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ABSTRACT 

A computer code which solves the Navier-Stokes equations for three-dimensional, 
time-dependent, homogeneous turbulence has been written for the Cyber 205. The 
code has options fo both 64-hit and 32-hit arithmetic. With 32-hit computation, 
mesh sizes up to 64 5 are contained within core of a 2 million 64-hit word memory. 
Computer speed timing runs were made for various vector lengths up to 6144. 
With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe 
Cyber 205. Several problems encountered in the coding are discussed. 

1. INTRODUCTION 

Turbulent fluid motion is common to many branches of engineering and science. 
Since turbulence phenomena are highly nonlinear, they are not amenable to classi- 
cal analytical approaches. Consequently, turbulence predictions are generally 
based on semi-empirical models. Experiments which generate model information 
are expensive, but are needed because current models are not generally accurate 
enough for engineering purposes. Detailed simulations of turbulent flows can help 
complement laboratory data. Direct numerical simulations of turbulent flows are 
more accurate than current semi-empirical computational methods and can be 
used to both generate physical understanding and to improve the models. In these 
simulations, turbulent flows are directly computed from the Navier-Stokes equa- 
tions. Computations of this type are necessarily three-dimensional and time- 
dependent; they require a large number of grid points, and thus, long computation 
time. The Cyber 205 computer appears ideally suited for efficient numerical 
simulations of this type. Exploration of the use of the Cyber 205 for direct 
numerical simulation of turbulence is a principal objective of this work. 

The basic code was written by one of the authors (RSR). It was modified to take 
advantage of the 205 compiler’s automatic vectorizing capability. Vector syntax 
and special functions were applied to the code segments which could not be auto- 
matically vectorized. Finally, machine language instructions were used for the 
parts of the code that existing compiler could not handle. 
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In the next section, a description of the particular problem to be solved is given. 
In Section 3, the numerical methods used are discussed. This is followed by a brief 
description of the Cyber 205 at Colorado State University. The construction of 
long vectors is discussed in Section 5. In Section 6, performance data obtained to 
date are presented, and in Section 7, problems encountered are described. A typi- 
cal simulation of homogeneous isotropic turbulence is presented in Section 8. In 
the final section, a brief statement of conclusions is presented. 

2. PROBLEM STATEMENT 

Homogeneous turbulent flows, of which there is a considerable variety, can be 
simulated numerically at low Reynolds number without using any turbulence 
model. In the flows we will consider, the computational domain contains a fixed 
mass of fluid within a rectangular parallelepiped, the opposing sides of which can 
move inward or outward with time. Thus, the cases which can be computed are 
quite varied: decaying homogeneous isotropic turbulence is generated if all six 
sides are stationary; turbulence undergoing uniform compression (or expansion) if 
all three pairs of sides move inward (outward) at same rate; turbulence undergoing 
one-dimensional compression, if one pair of sides moves inward; or turbulence 
undergoing plane strain if one pair of sides moves inward at the same rate a 
second pair moves outward, while th.e. third pair remains stationary. Isotropic 
turbulence has been computed before, but turbulence undergoing compression or 
expansion has not. The compression cases are of interest, for example, in internal 
combustion engine modeling and in the interaction of turbulence with a shock 
wave. 

It will be assumed that the Mach number is sufficiently small that the fluid is 
compressed uniformly in space, so that the fluid density depends only on time. 

The governing Navier-Stokes equations for a fluid of uniform viscosity and uni- 
form density in space are: 

where ~1. 1 2 P , v , and t are fluctuating velocity components, fluctuating pressure, 
kinematii viscosity and time respectively. The summation convention is implied. 
This set of governing Navier-Stokes equations allow us to simulate homogeneous 
turbulent flows in Lagrangian coordinate system that moves with the mean flow. 
Coordinate transformation tensor Bij is determined by: 

Note that mean strain rate tensor,%, j is zero and Bij=sij for isotropic homo- 
geneous turbulence. 
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Periodic boundary conditions are applied in all three space directions. The 
velocity field is initialized to an isotropic state that satisfies continuity and has a 
given energy spectrum which approximates that of experimental isotropic tur- 
bulence. 

