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FOREWORD

This report summarizes the results of work performed on Contract NAS8-

34978. The work was performed by personnel of the Product Engineering & De-

velopment Section of Lockheed's Huntsville Research 6 Engineering Center,

for the National Aeronautics and Space Administration, George C. Marshall

Space Flight Center, Alabama. The Contracting Officer's technical repre-

sentative for this study is Mr. Norman C. Schlemmer, Structures and Pro-

pulsion Laboratory, Engineering Analysis Division, Stress Analysis Branch

(EP46).

This report is divided into four volumes with a section covering one

aspect of analysis for all components and loads, and a fourth section for

investigation of unscheduled events and special tasks undertaken during the

effort. The volumes are: 	 i

Volume I	 - Gasdynamic Environment of the SSME HPFTP and HPOTP
Turbines, LMSC-HREC TR D867333-I.

r

Volume II - Dynamics of Blades and Nozzles - SSME HPFTP and HPOTP,
LMSC-HREC TR D867333-II.

Volume III - Stress Summary of Blades and Nozzles at FPL and 115

percent RPL Loads SSME HPFTP and HPOTP Blades and

^i	
Nozzles, LMSC-HREC TR D867333-III.

Volume IV - Summary of Investigation of Unscheduled Events and

Special Tasks, LMSC-HREC TR D867333-IV.

It should be noted that this report summarized our findings. A great

body of data exists in the form of computer printout and magnetic tapes and

is available to any interested reader for either amplification of the sum-
4

marized data or as a basis for further work.

ii
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1. INTRODUCTION

This report contains a summary of the analyses performed for

uled events and special tasks which occurred during the contract p

These data have been presented to NASA-MSFC personnel as each task

completed. These presentations consisted of oral reviews and info

documentation.

i

t
1-1

qQ2 EE 	 NTSVILLE RESEARCH ENGINEE RING CENTER



LMSC-HREC TR D867333-IV

2. LOW PRESSURE FUEL TURBOPUMP TURBINE LABYRINTH
SEAL TIP RUBBING ANALYSIS

Teardown examination of the Low Pressure Fuel Turbopump (LPFTP) has

shown evidence of rubbing occurring between the turbine inlet nozzle assem-

bly and the labyrinth seal located on the first row turbine rotor assembly

(Fig. 2-1). The pattern of rubbing is not constant around the circumference

of the nozzle-labyrinth seal interface, and changing the cc n figuration of

the nozzle blockages has resulted in different rubbing patterns. Analysis

was undertaken to isolate the cause of this rubbing and to show a correla-

tion between rubbing patterns and nozzle blockage configuration.

The analysis focused on several particular components of the LPFTP

h
which were identified as possible sources of the displacement or deformation

necessary to close the allowable labyrinth seal gap. Finite element NASTRAN

models of the selected components were constructed and analyzed using the

appropriate computed pressures, temperatures, centrifugal loads, and dynamic

loads. A summary of the analytical procedure as well as results for each

i	 component under consideration follows.

2.1 BEARING CARRIER

i'ne variation in temperature between the bearing outer race and the

bearing carrier has been speculated to allow a gap to open between the two

parts allowing the turbine shaft to move freely in a radial direction.

Assuming the shaft is cantilevered from the impeller end, the radial clear-

ance at the bearing carrier would allow a corresponding deflection at the

turbine end labyrinth seal.

2-1
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	 The thermal and pressure loads shown in Fig. 2-2 were applied to the

NASTRAN bearing carrier model (Fig. 2-3) while the bearing race thermal de-

formation was calculated by hand. The resulting radial deformations were

combined to produce a maximum radial clearnnce of .0038 in. Extrapolating

the computed clearance axially to the labyrinth seal location yieldo a de-

flection of .0058 in.

2.2 TURBINE WHEEL AND FIRST ROW TURBINE ROTOR

The major sources of loading for the turbine wheel and rotors are cen-

trifugal loads, pressure loads, and dynamic loads. The loading due to the

high speed rotation and the pressure differential across the turbine disk is

constant, while the turbine blades passing in and out of blocked inlet

nozzle segments introduces a dynamic load.

The NASTRAN model of the turbine wheel and rotor (Fig. 2-4) was loaded

with a centrifugal load simulating the operating speed and the constant

pressure loads shown in Fig. 2-5. This loading resulted in a maximum out-

ward radial deflection of .0022 in.

