation.
| * The technical Titerature on cracks, voids and inclusions which exist
in the material separately is quite extensive. However, the problems con-
cerning the interaction of cracks, voids and inclusions do not seem to be
as widely studied (see, for example, [1] for the results of crack-circular
inclusion or void interaction problem and for some references). In this
paper the relatively simple problem of an elastic plane containing a crack
and an arbitrarily oriented flat elastic inclusion is considered. Of special
interest is the examination of the asymptotic stress field in the neighborhood
of inclusion ends and the prob1ems'of intersecting cracks and inclusions.

The basic dislocation and concentrated force solutions are used to formulate
the problem [2]. Hence, the formulation can easily be extended to. study prob-
1ems 1nv01v1ng multiple cracks and inclusions.

2.; Integral Equations of the Problem

The geometry of the crack-inclusion interaction problem under considera-
tion is shown in Figure 1. It is assumed that the medium is under a state of
plane strain or generalized plane stress and the in-plane dimensions of the
medium are large compared to the lengths of and the distance between the
crack and the inclusion so that the effect of the remote boundaries on the
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perturbed stress state may be neglected. Thus, the Green's fUnctioﬁs for
the concentrated forces and dislocations in an infinite plane may be used to
formulate the problem. It is further assumed that the inclusion i§ suffi-
ciently "thin" so that its bending stiffness may also be neglected.

Referring to Figure 1 we consider the stresses and displacements due to
a pa1r of edge dislocations on the x axis, a pair of concentrdtéd forces on
the line ¢=constant and the applied loads acting on the medium away from the
| ‘crack-inclusion region. Let the subscripts d, p and a designate these three
stress and deformation states, i.e., let 94i5* %pij and %ij (153) = (xs¥)
or (i,j) = (r,6), be the stress components due to dislocations, concentrated
forces, and applied loads, respectively. The total stress state in the elas~
tic plane may, therefore, be expressed as |

075 (x¥) = 04y5(xey) * 05 (03) + o0 5(x0y)s (1,5 = x0y) (1)

Let us now assume that the dislocations are distributed along a<x<b,
y=0 forming a crack. If g(x) and h(x) refer to the dislocation dersities
defined by | |

D r (vany T oo e e

ax LUy (x#0) = u (x,-0)] = g(x) , a <x <b |

o (2asb)

ax [u(x:#0) - u (=0T = h(x) , a<x<b ,

the COrresponding stress components at a point (x,y) in the piane may be
expressed as '

b
Ogxx(XsY) = f (G (xsy5t)g(t) + Hy, (xsy,t)h(t)]dt ,

a

b j
Tayy(Xs¥) = | [y (xayst)g(t) + H o (xy,t)h(t)1dt , (3§gé)

a

b . :
Taxg oY) = [ T8 (x0,E)9(E) + H (xy,t)h(E)Tat o |

. |

‘where



,Gxx ) FT%%TT ' Tiz-xgg-i ;zjz =

gyy = ;TEETT . t-xt-i’é : yt—x 2

Hyy = FT%%TT" %%%§§§’£§:§;§;" ’ .
Hy = ?TEETY ' fii-x§§'f ;Ziz =

In (4) u and « are the elastic constants of the medium, u the Shear moduiu;,
k = 3-4v for plane strain and « = (3-v)/(1+v) for plane stress v being the
Poisson's ratio.

Similarly, from the concentrated force solution as given, for example,
‘in [2] the stress components O9ij = Sij due to a pair of forces Px and P,
acting at the point (xo, yo) may be written as '

(A +A )P + (B,+B,)P
= 1 1 727X 172
Sxx(x’y’xo’yo) ~ 2n(ktT) [(X--Xo)2 + (Y'yo)zgz ’
(A,-A,)P_+ (B,-B,)P
- 1 1 727 x 172y
Syy(x,y,xo,yo) = 2n(t1) [(X-XO)Z T (y_yo)2]2 ’

Y

(53-c)

1 A3PX'+ B3Ry

Sxy (XY 2Xo2Yo) = ZHlTY Tlrox )2+ (771717 *

b
[

1 = ~2(x-x ) [(x-x,)2 + (y-y,)?]

Ap = ~k(x=-x)[(x-x,)2 + (y-y,)2] - (x?xo)[(x-xo)2 - (y?yo)zl + 2(y-y,)2(x-x,)
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By = -2(y-y ){x=x)2 + (y-y4)2]1

He(Y g LRk + (v 2= (yyo Y (%)) 2= (=Y ) 21-2(x-%, ) 2(y-y, )

=
it

3 = TRy ) Lx=x5) 24 (y=y ) 21-(y-y ) [(x-x ) 2= (y-y ) 21-2 (%=X, ) 2(y-y, )

w
il

3 -K(x-xo)[(x-xo)2+(y-y0)2]+(x-xo)E(x-xo)2-(y-yo)2]~2(y-yo)z(x-xo)

(6a=f)

If the inclusion is located along the line ¢ < r < d, 6 = constant, and
if its bending stiffness is neglected, then the following conditions are
valid:

}ur(rie*’O) = ur(rse"O)s ue(r',6+0) = ue(Y‘,6~0) 9

-Pg(rs0) = oy, (ry6%0) - opo(r,6-0) =0, | (7a-d)

Thus, to formulate the problem it is sufficient to consider only the radiai
component P =p of the concentrated force. For Pe=0'and Pr=p observing that

