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SUMMARY

A simulator study was conducted to compare and validate various ride quality

prediction methods for use in assessing passenger/crew ride comfort within helicop-

ters. Thirty-five military pilots experienced and rated selected combinations of

simulated helicopter interior noise and vertical vibration representative of that

measured during routine flights. Results of this study indicated that crew ride com-

fort results from a complex interaction between vibration and interior noise. Reduc-

ing either noise or vibration alone provided little improvement in ride quality;

reductions in both were required. The best metric for predicting crew comfort to the
combined noise and vibration environment was the NASA discomfort index. The results

were also used to derive tentative comfort criteria that account for the relative

effects of both noise and vibration.

INTRODUCTION

The achievement of a "jet-smooth" ride within military and civilian helicopters

has been identified as a primary goal of the helicopter industry (ref. I). As stated

in reference I, this goal may not be economically or tactically feasible for certain

utility missions but will be required for commercial transports, military gunships,

and target acquisition helicopters of the future. Implicit in this goal is the

imposition of more stringent requirements upon helicopter vibration and noise inte-

rior environments. It is anticipated that substantial reductions in interior noise

and vibration levels, as compared with those present in current operational craft,

may be required. This leads directly to two fundamental issues which must be

addressed. The first involves the question of how to specify, in a usable and real-

istic manner, the levels, combinations of levels, or other ride parameters that con-

stitute a "jet-smooth" ride. The second issue is concerned with the availability and

adequacy of ride quality assessment methods applicable to the particular character of

the helicopter ride environment. This environment is multidimensional in nature;

that is, it contains multiple axes and multiple frequencies of vibrations combined

with relatively high levels of interior noise.

A large body of literature dealing with vibration comfort criteria exists, but

only a relatively small portion of the reported work has been identified as having

direct applicability to helicopter ride quality (ref. 2). One such approach that may

be applicable to helicopter environments has been developed by the National Aeronau-

tics and Space Administration. The NASA approach utilized a realistic ride quality

simulator and extensive psychophysical testing (approximately 3000 test subjects) to

develop a general empirical model for prediction and assessment of human discomfort

and acceptance of combined noise and vibration. (See refs. 3, 4, 5, and 6.) The
NASA ride comfort model accounts for the interactive effects of interior noise and

multiple frequency, multiple axis vibrations. Output of the NASA model is a single

number scalar index of discomfort that relates directly to passenger acceptance.

Another approach of potential use in assessing helicopter ride quality is the

absorbed power model developed by The U.S. Army Tank Automotive Command (TACOM)

(refs. 7 and 8). This method also produces a single number scalar quantity (total

absorbed power) derived from a summation of absorbed power for different frequencies



and axes of vibration. It does not, however, account for the effects of noise.

Both were applied to the noise and vibration measurements made on five operational

U.S. Army helicopters in a recent joint NASA/Army study. The results of that study

(ref. 9) indicate that each model predicted considerable variation in ride quality

between the five helicopters and between flight conditions within each helicopter.

The two models, however, did not always agree as to relative levels of ride quality

between helicopters. Part of the lack of agreement may be attributable to the fact

that the NASA model included the effects of the interior noise, whereas the absorbed
power model did not.

To investigate this problem futher, an additional NASA/Army experimental inves-

tigation was conducted. The primary objective was to evaluate the capability of var-

ious ride quality metrics to predict pilot subjective comfort ratings of simulated

helicopter interior noise and vertical vibration typical of routine military opera-

tional flights. A secondary objective was to investigate a possible ride quality

criterion that accounts for the combined effects of noise and vibration. The Army

absorbed power model was not considered and the study was not concerned with evalua-

tion of individual helicopters or with comparisons between helicopters.

SYMBOLS AND ABBREVIATIONS

g acceleration due to gravity, g units (Ig = 9.81 m/sec 2)

gp peak acceleration, g units

grms root-mean-square acceleration, g units

LA A-weighted sound pressure level, dB (re 20 _Pa)

r linear correlation coefficient

Abbreviations:

DISC discomfort

IGE in ground effect

ISO International Standards Organization

max,min maximum, minimum

NASA National Aeronautics and Space Administration

OASPL overall sound pressure level

rms root mean square

SPL sound pressure level



EXPERIMENTAL METHOD

The objectives of this investigation were accomplished by applying selected

combinations of simulated helicopter noise and vibration to a group of pilots and

eliciting their subjective impressions of the discomfort associated with each expo-

sure. The following sections describe the simulator used, subject characteristics,

source of test stimuli, experimental design, subjective rating methods, test proce-

dure, and data analysis.

Simulator

The simulator used was the passenger ride quality apparatus (PRQA) at the

Langley Research Center shown in figure I. The PRQA is an electrohydraulic three-

degree-of-freedom motion simulator capable of exposing passenger subjects to complex

vibration and noise inputs over a wide range of frequencies and amplitudes. The

simulator is described in detail in references 10 and 11, and the reader is referred

to those documents for details of simulator capabilities and operating characteris-

tics. The interior of the PRQA is configured to closely resemble that of a modern

jet transport; for the present study, it contained four first-class aircraft seats

which allowed simultaneous testing of four subjects.

Subjects

The 35 military helicopter pilots used in this study were obtained from the

local area with the assistance and cooperation of the Aviation Material Management

Division of the U.S. Army Transporation School at Fort Eustis, Virginia, and

NAVAIRLANT located at the Naval Air Station in Norfolk, Virginia. Their ages ranged

from 23 to 43 years, with a median age of 31 years. The subject group consisted of
34 males and I female.

Source of Test Stimuli

The noise and vibration stimuli were obtained from a series of flight measure-

ments described in reference 12. The particular environments selected for reproduc-

tion on the NASA ride quality simulator were those measured on the 0H-58C, UH-IH,

AH-IS, UH-60A, and CH-47C helicopters. These aircraft represented a set of vehicles

having a large range of design gross weight (3200 to 33 000 ib).

The flight conditions selected for simulator reproduction were normal cruise and

in-ground-effect (IGE) hover. For each of these conditions, only the measured verti-

cal vibration and interior noise were used as inputs to the simulator. Lateral

vibration was not used, since vertical axis vibration was usually dominant for the

aircraft selected. Furthermore, the simulator could not accurately reproduce high-

frequency (greater than 10 Hz) lateral vibration. The measured vibration signals

were played directly into the simulator, but the noise signals were first applied to

an equalizer which attenuated the signals in accordance with the SPH-4 helmet attenu-

ation characteristics given in table I. (See ref. 13.) As a result, interior noise

environments were roughly equivalent to those which the crew members actually heard

in flight.



It is important to note that the noise and vibration environments evaluated by

the subjects were simulator reproductions of the measured noise and vibration fre-

quency spectra. That the simulated noise and vibration match flight noise and vibra-

tion levels was not a requirement of this study. The objectives required only that

the subjects experience a range of noise and vibration sufficient to elicit a wide

range of discomfort responses. Details of the actual simulator environments are

given in the following sections.

Experimental Design

The experimental design is shown in table II. The factors that were varied

include noise level, vibration level, flight condition, and helicopter type. Noise

and vibration levels were varied for each frequency spectra defined by helicopter

type and flight condition. Throughou_ this paper, helicopters are denoted as

follows: H-I for the AH-IS, H-2 for the CH-47C, H-3 for the UH-60A, H-4 for the

UH-IH, and H-5 for the 0H-58C. The noise levels were classified as being high, mod-

erate, low, and ambient. The high noise level condition approximated the maximum

levels measured in flight (suitably attenuated by the SPH-4 helmet characteristics).