The natural frequencies of the turbine wheel and rotors were extracted

and the mode shapes plotted as shown in Figs. 2-6 through 2-11. The

Campbell diagram of Fig. 12 shows a potential resonance at the first mode-

fourth harmonic. It was speculated that this excitation could occur due to

the passing in and out of blocked nozzle passage regions. However, the

application of this dynamic load produced results that did not indicate the

presence of a resonance condition. Output plots of labyrinth seal displace-

ment versus turbine wheel rotational position shown in Figs. 2-13 and 2-14

indicate that the output response basically tracks the input load without

the large displacements characteristic of a resonance. This leads to the

conclusion that for both the symmetric and the non-symmetric blockage pat-

tern, the dynamic loading produces only a forced response. The maximum mag-

nitude of the response at the labyrinth seal is .0004 in. for the symmetric

blockage and .0032 in. for the non-symmetric.

2-3
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Fig. 2-2 LPFTP Bearing Carrier Environaent
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Fig. 2-3 NASTRAN LPFTP Bearing Carrier Model
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Fig. 2-4 LPFTP Turbine Wheel Model
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Fig. 2-6 LPFTP Turbine Disk, Mode 1, 1105 Hz
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Fig. 2-8 LPFTP Turbine Labyrinth Seal, Mode 1, 1105 Hz
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Fig. 2-10 LPFTP Turbine Labyrinth Seal, Mode 2, 1330 Hz
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Fig. 2-11 LPFTP Turbine Labyrinth Seal, Mode 2, 1330 Hz
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2.3 NOZZLE ASSEMBLY AND INLET MANIFOLD

The pressure distribution in the inlet manifold and pressure on the

nozzle blockages act to produce radial deflections of the nozzle assembly

directly opposite the labyrinth seal. The circumferential variation in the

geometry of the inlet manifold volute and the nature of the pressure

distribution in the volute tend to force the nozzle assembly into a

non-circular shape and a potential rubbing configuration.

NASTRAN models of the inlet manifold (Fig. 2-15) and nozzle assembly

(Fig. 2-16) were built and merged (Fig. 2-17) to show the effects of the

inlet manifold pressure distribution on the .zurface opposite the labyrinth

seal. The pressure distribution described in Figs. 2-18 and 2-19 was

applied and produced the radial deflections at the labyrinth seal area shown

in Fig. 2-20. The deflections are inward (closing the labyrinth seal gap)

and range from a minimum of .0001 in. to a maximum of .0015 in.

2.4 SUMMARY OF LPFTP LAPYRINTH SEAL DEFLECTIONS

Deflections of the LPFTP labyrinth seal, as determined by computer

analysis, are summarized below:

1. Bearing Carrier - Thermal and Pressure Loads

Bearing Carrier - Outer Race Clearance:

Extrapolate Axially to Labyrinth Seal:

2. Turbine Disk - Pressure and Centrifugal Loads

Labyrinth Seal Maximum Radial Deflection:

3. Turbine Disk - Forced by Blocked Passages

a. Non-Symmetric Blockage
Labyrinth Seal Maximum Radial Deflection:

b. Symmetric Blockage
Labyrinth Seal Maximum Radial Deflection:

.0038 in

.0058 in.

.0022 in.

.0032 in.

.0004 in.

2-17
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f

t'

4. Inlet Manifold and Nozzle Assembly-Pressure Loads

Sealing Surface Maximum Radial Deflection: 	 .0015 in.

Assume Worst-on-Worst and Superposition

Total Radial Deflections:

a. Non-Symmetric Blockage:	 .0127 in.

b. Symmetric Blockage:	 .0099 in.

Allowable Labyrinth Seal Tolerance from Drawing
Specifications:

Minimum: .009 in.
Maximum: .011 in.

i

i

i

i

i

t.
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Fig. 2-15 LPFTP Inlet Manifold NASTRAN Model
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I	 Fig. 2-16 LYFTY Turbine Inlet Nozzles - NASTRAN Model
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Fig. 2-17 LPFTP Inlet Manifold and Turbine Inlet Nozzles -
	 tM

Combined NASTRAN Model
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Fig. 2-19 LPFTP Turbine Inlet Manifold Angular Locations
for Pressure Distribution (Fig. 2-18)
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Fig. 2-20 LPFTP Turbine Inlet Nozzle Labyrinth Seal Interface

Deflections (Deflections Exaggerated - Max - 1.5 x
10-3 in.)
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3. GAS DYNAMICS ANALYSES

3.1 HPFTP SECOND STAGE TURBINE DISK COOLANT MODIFICATION ANALYSIS

The HPFTP second stage turbine blades have experienced cracking in the

aft shank region near the platform. One possible cause for these cracks is

high thermal gradients resulting from the cold hydrogen coolant which flows

up the back side of the disk. A modification to route the hydrogen coolant

through six slots near the I.D. of the aft platform seal has been proposed.