3. NUMERICAL METHOD 

The spectral method is used to compute all spatial derivatives. This method, 
which uses FFT’s, is good for problems with periodic boundary conditions and has 
very high accuracy. To avoid aliasing ,in the nonlinear terms, both the truncation 
and phase shifting techniques are used. 

A second order Runge-Kutta method is used to advance the solution in time. 
Thus, all spatial derivatives need to be computed twice each time step. The time 
step was chosen small enough that no significant error is produced. It was deter- 
mined by increasing the step size until the error was approximately 1 percent over 
the full integration period. 

4. THE CYBER 205 

The Cyber 205 we are using is ty Colorado State machine with 2-pipes and a 2 
million 64-bit word fast memory. QTE Telenet has been used for data transfer 
between Stanford and CSU. We have found that both are reliable, convenient to 
use, and have provided satisfactory service so far. 

Figure 1 shows the performance for add/multiply as function of vector length. 
The asymptotic performance which requires maximum vector lengih (65535) is 100 
Mflops for 64-hit arithmetic and 200 Mflops for 32-hit arithmetic. 

It is obvious that the performance improves with vector length. Vector length 
1000 (64-hit case) or 2000 (32-bit case) is required to reach 90 percent of the 
asymptotic performance. Constructing a code which uses long vectors is there- 
fore important if maximum performance from the machine is to be obtained. 

5. DATA MANAGEMENT 

Based on the “longer vector gives better performance” philosophy, we chose to do 
the Fourier transforms in parallel. This will be explained in detail later. 

In Figure 2, NX, NY, and NZ are the number of mesh points in the x, y, and z 
directions respectively; MY and MZ are called “pencil sizes”. 

On the first sweep, MZ x-y planes of data are Fourier transformed in the y direc- 
tion in parallel. The transform length is NY, but by doing them in parallel, a 
vector length of NX/2*MZ*3 is achieved; the factor 3 is due to the simultaneous 
processing of three velocity components, and the factor l/2 is due to only half of 
the modes are needed in wave space to represent a real function in physical space. 
To accomplish this, it is useful to lump every dependent variable into a single big 
array. The main array in our code is DATA(NX/2,NY,NZ,4,2); the dimensions 
represent x, y, z, a dependent variable index, and real and imaginary parts of a 
complex number. 
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On the second sweep, MY x-z planes are processed. Fourier transforms in z and x 
directions are done on this sweep. The vector lengths are NX/2*MY*3 and 
NZ*MY*3 respectively. 

A Cyber 205 vector is defined as a contiguous set of memory locations. Since the 
two sweeps are in different directions, an array transp:. ;t? has to be done between 
sweeps and within the second sweep in order to keep processed data in a 
contiguous set of memory locations. The transpose is done by using gather 
instructions. The gather instruction puts array elements which are at various 
locations into a contiguous set of memory locations. An index vector is needed to 
pick up desired elements. Q8VGATHR function (64-hit) or Q8VXTOV subroutine 
(32-hit) is used to do the transposing. As the array gets bigger, so does the index 
vector length, and an appreciable amount of overhead working space is needed. In 
the 643 (32x16) run, the index vector has 17,408 elements. 

6. COMPUTER PERFORMANCE 

The performance data obtained to date, based on a hand count of the number of 
operations per time step, are presented in Table 1. The mesh size is given in 
column 2 (each node requires 7 words of data storage). The pencil size is given in 
column 3; this, together with mesh size, determines the vector length shown in 
column 4. The computational precision is given in column 5, the CPU time in 
column 6., and the CPU computation rate in column 7. The I/O time per step in 
seconds is meaningful only for runs with virtual memory paging. Explicit I/O 
would reduce I/O time considerably, but we have not yet attempted to use explicit 
I/O. 

Figure 3 shows computation rate as function of vector length for our code on the 
2-pipe CSU Cyber 205. It approaches an asymptote as vector length increases. 