The moderate and low noise conditions correspond to 7 dB and 14 dB attenuations,

respectively, of the high level. Thus, for each helicopter/flight condition combina-

tion, the shape of the noise spectrum remained constant and only level varied. The

ambient noise condition (LA _ 60 dB) represented the case in which cabin noise input

was removed and only the noise due to simulator operation was present.

The vibration levels were classified as being high, moderate, and low. The high

vibration condition approximated the maximum levels measured in flight when possible.

Man-rating requirements prevented the application of accelerations in excess of 0.5gp
to the subjects. In some cases this prevented achievement of full flight levels.

The moderate and low vibration conditions correspond to 3 dB and 9 dB reductions from

the highest test level. Vibration spectrum shape for each helicopter/flight condi-
tion combination also remained constant.

Each vibration and noise level combination was presented for each helicopter and

both flight conditions. The flight conditions were normal cruise and IGE (in-ground-

effect) hover. Each subject experienced all the noise and vibration combinations (a

total of 120), which were randomized and counterbalanced to prevent presentation

order effects. The root-mean-square floor acceleration levels (grms), overall sound

pressure levels (OASPL), and A-weighted sound pressure levels (LA) produced within

the simulator cabin are given in tables III, IV, and V, respectively, for each condi-
tion of table II.

In addition to the stimuli of table II, the subjects also were given 10 calibra-

tion rides. These rides consisted of vibration only (except for ambient noise) and

were used to determine whether the vibration discomfort sensitivity of the military

pilots differed from that of the general passenger public. These calibration rides

were vertical sinusoidal vibrations of various randomized levels applied at a fre-

quency of 9 Hz. Responses to the calibration rides were further used to assist in

interpreting the 9-point rating scale (see next section). The acceleration levels of

each calibration ride are listed in table VI in the order presented to the subjects.

A similar method for calibrating subjective discomfort responses to noise alone was

not available.



Subjective Rating Methods

Subjective responses were obtained by use of two rating-scale methods. The

first method required each subject to make an overall evaluation as to whether a ride

segment was uncomfortable or not. The second rating method utilized a continuous

9-point unipolar discomfort scale and required that evaluation marks be placed along

the scale to indicate the degree of discomfort associated with a ride segment. The

instructions given to the subjects explaining how to use the scale are given in

appendix A. A sample rating sheet showing the rating scales is shown in appendix B.

Test Procedure

Prior to the start of each test, the subjects were thoroughly instructed in the

use of the rating scales as well as other pertinent information related to test pro-

cedures and protocol. Upon entering the simulator, they were first exposed to the

10 calibration rides, then the rating sheets were collected and new rating sheets

were issued for use in the remainder of the test. This was followed by application

of the first 60 helicopter ride combinations. The first half of testing took

approximately 45 minutes, whereupon a 15-minute break was taken before completing the

remaining 60 ride segments. Each ride segment lasted approximately 20 seconds and

included ramp-up and ramp-down times of about 2.5 seconds each. Intervals between

rides averaged about 8 seconds.

Data Analysis

Vibration data.- The vertical vibration level at the floor of the simulator

cabin was measured during each ride segment and recorded on l-inch magnetic tape.

The tapes were digitized and processed through the Langley Research Center's Signal

Analysis Program (SAP) and Acoustics Analysis Program (AAP). These programs,

described in reference 14, are general purpose programs for the analysis of random,

stationary time series. For the present study the SAP output options utilized were

the summary statistics (max, min, mean, rms) and the power spectral density estima-

tors. These estimators were used to quantify the frequency content of the vibration

spectra and to verify that the simulator accurately reproduced the flight noise and

vibration spectra.

Noise data.- The interior noise within the simulator cabin was measured at head

level and midway between the two rear seats, that is, directly above the middle arm-

rest. This location was selected on the basis of previous noise surveys within the

simulator passenger cabin which indicated that this location approximated reasonably

well (±2 dB) the space-averaged sound pressure level within the cabin. The noise was

recorded on an audio recorder and subsequently analyzed through the AAP to obtain

one-third octave spectra. Results of both the noise and vibration analyses were

also applied as input to the NASA ride comfort model, as discussed in detail in the
results section.

Subjective data.- The subjective ratings were tabulated, and the mean and stan-

dard deviation of the 9-point scale values were computed for each ride segment; these

are given in tables VII and VIII. The means were then used in correlation analyses

to determine the relative effectiveness of various ride quality metrics in accurately



estimating the obtained discomfort responses. The percent of pilots rating each ride

segment as uncomfortable was also determined (table IX) and used to assist in inter-

preting the 9-point scale values.

RESULTS

Simulator Physical Environment

Vibration.- The root-mean-square acceleration levels on the simulator cabin

floor for each ride segment are presented in table III. These, however, provide no

information regarding the fidelity with which the simulator reproduced the frequency

content of the flight measurements. This information is presented in figure 2 in

which the simulator output spectrum shape is compared with the input (flight) spec-

trum shape. The spectra shown correspond to the cruise condition. Hover is not

shown since the results are similar. When considering the spectra of figure 2, it

should be recalled that the simulator levels were not necessarily matched with flight

levels. Consequently, the various spectral peaks should not be expected to coincide

in amplitude. It was important, however, to achieve good fidelity between input and

output frequency content. The results in figure 2 do indicate that the simulator

closely matched and reproduced the dominant frequency components measured in flight,

providing assurance that the reproduced environments within the passenger cabin

would "feel" the same as the flight environments. This was confirmed by spontaneous

remarks and comments made by the subjects both during and after the tests. The

output spectra also show that the simulator was unable to reproduce the very low-

frequency portion (less than 2 Hz) of the flight spectra. The stroke limitations of

the hydraulic actuators that drive the simulator prevented full reproduction of

vibration at frequencies below 1 Hz.

Noise.- The overall and A-weighted sound pressure levels within the simulator

cabin for each ride segment are given in tables IV and V, respectively. Samples of

the overall interior noise levels for the cruise condition measured in flight (dashed

lines) and within the simulator cabin (solid lines) are presented in figure 3 for

each aircraft. These data indicate that the noise spectra within the simulator cabin

approximated the flight spectra reasonably well. Differences between the two likely

resulted from equalization of the flight spectra (prior to playback into the cabin

speaker system) according to the SPH-4 helmet attenuation characteristics and differ-

ent physical interior characteristics of the simulator cabin (e.g., reverberation,

size, absorption). Although the reproduced noise spectra differed somewhat from the

actual flight spectra, the noise maintained its realistic character and was readily

perceived and identified by the pilots as helicopter interior noise with which they
were familiar.

Subjective Response

Calibration rides.- The purpose of the calibration rides was to determine

whether the helicopter pilots' subjective responses to vibration differed from those

of the general public upon which the NASA discomfort model was based. Any differ-

ences would have to be accounted for when applying the NASA model to predict helicop-

ter crew/passenger comfort. Results of the pilots' evaluation of the calibration

rides are summarized in figure 4, which shows the percent of pilots who rated each

calibration ride uncomfortable as a function of rms vertical acceleration level.

The line in the figure is a linear least-squares fit to the data points. Indicated

on this figure is the acceleration level corresponding to the discomfort threshold
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(where 50 percent of the pilots were uncomfortable). This acceleration level is

0.057g. The discomfort threshold for the general public was previously determined

to be 0.061g. (For example, see ref. 6.) Since the two values are close (within

7 percent), it is reasonable to conclude that the helicopter pilots evaluated vibra-

tion ride comfort the same as the general public. This implies that highly trained

operators (pilots in this case) may have the same comfort expectations as the general

passenger.