P, =pcose , P =psine 5 ' (8a,b)

y

and substitut1ng Xq = rocose,lyo =r

by (5) the stress components o

d I ! ] 3 ] ) .
) 1 {A1 +A2 )cose+(B] +le)51n9 |
°pxx(x’Y) T 2n(k*) f [(x-rocose)2+(y-rosine)2]2 p(ro)dro >

c
1 d (A1'fAZ’)cose+(B1'-Bz')sine ' \
opyyXY) = 2T f [(x-1,cos8) Z+(y-r_sTne) 2] Plrgldrg s (9a-c)

0sine, by using the kernels Sij givéh

pij are found to be -

c
1 d A3'COSe + By'sine
°pxy(x’Y) " 2n(xFT) f [(x-rocose)2+(y-rosine)2]2'p(ro)d”o ’



where the functions Ai‘, Bi" (i=1,2,3) are obtained from (6) by substituting
Xq = r,COS0 and Yo = roSine, e.g.,

A]'(x,y,ro) = -2(x-rocose)[(x-rocose)2 + (y-rosine)z] . (10)

Since the stresses %aij due to the applied loads are known, from (1),
(3) and (9) it is seen that once the functions g(x), h(x) and p(r) are deter-
mined the problem is solved. These unknown functions may be determined by
expressing the stress boundary conditions on the crack surfaces and the

displacement compatibility condition along the inclusion, namely

oyy(x,O) = (x,0) + opyy(x,o) + cayy(x,o) 0, (a<x<b),

%dyy

0, (a<x<b), (11a-c)

cxy(X,O) = (x,0) + opxy(x,O) + oaxy(x,O)

%dxy

epp(rs0) = eq.(rs0) + sp,.r(r,e) * epp(rs8) = e5(r), (cer<d)
where ¢, (r) is the (Tongitudinal) strain in the inclusion. If, for examp]e,
the stress state away from the crack inclusion region is given by 013
(i,3) = (xsy), then the applied quantities in (11) may be expressed as

a yy(X,O) = Uyy ’ O‘axy(X,O) = ny ’

: ]+K‘ 2 3'K (]
Earr(r’e) o [o (cos?s 15 sin 8)

+

© . 3 4 © .
cyy(s1n26 ol P K cos2p) + —— Tz Oxy sin2e] . (12a-c)
We now note that if p(r) is the body force acting on the elastic medium
then -p(r) would be the force acting on the inclusion distributed along its
length. Thus, the strain in the inclusion may be obtained as
( ) 1+Ks d , ,
e.(r) = - J p(r_)dr ‘ (13)
it 8uSAS oo ,

r




where ug and Kg are the e1astic conhstaints, and A is the cross-sectional
area of the inclusion corresponding to unit thickness of the medium in z-
direction. From the expression of err.g1ven by the Hooke's Taw

(14)

from (9) and the correspond1ng stress transformat1on it can be shown that
; p(ry ) S
Ay = .k .
eprr(r’e) 2n{ T+ic) i f rs-r dr ) : (15)
c

Similarly, from (3), (4) dnd (145 we find
- b
(r,0) = j (6 (r; t)g(t) + H_(r,t)h(t) Jdt (16)

d

Edrr

where

G (r,t) = “?%fzy'ﬁf {cos26- ?+ swnze)(t -r c0se) x
- 2_p2edn2 242 3 2
x[(t-rcose)2-r2sin2s] + (sin2e 15, €0s?6) x
x(t-rcose)[3r2sii2e + (t-rcose)?]
+ 13 sin2e r sine[r2sin2e- (t rcoss)2]} , (17)

He(r,t) = ;IT;ES-—W {(cos2¢- ?+ sin2g)r sine[r2sin2g

+

3(t-rcose)2] + (sin2e- %i% cos26)r sing x
x[r2sin2e-(t- r2cosze)2] + 4 s1n29 x
x(t-rcose) [(t-rcose)2 - r2sin2e] , | (18)

RZ = (t-r cose)2 + r2sin2g . | o | (19)



Finally, by substituting from (3), (4), (9), (12), (13), (15) and
(16) into (11), the integral equations of the problem may be obtained as
follows:

-]

yy

d 'R 1 Yed
g(t)dt L] (A]'-Az')cose+(B] --B2 )sine
t-x Ary [(x-rocose)2+(r sing)< |4
a c ‘ 0

= - It
p(\r'o)dr‘0 = -5,

H

(a<x<b) ,
b d .
1 h(t)dt , 1 (Ay'cose+B4'sine)p(r,) P TP
m t-x 4y [(x-rocose)z-l-(rosine)z]2 ) 2
a . c

(a<x<b) ,

b b d (r )

¢
;?'J 6 (rt)g(t)dt + 7? f H_(r,t)h(t)dt + %_[ po 0

a a c
d
¥C,

Cc
+ 0 f Hr -r)p(r,)dry = - -2 [(cos2e-

oK

s 2 o«
Tae sin e)orxx

c

+ (sin2e- %}f cos26)o.

vy sin26], (c<r<d) , (20a-c)

4 «
¥ T Oxy

where

_ow(1+k)2 _ u(HKS) o
¢, = ‘Lzz‘l‘ YT T , | (21a,b)

From the definition of gand h given by (2) it follows that

fg(t)dt -0 , J'h(t)dt -0 . (22a,b)
a a

Also, the static equilibrium of the inclusion requires that
d
J p(r)dr =0 . | - (23)
c ,



Thus, the system of singular integral equations must be solved under the
conditions (22) and (23). From the function-theoretic examination of the
integral equations (20) it can be shown that the unknown functions g, h and
p are of the following form [2]:

F,(t F,(t F
1D e 2y 3t

(b-t)¥(t-a)? (b-t)%(t-a)? (d-r)%(r-c)?

g(t) =

(24a-c)

where F], F2 and F3 are bounded functions, The solution of (20) subject to
(22) and (23) may easily be obtained by using the numerical method described
in [3].