The HPFTP turbine coolant system flow model (Ref. 3.1) was modified to simu-

late this configuration. The model is shown schematically in Fig. 3-1.

Flow rates and temperatures at several points of interest are compared with

the nominal FPL case in Table 3-1.

3.2 HPFTP TURBINE HOUSING HOT GAS LEAKAGE ANALYSIS (EFFECT ON COOLANT

LINER PRESSURE

The HPFTP turbine coolant model was modified to simulate leakage of

turbine gases into the coolant system downstream of the coolant liner. The

leakage path is assumed to be cracks in the turbine housing downstream of

the second stage rotor. The turbine coolant system (with the modification

included) is shown in Fig. 3-2. Coolant liner pressure and leakage flow

rate versus leakage area are shown in Fig. 3•-3.

3.3 HPFTP IMPELLER SHAFT AND SHROUD SEALS MODIFICATIONS

3.3.1 Leakage Analysis with Nominal Operating Clearances

The HPFTP impeller flow models (Ref. 3.1) were updated to simulate the

redesigned shaft and shroud seals. Designating the previous configuration

3-1
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Table 3-1 HPFTP SECOND STAGE TURBINE DISK COOLANT MODIFICATION ANALYSIS

(Slot Area - . 342 in2)

Nominal Configuration Modified Configuration

Station No. Temperature Flow Rate Temperature Flow Rate
(R) (lbm/sec) (R) (lbm/sec)

16 141.7 2.583 141.7 2.818
23 145.1 1.721 145.2 1.898
29 145.8 0.957 146.0 1.069
33 146.8 0.516 147.5 0.642
35 1914.5 3.922 1914.5 4.365
41 1890.9 2.151 1890.9 2.854
51 155.4 0.764 156.1 0.830
64 1440.7 3.692 1450.3 2.734
66 1438.7 3.660 1448.7 5.956
69 145.3 0.360 146.1 0.458
72 1265.5 4.020 1468.0 3.308
76 174.8 0.502 177.1 0.462
95 1142.3 3.107

Y
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as "baseline" and the new configuration as "modified," a description of each

configuration by part number is shown in Table 3-2.

Table 3-2 HPFTP IMPELLER SHAFT AND SHROUD SEAL CONFIGURATIONS

Stages	 Baseline	 Modified

First Stage
Shaft Seal	 RS007531-031	 RS007531 -041

Shroud Seal	 RS007550-007	 R0012199-3

Second Stage
Shaft Seal	 RS007531-031	 RS007531-041

Shroud Seal	 RS007530-007	 R0012205-3

Third Stage
Shroud Seal	 RS007530-007	 R0012205-3

Operating clearances for the modified configuration are shown in Figs.

3-4 and 3-5. Leakage flow rates are compared to the baseline configuration_;._

in Table 3-3.

i
Turbine End

Pump End	
Operating Clearance

Operating Clearance	 .00688 Diametral
.00961 Diametral

i

Ambient

Operating

38

Fig. 3-4 HPFTP First and Second Stage Modified Shaft Seal
Flow Schematic

3-6
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Table 3-3 HPFTP IMPELLER SHAFT AND SHROUD SEALS LEAKAGE COMPARISON

Baseline
	

Modi f Led
Stage
	

Flu,j Rate
	

Flow Rate
(lbmisec)
	

(lbm/sec)

First Stage
Shaft Seal
Shroud Seal

Second Stage
Shaft Seal
Shroud Seal

Third Stage
Shroud Peal 5.39
	

0.67

3.3.2 Leakage Analysis with Axial Mismatch at the Shroud Seal

The HPFTP second stage impeller flow model was updated to accept a

variable axial mismatch (using the first tooth as a reference point) between

the teeth on the impeller shroud and the corresponding seal surface. The

configuration is shown in Fig. 3-6 for an axial mismatch of .010 in. at the

first tooth. Leakage flow rate versus first tooth axial mismatch is shown

in Fig. 3-7.	

3

3.4 HPFTP TURBINE BEARING COOLANT FLAW ANALYSIS

The HPOTP turbine bearing coolant model (Ref. 3.1) was used to analyze

the coolant quality in the bearing cavity for the maximum variations which

occur in inducer inlet pressure at power levels ranging from RPL to 111

percent. The input pressure data were supplied by NASA-MSFC and are shown

in Fig. 3-8. The resultini, bearing cavity temperature and pressure data are

presented in Fig. 3-9 along with the saturation curve.

