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1, Summary

This report summarizes the results of a three year investigation
into the structural dynamics of a cantilever turbomachine blade

mounted on a spinning and precessing rotor.

A cumulated list of publications issued during the coutse of the
research appear as references 1,2,3 and 5 of this final technical
report. In addition to these references which are conference
proceedings and journal publications, reference 17 is an interim
report covering the first eighteen months of research under the
Grant. The present final technical report incorporates that
interim report, with corrections, and augments it with the results

of the final one and ore half year of effort.

Both stability and forced vibration are considered with

a blade model that increases in complexity (and verisimilitude)
from a spring-restrained point mass, to a uniform cantilever,

to a twisted uniform cantilever, to a tapered twisted cantilever
of arbitrary cross-section. 1In every instance the formulation
is from first principles using a finite element based on beam
theory. Both ramp-type and periodic-type precessional angular
displacements are considered. 1In concluding, forced vibrating
and flutter are studied using the final and most sophisticated

structural model.

The analysis of stability is presented in some detail
and a number of numerical examples are worked out. One example is
given approximating a shroud-type restraint at the 3/4 span point.

One other set of calculations demonstrate the role of structural



damping in the phenomenon. The practical occurence of this type

of instability is discussed.

The forced vibration problem is treated, with forcing
present at one and two times the rotational frequency with
amplitude dependent upon the precessional rate. Finally there
are presented some considerations on the effect of subsonic
aerodynamic damping on the dynamics of twisted cantilever blades.
The conclusion is that when flutter occurs it is of the coalescent
type with the two lowest modes coupling to account for the vanishing

of the aerodynamic damping.



2, Introduction to Precession-Induced Instability of Rotor Blades

An operating turbine-type aeroengine may be considered a
gyroscope with the turbomachine rotor blades representing a large
number of radially disposed beams. These blades are subject to a
wide variety of vibratory forcing mechanisms as well as flutter,
or self-excitation. Hence rotor blade vibrations, as well as those
of stator vanes, have received a great deal of analytical and
experimental attention, forming a very large sub-discipline in the
field of aeroelastic and mechanical vibrations. The excitation and
self-excitation studied in this present research program relate to
the fact that the engine spin axis may be forcibly precessed with
angular rates that are developed by the entire vehicle in which the

aeroengine is mounted.

The potential sources of precession of the rotor shaft axis
are several in number. In highly maneuverable aircraft the pilot
may intentionally institute rapid pull-up, nose-over or yawing
motions with angular rates approaching, or even exceeding one radian
per second, With a maneuver lasting only a few seconds the rotor
may turn through hundreds of revolutions providing ample time for
self-excitation to occur or for forced vibrations to build up.

In addition to this ramp-type precession, the rotor may be
subjected to an harmonic precession of the engine axis due to flying
through a turbulent atmosphere. A wing-mounted engine would be
subjected to the same harmonic angular rate as the wing chord in a
flutter situation, assuming the flutter mode had an appreciable
wing torsion component. 1In the latter case, however, the fluttering
system would consist of the wing/pylon/engine and the inertial and
aeroelastic characteristics of the engine and its nacelle would have
to be included in the flutter stability determination.

Another potential source of harmonic precession is the operation
of turbine engined aircraft on rough runways, or the operation of
land vehicles in rough terrain. 1In these cases, as well as in the
turbulent atmosphere, the precession might be expected to have a
certain statistical distribution centered about the natural fregquency
of the entire complex vibrating structure.



Other vehicular applications of gas turbines and the seismic
motion of stationary gas turbine mounts are additional situations in
which gyroscopic influences on blade stability may be important.

For the ultimate treatment of these gyroscopic phenomena in
turboblading the aerodynamic influences should be included in the
anaylsis. However, initial y it is convenient to ignore the aero-
dynamic forces and deal with only elasticity and inertia. If the
assumed operation is far from a flutter condition this assumption
is tantamount to ignoring the acrodynamic damping provided by the
working t.uid (air, or combustion products in a turbine).

The order of investigation is therefore as follows:
i) Develop a finite element for a tapered, twisted beam

ii) Qualify the element by static loadings and rotating natural
frequency determination

iii) Conduct stability analyses and forced vibration analyses
under both precession histories, steady (or ramp variation)
and harmonic

iv) Include the aerodynamic forces in the forced vibration
analysis, and, if possible, in the self-excitation analysis

v) Include the shaft restraint in the analysis (i.e., allow

for a "coning" of the shaft as additional degrees of freedom)

In the present report items i) to iii) are included, representing
the results of the first 18 months of work under the present contract.
(These results have been reported in 3 published papers 1, 2, 3).