3. Stress Singularities

After solving (20) the Modes I and II stress intensity factors k] and
k2 at the crack tips x=a and x=b, y=0 which are defined by

k

](a) = Tim v2(a-x) o_.(x,0) , k](b) 11m V2(x-b) oy (x 0) ,
X4 ¥y .

kz(a) = 1im /2{a-x) °xy(x’0) . kz(b) Tim /2(x-b) °xy(x’0) .

X4 X-+b
(25a-d)
may be obtained as follows:
k](a) = f%%&]im v2(x-a) g(x) . k](b) = - ]+ 11m /?lb x) g(x) ,
X+

k,(a) = —JL-11m /2(x=a) h(x) , k,(b) = - <& T1im /?(5-x5 h(x) .

2 1+ 2 T+k xorb
(26a-d)

The constants k] and ky are related to the asymptotic stress fields near
the crack tips through the well-known expressions (see, for example, (4]
and [5]). However, not so well-known is the asymptotic behavior of the
stress fields near the inclusions having sharp edges. From (24c) and (7d)
iy is seen that the shear stress Tpg has a square-root singularity at the
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tip of the inclusion. However, if one is interested in crack initiation
around such singular points, one needs to know the direction and the magni-
tude of the maximum Tocal cleavage stress. This, in turn, requires the
investigation of the complete asymptotic stress field near the singular
points, By using the basic form of the solution of the related density
functions given by (24) and going back to the original stress expressions,
the asymptotic stress fields may be developed by following the general
techniques described in, for example, [6] or [7].

In an elastic medium containing an elastic Tine inclusion under plane
strain or generalized plane stress conditions, the asymptotic analysis gives
the near tip stress field as follows [7](* :

k

1 8
cyy(r,e) - cos » ,
k
~ 3t 71 )
o, (r0) - =K L g5 2,
XX k=1 o 2
()'x.y s k=1 - 7 c
where x,y and r,o are’the standard rectangular and polar coordinates, the -

origin of coordinate axes
along the negative x axis
similar to crack problems
in terms of the (tensile)

= lim /2r o
r-0

Ky

yy(r,o) .

is at the inclusion tip and the inclusion lies

or along 6=r, r>0. Equations (27) suggest that
one may define a (Mode I) "stress intensity factor"
cleavage stress as follows:

(28)

From (7) by observing that (at the right end of the inclusion)

ny(r,+7r) - ny

(ro=m) = -p(r) ,

(29)

(*) Note the misprints in

(4.6) of [7].



in terms of the function p(x) k] may be expressed as

. 1 k-1
ky = =Tim o == V2r p(r) . (30)
1 >0 2 k+l

It should be noted that in the case of flexible elastic line inclusions
there is no antisymmetric singular stress field. For example, in a plane
under pure shear (c:y) parallel to the inclusion, the perturbed stress field
is zero. Physically this of course follows from the fact that the normal
strain (exx) parallel to the plane of shear is zero.

Similarly, for a rigid line inclusion (i.e., for an inclusion having
infinite bending as well as tensile stiffness) it can be shown that for
small values of r the asymptotic stress field is given by

= 1 8ol in 8

oyy(r,e) 2 /?F'(k1 cos 5 + g ky sin 3) ,

cxx(r,e) = ;%%;(- %;% k1 cos g—+ %}% k2 sin %) R (31a-c)
:J__K_ﬂ_. in & s 2

oxy(r,e) = (- o7 kg sinz + k, cos 7)

Again, the stress intensity factors k] and k2 are defined in terms of the
tensile and shear cleavage stresses at 6=0 plane as follows:

ky = Tim v2r o, (r,0) , k, = Tim V2r o_ (r,0) . (32a,b)
Voo W 2 0 Xy

As in the crack problems, the antiplane shear component of the asymp=
totic stress field around flat elastic and rigid inclusions is uncoupled.
Defining a Mode III stress intensity factor by

ko = 1im v2F o__(r,0) , : (33)
3 10 Xz

the asymptotic stress field may be expressed as
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k

~ 3 9
o,.(r,8) = ——cos %,
XZ. 2
ver (34a,b)
k
2.3 «in 8
cyz(r,e) = «??'51n >

where again the inclusion lies along o=r p]ane(*).

4, Crack-Inclusion Intersection

Analytically as well as from a practical viewpoint intersection of
cracks and inclusions presents some intefesting problems. In these problems
the point of intersection is a point of irregular singularity with a power
other than 1/2. Even though the general intersection problems for an arbi-
trary value of 6 may be treated in a relatively straightforward manner, in
this paper only some special cases will be considered.

4.1 The case of ¢ = %-, a=0,c=0

In this case the system of singular integra] equations (20) becomes

b : )
?'f tox 9t F E’f [ezrez - xmezyzdp(tldt = £1(x) , (0<x<b) ,
0 0
b d 3
(t) ChX C. X
%-j ’Lj; dt'+v%'f C x2+t ) IE%EYJp(t)dt = f,(x) » (0<x<b) ,
Y 0

(*)Note that in this case if the remote stress is decomposed into o§, and’

Oyz’ the perturbed stress field due to o;z'would be zero, For the c]eavaée
plane 6 the shear cleavage stress may be written as ceo(r,e)=cxzsine~oyzcdse=
-(k3//?F)sin(e/2), 8, = 0*n/2, indicating that 6=%r/2 is the maximum cleavage

planes.