3-8
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( 1	 3.5 HPOTP PRIMARY OXIDIZER SEAL DRAIN ANALYSIS

3.5.1 Oxidizer Drain Analysis W th Kel F Seal Removed

The turbine bearing coolant model was modified to simulate removal

the Kel F in the labyrinth seal and adding a simulation of the drain

resistance. The model was then executed at RPL, 104 percent, FPL and 11:

percent to determine drain cavity pressure and seal flow rate. The resu:

are shown in Fig. 3-10.

LKSC-HREC TR D867333-

3.5.2 Oxidizer Seal Analysis with Liquid Oxygen Leakage Through

the Bearing Support Bolt Holes

The drain resistance was coupled with the bearing coolant model and a

leakage path through the bearing support bolt holes. The model was executed

with several leakage rates to determine the effect on drain cavity

pressure. The results are presented in Fig. 3-11.
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Fig. 3-10 HPOTP Turbine Bearing Coolant Model Coupled with Oxidizer Drain
Resistance (Kel F Removed from Labyrinth Seal)
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4. SECOND STAGE HPFTP BLADE CRACK LENGTH STUDY

The objective of this study was to relate a statistical margin of

safety to flow size in the second stage turbine blade of the HPFTP. The

flow was defined as a crack in the aft edge of the blade shank, immediately

under the platform. This crack was in the flow direction, through the

shank, and of a variable length. The load conditions were power bending and

centrifugal forces at 104 percent RPL. Thermal loads are not included, but

thermal degradation of material properties were accounted for.

The method of analysis was to alter a finite element model of the

subject blade (drawn from our existing library of models) by introducing a

crack of varying length in the area of interest. An overall view of the

model is shown in Fig. 4-1. A section of the critical area is shown in Fig.

4-2,.with the discrete crack length investigated.

The resulting margins of safety are summarized in Table 4-1 and are

presented graphically in Fig. 4-3.
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Fig. 4-1 HPFTP Second Stage Blade NASTRAN Model
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Fig. 4-2 Critical Area and Crack Lengths

Table 4-1 STRESS AND FACTOR OF SAFETY AT VARIOUS CRACK LENGTHS

Crack Length
(in.)

Tension Stress
(ksi)

Bending Stress
(ksi)

Factor of Safety

0.0 37.2 16.: +2.05
0.01 41.9 21.3 +1.56
0.11 42.9 22.2 +1.50
0.16 57.2 36.6 +0.78
0.20 64.0 44.0 +0.36
0.28 94.9 78.1 -0.01
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Fig. 4-3 Factor of Safety vs Crack Length HPFTP
Second Stage Blade Shank at 104% RPL

4-4

i
LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING  CENTER

r	 _,



e

IMSC-HREC TR D867333-IV

5. HPFTP FIRST STAGE BLADE IMPACT STUDY

The objective of this study was to estimate the mass of a particle

which would induce catastrophic failure of the first stage blade when

encountered in the gas flow. This was accomplished by application of a

BOPACE finite element model (drawn from our existing library of models) to

perform an elastic-plastic energy balance solution. The method and results

are detailed below.

5.1 METHOD OF ANALYSIS

Assuming that the particle is moving at the velocity of the gas stream

prior to impact and does not affect the turbine speed upon impact, energy

balance is written as follows:

vg - gas velocity	 M  - mass of particle

vb - blade velocity	 U - strain energy

m  (v8 - vb) 	 U

The BOPACE plastic analysis program was used in the computation of the

strain energy term, U. The failure criteria of e - 0.06 is satisfied with a

leading edge load of 2772 pounds (Fig. 5-1) which has a corresponding

deflection of 0.198 in. at the point of application (Fig. 5-2). The strain

energy is calculated by finding the area under the load deflection curve

(Fig. 5-2) which yields:

s

U - J
	

F . do - 378.89 in.-lb.

0

f
5-1
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mp - 1.504 x 10 -6 lb/in./sect

Wp - mp (386) - 5.806 x 10-4 lb.

Assume a spherical shape and density of 0.3 lb/in3:

W
V - m4 - 1.935 x 10 3 in3.

1/3
d - 2 

(3T- F)
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The following values were used in the energy balance equation:

vg - 2493.6 ft/sec (HPFTP Turbine Flow Program)

v 	 - 1649.1 ft/sec (FPL rotation at 10.19 diameter).

Inserting these values, and reducing:

2U

(v8 - v22

m -
2(379.89)

p (2493.6 x 12) - (1649.1 x 12)

r
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Fig. 5-2 Deflection at Leading Edge vs Applied Load
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