3. Blade Idealized as a Cantilever Beam Under Rotor Spin and

Space-Fixed Precession
3.1 1Introduction

This section deals with the study of vibratory behavior of turbo-
machine blades under combired rotor spin and angular precession.
The turbine blade is idealized as a cantilever beam. Pretwist
is not considered. The effects of blade taper, variable precession

rate, damping and Coriolis forces are studied.

The purpose of this study is to gain insight into the com-
plicated problem of blade vibrations under combined rotor spin and
precession by first studying a simplified model. The results of
this study can also be used as references for the numerical solution

obtained from the more complete model employed in Section 4.

The equations of motion are derived from Lagrange's eguations.
The kinetic and potential energy expressions required are developed

in the sequel.

3.2 Kinetic and Potential Energies

It is assumed that the precessional velocity vector
is space fixed and the origin of the rotor fixed xyz coordinate

system (see Fig. 1) is a fixed inertial point.

The angular velocity of the rotor is

('jsw('-#_jl(CoSGj-LS‘mGk) (1)
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where ©O<-wt and & 1is the magnitude of the rotor spin

velocity. The position vector of a displaced peint on the beam can

be given as

- . .

r-(x-‘-s‘){-t-(qa-s.’)J +(z2+82)k (2)
where SQ,SQ, $2 are the centroidal displacement components

of an arbitrary beam cross section. For the purposes of this section
$2 can be considered to include only the fore-shortening effect

(4) and is given by

<4 ST G ] o

Taking the time derivative of equation (2) the velocity

of a point on the beam is

R » R .‘ L _~’ _&

\7: Sx‘ +S|1J+S}k+wxr (4)
Using equations (1) and (2) the velocity can be written more
explicitly

[ él *(2#5})_9056 - (‘j"'S\J)—QS"\o](

+ [§y-(z+8)w + (x+$) 2 sn67

+ [éz *(‘j+$3)w~(\<+.§,)_n_c.osejk (5)
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The kinetic energy is obtained from

T=2 (9. pdV (6)
v

We neglect all the terms which include x and y in the above
integral because these terms are due to shear deformations and/or
due to rotary inertia which are usually neglected in beam type
analysis. Eqguation (6) can be simplified

R=L
R

(7)

where A(z) is the variable cross sectional area. In practice

blades usually have a very nearby linear thickness variation

Alz) = A [(\‘m*)zzg + 1] z >K (8)

where A is the cross sectional area at the root cf the blade,

and tr is the ratio of tip thickness to that of the base.

In order to reduce the beam problem with many degrees of
freedom to a single degree of freedom, only bending vibration
perpendicular to the major axis of cross section is considered.

This leads to

§y = (2 ,¢)cosp

S =~S(2,)s5ing (9)
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Fig. 1 Space-fixed Precession in the Rotor-fixed Coordinate
System xyz

|
y, by

Fig..2 Setting Angle for Straight Blades
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where ® is the setting angle measured from the axis of spin
to the major axis of the local cross-section,(see Fig. 2) and
is the displacement in the direction of the minor axis of cross

section. Furthermore the fore-shortening effect can be written as:

2
Y ‘§'§ (‘55 ) J2 (10)

Hence the kinetic enexrgy integral (7) can be completely expressed
in terms of the displacement, $ (z,t) in the fliexible direction
of the blade. For completeness we retain the terms that contain

cross sectional coordinates ..§ and v . .
—_ - - a2 = _S:
v-v = §+§ (%5%) 2§%( ) S ( 2!j><ia
: YNl 2 S
G Byge] + {22 (B3 ((H) e
/39 2 _— 4 2
£ T (BY + 2 5( )(,24;*[5(%)0‘2]}

i X L 3
(w"a-_nluste) ~+ (wl.;_n_ts.‘nte) {S“cosip +~n S B

*

—_1

~ Ensng 'JSE.COS‘&@ - Y(-S—Sm 28 + S Cos™ @ ‘%

+Jlt % §15"1§ - thcm‘ﬁ + Qgs.}szp -+ 2.‘§§ s.},’“[&
qS Sm.‘zﬁ - S Sin p}

- $2antsnB %(F}--S%g ag( )olz)\oSG

~(ScesB-Msiag) 546 3
~§QCOS§§(2—§ g( )o‘ )w*(gs.,\g-t

neesg) .n $h B 'g

-8- (continued)
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— [ - -—
-2 §5(31) + §(B)(3)a2 } {wlnmme - seosp+Teosp)

4 ncosp (5B~ Ncos B + § SingdT
3 _ 1 /3 B 4T )
- — t'
1282 -3 § (F)de§(Sese -nsinp« Tersp)atinzs

+§2-52 4 (B a Y (esapanok+ Tsip)anwsie
R

+ $(8-n"+28F 15 ) s2B+ 2(Sn+3n) cosaplwncosd

Neglecting shear deformations the potential energy is given as:

U=2§er(E8)de -
> Y “
With an known displacement function S this integral can be

evaluated.