! b cat c4tr2 1 b cqr c4rt2
;f [t2+r2 + (tz.H.z)z_]g(t)dt + ',"‘."J [t2+r2 - (t2+r2)2]h(t)dt
0 0
d : c d
1 t 5
*FJ %%4t+?[auwmumt=gw>,mwwu (35a-c)
0 0 '
where
3+k =1 - H(k-1 o
¢ = Ty 0 ©2 u’ 3 K i B
| (3)
c, = 4u Cr = m(1+e) (T+eg )y
4 « * "5 4Asl<us i

and f1, f2 and f3 are known input functions (see, for example, the right
hand side of (20)). Note that aside from the simple Cauchy kernels, (35)
has kernels which become unbounded as the variables (t,x,r) approach the
point of irregular singularity (x=0=t=r). Thus, defining the unknown func-

tions by

1 SR BV ()
£ (b-t)° L £%b-t)?2 " " t%(c-t)P3 °
0<Re(a,ﬁk)<1, (k=1,2,3) , (37a-c)

and by using the function-theoretic technique described in [3], the charac-
teristic equations for g,, By» By and o may be obtained as follows:

cotrg, = 0, (k =1,2,3) | (38)
. by cos?ma - (by+8a~b40?)cos? %%

-(bg-bgo+bga?)sin? =0 , | (39)

where

-12-
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b] = 8/ (14¢) , b2 = 2(3+i) (k=1)/ (k1) ,
‘ (40)
b3 = 8/(k+1) , b4 = 2(3-k) , b5 = 16/(1+k)

Note that the properties of the inclusion (as expressed by the constant Cg
in (36)) enter the integral equations (35) only through a Fredholm kernel
and, therefore, have no influence on the singuTar behavior of the solution,
and o is dependent on « or on the Poisson's ratio of the medium dn]y. From
(38) it is seen that the acceptable roots are B = 0.5, (k = 1,2,3). The
numerical examination of (39) indicates that in this special case of 6 %
we have 0.5<a<1, meaning that the stress state at r=0=x has a stkonger singu~
larity than the conventional crack tip singularity of 1//r. This may be

due to the fact that in this problem two singular stress fields are combined
at r=0. Also, it turns out that for O<v<b the characteristic equation (39)
has two roots in O<Re(a)<1 and both are real. These roots are given in

Table 1 for various values of the Poisson's ratio.

Table 1. Powers of stress singularity o for a crack and

an inclusion: a =0, ¢ =0, ¢ = /2 (Fig. 1).

plane strain

plane stress

) B *2 * *2
0.0 0.63627093 0 0.63627093 0
0.1 0.64489401 0.09571474 0.64408581 0.08990596
0.2 0.65405762 0.14825371 0.65095281 0.13249000
0.3 0.66352760 0.18953334 0.65695651 0.16176440
0.4 0.67270080 0.22567265 0.66217253 0.18404447
0.5 0.67996342 0.26027940 0.66666667 0.20196313

. 1

The stress intensity factors at the crack tip x=b, y=0 and at the end

of the inclusion x=0, y=d may be obtained by using the relations (26) and!
At the singular point x=0, y=0 the following useful stress intensity

(30).

factors are defined;

-13-




- o
k](O) = 1im vZ x qu(-O;O) s

x>=0 (41a,b)
ko(0) = Tim v2 x* ¢ (-0,0) ,
2 X->-0 Xy
for the crack, and
k(0) = Tim 22 y% p(0,40) | | (42)

y-+0

for the inc]usion.

4.2 The Special Case of ¢ = %-, c=-d, a=0.

In this case the problem is further simplified by assuming "symmetpic®
external loads (for example, oxy-o in (20)). Thus, the plane of the crack
is a plane of symmetry, h(x) = 0, and (20) would reduce to

¢, tx?

™ f M dt + = f[“z—z ﬁ%rx-zyz]p(t Jdt = f(x), (0<x<b) ,

0

b d

C,ht c ty

%f gziyz + (Eeyzyle( )t + f e t+y

o

sgH(t-y)Ip(t)dt = fo(y) , (0<y<d) , (43a,b)

where, again the 1nput funct1ons f1 and f3 are known and, for example, are
g1ven in (20) (with ¢ Xy = 0) and the constants Cqs ...,c5 are defined by (36).
By defining

6y = 1 2 Retarra)e (44)
B i, s p = . P <Re(a,B sBs )<
t%(b-t)%1 t%(d-t)*2 e
from (43) it may be shown that
cotg, =0, (k=1,2) , (45)

-14-



COSﬂa-(C3 + ;_—Lc4a)(c] - J2-C20L) =0. (46)

From (45) it is seen that B = 0.5. A close examination of (46) shows that
it has only one root for which O<Re(a)<1. Furthermore, this root turns out
to be real and highly dependent on the Poisson's ratio (see Table 2). The
characteristic equation (46) and the roots given in Table 2 are identical
to those found in [8] where an infinitely Tong stringer in cracked plate
was considered.