Helicopter rides.- The pilots' mean subjective ratings and standard deviations

resulting from each of the 120 helicopter noise and vibration environments (as repro-

duced by the simulator) are summarized in tables VII and VIII for the 9-point scale.

The percent uncomfortable values are given in table IX. The relationship between the

two rating scales is shown in figure 5. This figure provides a basis for interpret-

ing the numbers on the category scale in terms of a readily understandable parameter

(percent uncomfortable). For example, scalar ratings of 1.84, 3.29, and 4.46 corre-

spond to 50, 75, and 90 percent uncomfortable, respectively. For scalar ratings

above approximately 4.5, it is not possible to relate the two scales because of the

"ceiling" effect of the 9-point scale.

Vibration ratings with ambient noise.- The mean subjective ratings as a function

of rms vertical acceleration level (in g units) are presented for the ambient noise

condition at cruise in figure 6(a) and for hover in figure 6(b). The dashed lines

indicate the 50, 75, and 90 percent uncomfortable rating-scale values. The reader
should recall that the ambient noise condition refers to the test condition in which

helicopter noise was absent from the simulator cabin and only the noise produced by

cabin vibration was present. Thus, figure 6 represents the effect upon subjective

comfort response of changes in cabin vertical vibration. Observe that the discomfort

increased substantially over the 'acceleration range investigated and that this

increase was roughly linear. The largest discomfort response occurred for the cruise

condition because of the higher levels of acceleration used. For the range of accel-

eration common to both conditions, the discomfort responses were similar. This would

be observed if the two figures (figs. 6(a) and 6(b)) were overlaid.

It is useful to consider some implications of these data with respect to heli-

copter passenger ride quality. For example, if a ride quality criterion states

that no more than 50 percent of the passengers should be uncomfortable, then the

data on figure 6 indicate the levels for each helicopter simulation that should not

be exceeded. These levels are helicopter dependent because of the varying spectral

characteristics between helicopters. To illustrate this, consider the data for

aircraft H-I and H-2. Figure 6 shows that the acceleration level at which 50 per-

cent of the subjects were uncomfortable is much less for aircraft H-I than for

aircraft H-2. Examining the spectra indicates that the dominant vibration peak for

aircraft H-I occurs at about 11 Hz (fig. 2(a)), whereas the dominant peak for air-

craft H-2 is at 24 Hz (fig. 2(b)). Thus, for equal rms acceleration levels the sub-

jects in aircraft H-1 would perceive and evaluate an environment having a predomi-

nantly lower frequency content. Since human comfort response is most sensitive to

lower vibration frequencies, it would be expected that aircraft H-1 would be evalu-

ated as most uncomfortable. This is a very important point since it illustrates

quite well that comparative ride quality evaluations cannot be made simply on the
basis of an overall measure such as rms acceleration.

Noise rating with low vibration.- The comfort responses to the simulated heli-

copter noise are shown in figures 7(a) and 7(b) as a function of A-weighted noise

level LA for low values of cabin floor vibration. These data indicate that the

spread in comfort ratings due to helicopter type is much less for a given value of
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LA than that obtained for vibration only (fig. 6). This implies that the character

of the interior noise, at least as perceived by the subjects, varied only slightly

from helicopter to helicopter. Further, if the curves of figures 7(a) and 7(b) are

overlaid (not shown), it can be seen that the comfort responses for the cruise and

hover conditions are similar. Exceptions are aircraft H-I and H-3 at values of L A

less than approximately 75 dB.

If 50 percent uncomfortable is considered as discomfort threshold, the data of

figure 7 imply that discomfort threshold ranges from approximately LA = 67 to 77 dB

for cruise and L A = 74 to 78 dB for hover. These values are similar to annoyance-

threshold results obtained in earlier studies (e.g., ref. 15) of human response to

simulated aircraft interior noise due to boundary layer and propeller tones. It

should be noted that the discomfort threshold levels shown in figures 7(a) and 7(b)

reflect the effects of tonal components within the measured environments. Refer-

ence 15 indicated that annoyance penalties as large as 6 dB can result from the

presence of tones within an interior noise environment. Thus, the relatively low

values of LA corresponding to discomfort threshold are probably due in large part

to the high tonal content of helicopter interior noise. It is also possible that

discomfort threshold may not be synonymous with annoyance threshold or that the

pilots are far more critical of the noise environment than were the subjects used in

reference 15. In assessing these results, the reader should keep in mind that the

levels shown in figure 7 approximate those that would be heard with SPH-4 helmets

on. The actual interior noise levels would be much higher.

Rating of combined noise and vibration.- The simulated helicopter environments

of most interest are those containing both interior noise and vibration. The mean

subjective discomfort responses to vibration combined with the high and moderate

noise levels are presented in figure 8 for each aircraft. Also shown for comparison

are the responses for the ambient noise condition. The solid lines represent the

best-fit linear regression lines for each noise condition. The scatter about each

regression line due to helicopter type is indicative of the effect of the frequency

content associated with the noise and vibration spectra of each aircraft. Inspection

of the data in figure 8 indicates several important features relevant to helicopter

ride quality. For example, at high levels of vertical vibration (e.g., greater than

0.10grm s) the presence of high noise levels increased the discomfort ratings only

slightly relative to the ambient noise condition. At lower values of vertical accel-

eration, however, the addition of the same high noise levels resulted in substantial

increases in discomfort. Furthermore, for high interior noise levels the discomfort

was relatively unaffected by the level of vibration present. These results clearly

indicate the presence of interactive effects between the noise and vibration com-

ponents of the environment. Specifically, the contribution to total discomfort

response of one of the parameters (say noise) depends upon the level present within

the environments of the other parameter (say vibration). Thus, in the assessment of

helicopter passenger ride quality and in ride quality trade-off analyses, it will be

important to understand and account for these interactive effects. In particular, it

appears that reduction of one parameter only may not be sufficient to significantly

improve ride quality. Instead a reduction in both parameters may generally be

required. This result illustrates the need for a means of accurately and reliably

estimating ride comfort in the combined environment.

Evaluation of Ride Quality Metrics

Unweighted and weighted acceleration.- The most fundamental metric that might

be expected to correlate with subjective discomfort response is the unweighted rms
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acceleration level. The actual correlation of the obtained ratings with this metric

is illustrated in figure 9(a), where the data are widely scattered, with a low posi-

tive linear correlation (r = 0.551) between the two parameters. Thus, it would be

difficult to predict discomfort based upon unweighted rms vertical acceleration only.

In an attempt to improve the correlation, human sensitivity frequency weighting was

applied to each vibration spectrum and a weighted rms acceleration level was deter-

mined for each ride segment. The frequency weighting function (shown in fig. CI)

approximates the inverse shape of the NASA discomfort threshold curve given in refer-

ence 10 and is similar to frequency weighting derived from the ISO criteria for

vertical vibration (ref. 16). These weightings are intended to heavily weight the

frequencies that most influence ride comfort and to minimize those that are less

important. The scatter diagram for the weighted rms acceleration level is shown in

figure 9(b). Application of the weighting function did not improve the linear corre-

lation (r = 0.535) for this case. No significant improvement in correlation was

obtained by attempting higher order curve fitting. This lack of improvement may be

due to the fact that the dominant vibration frequencies were above 10 Hz and, there-

fore, not appreciably affected by the relative weighting. Both of the above results,

however, imply that passenger ride quality in the combined environment was not accu-

rately predicted by simple, physically derived, vibration metrics alone.