3.3 Uniform Blades
3.3.1 Equation of Motion

To study the behavior of uniform cantilever b.ades for which
t. = l, we may assume a reasonable distribution of displacements

along the blade as follows

51:(%-R)

(z,¢t) = a) (1 - Co 2L

) (13)

o)

|

M e o B o o e i R 0



ORIGINAL P '@
OF POOR QUALi:Y

u(t) being the tip displacement of the blade. This assumed form is

inserted into the kinetic energy T and potential energy U expressions

and the Rayleigh-Ritz procedure is applied to both integrals.

From Lagrange's equation !

J

d ,oL |
3(_5)“L=0 (14) '

|

.y
£

where L = T - U, the equation of the beam tip motion is obtained

d’c N ___ f
ut + [q,-‘- € a <+ G\’L.C°59 -;elq_-‘ coozgju :

de

~ € ;Smeu -+ q[~u +Qu_°_l__‘f + 20 ]

% t de* )

. - 15

= ¢'Fgn20 -~ 2€F fanP sing (13) }

where the quantities Qe , a., (t"ct‘/q’: Q4 and F are |

all dependent on blade parameters as follows:

6= - wt (dimensionless time)
€=/, << | (typically about 0.0001)
1342 EI
a, = 3.42 - C051§ + 1269 = 1173 K .
mLiw? L
~ R
a, ==-0369 + 0.5cos g +0.209 (16)
-10- (continued) .
. . e A
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~SinapP

0
[}

* R
0'63' ~ OlsCOS p -+ 0.%09% ._L_

P
»
]

= —1.094 sin B/L

C - Lase (omar + o0 £ )

The blade para- 2ters are setting angle (stagger) € , blade
length L, rotor radius R, mass of blade m, section modulus EI.
is the i~tor spin velocity whereas (L is the magnitude of the space

fixed processional velocity.

The parameters given in equation (16) are for uniform blades.
If the blade is tapered these parameters have different expressions
and they reflect taper effects. However, the equation of motion
(15) retains the same form and the characteristics of the solutions

presented in this section remain general.

It should be pointed out here that xyz coordinates used in
equation (15) are rotating with the rotor angular velocity () .
Therefore, the tip deflection u is located in a moving coordinate
system. This in turn produces the Coriolis term ( € Q. snd & )

which is not explicitly dependent on velocity.

Comparing the parameter d, to the other parameters in the

differential equation (15), q, can be neglected for large blade length

-11-
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L. Since gyroscopic instability is important for relatively long
turbine or fan blades this nonlinear term will be omitted from
further consideration in this section. For the time being it is
worthwhile to mention that this term is due to higher order effects

of the foreshortened axial displacement.

The two terms on the right hand side of equation (15) represent
forcing functions. They are generated by the centrifugal :cceleration
associated with the rotor rotation. The first term is a time function
with twice the frequency of the rotor spin i.e. the force becomes
zero four times in every rotation. This force vector is in the y
direction of the moving coordinate system. The second term is generated
by a force vector that is in the x direction of the moving coordinate
system. Both inhomogeneous terms on the right hand side of equation
(15) represent components of these force vectors that cause blade

bending in the u direction.

3.3.2 Stability of the Linear Equation of Motion

Equation of motion (15) is nonlinear even though the higher
order effects of foreshortened axial displacements are ignored by
dropping terms that are dependent on d4- In this section we shall
omit the other nonlinear term €& G‘ss'me wZ . Since the stability
of the motion is determined by the homogeneous part of the equation
of motion the linearized equation (15) is reduced to

d°a
dot

2 z —._
+ [Qo‘fEQ,‘LGq,OSQ*éQaCOS'ZQ.]U =0 (17)
The stability characteristics of this equation was discussed

=-12-
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in reference (5). The ecuation is identical to the Mathieu equation

if the €*

terms are ignored. The stability of Mathieu's equation
is studied by means of the so-called Strutt diagram, (6). The terms
that are of order O(e’) generate additional unstable regions and
augment the standard stability regions in the Strutt diagram. The

derivation of these stability curves is based on Floquet theory.

