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Abstract

Seismograms from 22 earthquakes along the northeast Pacific rim recorded

in southern California form the data set for investigation of the upper mantle

beneath the Cascade Range-Juan de Fuca region, a transitional area encompass-

ing both very young ocean floor and a continental margin. These data consist of

853 seismograms (6° < A < 42°) which produce 1068 travel times and 40 ray

parameter estimates. We compare these data directly to another large suite of

records representative of structure beneath the Gulf of California, an active

spreading center (Walck, 1984). We use the spreading center model, GCA, as a

starting point in WKBJ synthetic seismogram modeling and perturb GCA until the

northeast Pacific data are matched. Application of wave field continuation (Clay-

ton it McMechan. 1981; Walck Sc Clayton, 1984) to these two groups of data pro-

vides checks on model's consistency with the data as well as an estimate of the

resolvability of differences between the two areas. Differences between the

models -derived from these two data sets are interpretable in terms of lateral

structural variation beneath the two regimes. Significant disparities in travel

times and waveforms from 16° to 22° imply corresponding velocity variations

between the two regions from 200-410 km depth. The ocean-continent transition

model, CJF, features velocities from 200 and 350 km that are intermediate

https://ntrs.nasa.gov/search.jsp?R=19840012902 2020-03-20T23:51:02+00:00Z



- 2 -

between the very low values of GCA and the more moderate values of T7 (Burdick

& Helmberger, 1978), a model for the inland western United States. Models of

continental shield regions (e.g., King & Calcagnile, 1976) have even higher veloci-

ties in this depth range, but all four model types are similar below 450 km. This

regular pattern observed in the rate of velocity increase with tectonic regime

suggests an inverse relationship between velocity gradient and lithospheric age

above 400 km depth.
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Introduction

An accurate global assessment of the upper mantle velocity distribution is

important in solving many key geophysical problems. Assembling such a world-

wide map is not straightforward because the widely varying methods and types

of data used in regional studies are difficult to compare directly. The ideal

upper mantle experiment might involve multiple identical three-component,

broad-band seismic arrays cleverly situated within 30° distance of every major

seismic zone. The lack of such instrumentation forces us to consider an alter-

nate method: identical analysis of multiple data sets, facilitating structural

comparison between regions. Burdick (1981) and Grand & Helmberger (1984)

model long-period P and SS waves, respectively, with synthetic seismograms and

establish gross structural differences between continental shields and tectoni-

cally active continental areas. Burdick (1981) presents two models which

separate only in the uppermost 250 km. The shear wave models of Grand &

Helmberger (1984), however, are disparate to 400 km depth. Their tectonic

model, TNA, is in excellent agreement with the P-wave spreading center model,

GCA, developed in Walck (1984), hereafter referred to as Paper I.

Wiggins & Helmberger (1973) and Dey-Sarkar & Wiggins (1976) compare

smaller regions within midwestern and western North America using synthetic

seismogram modeling of short-period P waves recorded from several source

regions at widely separated receivers. The two models for the United States,

HWA and HWB (Wiggins & Helmberger. 1973) disagree to depths of over 400 km.

Dey-Sarkar &. Wiggins (1976) propose three varying models for areas of

northwest Canada; their model discrepancies are mostly in lithospheric thick-

ness and in the shapes of low-velocity zones. Because the data types and
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analysis are identical, these models are directly comparable and document

lateral variations within the North American continent.

For a conveniently located seismic array, comparative studies of the upper

mantle are straightforward. We can record events in the proper distance ranges

from several azimuths and process the data uniformly to obtain good estimates

of the model changes required by the data. Niazi & Anderson (1965) utilize

earthquakes from two azimuths in their data collected at the Tonto Forest

Seismological Observatory (TFSO) in Arizona. While they have insufficient data

to conduct separate analyses, the dT/dA measurements from both source areas

are consistent. Johnson (1967), also using TFSO, similarly combines multi-

azimuth data sets into one upper mantle model.