Table 2. Power of stress singularity o at the crack-inclusion
intersection for e=n/2, c=-d, a=0 and for symmetric

loading.
[0
v plane strain plane stress
0 0 0

0.1 0.10964561 0.10263043
0.2 10.17432137 0.15468088
0.3 0.22678790 0.19132495
0.4 0.27392547 0.21972274
0.5 0.31955800 0.24288552

In this problem, too, the stress intensity factors for the crack and .
the inclusion may be defined as in (41) and (42).

4.3 The Special Case of 6=m, a=0, c=0

In this case the crack and the inclusion are on the x axis and occupy
(y=0, 0<x<b) and (y=0, -d<x<0), respectively. Restricting our attention
again to the symmetric loading for which h(x) = 0 and observing that for
the variables along the inclusion r = -x, ro = -ts p(r.) = -px(t), the
integral equations of the problem may be expressed as

o)



i g(t) o 11 [ Pylt)
;;f tox dt - p J dt = f](x) » (0<x<b)
0 -d

C3 bw 1 opx(t) c5 X ' ;
- J tox 4t + ;‘f o dt - j;'f P (t)dt = fi(x), (=d<x<0)  (47a,b)

0 -d -d

where the constants €3 and cg are defined by (36) and the known functions
F] and f3 are given by the right hand sides of (20a) and (20c) (with c:y=0).
If we now let ‘

(1) = (1) = —29 0<Re( )<1 (48)
F — = s <he(o, s < ’
g td(b_t)sl p_x (_t)a(t+d)62 o Bl BZ

from (47) the characteristic equations for a, By and B, may be obtained as
follows:

0 , (k=1,2), (49)

COtan =
1.2

cos2ra = - (5—1) ) (50)
2V

Equation (49) again gives g; = B, = 0.5. From (50) it may easily be seen
that o is complex and its value for which O<Re(a)<1 is found to be

PR TRIC- RO S - | (51)
This value of o turns out to be identical to the power of singularity for a
perfectly rough rigid stamp withsa sharp corner pressed against an elastic
half plane having « as an elastic constant [2] (e.g., k = 3-4v for the plane
strain case). At first this result may be somewhat unexpected. However,
upon closer examination of the problem first, from (47b) it may be seen
that the elasticity of the inclusion (i.e., the term containing the constant
;5) has no effect on the nature of the stress singularity. Thus, if one
assumes the inclusion to be inextensible, for the symmetric problem under
consideration it can be shown that the conditions in the neighborhood of the
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crack tip x=0, y=0, for example, for y<0, are identical to the conditions
around the corner of the stanp in the elastic half plane occupying y<0.

It, therefore, appears that for the elastic inclusion collinear with a
crack, the stress state around the common end point would have the standard
complex singularity found in the rigid stamp problem.

5. The Results

The crack-inclusion problem described in previous sections is solved
for a uniform stress state 013’ (i,3=x,y), away from the crack-inclusion
region. For s1mp11c1ty the results are obtained by assuming one stress com-
ponent (c;x or °yy or c:y) to be nonzero at a time. The solution for a
more general Toading may then be obtained by superposition. Even though |
the stress state everywhere in the plane can be calculated after solving the
integral equations (e.g., (20)) and determining the density functions g,

h, and p, only the stress intensity factors are given in this section. For
nonintersecting cracks and inclusions the stress intensity factors defined

by (26) and (28) are normalized as follows:

' k~(X-v)
= 1 J . .y o= .
ki(xj) 0: — s (1 (132)’ Xj (a.,b), a ( ‘j XX xy))’ (52)
for the crack and
. _ky(ry) i e =
kplrs) = _““Lk0 » Ko = 2(Taey 95 (dC)/Z,
(Y‘j\r‘ (Csd) ’ Ua = (O'ny GXX’ ny)) (53)

for the inclusion.
Referring to Figure 1, for c=a, d=b, and (b/a)=5 the effect of the angle
6 on the stress intensity factors is shown in Table 3. These results are:
given for two values of the stiffness parameter y defined by (21), namely
y=0 (the inextensible inclusion) and y=10. : /
{
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Table 3. Normalized stress intensity factors in a plane containing a
: crack and an inclusion subjected to a uniform stress state o?j
away from the crack-inclusion region (c=a,d=b,a=b/5,Fig. 1).

e
v |k 1° 30° 60° 90°  120° 150° 180°
’ (a) c;yi‘O,c:x=0,o;y=O' e
ki(a) | .8905 | 1.0083 | 1.0298 | 1.0049| .9912| 1.0001 | 1.0076
ky(a) | -.2152 | -.0098 | -.0661 | -.0830| -.0367| .0004 | .0000
o [ki(b) | 1.0221 | .9967 | .9570 .9617|  .9857| 1.0001 | 1.0033
ky(b) | .4327 | -.0065 | -.0002 | .0007| -.0001| .0001 | .0000

ki(c) | .9570 | -.3273 [-1.1324 |-1.3970| -.8879| -.0310 | .3850
ky(d) | .8012 | .1552 | -.6989 |-1.1134| -.7336| -.0428 | .4320