The period of the time-dependent coefficient in equation (17)
is 2 M . The perturbation method of strained parameters (7 ) can be
used to determine the periodic solutions of u. This requires the

expansion of the solution u(©) in terms of

U=Uo =+ €U, + € U= (18)

Also it is necessary to expand the dimensionless squared

frequency a, in terms of €& .
Qo = bo + €b, +~€¥b, (19)

Substituting equation (18) and (19) into (17) a set of differential
equations are obtained

d%u,

Jo* bou. = O

dzd:
daet

- b°u| = - (lOI*inse)UO

2
d U, (20)

de* ool T ‘(L:. + Qi1 Q1 Cos 20)Us

- (bl + Q.COSB)U,

etc.
~13-
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The differential equations (20) are solved successively and
secular terms are suppressed by imposing conditions on the expansion

parameters bl' b,, etc. This is based oa Floquet theory for the

2
transition behavior between stable and unstable solutions. The

solution of the first differential equation (20) is a harmonic function
Uo = Ao Coéﬁoé-*sos’;‘ \Iboe (21)

with constants Ao and B, Substituting this expression into the

second differential equation (20)
<

du,

de”

4"0,,“. = ——(bl +€‘C056) Uo (22)

and solving this differential equation yields

ale) = — Ao b, Sin Jb 6 N Bobi 6 cos{m 0
2k, 2 Vb,

- Ach [25('*5:)9 Cos(l*\}-go)e ]
2 2Jbo — 1 2Ubo +

- BO_QJ [an(l“"‘)’:‘*)e N Sin (\*VE,,)O ’J

z 0% = | z\rco-l-\
(23)

The first two terms on the right hand side of (23) are secular
terms. Additional secular terms arise when JI;= ‘/ﬁ . If this
analysis is carried out further by inserting the above solution (23)

into the third differential equation (20) it is determined that

-14-
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-~ ’ -
besides 'J;.- /4 ' Ji; =1 also gives rise to more secular

terms. Analysis in the higher powers of € generates even more secular

S
terms but for most practical purposes o(e) is accurate enough.

Starting with i, = '/9. equation (22) becomes

d e -+ lq = (—b| —%)Ao Cod é@ "’(—b’ + %)B"S';‘éa

de* 47!
_ QR 38 qB - 36
—Ez—'cés 2 Sin 2
(24)
Eliminating the secular terms in (24) requires that either
"Ql B =0
b= 3 , B (25)
or
= U -
b, - , A, =o (26)

The two values of bl in equations (25) and (26), when inserted
into equation (19), correspond to two different stability transition
curves in the (Qo,€) plane. These curves separate stable

from unstable regions.

Using these results, the second order approximation of the
transition curves can be obtained by eliminating secular terms in the
solution of the third differential equation in (20). This requires
that

(hara +3q ) A =0
(27)
and

P! -
(b;“'a|“"€Q|)6° o (28)

-15-
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Equations (27) and (28) indicate that

ba=-a=-3q o (29)

is the sufficient condition for the elimination of secular terms
in u,.
Equations (25), (26), and (29) are inserted into (19) to

obtain the equations for the two transition curves that emanate from

a =1/4, €=0o .

o
a 2
\ J A
ac=f2ed —e(argg’) (30)
The above process 1s repeated at the other singular point:
a, = 1 and €=0 . The transition curves are described by .
i
5
A, = + € [ q" 21 - Ql] (31) ’
and
F
k] 'K Q’-
a 1o 2 ' (32)

Emanating from each singular point on the a, axis of (ao,Gﬁ
plane there are two transition curves. The loci of transition values
separate the (ao, € ) plane into regions of stability and regions of
instability. Additional unstable regions can be derived for higher
values of a, . However, these regions of instability are narrow

(order of e ) and do not have much practical significance.

-16-



In the stable regions equation of motion (15) can be approximated

by the following differential equation.

4" a * .
o~ Fan26 - 26 FtanP Sin 6
Jot T Qe T €T (33)

This epproximation is not valid in the unstable regions of the

(ao, & ) plane.

3.3.3 Numerical Example

The equations (30), (31) and (32) for stability transition
curves derived by the perturbation method contain blade parameters
@ , R/L etc. 1In this section using these equations for some

typical blade we may construct a stability chart. The stability
chart of Fig. 12 is given for a particular set of hlade parameters,

R/L = 1.384, L

10 in., P = -45° which yields the following para-

meters a, = 1, q = 1, and q, = 2.