A-weighted noise level.- The relationship between A-weighted noise level and

subjective discomfort is illustrated in figure 9(c). This figure does not contain

the data of figure 5 corresponding to levels of LA less than 60 dB. The correla-

tion with LA was somewhat higher (r = 0.650, second-order polynomial fit), although

considerable scatter still remained. The higher correlation indicates that the use

of the simple noise metric LA provided a slight improvement in predictive ability.

It is of interest to compare figures 9(a) and 9(c) with figures 6 and 7, respec-

tively. Recall that figure 6 presented the mean discomfort responses as a function

of rms vertical acceleration for the ambient noise condition and figure 7 showed

discomfort as a function of noise level in the absence of vibration. In both cases

the scatter of the data was greatly reduced, indicating that the correlation of the

individual physical parameters with discomfort was higher. (Correlation coefficients

were not obtained for these cases.) This implies that the use of the simple physical

vibration or noise metrics may be adequate when only a single parameter is present.

However, when both physical parameters are present, it will be necessary to resort to

use of a metric that incorporates both parameters. Such a metric is the NASA discom-

fort index, whose application to the present data is discussed in the following
section.

NASA discomfort index.- The inability of metrics based upon a single vibration

or noise parameter to accurately predict subjective response to the combined noise

and vibration environments led to the application of the NASA ride comfort model to

the present data. The NASA model has been implemented on the Langley computer system

and requires as input the recorded noise and vibration environments. Details of the

model computational process and the procedure used to generate predicted discomfort

levels are given in appendix C. Results of applying the model are presented in

table X, which shows the predicted discomfort values, and in figure 9(d), which

shows the relationship between the obtained pilots' discomfort ratings and the NASA

discomfort (DISC) index. The DISC index is the basic output parameter of the NASA

model and has units of subjective discomfort. For example, a DISC value of I repre-

sents the amount of discomfort associated with discomfort threshold. As seen in

figure 9(d), the use of the NASA discomfort index greatly reduced the scatter and

correlated much higher with the subjective ratings (r = 0.914, second-order fit).



The higher correlation is a result of the capability of the NASA model to account for

the interactive effects of noise and vibration. This capability is discussed in
detail in the next section.

Detailed Comparison of Ratings With NASA Model Predictions

Comparison of NASA ride comfort model predictions to the subjective ratings

obtained in the present study could be done on an approximate basis only because of

scale differences between the 9-point scale used in the present study and the ratio

scale upon which the NASA discomfort index is based. The 9-point scale is subject to

a "ceiling" effect, whereas the ratio scale is unbounded. Thus, in order to make

reasonable comparisons, it was necessary to adjust the predicted responses to correct

for scale differences. The procedure used is described in appendix C. The adjust-

ment was valid over a range of predic£ed discomfort values up to about 4.0 DISC; that

is, predicted DISC indices in excess of 4.0 could not be reliably expressed in equiv-

alent 8-point scale values. This means that, in many cases, comparisons could not be

made at the highest noise and/or vibration levels. For aircraft H-2, no meaningful
comparisons could be made.

Comparisons of predicted DISC indices versus obtained subjective discomfort

ratings (for the range over which such comparisons were considered valid) are illus-

trated in figures 10(a) to 10(d). These figures show the obtained and predicted

discomfort as a function of LA for low, moderate, and (where applicable) high
vibration at the simulated cruise condition. Similar results were obtained for the

hover condition. Figures 10(a) to 10(d) indicate that the NASA discomfort index

performed well and predicted with good accuracy the discomfort due to the various

combinations of interior noise and vibration. Such a capability has heretofore

been unavailable. Its potential for assessing ride comfort and determining rela-

tive trade-offs between noise and vibration is readily apparent. For example, the

relative contribution of noise and vibration to total predicted discomfort is

illustrated in detail in figure 11 for the cruise condition of aircraft H-4. The

discomfort ratings obtained from the subjects are indicated by the open bars. The

predicted vibration discomfort component is indicated by the shaded bars, and the

predicted noise component is indicated by the hatched bars. The total predicted

discomfort is the sum of shaded and hatched bars. Values are presented for high and

low interior noise levels, each of which is combined with high, moderate, and low

vibration levels. The interplay of noise and vibration and their subsequent rela-

tive influence upon total discomfort is well illustrated in figure 11. At the high

noise level the reduction of vibration from high to low levels resulted in little

change in predicted total discomfort. This is consistent with the obtained ratings.

Intuitively, total discomfort would be expected to decrease when vibration level

decreased. The reason it did not is explained by examining the model estimates of

the individual noise and vibration contributions to total discomfort. For high

noise and high vibration the dominant contributor to the total predicted discomfort

response was vibration. As vibration level decreased, the vibration discomfort com-

ponent decreased, but the noise discomfort component increased and became the domi-

nant factor. The result was little change in total discomfort. The reason for this

was explained in reference 6 as being the ability of high levels of vibration to

divert (or mask) attention from the noise. As vibration decreased, the subjects

placed more emphasis upon the noise, as reflected by increased discomfort response to

the noise. These predicted results again indicate that little benefit would be

gained by reducing vibration in the presence of high interior noise levels. However,

when the interior noise level is low (right half of fig. 11), reduction of vibration

affords significant improvement in total subjective discomfort. The same relative
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interactive effects between noise and vibration that were present for high noise are

also present here. The difference is that low noise contributes to total discomfort

to a much lesser degree.

The data obtained in this study could also be used to derive approximate con-

stant comfort criteria for the simulated helicopter environments. This was accom-

plished by applying a contour-generating computer program to the data of tables III,

V, and X. This program, using best-fit least-squares methods, determined values of

A-weighted noise level and rms floor acceleration that produce constant values of

discomfort. The results are presented in figure 12, which gives the values of LA

and rms vertical acceleration that produce constant values of percent uncomfortable.

The usefulness of these curves lies in the fact that they provide a possible format

for future helicopter ride comfort criteria that incorporate the effects of both

noise and vibration. It should be emphasized that the criteria curves of figure 12

are very tentative, since they were derived from ratings of simulated helicopter

environments by a single group of helicopter pilots. More extensive data obtained

during actual flights and from additional simulator testing would be required in

order to derive improved criteria curves. A set of such curves, combined with the

analysis/assessment capabilities of the NASA ride comfort model would provide a

powerful new approach to the evaluation and specification of helicopter ride quality.

CONCLUSIONS

Results have been presented of a research investigation to quantify discomfort

responses of helicopter pilots to helicopter interior noise and vibration typical of

routine flights, to assess various ride quality metrics including the NASA ride com-

fort model, and to examine possible criteria approaches. The more important conclu-

sions and implications are summarized as follows.

I. The subjective discomfort responses to vibration of the helicopter pilots

were approximately the same as the discomfort responses obtained in earlier ride

quality studies in which subjects were obtained from the general public. This indi-

cated that training and flying experience with the various aircraft did not affect

their comfort expectations, implying that pilot evaluation of ride comfort may be

used as an indicator of passenger acceptance.

2. Overall measures such as unweighted and weighted root-mean-square accelera-

tion level and A-weighted noise level were not good predictors of discomfort. Accu-

rate prediction required a metric incorporating the interactive effects of both

noise and vibration. It was demonstrated that control and/or reduction of either

noise or vibration alone may not be sufficient to significantly improve ride qual-

ity. Instead, a reduction of both parameters may be required. Thus, any ride

quality assessment method must be capable of accounting for the combined effects of

noise and vibration.