K{a) | .9691 | .9999 | 1.0076 | .9988| .9978| 1.0000 | 1.0014
ky(a) | -.0517 | -.0047 | -.0136 | -.0153| -.0066| .0001 | .0000
10 |ki(b) | .9862 | .9997 | .9919 | .9928| .9973| 1.0000 | 1.0006
ky(b) | .0742 | -.0020 | .0001 | .0005| .0002| .0000 | .000O
ki(c) | .2619 | -.1277 | -.3979 | -.4735| -.2989| -.0220 | .1106

k'(d) | -.0269 | .1001 | -.1848 | -.3269] -.2177] .0171 | .1354

(b) ol #0, 0, =0,0, =0

K{(a) | .1237 | .0704 | -.0034 | -.0034] .0008| -.0117 | -.0203
ky(a) | .2355 | .0122 | .0052 | .0310| .0036| -.0161 | .0000
ki(b) | -.0806 | -.0365 | .0036 | .0142| .0014| -.0072 | -.0086
ki(b) | -.5321 | -.0740 | .0001 | .0001| .0000| -.0003 | .0000
ki(c) {-1.1068 | -.6949 | .0766 | -.4620| .0774| -.6988 |-1.0877
ki(d) |-1.4785 | -.6941 | .0772 | .4644| ..0776| -.6994 | -.0884

ki(a) | .0385 | .0106 | -.0005 | -.0001| .0002| -.0023 | -.0038
ki(a) | .0587 | .0004 | .0010 | .0056| .0006| .0029 | .0000
ki(b) | -.0252 | -.0068 | .0007 | .0026| .0003| -.0013 | -.0016
10 \gs(b) | -.1128 | -.0030 | .0000 | .0000| .0000| .0000 | .0000
ki(c) | -.3440 | -.2152 | .0239 | .1432| .0239| -.2151 | -.3346
ki(d) | -.3885 | -.2154 | .0239 | .1434]| .0239] -.2151 | -.3347
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Table 3 - cont.

0
y | k' 1° 30° 60° 90° 120° 150° 180°
(c) ny #0, Tyy = 0, cxy =0
ki(a) .1289 .1428 .0669 | .0028 0134 .0223 {0.0000
ky(a){ 1.0849 | 1.0180 .9054 | .9950 | 1.0599 .0304 {1.0000
0 ki(b) .1641 -.0754 | -.0670 {-.0021 | 0.0231 .0136 |0.0000
ky(b)| 1.4055 .9685 .9974 | .9995 | 1.0005 .0005 |1.0000
ki(c) -1.0246 |-1.6348 |-1.3085 | .0533 | 1.3767 .3606 {0.0000
ki(d)! 2.0539 [-1.3808 |-1.4661 [-.1076 | 1.2735 .3117 | .0000
ki(a) .0858 .0198 .0100 | .0010 .0032 .0043 | .0000
ky(a)| 1.0527 .9967 .9826 | .9992 | 1.0108 .0054 |[1.0000
10 ki(b) .1044 | -.0140 | -.0121 |-.0003 .0043 .0025 | .0000
ky(b)| 1.1662 L9929 | .9994 | .9998 9999 .0000 |1.0000
ki(e)| -.6916 | -.5492 | -.3731 | .0557 .4513 .4316 | .0000
ki(d) 1.1639 | -.4179 | -.4533 [~.0342 .3912 .4029 | .0000
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Some sample results for an inclusion collinear with a crack (i.e,
for 6=0) are given in Table 4, Note that for this configuration under the

Table 4. Normalized stress intensity factors for an inclusion
collinear with a crack. Relative dimensions: 6=0,
d-c = b-a, ¢ = b+s. Applied loads: c?j, (i,3=x,y)

(Fig. 1).
o K! , s = (b-a)/100 s = (b-a)/2
1) .
y =0 y=10 | y=0 y=10
ki(a) | -0.0202 | -0.0040 | -0.0019 | -0.0004
- ki(b) | -0.1338 | -0.0300 | -0.0027 | -0.0005
XX ki(e) -1.0482 -0.3296 -1.0889 -0.3347
ki(d) | -1.0845 | -0.3345 | -1.0889 | -0.3347
ki(a) 1.0047 1.0006 1.0008 1.0002
Y k!(b) 1.0200 | 0.9987 1.0011 1.0002
%y | ki(c) | -0.0861 | -0.1571 0.4559 0.1397
ki(d) 0.3841 0.1273 0.4590 0.1413

Toads shown in the table, that is, for o . and o:x, because of symmetrj
the Mode II stress intensity factors kz(a) and k2(b) are zero. Also, for
the shear loading o;y it is found that ky(a) = 1, ky(b) = 1 and ky(a) =
k](b) = k](c) = k](d) = 0. This follows from the fact that in the cracked
plane under pure shear c;y the strain component exx(x,O) is zero and
hence an inextensible inclusion on the x axis would have no effect on the
stress distribution. v

Another special configuration is an inclusion parallel to the crack
for which Table 5 shows some sample results. In the two special con-
figurations considered in Tables 4 and 5 the effect of the crack-inclusion
interaction on the stress intensity factors does not seem to be very sig-
nificant.