For every pair of curves that emanates from the discrete
a, values, the region between the transition curves correspond to
(ao, € ) values which give unbounded solutions of the equation of
motion. Therefore these are regions of instability. It should be

noted that the unstable region at a, = l is considerably narrower

than the region at a_ = 1/4.

We now check the validity of the stability transition curves
that are given in Fig. 12 by an independent numerical procedure.
According to reference (8) the solutions of the homogeneous differential

equation (17) are stable if

/
IVi(27) + v ¢(am) | < 2 (34)

-17-
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Fig. 3 Stability Chart for the Linear Equation of Motion

-18-




where vl( 6 ) and \L { & ) are numerical solutions of (17) with

the following initial conditions

Vi(o) =) , W(d=o
(35)
/
V;(D)"O , Va (O)=|
The predictor-corrector numerical scheme of Adams-Bashforth
was used to obtain v,( 6 ) and v,( 6 ) for given (a,, € ) values
when a, = 1, q, = 1, and q, = 2. The stable and unstable points
are marked on the stability chart of Fig. 3. Excellent agreement
is observed with the results of perturbation methods.
3.3.4 Effect of the Nonlinear Coriolis Term
. . . . —2
If the nonlinear Coriolis term, eqa&ne w
is retained in the equation of motion (15) a general stability
analysis becomes impossible. However certain predictions can be
made about systems which have the form
g — — da
da +~ Q.U = 64‘(09\0*»;,3)
der (36)

. o dT . o
where € is small and 'F(I)G, u, -a-a) is periodic with
a period 2w in the product variable Y6 . 1In these systems
"resonance" occurs only if

q E
Ja, ~ =9 (37)
P

where p and q are small and mutually prime integers (9). 1If Ya,

is irrational and cannot be obtained by the division-of two integers

the solutions to (36) are not periodic but usually bounded. Therefore

-]19-



it suffices to make the stability analysis of (15) for only those
Jq, values which can be represented as a division of two mutually

prime integers

Ja. = _% : (38)
P

Neglecting terms that depend on 9y the equation of motion
(15) can be written in the form of equation (36). The coefficient
€ in this equation is the ratio of the precessional angular
velocity L1 to the spin angular velocity W . 1In general this
ratio is very small compared to age Therefore it can be expected
that the solutior of (15) is nearly harmonic. An approximate lin-
earized differential equation can be obtained by assuming that the

solution consists of two parts:

The first part u, satisfies the equation:

L

du,

+ aolL =0 (40)
de*

which has the solution:
U\_: ALCOS E.Q -+ BLSf‘nH‘,G (41)

Substituting equations (39) and (40) into equation (15) and linearizing

by neglecting the ( eu)2 term, results in

-20-
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2 &F35n206 - 2€ Ftanf Sinb |

4+ Q3 Sin 0 Ut

“(€a,+ Qicosh 4+ €grcos28) U

(42)
The stability of the above differential equation can be
studied by considering the homogeneous part only.
d‘u + 2 o + E
Jo* [ao + eq;-&-éq.Cos Gzz(‘osae
~€ 2gisho u]u o (43) i

Under the condition of equation (38) the period of the coefficient
of u in the above differential equation is 2PW™ . Furthermore
the stability of this differential equation can be studied by means

of Floquet theory. '

Here we apply the perturbation method of strained parameters,

again.
2
U= U + EU + € U, (44)

As= be + €b, + €*b, (45)

Substituting the above equations into (43) a set of differential

equations are obtained

-21-
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=+ bou! = - (b.-‘-q.CosG ~2?;ane qg)“o

=—, + bty = —(b,+a,+qaces2)Us
—(hn *q cosB XL sin 8 UL ) Uy

(46)

etc.

The differential equations (46) are solved successively
and secular terms are suppressed by imposing conditions on the ;
expansion parameters bl' bz, etc. The solution of the first

differential equation in (46) is an harmonic function
o= Ao CoS ﬂo 6 =+ 8, 5in \ﬂ:c 6 (47)

with constants A and B, Substituting this equation into the

second differential eguation in (46)

—d--‘:‘:.- 4\,0“. = -(L,+Q.Co$9 —‘2?‘51}\9 Us) Ue (46)
d8

and solvirg this differential equation it is determined that secular

terms arise when Jo. =1/ Jb, = 172, and Jo. =1/3.