Comparing Runs 3 and 4, and Runs 5 and 6 in Table 1, it is found that the CPU 
time for a 32-hit (half) precision run is 60 percent of that for the corresponding 
64-hit (full) precision run. We kept track of the timing in the transpose part of 
the code and found an interesting fact. In full precision runs, the transpose takes 
15 percent of the CPU time; 85 percent of the CPU time is spent in floating point 
operations. In half precision runs, due to the lack of a half precision gather 
utility, the transpose takes the same amount of time as in full precision runs, 
while the floating point operations require only half of the full precision CPU 
time. Consequently, for half precision run, the transpose takes 25 percent of the 
total time. 

Detailed timing from Run 8 shows that 51 percent of the CPU time is spent in the 
FFT subroutine, which contains 78 percent of the floating point operations. In 
other words, the FFT operates at 157.6 Mflops. The remaining 22 percent of the 
floating point operations are executed at 95 Mflops due mainly to shorter vector 
lengths and IF statements. 

7. PROBLEMS ENCOUNTERED 

Runs 7 and 8 of Table 1 require 3.5M words storage, and hence, do not fit within 
the 2M core memory at CSU with full precision. Thus, we must use 32-hit com- 
putation for efficient use of the CSU Cyber 205. Half-precision computation is 
sufficiently accurate for this code, and twice the operating speed is achieved. 
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Since there is no compiler avaipble -yet for half precision gather/scatter4 calls, 
we have to use special Q8 calls (machine instructions) to get the half precision 
code to compile properly on the CSU Cyber 205; the special Q8 instructions exe- 
cute at full precision speed. Mr. Herbert Rothmund of CDC Sunnyvale was most 
helpful to us in providing these utilities. 

It is apparent that the I/O rate is not balanced with the CPU time. The reason is 
that the CSU Cyber 205 has only two channels to transfer data between fast 
memory and disk and they are inherently slow. Solid-state backing memory (or 
equivalent) would speed u% the data transfer rate. For our problem, faster I/O 
would allow us to go to 128 mesh size. 

Since December 1982, three different compilers have been used: cycles 201109, 
L575, and 575B. Cycle 20 1109 did not have the half precision feature. Cycle 
L575 had half precision but lacked some automatic vectorization features. Cycle 
575B, the most recent version, does not have gather/scatter in half precision. 
Further improvements are needed if users are to get optimum performance from 
this machine. 

8. SIMULATION OF ISOTROPIC HOMOGENEOUS TURBULENCE 

A typical simulation of homogeneous isotropic turbulent flow is presented in this 
section. Figure 4 shows the time history of the three-dimensional energy spec- 
trum from initial time step to 300 time steps. Figure 5 shows the 3-D spectra of 
the components of the turbulent kinetic energy at time step 300. The flow is 
slightly anisotropic at low wavenumbers. This is due to the small number of 
modes at low wavenumbers. 

All of these resul +s are in excellent agreement with both experiments’ and pre- 
vious simulations. Thus, we are confident that the code is performing satis- 
factorily and we will proceed to the simulation 9f compressed flows. The code 
presently runs at 1.9 second per time step for a 64 mesh on the 2-pipe Cyber 205; 
this compares with 5 seconds for the same type of code on the CRAY-1S in 
VECTO RAL language. 

9. CONCLUSION 

In summary, we have written, debugged, and tested a code for solving the Navier- 
Stokes equations and for computing various turbulence statistical quantities. Mos,J 
of the operations are readily vectorized, and 100 Mflops has been obtained for 64 
mesh size in-core runs on a 2-pipe Cyber 205. The major problems encountered so 
far are concerned with the lack of compiler utilities, such as half-precision com- 
piling capability for transpose operations. 

The program works well and has been validated for homogeneous isotropic tur- 
bulence. The code will next be used to help develop turbulence models for com- 
pressed flow in engines. 
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NOMENCLATUZZE 

Bij 

MY 

MZ 

NX 

NY 

NZ 

P’ 

t 

‘i,j 
U. 1 

X 

Coordinate transformation tensor 

Pencil size in Y-direction 

Pencil size in Z-direction 

Number of mesh points in X-direction 

Number of mesh points in Y-direction 

Number of mesh points in Z-direction 

Pressure fluctuations 

Time 

Mean strain rate tensor 

Velocity fluctuations in i-direction 

Space coordinate 

Y Space coordinate 

6:j 

-P 

Space coordinate 

Kronecker delta 

Kinematic viscosity 
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