The results for an elastic medium for which xz plane is a plane of
symmetry with respect to the crack-inclusion geometry as well as the
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Table 5. Normalized stress intensity factors in a plane containing an
inclusion parallel and equal in length to a crack, both symmetri-
cally Tocated with respect to the y axis. The crack is along the
x axis and H is the distance between the crack and the inclu-
sion in y direction (Fig. 1).

o K H = b-a H = 10(b-a)
Y , Y = 0 y = 10 y =0 y = 10
ki{a)=k}(b) -0.0182 -0.0070 -0.0007 -0.0002
oy | ka(a)==ki(b) 0.0281 | -0.0011 0.0006 0.0000
ki(c)=k{(d) -1.0834 -1.0887 -0.0683 -0.0683
ki(a)=kj(b) 1.0063 1.0028 1.0004 1.0001
o;y kb(a)=-kj(b) | -0.0060 0.0004 -0.0001 0.0000
ki(c)=ki(d) | 0.3917 0.4387 0.0411 0.0276
| ki(a)=-ki(b) | -0.0042 0.0000 -0.0002 0.0000
o:y ki(a)=ks(b) 0.9965 1.0000 0.9998 1.0000
ki(c) -0.1131 0.0033 -0.0123 0.0004
ki(d) 0.1129 -0.0052 0.0123 -0.0006
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applied loads are given in Figures 2-12. In this example the crack is per-
pendicular to the inclusion and the external load is a uniform tension par-
allel or perpendicular to the crack and away from the crack-inclusion region
(see the insert in the figures). The results shown in the figures are self-
explanatory. However, the solution also has some unusual features among
which, for example, one may mention the tendency of the crack tip stress
intensity factors k'(a) and k'(b) to "peaking" as vy decreases and as d/%
increases (where 2d and 2% are the lengths of the inclusion and the crack,
respectively and y = 0 corresponds to an inextensible inclusion).

The results for the limiting case of the crack touching the inclusion
are given in Figures 8-12. In this case at the singular point x=0, y=0
the stress intensity factor k](a) and the normalized stress intensity factor
ki(g) are defined by

ky(a) = lig-/?'x“oyy(x,O) , (x <0), (54) |
ki(a) = k(a)/c?i/i', (i=(x,y); 2=b/2) . (55)

where the power of singularity « is given in Table 2. The results shown
in Figures 8-12 are obtained for v = 0,3.

The stress intensity factors for the other symmetric crack inclusion
problem, namely for the problem in which y axis is the line of symmetry
with regard to loading and geometry are given in Figures 13-28. 1In this
problem a=-¢, b=g, d>c>0 and the externa]lload is either c;y or G:X (see the
insert in Figure 13). Note that the figures show the crack tip stress
intensity factors at x=a=-g and k](b)=k](a), kz(b)=-k2(a). Generally the
magnitude of kl(a) and kz(a) seem to increase with increasing length and
stiffness of the inclusion (i.e., with increasing (d-c)/2% and decreasing
Yy = u(]+KS)/ASuS(]+K), where u_ is the shear modulus of the inclusion).
Also, as expected, k](c) and k](d) describing the intensity of the stress
field at inclusion ends tend to increase as the stiffness of the inclusion
increases. However, their dependence on the relative length parameters is
somewhat more complicated (see, for example, Figure 16 for change in beha-
vior of the variation of k](d) at (d-c)/22=5). Figures 13-20 show the effect
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of the inclusion length for constant crack length 22 and constant distance
¢ (Figure 13). The effect of the distance ¢ for constant inclusion and
crack lengths is shown in Figures 13-28.

The results of the nonsymmetric problem showing the effect of the rela-
tive location of the inclusion are shown in Table 6. Referring to Figure 1,
in these calculations it is assumed that ¢ = %—, d-c = 2%, ¢/2% = 0.1 and
a/2% is variable.

Finally, the stress intensity factors for the crack-inclusion inter-
section problem considered in Section 4.1 are given in Figures 29-43.
The normalized stress intensity factors shown in these figures are defined
by (see (41), (52) and (53))

0

cij/E'x+b

! = 1 i -
kg 1im v2(x-b) oyy(x,o) ,

krg 1 1im VZTXBY 0, (x,0)

c?jVE' x-+b
1 . o
Kyp = lim /2 x* o (-0,0) ,
1A Gas/T  X+=0 Yy «
1 .
vo_ 1 . o (56)
Knp = Tim /2 x (-0,0) , .
2R c?jfi' x->=0 Xy \

] '| .
ken = 1t 1im v2(y-d) o__(0,y) ,
1D k0 y-d XX

- 1=k w
ko = 2(THey %i3 Y972

‘In this case too, generally the magnitude of the stress intensity factors
-increases with increasing length and stiffness of the inclusion. However,
since the crack and the inclusion are located in each other's "shadow",
the relative dimensions seem to have considerable influence on the vari-
ation as well as the magnitude of the stress intensity factors.
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Table 6. The effect of the relative Tocation of inclusion on the stress
intensity factors; o = n/2, (d-c)/2% = 1, c¢/2% = 0.1 (Figure 1).