-22-
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As before, the differential equation (48) has to be solved for
these specific values of b° and the secular terms that arise must

be eliminated by imposing conditions on bl‘

Starting with bo = 1/9, aquation (48) is

A-ldl i & - 0
de‘ - ; U, =~ b;Ao Cos 3 - l),eo Sms
'}‘a"AoALQtS“n% -+ -;'-IA.,S,_ Qs cosg
1 é A 6

+ 3 B.,Ag,q; Cos3 =~ 3 B.8. 13 Sm§ + ... (49)

Eliminating the secular terms in (49) requires that

"‘ZHAO-"-;E. BL?JAO "'-é '43-?’8" =0
: 1 -
-b' Bw ‘26[. q’ 60+ lAL q‘SA" o (50)

Equations (50) can be written in matrix form

.—L| + .13’, eL —i—g . AQ 0
X ]
h -b- 3 Be o
(51)
- o
GG« vime = . 3
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To obtain nontrivial solutions the determinant of the coefficient
matrix must be zero. This yields the following equation

2
"

s 2 2
bi—T<AL4BL)=O

or

= * i 2
b =V A.*a B, (52)

The two values of b1 in equation (52), when inserted into
equation (45), correspond to two different stability transition

curves that emanate from a, = 1/9, € = 0.

For each bl that is obtained from equation (52) the corresponding

relation between Ao and Bo is determined from equation (51).

A_o_ B‘-t JA_L:I"‘B‘.:l j

-
-—

B. A, (53)

When this analysis is extended to the second power of €& we face
an inconsistency that presents us from eliminating the secular terms.

For each transition curve that corresponds to a particular b, value

1
we obtain two conditions on b2 instead of one.

bo=-a - 2a 3 e B ALE e

[{»] 8?3 L [ 48;
?‘L

2 a
- (A =338, ) 2 (54)

3
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(55)

Obviously conditions (54) and (55) cannot be satisfied simul-

taneously for arbitrary AL and B Examining the two expressions for

L°
b2 in these equations, the difference is in the last term of the
equations; If these terms are neglected the perturbation solution

(44) will not be exactly periodic due to u,. The prerequisites for
applying Floquet theory to the transition curve will be violated.

The method of strained parameters fails to determine the stability
transition curves to the second and also to higher powers of € .
Therefore the solution so obtained is not uniformly valid as t —woo .
Other perturbation methods have been tried without success in resolving

this inconsistency. This remains a mathematical problem that may

be tackled rigorously at a future time.

Fortunately, in most practical cases the ratio, €& , of
precessional speed to rotor spin is small. The numerical error re-
sulting from omitting these inconsistent terms is negligible. 1In
order to verify these approximated stability curves the independent
numerical method of previous section is applied to the linear equation

(43) directly. This is preserted in the next section.

The approximate equations (54) and (55) for b2 and equation
(52) for b1 are inserted into (45) to obtain the equations for the

two transition curves that emanate from a, = 1/9, € =0.

-25~

O



pk,

OR!\%N\ H&L F FY AL LS
OF POOR QUALY

o X ?’
a q * e ___5: ’AL2+ BL:
s 9 S |
- & [QI + T‘; (i‘li '{ QsQBL \‘Atz-b 61.2 ]

(56, 57)
The above process is repeated at other singular points: € =0
and a, = 1/4, 1 etc. The approximate transition curves at a, = 1/4 are
t 2
QQ’ - 4 Gi -+ G [-Q| ?'. Q3 (IqAL bGel— )]
4 2 (58)
2 2 3
1 2 1 2 2
Qo = 73 - G-ZL + G [—Q. - = .+‘zi_ (ILJBL - é‘\L)i]
2 8 |15 .
(59)
and at q = 1 are
s f_ﬁ—"
Q. = | + 6"5 + B2 ]
(60, 61)

e~ T adee)]

It should be mentioned that these are not the only stability
curves. Additional unstable regions can be derived for higher values
of a,- However, these additional regions are exceedingly narrow and there-

fore they are less important.
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All of these transition curves contain AL and BL which are

the initial condition constants of the basic solution u . The
dependence of stability on the initial conditions is typical

for nonlinear systems. But these transition curves do not depend

on the constants Ao and Bo in equation (47) of the perturbed solution.

This indicates that the stability curves are valid for any arbitrary

initially perturbed motion.

3.3.5 Numerical Example

The equations for stability transition curves (56), (57), (58),
(59), (60), and (61) contain the initial condition constants
AL and BL as well as the blade parameters ﬁ , R/L, L etc. For
each of these parameters one can construct a family of stability
curves while the other parameters are held constant. We choose to
examine the effect of initial conditions on the stability curves

for a given set of blade parameters.

Stability charts of Figs. 4, 5, 6 are constructed for the

same blade data that were used in section 4.3.3 which yield =1,

|
q, = 1, q, = 2, and q3 = 0.1547.