Several investigators have directly compared data collected from similar

distances but differing azimuths at a single array. England et al. (1978) contrast

P waves traveling beneath the North Atlantic and Arctic oceans to those bottom-

ing under Russia and central Europe. Ram & Mereu (1977) probe the upper

mantle in four different regions using the Gauribidanur array in southern India.

While neither study employs waveform modeling, the travel time and p-A data

from the different areas are dissimilar enough to document significant struc-

tural variations between the oceanic and continental source regions. At YKA,

Ram et al. (1978) study the lateral variations in the upper mantle to the west

and south of that northern Canadian array. Their extreme data scatter pre-

cludes strong statements about absolute velocities, yet once again the two data

groups are quantitatively different, indicating lateral velocity gradients within

the mantle.
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The addition of waveform modeling techniques to the dense array data

should aid in identification and documentation of even subtle structural varia-

tions between regions. SCARLET, the Caltech-U.S. Geological Survey southern

California seismic network, is conveniently located between two seismically

active zones on the Pacific Ocean rim. Paper 1 reports on the "results of modeling

upper mantle velocities beneath the Gulf of California spreading center, derived

from data recorded from Mexican events. Velocities under the ridge are low

compared with other models to depths of 350 km. Significant seismic activity

also occurs to the northwest of southern California at appropriate distances for

upper mantle study, from northern California to Alaska. Energy from these

events arriving at SCARLET is especially sensitive to velocities under the Cas-

cade Range of Oregon and Washington and the Juan de Fuca plate (Figure la).

The Cascade Range represents Quaternary volcanism related to subduction, and

the Juan de Fuca plate is very young oceanic crust. The disparities between this

tectonically active region and the Gulf of California, therefore, may not be as

dramatic as those between continental shields and ocean basins.

We utilize the wide aperture and digital recording capability of SCARLET to

collect the large amounts of data required to constrain discrepancies in veloci-

ties for these two areas. The data from the northeast Pacific are processed

exactly as those from Mexico. We construct T-A andp-A curves and then model

the waveforms with GCA. the spreading center model, as a starting point; the

only differences between the final Cascades model and GCA are demanded by the

travel time and waveform data. The resolvability of variations between the data

sets is tested with a wave field continuation technique modified for spherical

earth problems (Clayton & McMechan, 1981; Walck & Clayton, 1984). The high-
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quality, dense array data are essential to definitively establish the existence of

lateral variations in upper mantle structure between the Gulf of California and

the Cascade Range.

Tectonic setting

The study area is one of complex, recent tectonism. We utilize seismic

events from northern California around the northeast Pacific Ocean margin to

Alaska and the Aleutian trench (see Figure la). The earthquakes at distances of

more than 30°, as in Paper I. are used for calibrating the array for receiver

corrections. These events have rays which bottom under the Pacific plate; their

mechanisms are probably thrusts, and they range in depth from shallow to

intermediate (the deepest is 123 km; see Table 1). Moving clockwise around the

Pacific rim, the next source area is the Queen Charlotte Island fault zone, which

moves in a right-lateral sense at 5.5 cm/yr and is the most active fault system

in western Canada (Milne et al., 1978; Keen & Hyndman, 1979). Tobin & Sykes

(1968), Chandra (1974) and Milne et al. (1978) present fault-plane solutions for

earthquakes in this locale which support dextral movement on the Queen Char-

lotte Island system. The complex Juan de Fuca Ridge system, which separates

the Pacific and Juan de Fuca plates, intersects the Queen Charlotte Island fault

zone west of Vancouver Island (e. g., Chandra, 1974). Focal mechanisms in this

region are indicative of north-south compression with dominantly shallow,

strike-slip movement (Rogers, 1979). The actual Juan de Fuca Ridge has few

earthquakes, but to the south, the Blanco Fracture Zone and Gorda ridge are

very active, with right-lateral strike slip and normal events, respectively. In the
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Puget Sound region, most seismicity is shallow, but some events are as deep as

50-60 km (Chandra, 1974); mechanisms are consistent with north-south

compression (Crosson, 1972).