Y3 5p | k@) | kya) k(o) | ky(b) | kjle) | ki(d)
101 | -0.0202 | 0.0890 0.0161 | 0.0003 | 0.4450 | 0.4471
0.0 | -0.1033 | 0.0425 | 0.0133 | 0.0039 | 0.4192 | 0.4402
ohx |-0.1 | -0.0849 | -0.0044 | 0.0076 | 0.008] 0.3538 | 0.4285
0.3 | -0.0349 | -0.0308 | 0.0023 | 0.0060 | 0.3348 | 0.4163
-0.5 | -0.0363 | -0.0114 | -0.0363 | 0.0114 | 0.3195 | 0.4109
+0.1 1.0458 | -0.1396 | 0.9545 | 0.0012 | -1.5217 | -1.0543
0.0 1.2652 | -0.1090 | 0.9667 | -0.0078 | -1.2922 | -0.9497
a;y -0.1 1.1548 | 0.0064 | 0.9865 | -0.0150 | -0.5345 | -0.8136
-0.3 1.0448 | 0.0294 | 1.0013 | -0.0102 | -0.2308 | -0.6378
-0.5 1.0313 | 0.0129 | 1.0313 | -0.0129 | -0.1959 | -0.5801
0.1 0.0098 | 0.9905 | -0.0033 | 0.9992 | 0.1050 | -0.1338
0.0 0.0493 | 0.9796 | -0.0065 | 0.9983 | -0.1734 | -0.1675
c:& -0.1 0.0463 | 1.0019 | -0.0041 | 0.9960 | -0.1054 | -0.1648
-0.3 0.0123 | 1.0066 | -0.0007 | 0.9971 | -0.0236 | -0.0977
-0.5 0 1 4] 1 0 0
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Figure 1. The geometry and notation for the crack-inclusion problem.
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Figure 4. Normalized stress intensity factor at the inclusion end y=d;
o;y 0, o;’x = c;y =0, a/2 = 0.5, v = 0.3.
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Figure 12. © Normalized stress intensity factor at the inclusion end y=d;
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Figure 13. Mode I stress intensity factor at the crack tip
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Figure 15. Stress intensity factor at the inclusion end y=c; c;y # 0y
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Figure 16. Stress intensity factor at the inclusion end y=d; c§,°y #0,
o;x = c;y =0, v=0.3,0=1q/2, ¢c= 0.22, b = g = 23,
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Figure 17. Mode I stress intensity factor at the crack tip x=a=-g;
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Figure 18. Mode II stress intensity factor at the crack tip x=a=-g;
c;x # 0, o;y = c:y =0, v=20.3,06=%/2,c=0.20, b = 4.



Figure 19.  Stress intensity factor at the inclusion end y = c; G;:x #0,
O?y:o;y=0,\)=0.3sc=0.22,, 0 =m/2, b =g = g
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Figure 21. Mode I stress intensity factor at the crack tip x = a = -g;
c;y #0, O';x = Oy =0, 06=1n/2, v=203,dc=22,b=3g.
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Figure 22. Mode II stress intensity factor at the crack tip x = a = -23
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Figure 24.  Stress intensity factor at the inclusion end y=d; o3y # 0,
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Figure 25.  Mode I stress intensity factor at the crack tip x = a = «g;
U;X#O,o;’y=c;y= ,-v=0.3,6=1r/2;b=£;'d-'c=‘22
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Figure 26. Mgde IT stress intensity factor at the crack tip x=a-= -g;
Tyy # 0, cr;y = o;’y =0,v=0.3,06=n/2,dc=2e,b=3.
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Figure 29. Normalized stress intensity factor for the inclusion-crack
| intersection problem for which 6 = n/2, a =0, b = 24, ¢ = 0,

d/2% and y variables. kyp for c;x #0, o:y =0, c;y = 0.
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Normalized stress intensity factor for the inclusion-crack
intersection problem for which e
d/2% and y variables.
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Figure 31. Normalized stress intensity factor for the inclusion-crack
intersection probiem for which ¢ = n/2, a = 0, b = 2%, ¢ = 0,

d/2% and y variables, k]B s c;x # 0.
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Figure 32. Normalized stress intensity factor for the inclusion-crack
intersection problem for which & = 7/2, a =0, b =28, ¢ = 0,

d/2s a.nd vy variables. k2B , G;x #0.
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Figure 33. Normalized stress intensity factor for the inclusion-crack
intersection problem for which o = n/2, a = 0, b = 23, ¢ = 0,

d/2% and vy variables.
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Figure 34. Normalized stress intensity.factor forhthe inclusion-crack

intersection problem for which 6 = /2, a =0, b = 2%, ¢ =0,
d/2% and y variables. k]A s o;y # 0.



Figure 35. Normalized stress intensity factor for the inclusion-crack
: intersection problem for which ¢ = #/2, a =0, b = 2%, c =0,
d/2% and y variables. k2A s o;y #0.
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Figure 36.

Normalized stress intensity factor for the inclusion-crack
intersection problem for ,which L= /2, a =0, b =2, ¢c= 0,
d/24% and y variables. k]B s c y £#0



Figure 37; ‘Norma112ed stréss intensit
intersection problem for which ¢ = /2, a = 0, b=2¢,c=0,

y factor for the inclusion-crack

d/22 and y variables. kZB s q;y # 0.



Figure 38. Normalized Stress intensity factor for the inclusion-crack
intersection problem for which 6 = /2, a =0, b = 22, ¢ = 0,
d/2% and vy variables. k]D R c;y # 0.
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Figure 39. Normalized stress intensity factor for the inclusion-crack
intersection problem for,which 6 = n/2, a =0, b = 24, ¢ = 0,

d/2% and y variables. k]A s o;y # 0.
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Figure 40. Norma]ized stress intensity factor for the inclusion-crack
intersection problem for ,which 6 = #/2, a = 0, b = 22, c = 0,
d/2% and y variables. k2A . c;y # 0.
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Figure 41.  Normalized stress intensity factor for the inclusion-crack
intersection problem for which ¢ = /2, a =0, b = 2%, c =0,
d/2s2 and y variables. kig > oxy # 0



Figure 42. Normahzed stress intensity factor for the inclusion-crack
intersection problem for Which 0= /2, a =0, b =2y, c= 0,
d/2¢ and y variables. k28 R c f 0
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Figure 43. Normalized stress intensity factor for the inclusion-crack
intersection problem for which ¢ = n/2, a =0, b =22, c =0,
d/2%2 and y variables. k]D , c;’y # 0.
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