For this purpose two dimensionless initial value parameters, "

and N2 are defined as follows:
n_ﬁg
)=
L

_ B.
Ma™ == (62)
L
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Note that AL is the initial displacement, uL(O) and BL is proportional

to the initial velocity.

Fig. 4, Fig. 5, and Fig. 6 correspond to different initial
displacement values, v, =0, Y, = 0.05, and Y = 0.1 respectively.
In each figure four pairs of transition curves are drawn for four
different values of Y : 0, 0.05, 0.1, and 0.5. Note that Ya =0.5
corresponds to a significant initial speed. For example, if the spin
velocity is 4000 rpm the initial speed for the transition curves

emanating from a, = 1/4 is 87 ft/sec.

In the unstable regions, between a pair of curves emanating
from discrete a, values, the perturbed motion u grows and consequently,

according to equation (29), the blade tip motion u is unstable.

In Fig. 4 the transition curves for ", =WN2=0 are of
particular interest. These are stability transition curves when the

nonlinear Coriolis term is not taken into consideration as given

FRRRTIIRE 8 S e

in section 4.3.3. From the expressions for stability curves it
can be seen that if the Coriolis term is neglected the stability §
characteristics of the blade tip motion will not depend on initial g
conditions (AL, BL). This is expected since the stability of linear
systems should be independent of iritial conditions. Also when
there is no initial motion (AL =0, B = 0) relative to the spinning
system the Coriolis acceleration does not effect the stability regions.

An interesting effect of Coriolis acceleration is the creation

of additional region of instability at a, = 1/9. This region is

not predicted by the linear analysis of section 3.3.2.
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Unstable regions at a, = 1/9 and a, = 1l are quite narrow
for practical initial values (W, <0.1, Na< 0-05') and widen for
increased values of initial condition parameters ¥, and v?; .
On the other hand, the unstable region at a, = 1/4 does not depend
on the initial conditions. This region was predicted by linear

analysis and is unaffected from the nonlinear Coiiolis term.

Studying the three stability charts it might be concluded
that fcr moderate initial values and low prec ssion rates
the effect of Coriolis force on motion stability can be neglected for

blades undergoing gyroscopic motion.

So far the stability of tip motion has been analyzed by
the perturbation method. Because of the uncertainty in the accuracy
of this method it was decided to verify the stability charts presented
in Fig. 4, Fig. 5, and Fig. 6 by the numerical procedure that was
described in section 3.3.3. The solutions to the linearized equation

(43) are stable if

Vi (2pT) + Vo (apm) | < 2 (63)

where vl( @ ) and v2( 6 ) are numerical solutions of equation (43)

with the following initial conditions

[
0

Vi@ =1, v (o)

"
(o)

Vz(O)’ 0 , Va/(o)
(64)

Using this numerical method the transition curves that correspond
to ¥)a = 0.1 are checked. The stable and unstable (o, €)

points that are predicted by the numerical method are marked on the
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stability charts of Fig. 4, Fig. 5, and Fig. 6. They indicate
that the stability curves obtained from the perturbation method

are guite reliable.

3.3.6 Forced Vibrations

The equation of motion (15) indicates that the gyroscopic beam
motion is a forced vibratory motion. From the stability analysis
it has been determined that the motion in the unstable regions of
the (ao, € ) plane is unbounded. This is due to the fact that
the forcing function initiates vibrations which lead to parametric
resonance. Hence it is only necessary to give the forced response

away from the resonance regions.

In the stable regions the solution to the equation of motion

(15) can be assumed to be

U4 = U+ €U (65)

where u; now includes the forced response

2

d U,
de?

1 IN
+ Q. U, = & Fan2B + 26 Fcot Bsinb (66)

where F is given in equation (16) and is inthe order of O(L),

and u is the perturbed solution due to the remaining terms in (15)

expecting the 9, term. As indicated before the terms with q, has not been

included in our analysis for the reasons noted earlier.

In the stable regions the perturbed motion is bounded.
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From equation (65) the error in taking u equal to u is in the order
of € . Therefore in the stable region the forced response of the

equation of motion (15) with error of order € can be obtained

from equation (66) directly

a4 % U.= AcosVa, 8 + BsinJa.6

2

€ F : 2€ F .
+ SIN260 + —— cotBsInG
Qo -4 Qo — | (67)
where
A= d(o)
_ a
g=__ [o!u 2¢ F 2€F cot B
Voo Ld6 | ., a.-4 Qe = | (68)
The peak value of (67) can be determined by summing the
amplitudes of individual harmonics:
* 2€F Co‘(’e
[T lmex = JA* +8* + (69)
Qo- 4 Qo =~ |