3. The best prediction of discomfort response was the NASA discomfort index

obtained by application of the NASA ride comfort model. Because of its ability to

handle both noise and vibration, the NASA model accurately predicted discomfort in

the presence of various combinations of these parameters. This makes it a poten-

tially valuable tool for use in the prediction and assessment of total ride quality,

as well as the relative discomfort trade-offs between noise and vibration components

of a ride environment. A set of approximate and tentative constant comfort contours

were presented as an example of a possible format for specifying allowable levels of

interior noise and vibration. These contours incorporated the interactive effects of

11



noise and vibration and could be used to obtain an immediate indication of whether

individual noise and vibration levels, acting in combination, would meet a specified

acceptance criterion. Such contours, used in conjunction with the NASA ride comfort

model, may provide a powerful design tool for the ride quality engineer.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

February 6, 1984
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APPENDIX A

INSTRUCTIONS EXPLAINING USE OF DISCOMFORT SCALE

Subject Instructions

You have volunteered to participate in a research program to investigate ride

quality within helicopters. Specifically, we wish to identify the helicopter envi-

ronments which most influence a person's sense of comfort or discomfort. To assess

the influence of these environments, we have built a simulator which can expose pas-

sengers to realistic sounds and vibrations. The simulator essentially provides no

risk to passengers, since it has been designed to meet stringent safety requirements

such that it cannot expose subjects to noises or vibrations which are known to cause

injury. It contains many built-in safety features which automatically shut the sys-

tem down if it does not perform properly.

The environments that you will experience today are representative of those you

may have encountered in helicopters. You will enter the simulator, take a seat,

fasten the seatbelt, and assume a comfortable position with both feet on the floor.

Selected helicopter environments will then be applied to the cabin. You are to make

yourself as comfortable and relaxed as possible while the test is being conducted.

During the tests, you will at all times be in two-way communication with the test
conductor.

You have the option at any time and for any reason to terminate the tests in any

of three ways: (1) by pressing overhead button labeled "STOP," (2) by voice communi-

cation with the test conductor, or (3) by pressing downward on the toggle switch

located at the front of each right-hand armrest. Because of individual differences

in people, there is always the possibility that someone may find the sounds or envi-

ronments objectionable and may not wish to continue. If this should happen to you,

please do not hesitate to stop the tests by one of the above methods.

Test Instructions

The task you will be required to perform today is to evaluate the discomfort

associated with various helicopter ride segments. Each ride segment, to be evaluated

by yourself, will be presented to you for a total of 15 seconds. There will be sev-

eral seconds between successive ride segments to allow you to mark your evaluations.

Evaluations.- There are three requirements you should use in your evaluations.

First, your evaluations should be based upon the environment experienced during the

ride segment that you are rating. Second, please rate each ride segment in terms of

the level of comfort or discomfort experienced during the ride segment, not on

whether you notice differences of vibration and noise. This requirement is important

because we are interested in differences of comfort, not merely in your ability to

detect differences of vibrations and noises. Third, please base your evaluations

upon how you would feel as a passenger or crew member, not upon your ability to per-

form flight tasks. You will be asked to make two evaluations of the comfort associ-

ated with each ride segment. First, please indicate your overall opinion of whether

the ride segment is uncomfortable by marking the appropriate space on the evaluation

sheet. If the ride is uncomfortable, mark "YES" and if not uncomfortable mark "NO."

Secondly, you should record your evaluation of the discomfort associated with each

ride segment by placing a checkmark (_) upon the scale. For example, a ride segment

13



APPENDIX A

causing little discomfort should be scored toward the "0 - zero discomfort" end of

the scale. Similarly, if you judge a ride segment to cause a large amount of discom-
fort, you would place your checkmark toward the "8 - maximum discomfort" end of the
scale.

There are no right or wrong answers. Your ratings should reflect only your own
opinion of the ride segment.

Are there any questions?

14



APPENDIX B

SAMPLE RATING SHEET

Number Date a.m. p.m.

Rating Age____Weight Sex

Ride Uncomfortable Zero Maximum
Number No Yes Discomfort Discomfort

0 I 2 3 4 5 6 7 8

21 I I I I I I I I l

22 I I W I I t I I 1

23 I I I I I I I I I

24 I I I I I I I I I

2s l I I I I I I I I

26 I I I I I I I I I

27 I I I 1 I I I I I

28 I I I I I I I I I

29 I I I I I I I I I

30 I I I I I I I I I

31 I I I I I I I I

32 I I I I I I I I

33 I I I I I I I

34 I I I I I I I

35 I I I I I I I

36 I I I I I I I

37 I I I I I I I

38 I I I I I I I

39 I I I I I I I

40 I I I I I I I
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APPENDIX C

COMPUTATION OF PREDICTED DISCOMFORT

Description of NASA Model

A series of experimental studies using approximately 3000 test subjects has led

to the development of a general, comprehensive model for estimating passenger ride

discomfort/acceptance in the presence of complex interior noise and vibration envi-

ronments. This model (see ref. 6) accounts for the effects upon subjective comfort

of multiple frequency and multiple axis vibrations combined with interior noise. In

the present paper, however, only vertical axis vibration and interior noise were of

interest. The procedure used to compute estimated discomfort is a simplification of

the approach given in reference 6. Whereas reference 6 required detailed evaluation

of the spectral content (i.e., detailed identification of dominant spectral peaks and

associated levels), the approach used in the present study utilized frequency weight-

ing of the vibration spectra in accordance with human vibration frequency sensitivity

characteristics. The frequency weighting curve for the vertical axis of vibration is

shown in figure CI. This curve was derived from the equal discomfort contour corre-

sponding to discomfort threshold for narrowband (2 Hz bandwidth) random vibration.

The basic outputs of the NASA model are a set of discomfort indices that repre-

sent total absolute discomfort (or acceptance) of a given environment as well as

indices reflecting the relative contributions of noise and vibration to total discom-

fort. It is important to note that the NASA discomfort indices (called DISC's) are

measured in terms of subjective discomfort units. This characteristic allows summa-

tion of discomfort due to different modalities such as noise and vibration. The

NASA discomfort indices are measured along a ratio scale of discomfort (DISC scale)

such that the numerical values of the indices bear a direct ratio relationship to

one another. For example, a discomfort value, say DISC = 2, corresponds to twice

the discomfort associated with DISC = 1. Similarly, a value of DISC = 0.5 repre-

sents one-half the discomfort corresponding to DISC = 1.0. For the NASA laboratory

studies a value of DISC = 1.0 was selected to represent discomfort threshold, i.e.,

the discomfort level which 50 percent of the subject population rated as being
uncomfortable.

Correction for Scale Differences

In the present investigation the subjects evaluated helicopter ride comfort

using a numerical category scale. (See appendixes A and B.) Thus, in comparing

results obtained from the category scale with estimated discomfort predicted by the

NASA model, it was necessary to adjust for scale differences. These differences are

due to the fact that the category scale values are limited by the selected range of

the scale (0 to 8 in this case) and by the tendency of subjects to fill the midpor-

tion of the scale. The NASA discomfort scale, however, is unbounded. Thus, at the

higher scale values the model predictions become increasingly disparate from category

scale ratings.