Rays from earthquakes closer than 30° turn below the very young oceanic

Juan de Fuca plate and also the Cascade Range of Oregon and Washington (Fig-

ure la). Located along the western coast of the United States, the silicic vol-

canoes of the Cascades are the result of recent, slow subduction of young oce-

anic material. Whether or not subduction is continuing at present is the subject

of active debate (Crosson, 1972; Riddihough, 1978; Keen &: Hyndman, 1979; Hea-

ton & Kanamori, 1983).

Low Pn velocities are typical at the Juan de Fuca Ridge (Shor et al., 1968;

Hyndman & Rogers, 1981; Cheung & Clowes, 1981). Davis et al. (1976) observe

normal, 8.3 km/s, Pn speeds across the ridge, while Keen & Barrett (1971)

present evidence for P-wave anisotropy in this region.

A number of workers have investigated the crustal and uppermost mantle

structure of the Pacific Northwest-Vancouver Island region; a complex, laterally

varying picture has emerged. Tatel & Tuve (1955) were the first to document

the thin (< 20 km) crust in the Oregon Coast Ranges. Their results are substan-

tiated and refined by Dehlinger et al. (1965), Berg et al. (1966) and Johnson &

Couch (1970). Dehlinger et al. (1965) and McCollom & Crosson (1975) measure

laterally varying Pn velocities for the Cascades region: low values for the

western Cascades and higher velocities to the east. Along the Oregon Cascades

axis, the crust is thick (44 km), with high crustal velocities and a low Pn velocity

value of 7.7 km/s (Leaver et al., 1984).



- B -

Near Puget Sound, the uppermost mantle structure includes a high velocity

anomaly dipping eastward at about 50° (McKenzie & Julian. 1971; Crosson, 1972).

Pn velocities are also low here; 7.8 km/s is a typical value (Crosson. 1972; McCol-

lom & Crosson. 1975; Crosson. 1976).

The crustal structure beneath Vancouver Island is problematic: White &:

Savage's (1965) refraction study proposes an anomalously thick crust of 50 km

for the island. A Pn velocity of 7.8 km/s is observed from body waves (Berry &

Forsyth, 1975); this value is consistent with surface wave data as well (Wickens.

1977). Riddihough (1979) points out that the observed gravity data are

incongruous with such a great crustal thickness. More recent work by Langston

and an associate (Langston, 1977, 1981; Langston & Blum, 1977) and McMechan &

Spence (1983) proposes a zone of negative velocity gradient at 40-50 km depth

for the entire region. Such a low-velocity zone filled with rocks of lithospheric

density (Riddihough, 1979) would explain both the seismic and gravity data.

The complicated, laterally varying shallow structure of the northeast Pacific

margin raises questions concerning the nature of the deeper structure under

the subducted plate. In the next section we present data pertinent to this prob-

lem and attempt to characterize the upper mantle structure in terms of a com-

parison to the Gulf of California.

The data set

Records of 22 events at distances of 6° to 42° from southern California

comprise the data for study of the upper mantle in the Pacific Northwest (Table

1). In Figure la, the epicenters of these events are shown, along with 2° arcs
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drawn about the midpoints of the appropriate great circle paths. The Mexican

data presented in Paper I have a narrow azimuthal range (Figure Ib); the experi-

mental geometry for these northern events is not as favorable. The eight cali-

bration earthquakes from Alaska and the Aleutian trench are at a slightly

different azimuth from the 14 events closer than 30°, and their rays turn under

the Pacific plate rather than below the Juan de Fuca plate or the continent. The

total azimuthal range for the data is 70°. The nearer earthquakes are shallow,

with reported depths ranging from 10-32 km. Body wave magnitudes vary from

4.8 to 6.4. These events occurred between September, 1977 and March, 1980

and were recorded by an average of 117 stations at SCARLET with the digital,

triggered CEDAR system (Johnson, 1979). Approximately 40 records from each

earthquake are included in the final data analysis.