To check the validity of the solution (67) the equation of
motion (15), disregarding the q, term, is integrated directl:r. The
predictor-corrector numerical scheme of Adams-Bashforth is used again.
Both the numerical solution and the approximate solution are plotted
in Figs. 7 and 8. Fig 7 is constructed with zero initial conditions

whereas in Fig. 17 the initial values are u(Q) =1 in., Eﬁl = | n.
a6 ec¢
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da
which corresponds to d¢

-

cvo w in/sec. The solutions

in Fig. 7 and Fig. 8 correspond to a stable point in the (a,, € )
plane which is a = 2 and € = 0.01. The particular blade data
used in these figures is the same as those used in the stability

chart.

The approximate solution of (15) in the stable region which
acre obtained from equation (67) are in very good agreement with direct
numerical solutions of (15) as can be seen in Figs. 7 and 8. For
smaller and more realistic & values the accuracy of the approximate

solution will be even better.

The previous discussion leads us to conclude that for practical
purposes the peak value of the vibratory motion which is governed by
equation (15) can be predicted from equation (69) provided the parti-
cular blade and rotary data correspond to points inside the stable
region of the (ao, € ) plane. It is werthwhile to note that bending
moments associated with peak tip displacements in this case ( € = o.o:)
are acceptable. Therefore the forced motion of a blade under gyroscopic
disturbance is generally less important than the corresponding para-

metric stability problem.

3.4 Blades with Different Ceometry

In this part we show how to modify the analysis of previous
section to take into account some common blade geometry, namely
tapered cross sections and shrouding of blades. It can be shown
that these prcperties do not change the gensral form of equation of

motion (15). The parameters in equation (16) are changed however.
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They include blade geometry efiects. Since the differential
equation of motion (15) preserves its original form the stability

analysis of previous section remains valid.

3.4.1 Tapered Cantilever Blades

In section 3.3.1 we have given ej:ation of motion for vniform
blades that have a taper parameter, t, = 1. 1f t. ¥ 1 the parameters

in equation (16) take the following form

e=-uwt

e=N/w

N= 02268 + 0.1%6 (£~ 1)

Q. = T‘w i EAi(OJ‘:‘%?) [g,“‘)(fh )
pliL w? 4
AT E R AT ]

l’

nm

(70)

R

Pl
+0.2%62 + 0.3668 T ~ 0.226% cos B

R kN
+("‘r—') ( 0.234) + oAQ'ae:z—L ~ 0.156 Cos @)

|

Q, = ?5 %-0_0337 -+ o,l%M% + o.ll3‘+co$1€>

K k3
+ (-1 (0,068 + 0. 1431 + 0.091 CoS B)

-~ Sl})Q(B ( unc%qn‘aed)

~0
n
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l
L= %o.vﬂl + o.u%%qﬁ + 0.1134 Cosaﬁ

N L

4 2z
+ (¢ =) (o.n7p =+ 0.14311 <+ 0.093 cos (5)}

- ;

L= = Sne [o.:z%z + (te=1) o.:oza]
L

F = chosﬁ

[0.!3‘43 + 0"%'7’2': + (4 - |) (70 cont.)

N

R
(o.1064 + 0,134 = )]

The new blade parameters which appear in the above equation (70)
are material density, ¢ , the width of the blade, b which is assumed
constant, the root cross sectional area, A and tr' the area ratio of the

tip to the root. N is some shape factor which is defined above.
3.4.2 Tapered Blades with a Shroud at z = R + 3L/4
Except the assumed displacement distribution (13) the general

procedure described in Section 4.2 and Section 4.3 is exactly

repeated. The assumed displacement shape is now

Sz, =T K [4 (E'Lg)s-— 3 <2 —LR )n ] (71)

which satisfies the geometric boundary conditions since
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23 (R,¢) = o
oz

(72)
u(t) is again the tip displacement at z = R + L.
For this case the parameters in equation (16) of cantilever
blades take the following form
8= - Wf
e~ n/w
N = 00%57 + (£ - l) 0.0714
a
_ EA 3 2
Q™ —— s 53.%3 (e=1) 213.9 (€c=1) + 16.5 (£=1) + 7}
hJeb L"w
+ L R 2
(73)
+o.51u3k )g
L
a, < L ) N+ N cos'B +0.0%5 R
) N 0.05719 - 2 s B8 *+o. 7L.

+ 4 (0,457 +o.5)q3-’f: )%

-'SQ\QB

-0
[}

_ |\
7 3N

~N\

2
0.05719 + 0-0%