These scale differences were accounted for in the present study by determining

the relationship between the mean subjective ratings obtained from the pilots and the
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predicted discomfort levels obtained from the NASA model. This relationship is shown

in figure C2, which contains the mean subjective ratings and discomfort predictions

for each condition of table II. The curve shown in the figure is a second-order

polynomial fit to the data which shows a "ceiling" effect when the obtained ratings

are plotted against predicted discomfort values. Thus, in order to compare model

predictions with obtained discomfort ratings, it is necessary to correct for these

scale differences. This was done by applying the following equation, which is the

polynomial curve shown in figure C2:

Dad j = -0.882 + 2.1017Dpred - 0.1749D_red (Cl)

where

Dad j predicted discomfort adjusted for scale differences

Dpred discomfort predicted by NASA ride comfort model (uncorrected for scale
differences)

Procedure

The actual procedure used to compute adjusted discomfort estimates for each ride

segment using the NASA model approach is summarized in the following steps:

(I) Compute the power spectral density (psd) of vertical simulator vibration and

determine the A-weighted cabin noise levels within the 63, 125, 250, 500, 1000, and

2000 Hz octave bands, for each ride segment.

(2) Apply the weighting function of figure CI to each vibration psd. Note:

This involves squaring each value of figure C1.

(3) Integrate the result to obtain a weighted rms vertical acceleration (gwtd)
level for each ride segment.

(4) Compute the vertical vibration discomfort component Dvi b for each ride
segment by using the following equations:

Dvib = 68"772gwtd (gwtd < 0.01) (C2a)

Dvi b = 0.241 + 44.672gwt d (gwtd) 0.01) (C2b)

(5) Compute discomfort due to noise within each of the octave bands of step (1)
by using the following equation:

DN(i,L A) = (al + biDvib)(WF')1 (C3)
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where

DN(i,L A) noise discomfort due to ith octave band having A-weighted noise level LA

a.,b. empirically determined constants listed in table CI
1 1

WF. weighting factor that corrects for effect of ith noise octave band (see1
table CII)

For values of L A < 65, set DN(i,L A) = 0; for values of LA > 100, use LA = 100 in

the computation of DN(i,LA). Also, if DN(i,L A) < 0, set DN(i,L A) = 0.

(6) Compute total noise discomfort contribution using

= + 0.3[[ DN(i,L A) - DN(i,LA)max] (C4)DN,to t DN(i'LA)ma x

where DN,to t is the total noise discomfort resulting from noise in one or more of
the six octave bands.

(7) Compare total predicted discomfort using

Dpred = Dvi b + DN,to t

(8) Adjust predicted discomfort Dad _ for scale differences using equa-
tion (CI). The results of step (8) are r_ne estimated discomfort indices used in

figure 9(d).
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TABLE CI.- VALUES OF SLOPE AND INTERCEPT FOR EQUATION (C3)

Noise Intercept, Slope, Noise Intercept, Slope,

level, ai bi level, ai bi
LA LA

65 0.3447 -0.1219 83 2.2294 -0.5118

66 .4172 -.1445 84 2.3718 -.5329

67 .4935 -.1669 85 2.5164 -.5533

68 .5736 -.1893 86 2.6649 -.5738

69 .6575 -.2116 87 2.8172 -.5942

70 .7452 -.2337 88 2.9732 -.6145

71 .8368 -.2558 89 3.1330 -.6346

72 .9320 -.2777 90 3.2968 -.6547

73 1.0312 -.2995 91 3.4642 -.6746

74 1.1340 -.3212 92 3.6354 -.6944

75 1.2408 -.3429 93 3.8104 -.7142

76 1.3512 -.3644 94 3.989.3 -.7338

77 1.4654 -.3858 95 4.1720 -.7533

78 1.5835 -.4071 96 4.3574 -.7724

79 1.7055 -.4284 97 4.5486 -.7921

80 1.8311 -.4494 98 4.7426 -.8113

81 1.9605 -.4704 99 4.9404 -.8304

82 2.0938 -.4913 100 5.1421 -.8494

TABLE CII.- OCTAVE BAND WEIGHTING FACTORS

Octave center Weighting

frequency, Hz factor

63 1.470

125 .963

250 .786

500 .646

1000 .688

2000 1.448
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TABLE I.- ATTENUATION CHARACTERISTICS OF SPH-4 HELMET

Frequency, Hz Attenuation, dB

75 17

125 16

250 14

500 25

1000 24

2000 30

3000 40

4000 43

6000 44

8000 36

TABLE II.- EXPERIMENTAL DESIGN

Vibration Noise I Ilevel level H-I H-2 H-3 H-4 H-5 H-I H-2 H-3 H-4 H-5

(b) Cruise Hover(a)

Hi gh I
2

3

4

Moderate I

2

3

4

Low I

2

3

4

aHigh: full; moderate: -3 dB; low: -9 dB.

bl: full; 2: -7 dB; 3: -14 dB; 4: ambient; includes attenuation of SPH-4
helmet characteristics.
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TABLE III.- ROOT-MEAN-SQUARE ACCELERATION LEVELS FOR EACH STIMULUS CONDITION

[Averaged over all runs a]

rms acceleration levels of aircraft -

Vibration Noise I I I I I
level level H-I H-2 H-3 H-4 H-5 H-I H-2 H-3 H-4 H-5

Cruise Hover

High I 0.115 0.142 0.115 0.096 0.089 0.060 0.086 0.050 0.061 0.031

2 .117 .124 .094 .096 .089 .061 .092 .049 .061 .031

3 .121 .124i .114 .095 .089 .061 .091 .050 .062 .031

4 .117 .084 .111 .096 .088 .061 .085 .046 .061 .031

Moderate I 0.064 0.069 0.061 0.050 !0.050 0.034 0.024 0.027 0.033 0.018

2 .066 .073 .063 .052 .049 .033 .043 .029 .034 .018

3 .066 .076 .061 .051 .050 .033 .045 .028 .034 .029

4 .065 .074 .064 .052 .051 .033 .046 .027 .033 .018

Low 1 0.023 0.023 0.024 0.018 0.020 0.014 0.016!0.013 0.012 0.007

2 .028 .024 .026 .019 .019 .012 .016 .010 .013 .007

3 .024 .024 .023 .019 .019 .013 .017 .010 .012 .007

4 .025 .025 .024 .020 .019 .025 .015 .011 .012 .007

astandard deviations for vertical acceleration are typically 12.4 percent
of the mean values.
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TABLE IV.- OVERALL SOUND PRESSURE LEVELS FOR EACH STIMULUS CONDITION

[Averaged over all runs a]

OASPL of aircraft -

Vibration Noise H-I H-2 H-3 H-4 H-5 H-1 H-2 H-3 I H-4 I H-5
level level I t

Cruise Hover

High 1 97 98 99 97 95 96 96 97 94 95
2 93 94 97 93 91 91 93 93 89 89

3 91 93 97 89 87 89 92 91 88 85

4 90 91 96 90 86 87 90 92 85 83

Moderate I 96 97 97 97 95 96 96 97 94 95

2 91 93 94 91 89 90 90 92 89 89

3 88 90 92 88 86 86 88 90 85 85

4 86 89 93 85 83 84 88 86 83 81

Low I 95 97 96 96 95 96 95 96 94 95

2 90 91 92 90 89 90 90 90 88 90

3 85 87 86 86 84 84 86 86 85 84

4 83 85 85 85 80 81 82 82 82 78

astandard deviations within ±2 dB.
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TABLE V.- A-WEIGHTED SOUND PRESSURE LEVELS FOR EACH STIMULUS CONDITION

[Averaged over all runs a]

LA of aircraft -

Vibration Noise H-I H-2 I H-3 H-4 H-5 H-1 H-2 H-3 H-4 H-5
level level I

Cruise Hover

High I 87 91 91 89 88 88 90 90 87 89

2 81 86 85 83 83 81 85 84 80 83

3 75 80 79 76 75 74 78 77 73 76

4 <60 66 67 62 <60 <60 64 <60 61 <60

Moderate I 87 91 91 89 89 87 90 90 87 88

2 81 85 85 83 82 81 83 84 80 83

3 74 79 78 76 76 74 77 77 73 76

4 <60 65 <60 <60 60 <60 <60 <60 <60 <60

Low I 87 92 91 89 88 87 90 90 86 89

2 81 85 85 82 83 81 84 84 80 83

3 74 78 79 76 75 74 78 77 73 76

4 60 <60 <60 <60 <60 <60 <60 <60 <60 <60

astandard deviations within ±2 dB.