The 22 events yield 853 seismograms covering a 36° range in a rather

uneven fashion. While there is an abundance of data from 6.5° to 13°, we have

few records from 13° to 16°, and those data are relatively poor in quality. The

active seismic zone west of Vancouver Island generates large amounts of high-

quality data recorded at distances of 16" to 22°. Figure 2 contains two examples

of waveforms from events in this distance range. The relative quiescence of the

Queen Charlotte-Fairweather fault system for M ̂  5 events during the experi-

mental time period results in poor coverage from 23°-29°, with a large data gap

from 26.5° to 29°.

The distribution of seismograms with distance for the northeast Pacific data

is quite dissimilar to the Gulf of California data set of Paper I. A record section

of 290 seismograms from eight northeast Pacific events (Figure 3) provides an

overall view of the northern data. For the Mexican events, we have sparse data
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near 18°, which is the most densely sampled range for the northern azimuth.

For the Cascade data the poor coverage is farther out at 23°-29°; at those

ranges the spreading center has excellent data (compare Figure 4, the southern

record section, with Figure 3).

The disparities in seismogram distribution between the two data sets have

important implications for the attainable structural resolution for each region.

For the Gulf of California, the ample data beyond 20° place tight bounds on

structure below 400 km depth and also on the velocity gradient above the 400
f

km discontinuity, but not on the size and shape of the discontinuity itself. The

discontinuous data available beyond 23° from Canadian events do little to con-

strain the structure of the 660 km discontinuity for that azimuth. Abundant

records from 16° to 22°, however, assist in detailed modeling of the 400 km

discontinuity below the Cascade Range. Even though these two data sets have

their strengths at different ranges, the data overlap sufficiently to compare and

contrast the travel times, dT/dA measurements and waveforms and hence the

velocity structures of the two regions.

Receiver corrections

To construct station corrections for the northeast Pacific data, we utilize

the empirical method outlined in Paper I. Least-squares planes are fit to travel

times from eight Alaskan earthquakes (30° < A < 42°) (Figure la, Table 1) and

the residuals averaged to compute corrections. These calibration events define

a larger azimuthal swath (30°) than the corresponding Mexican events (8°) and

the results are not as consistent. We choose to retain 86 stations with standard

deviations of less than 0.15 s as compared to 96 stations and 0.10 s for the
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southern data. Our assumption of constant corrections for the entire azimuth

band is less certain considering the fanlike (70° azimuthal range) epicenter dis-

tribution shown in Figure la. As a result, the record alignment obtained after

application of the corrections is not as smooth as for the other data set.

We can again compare the empirical corrections to Raikes' (1980) tele-

seismic P-residuals from the same source area (Figure 5). Despite the lack of

adjustments for station elevation and crustal structure in our receiver correc-

tions, the qualitative agreement between the two sets of residuals is striking.

Both exhibit early arrivals in a broad east-west zone near 34° N latitude as well

as late arrivals in the Imperial Valley, northern Mojave Desert and near the

intersection of the Garlock and San Andreas faults.

Travel times

After corrections for ellipticity, earthquake depth and receiver structure,

the 22 events generate 1068 usable travel times; 152 of these are secondary

arrivals. Figure 6 displays the travel time data, both with and without distance

dependent baseline shifts devised to to eliminate the effects of source location

and origin time. Superimposed on Figure 6b are travel time curves for two

models: GCA'-GCA, the composite spreading center model of Paper I, and CJF.

the Cascades-Juan de Fuca model described below.

Close inspection of the two sets of travel time data reveals systematic

regional disparities in T(A). Waves from earthquakes offshore northern Califor-

nia and Oregon arrive earlier than the corresponding events in the Gulf of Cali-

fornia for distances up to 12°. This discrepancy is not surprising, since the

northern travel path is beneath the western margin of the continent instead of
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an actively spreading ridge. First arrival times in the range 15"-23° are similar

for both groups within the data scatter, but the time separation of the AB and

CD branches at 16° is significantly greater for the Vancouver Island events.