TABLE VI.- ACCELERATION LEVELS OF CALIBRATION RIDES

[Sinusoidal vibration applied at 9 Hz]

Acceleration

Ride level, gp

I 0.109

2 .222

3 .200

4 .086

5 .245

6 .131

7 .063

8 .154

9 .177

10 .040
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TABLE VII.- MEAN RATINGS OF ARMY AND NAVY PILOTS

[Averaged over all subjects]

Mean ratings for aircraft -

Vibrati°n NoiseH-llevel level H-2 H-3 H-4 I H-5 H-1 H-2 H-3 I H-4 I H-5

Cruise Hover

High 1 4.70 6.03 5.72 5.72 6.28 5.48 5.62 5.25 4.00 4.76
2 5.31 5.80 4.22 4.68 4.73 3.94 3.93 3.75 4.06 3.74

3 5.09 5.30 4.28 4.88 3.75 3.09 3.40 3.07 2.92 2.89

4 5.07 3.20 4.63 3.65 4.52 3.32 3.16 2.48 3.12 2.16

Moderate 1 5.79 6.04 5.44 4.94 5.44 3.93 5.17 4.82 3.64 5.30

2 3.55 3.92 3.44 3.82 4.40 3.23 3.74 4.00 2.72 2.99

3 3.52 2.80 3.36 3.20 2.96 2.18 2.76 I.81 2.12 2.29

4 3.58 2.39 2.54 3.13 2.46 2.12 1.55 1.12 1.47 .87

Low 1 4.67 5.01 5.48 5.07 5.54 3.65 5.28 4.97 3.14 4.64

2 2.51 3.53 3.37 2.58 3.44 2.84 3.82 2.63 2.00 2.93

3 2.32 1.83 1.94 1.62 1.62 1.22 1.55 1.82 1.23 1.65

4 1.10 .45 1.22 .64 .67 .45 .53 .47 .35 .56

TABLE VIII.- STANDARD DEVIATIONS OF SUBJECTIVE DISCOMFORT RATINGS

Standard deviation for aircraft -

Vibrati°n N°ise H-1 H-2 H-3 H-4 H-5 H-11 H-2 I H-3 I H-4 I H-5
level level

Cruise Hover

High 1 1.78 1.31 1.94 1 .77 1.46 1 .40 1.23 1.45 I .72 1.60
2 1.39 I.30 I.75 I.49 1.38 1.40 I .70 I .56 I .40 1.32

3 1.59 1.55 1.43 1.59 1.71 1.40 1.44 1.46 1.26 1.50

4 1.76 1.52 1.65 1.42 1.47 1.66 1.52 1.49 1.62 1.16

Moderate I I. 49 I. 24 I. 38 I.62 I.82 I.52 I.46 2.06 I. 77 I .58

2 1.37 1.71 1.51 1.27 1.32 1.68 1.18 1.76 1.65 1.91

3 1.43 1.13 1.37 1.63 1.46 1.20 1.52 .96 1.52 1.52

4 1.81 1.39 1.35 1.30 1.42 1.74 1.08 1.02 1.34 1.12

Low I 1.73 1.83 1.99 1.90 1.78 1.63 1.97 2.00 1.87 1.96

2 1.22 I.93 1.74 1.77 I .64 1.70 I .84 1.63 I .40 I.57

3 1.49 1.51 1 .23 I.18 I .19 I .09 1.25 1.88 I .16 1 .35

4 1.20 .66 1.33 .76 .79 .57 .84 .73 .54 1.34
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TABLE IX.- PERCENT OF PILOTS RATING EACH HELICOPTER RIDE SEGMENT

AS UNCOMFORTABLE

Percent uncomfortable for aircraft -

Vibrati°n]N°ise H-I H-2 H-3 H-4 H-5 IH-I I H-2 IH-3 IH-4 IH-5
level level

Cruise Hover

High I 91.4 97.1 97.1 97.1 100.0'97.1 100.0 97.1 88.6 97.1

2 91.4 97.1 82.8 82.8 91.4 91,4 82.8 88.6 82.8 91.4

3 97.1 91.4 82.8i97.1 91.4 71.4 80.0 77.1 80.0 51.4

4 91.4 82.1 97.1 82.8 97.1 77.1 80.0 60.0 82.8 62.8

Moderate I 97.1 100.0 97.1 97.1 97.1 91.4 97.1 97.1 82.8 97.1

2 82.8 82.8 80.0 91.4 91.4 68.6 77.1 97.1 62.8 62.8

3 80.0 51.4 88.6 77.1 68.6 48.6 80.0 42.8 57.1 71.4

4 82.8 62.8 68.6 80.0 68.6 60.0 42.8 22.8 37.1 11.4

Low I 91.4 97.1 97.1 91.4 91.4 91.4 97.1 97.1 68.6 97.1

2 68.6 80.0 80.0 68.6 82.8 71.4 88.6 62.8 42.8 82.8

3 51.4 40.0 57.1 37.1 40.0 28.6 22.8 37.1 28.6 51.4

4 20.0 2.8 31.4 15.7 11.4 11.4 8.6 2.8 8.6 11.4

TABLE X.- DISCOMFORT LEVELS PREDICTS3 BY NASA MODEL

[Adjusted for differences between scales]

DISC levels for aircraft -

VibrationNoiSelevel level H-1 I H-2 I H-3 I H-4 H-5 H-I H-2 I H-3 I H-4 H-5

Cruise Hover

High I 4.99 5.38 5.13 4.90 4.80 4.63 5.36 4.57 4.39 4.68

2 4.74 5.22 4.55 4.56 4.48 3.90 5.04 3.57 3.66 3.72

3 4.70 4.16 4.13 4.00 4.03 3.22 3.80 2.70 3.32 2.59

4 4.56 2.61 3.44 4.02 3.68 2.75 2.42 2.14 2.76 2.03

Moderate I 4.61 5.43 5.02 4.64 4.76 4.57 5.42 4.62 4.35 4.51

2 4.41 5.21 4.25 3.86 3.85 3.54 4.95 3.35 3.29 3.72

3 3.38 3.87 3.03 2.96 3.17 2.27 3.23 2.41 2.33 2.14

4 3.17 2.26 2.48 2.41 2.39 1.70 1.52 1.22 1.91 1.45

Low 1 4.36 5.34 5.03 4.48 4.53 4.41 5.43 4.52 4.06 4.70

2 3.60 5.29 4.00 3.57 3.40 3.00 4.82 2.77 2.42 3.48

3 2.08 2.61 3.14 1.77 2.09 1.26 3.05 1.75 1.24 1.64

4 1.37 .45 .99 1.04 1.13 .45 .03 .43 .03 .43
i
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Figure 1 .- Exter ior  view of passenger r i d e  q u a l i t y  apparatus a t  the Langley Research Center. 
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Figure 6.- Mean discomfort rating as function of rms vertical acceleration
for cruise and hover conditions (ambient noise only).

38



6 _ OH-1

H-3 Percent

_ /_ H-4 uncomfortable

- 90

4- 7/"

Mean 75
discomfort -

rating

2 -
5O

0 I i I i I l I I
55 65 75 85 95

LA, dB

(a) Cruise.

O H-I

6 [] H-2
_) H-3 Percent
/_3 H-4 uncomfortable

i_] H-5 90

4 -

Mean _ 75

discomfort

rating

2 -
5O

0 I I t I I I i l
55 65 75 85 95

LA, dB

(b) Hover.

Figure 7.- Mean discomfort rating as function of A-weighted
noise level for low vibration.

39



o

8

_]
High noise _ C) E]

Mean --'-'---'Z_'[]
discomfort C)

rating

4 Moderate noise

A • _
2 Ambient noise

I I I I I I I I P I I I I J
0 .02 .04 .06 .08 .10 .12 .14

rms vertical acceleration, g units

Figure 8.- Mean discomfort response to high, moderate, and ambient noise in presence of vibration.



i[ oo o oo
0 0 O00 O0 O

goO ° o o8°
_/o o oo _o 89oo

discomfort (_c_C_ 00 discomfort 00

o o _%_°rating 3 C_O C_) 000_ rating 3 _Oc-_O_

_o
I I I I I , I I I I I

0 .02 .04 .06 .0_ .10 0 .(J2 .04 .06 .O_ .10

rmsacceleration,g units rmsacceleration,g units

(a) Unweighted acceleration; r = 0.551. (b) Weighted acceleration; r = 0.535.

I 7

56 O0 (3DO 0(0_00 0 56 . 0 _ OOOOO OOc_O

o %°Mo _o d_ o o4 Mean 4 O._C_

Mean O _Q_0 _ discomfort _ _- O_%

discomfort 8
rating 3 000 k_.__r.v._ O rating 3

o o c_° "-'--_o 9o
2 _ 2
1 0 0 O0 1

8g
0 I I I1_ I I I I I

60 6J5 ?0 '- _'0 8L5 ?0 95 0 i 2 3 4 5 6 ?

Noiselevel,LA,dB Predicteddiscomfort

(c) A-weighted noise; r = 0.650. (d) NASA discomfort index; r = 0.914.

Figure 9.- Correlation of obtained discomfort ratings with various ride quality
metrics.

41



0 pilot rating I Hie]h vibration
6 _t NASA rno_ell

f O P lot rating I

6 • t@,Skm_el I twt_eratevibration
0 Pilot rating I Low vibraton

O Plot rating 1 _'_oderatevibration 5 • NASA model_
• NASA model) "/@

5 0 PilOtratingI LoW vibration _ ..__"-_

• NASA model) ._ "/ i 4

ll- I I I
3 I _ _ iF-"- ...." ,"

I 8D gO?0

_°
t) 60 l0 80 90 Noiselevel,LA,dB

Noiselevel,LA,_iB

(b) Aircraft H-3.

(a) Aircraft }I-I.

0 pilotratincJ}Highvibration

b_I NASA=_ol ^/q/*

_ilo__in__Mooeratevibr,_io_ ,P,_
• NASA modelt

6 F 0 Pilot ,ating _ tttoderatevibr,tion 0 P]!%trati<_gel_ I.ow vibration

/ A "" > L" /

5 _" 0 Pilot _ati_g _ Low vlbralJon i _" "" "'",-..,,.,,,. _..t," _/ / .c//// • NASA modelt /Zl"
,,f/ _ /

._ 4 J _,_
_ ._ _ -/: : .,',,

i/ "------- ,;'-" °' t,
IV'"

-- 70 80 90 60 70 80 00
Noiselevel,tA,dB

0 6D Noiselevel,LA,dB

(d) Aircraft H-5.

(c) Aircraft H-4.

Figure 10 - Comparison of obtained discomfort ratings with predicted NASA discomfort• indices for cruise condition•

42



m

_'_ Pilot rating

I-- Noise _- Noise discomfort
5

_ Vibration discomfort

,--= Noise I4 -- -- //
//
//

//

Di scomfort / /

I
3 _ //

//
//

#_! / / ,.._

_ / / _._,_

High Moderate Low High V,oderate Low

Vibration level

Figure 11.- Relative contribution of noise and vibration to total predicted discomfort for aircraft H-4 in
cruise condition.



oo[-
_- _ Percent

85 .-__ncomfortabl e

.--<.
80

Noise level,

LA, dB 80

75 70

6o \

70

65

60
0 .02 .04 .06 .08 .10 .12

tins.vertical acceleration, g units

Figure I2.- Values of A-weighted noise level and rms vertical acceleration that
produce constant values of discomfort.

44





1. Re_rt No. 2. Government Accession No. 3. Recipient's'_talog No.

NASA TP-2261 AVSCOM TR 84-D-2

4. Title and Subtitle 5. Re_ Date

EVALUATION OF RIDE QUALITY PREDICTION METHODS FOR March 1984

HELICOPTER INTERIOR NOISE AND VIBRATION ENVIRONMENTS 6. Performing0r_nization_de

532-06-13-02

7. Author(s) 8. PerformingOr_mzation Report No.

Jack D. Leatherwood, Sherman A. Clevenson, L-15661

and Daniel D. Hollenbaugh 10. Work Unit No.

9. PerformingOrganizationNameand Addre_

NASA Langley Research Center

Hampton, VA 23665 11. _ntractor Grant No..

and

Applied Technology Laboratory

USAAVSCOM Research and Technology Laboratories
Fort Eustis, VA 23604

13. Ty_ of Repoff and Period _ver_

12. S_nsoring Agency Nameand Address Technical Paper
National Aeronautics and Space Administration

Washington, DC 20546 14.ArmyPro]ectNo.

and

U.S. Army Aviation Systems Command IL262209AH76

St. Louis, MO 63166

15. Supplementary Notes

Jack D. Leatherwood and Sherman A. Clevenson: Langley Research Center.

Daniel D. Hollenbaugh: Applied Technology Laboratory, USAAVSCOM Research and

Technology Laboratories.

16. Abstract

This paper presents the results of a simulator study conducted to compare and vali-

date various ride quality prediction methods for use in assessing passenger/crew rid_

comfort within helicopters. Included are results quantifying 35 helicopter pilots'

discomfort responses to helicopter interior noise and vibration typical of routine

flights, assessment of various ride quality metrics including the NASA ride comfort

model, and examination of possible criteria approaches. Results of the study

indicated that crew discomfort results from a complex interaction between vibration

and interior noise. Overall measures such as weighted or unweighted root-mean-

square acceleration level and A-weighted noise level were not good predictors of

discomfort. Accurate prediction required a metric incorporating the interactive

effects of both noise and vibration. The best metric for predicting crew comfort to

the combined noise and vibration environment was the NASA discomfort index.

'17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Interior noise Unclassified - Unlimited

Helicopter interior noise

Aircraft interior noise

Vibration

Ride quality

Passenger annoyance

Human response

Subject Category 53

19. Security Classif. (of this reporti 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 45 A03

*For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1984





National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid

Space Administration National Aeronautics andSpace Administration

Washington, D.C. NASA-451
20546

Official Business

Penalty for Private Use, $300

N_A POSTMASTER: If Undeliverable (Section 158Postal Manual) Do Not Return