The nature of the observable secondary arrivals in the 18°-23° distance

range (Figure 6), however, is quite different from the Mexico data. The data

described in Paper I do not contain identifiable arrivals from the AB travel time

branch past 20° and exhibit strong phases representing the EF branch

(reflection from the 660 km discontinuity) from. 20° to 24°. Only a few times

from one event north of Vancouver Island can be identified as part of the EF

branch, in contrast, a number of observations of the AB, or back branch of the

400 km discontinuity, are seen to at least 21° with dubious arrivals extending to

23°. The predominance in the northeast Pacific records of the AB branch over

the EF arrivals at these distances signifies a real, quantifiable change in struc-

ture between the spreading center and the Cascade Range region at depth.

Due to relatively poor data from 23°-26° and none at all from 26°-29°. we

cannot make observations of the back branch (CD) of the 660 km discontinuity

for the northern model area. First arrivals beyond 25° are clearly earlier from

Alaska than from Central America.

Ray parameter measurements

We obtain 40 estimates of j>(A) for the northeast Pacific utilizing the stan-

dard processing discussed in Paper I (Table 2); nine of these measurements are

for secondary phases. A number of events are too close to SCARLET for the

plane wave assumption to be valid, and the least-squares routine yields unreli-

able results. For these earthquakes, graphical estimates of dT/dA are made
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(Table 2). The ray parameter values for these events are only approximate and

are more uncertain than the plane-fit estimates for the more distant events.

The data and corresponding curves for CJF and GCA are presented in Figure

7. The above-discussed data distribution with distance is also reflected in the

j>-A measurements. While we can calculate only a single dT/dA value for the for-

ward (EF) branch of the 660 km discontinuity, several estimates are available

for the back (AB) branch of the 400 km velocity break. Unfortunately, these

measurements are quite scattered, probably due to complex source functions

for several events which make accurate picking of secondary phases prob-

lematic.

In general, the j>(A) data for the northern azimuth are more scattered than

the equivalent spreading center values, precluding unambiguous interpretations

of lateral variations based on dT/dA data alone. Clear distinctions between the

two data groups exist only for first arrivals closer than 17° and the AB secondary

phases near 21". The />-A curve for CJF fits these two subsets of the data better

than GCA, but in an overall sense p (A) for GCA and CJF (Figure 7) are quite simi-

lar. We do not rely heavily on the ray parameter data to make distinctions

between the two, but will instead explore relative amplitude differences with

waveform modeling, and attempt to compare each entire data set at once using

wave field continuation.
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Relative amplitude patterns

The seismograms from 6° to 13° are extremely complicated, often high-

frequency (relative to 1 Hz) and contain no identifiable, consistent later phases

in the P-wave train. While we do not observe reflections from the 400 km discon-

tinuity in this distance range; the one event located 13°-15° from SCARLET is

particularly poor and we cannot definitely state that CD arrivals from the 400

km discontinuity do not appear at these distances because of the messy

records. In contrast, excellent secondary arrival data exist at 13°-15° for the

southern data from an earthquake on the Rivera Fracture Zone (see Figure 13

for a subset of these data).

Beginning at 16°, larger events from the Vancouver Island region provide

more useful waveform data. Although the source signatures are often complex,

the relative amplitude observations are stable for 16°-22°. At 16°, the first

arrival is extremely weak and is followed by a strong reflection from the 400 km

discontinuity about 5 s later (Figures 2, 8a). The time separation decreases with

increasing distance and waveform complexity (Figure 8b) until the AB-CD cross-

over occurs at 18.4°. By a distance of 20°, the AB branch arrives 3 s after the

first wave (Figure Be), and is at least as large as the refracted arrival. It is

difficult to determine the exact cutoff distance for the AB branch due to the

complicated P-wave codas; a good estimate is 22°-23° (Figure 8d). We see no

evidence for a reflection from the 660 km discontinuity at 20° in any of five

available record sections. This pattern is in contrast to the southern data for

this distance range. At 16°, the ridge data have a weak first arrival, but the

strong second phase is only 3 s behind the first, and the crossover point occurs

closer to 18°, although there is a gap in the data precisely at that point. Middle
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America Trench events at distances of 20° or more feature no AB arrival at all

and a strong EF reflection from the 660 km discontinuity starting at 19°.

First arrivals from the northern azimuth are reasonably strong from 20° to

21.5°. then start to weaken relative to the arrival from the 650 km discontinuity

(Figure Be) which is observed for only one event (No. 9 in Table 1) at distances of

21.8° to 23°. Beyond 23°, we cannot identify any obvious secondary arrivals in

the northern data, possibly due to poor data quality (23°-26°) or a total absence

of records (26°-29°).

These new relative amplitude patterns are similar to those observed for the

Gulf of California except in the critical distance range of 18°-23°, where the

northeast Pacific records are dominated by the back branch arrival from the

400 km discontinuity and the Mexico data shows mainly the forward branch of

the 660 km discontinuity. In the next section, we model the Cascade Range data

set using synthetic seismograms and compare the result to GCA and the spread-

ing center data.

Model description

Model CJF (Figure 9, Table 3) satisfies the data described above: travel

times, apparent velocities and waveforms. Because we used GCA as the starting

point in the modeling process, it is shown along with CJF for comparison. The

differences between the two are not drastic but they are significant and resolv-

able. In essence, CJF is intermediate in character between GCA and previously

published models for tectonically active continental regions such as Burdick &

Helmberger's (1978) T7 or Burdick's (1981) T9; it features somewhat higher
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velocities with a less severe gradient near 200 km and does not coincide with

GCA until a depth of 350 km. These results have important implications for the

:T depth extent of lateral heterogeneities in the mantle.

J| Travel times are dominant in constructing the topmost portion of CJF. The

'/ crust and uppermost mantle in the study area is extremely complicated and has

large lateral variations in Moho depth and Pn velocity. Figure 10 shows several

of the proposed models for shallow structure in the Cascades-Vancouver Island

region. Strong variations certainly exist within this oceanic-continental transi-

~ tion zone.

_j Several refraction studies have established a crust of less than 20 km thick-

I- ness in the Oregon Coast Range (Tatel & Tuve, 1955; Berg et al., 1966; Shor et al.,

1968), but thickening to the east in the Cascades (Dehlinger et al., 1965; Johnson

-^ &: Couch, 1970; Leaver et al., 1984). The observed Pn velocities correlate with

,: the crustal thickness. Dehlinger et al. (1965) and McCollom & Crosson (1975)

document very low values of «7.7 km/s west of the Cascades, increasing to

'"' about 8 km/s to the east. To further complicate matters, Langston (1977)

decides on the basis of converted teleseismic phases that a shallow low velocity

zone (to 45 km depth) lies below a 20 km thick upper crust at Corvallis, Oregon.

The anomalous structure at Vancouver Island adds still more complexity to

£ the problem of selecting an appropriate topmost structure for CJF. The absence
*
T?

of Pn first arrivals on a 360 km north-south refraction line led White & Savage

(1965) to propose a 50 km, two layer crust for the island. McMechan & Spence

(1983) also find a layer of intermediate velocity («7.0 km/s) at 15.5 km depth,

but agree with Langston (1981) that there might be a shallow low-velocity zone

as well, with a total crustal thickness of less than 40 km. Riddihough (1979)



- 17-

infers crustal sections of 10 km offshore, 20 km beneath the Coast Ranges and

30-40 km farther inland. As an average, we use the Coast Ranges crust of 20 km

with the crustal velocity values of Langston (1977). Our Pn velocity of 7.9 km/s

- is a reasonable average of the widely varying observations for the region. We

-» construct a low-velocity zone that is slightly deeper than Langston's (1981)

feature; its 45-80 km depth extent and 7.5 km/s velocity are constrained only by

travel times from 8°-15°. The lid thickness and minimum velocity in the low-

velocity zone trade off; we choose a lid thickness of 25 km. From 81 to 175 km,

CJF's gradient is adjusted to fit first arrival times near 15°. Beyond some simple

averaging of available data on local crustal structure, then, the topmost 200 km
4^

of CJF are determined from travel time data alone.

The first step in the comparative waveform modeling process is to generate

GCA synthetic seismograms for selected data profiles from the northern

azimuth. We have already discussed the topmost portion of the final northern

model which clearly differs from GCA. Because at least the uppermost 100 km of

GCA is not appropriate for the northeast Pacific, waveforms predicted from the

southern model are not expected to match the northern data well at short dis-

tances. At distances greater than 16", though, comparisons are useful in deter-

mining the changes necessary to fit the Cascade Range data.

In Figure 11, records from an event near Vancouver Island (No. 19 in Table

1) are compared to synthetic profiles for GCA and CJF. The amplitudes, timing

and waveshapes for GCA do not match the data throughout the profile. Near 16",

GCA's first arrival (AB branch) is too large and the secondary phase (CD branch)

is too small and arrives much too early. Some problems in the relative timing

between these two branches could be due to the disparate uppermost mantle
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velocities, but close inspection of Figure 11 demonstrates that the entire 400 km

discontinuity triplication for GCA occurs too close in distance. The GCA first

arrival crossover occurs near 18° instead of the observed 18.4° and at 20°. the

AB arrival of GCA (second phase) is both too small and too late. These basic

features are confirmed with data from several other events in the same vicinity.

Figure 12 displays the only northern data section which contains any reli-

able arrivals from the 660 km discontinuity. This event unfortunately exhibits

large-amplitude coda arrivals which are problematic to interpret, and the AB

branch is difficult to identify near 21°. Even though this record section is not of

the same high quality as corresponding data from Mexico, comparisons to GCA

are still revealing. Event 9 (Figure 12, Table 1) has weak first arrivals until about

21°, in contrast to GCA. The EF arrival from the lower discontinuity emerges

from the noise at about 21.8°, but it is very clear in GCA synthetics as early as

20°. Furthermore, GCA's 660 km reflection is late relative to the first arrivals

from 21.8°-23°.

The lack of good waveform data from northeast Pacific events at distances

of 23°-28° prevents further assessment of the suitability of GCA's velocities near

660 km depth for the Juan de Fuca region. The differences in first arrival travel

times beyond 25° between the two data sets, however, requires slightly faster

velocities in the north below 700 km.

Some relatively small adjustments to GCA alter the predicted waveforms so

they are much more consistent with the Cascade Range data. After restructur-

ing the top 100 km of CJF as outlined above, we need to increase the absolute

velocities from 100-300 km depth to agree with first arrival travel time data

from 8°-13°. As in GCA, we have incorporated a region of very slight positive
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velocity gradient from 175-250 km to try to reduce the size of the first arriving

~~ waves near 16°. This effort is again not totally successful (Figures lla, c),
1

ff perhaps due to depth-varying attenuation. A sharp gradient similar to the

feature from 225-390 km in GCA exists in CJF, but only deeper than 350 km; this

change is in accordance with CJF's higher velocities from 100-300 km and the

observation of the AB travel time branch to 22°. In order to increase the time

separation between the first arrival and the reflected phase from 16° to 18°, and

to shift the crossover point from 18° to 18.4°, the 390 km discontinuity of GCA

•was placed at 410 km and decreased in size to a 3.8% velocity jump. The effects

of these structural changes above 450 km are visible in the CJF synthetic record

J section computed for a sample event covering 18"-20° (Figure lie).

An improved fit to the EF branch data near 22° (Figure 12) is achieved by

raising the lower discontinuity to 650 km and decreasing the gradient immedi-

ately below that velocity jump to make later arrivals less prominent from 20°-

21°. A slightly stronger velocity gradient below 700 km matches the faster

travel times from Alaskan events from 29°-42°. Figure 3 compares the overall

character of the northern data to the CJF synthetics.

"While GCA obviously does not satisfy data from Vancouver Island events

recorded at Caltech, to establish the validity of the model changes it is vital to

. demonstrate that CJF is not representative of Gulf of California structure. To do

this, we compare synthetic seismogram sections computed with CJF for some of

the Mexican events modeled in Paper I. Figure 13 presents data from an earth-

quake on the Rivera Fracture Zone (No. 2 of Paper I; see Figure Ib for location)

recorded at distances of 13° to 17° with both GCA and CJF synthetics plotted

below the appropriate traces. CJF does not match these data well. The first
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arrival amplitudes are too large for 13°-15° and the reflections from the 410 km

— discontinuity occur too late for the entire section.
.

^| Two southern events in the distance range 18°-23° confirm that CJF is inap-

propriate in the corresponding 300-700 km depth range. Figure 14 displays the

-»
data of event 14 of Paper I, an event inland from the Middle America Trench,

with the corresponding synthetic records. For this deeper (96 km) earthquake,

the extended AB branch CJF predicts is not compatible with observed seismo-

grams from 18°-20°. CJF's slightly shallower 650 km discontinuity produces

secondary arrivals which are too early in the 21°-22° range. The record section

and synthetic seismograms for a shallower Mexican event (No. 24 in Paper I)

(Figure 15) exhibit the same basic patterns at slightly shifted distances.

The more subtle structural changes near 660 km are reflected in

correspondingly smaller changes in CJF synthetic records for 26°-30° (Figure

16). Here the reduced gradient below 650 km in CJF results in a relatively larger

first arrival from 26°-28° (these are unconnected distances for an 80 km deep

event) and also small changes in timing. These synthetic waveforms are not as

satisfactory as GCA's predictions. The above examples demonstrate that while

GCA does not satisfy the data from the north, neither does CJF fit the southern

records. The structural differences between the two regions are resolvable and

real. The disparities are subtle, however, and may not be noticeable at longer

periods. Grand &: Helmberger (1984) derive a single model for the entire west

coast of North America for long-period shear waves. Both of the study areas dis-

cussed here lie within the region of their single model TNA and are presently

tectonically active. The greater resolving power of the short-period data assist

in defining significant structural variations between the Gulf of California and
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the Cascade Range to depths of 350 km.

Wave field continuation comparison

Wave field continuation inversion (Clayton & McMechan, 1981) is useful for

comparative structural studies because of its properties: all data are retained

in the inversion and the time resolution of the original data transforms directly

to depth resolution in the slowness-depth regime, resulting in a realistic meas-

ure of model uncertainty. While the original formulation is for flat-earth

geometry, this technique adapts readily to spherical earth problems and is well

suited for upper mantle studies (Walck & Clayton, 1984).

The inversion consists of two successive linear transformations, the slant

stack and downward continuation. Because we work with the entire wave field,

not isolated seismograms, dense spatial data sampling is crucial. The slant-

stacked data form an image in the ray parameter-intercept time (p.r) domain

(e.g., McMechan & Ottolini, 1980). This image is downward continued with a

specified velocity model. Because the continuation requires an input model, the

inversion is iterative. Convergence is achieved when the resulting slowness-

depth field coincides with the input velocities. Therefore this method is also

useful for testing the suitability of existing models for a data set; we can con-

tinue the data with any proposed model and check for input-output coincidence.

Comparison of different data sets to each other in an objective, global fashion is

also easy in the (p, T) domain. Here we utilize wave field continuation to test

CJF's appropriateness for the data set as a whole, to compare the northeast

Pacific data with the Gulf of California data, and to test the resolvability of the
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differences between GCA and CJF.

We slant stacked and downward continued both the CJF synthetic seismo-

gram section (Figure 4b) and a preprocessed version of the data shown in Figure

4a (Figure 17) to obtain the slant stacks of Figure 18. The data preprocessing

comprises three steps: cosine tapering after the first 15 s of signal, a clamped

frequency deconvolution to achieve more similar source wavelets, and resam-

pling to a distance interval of 0.1°. We use 70 p values and 1575 T points, with

increments of 0.1 s/deg and 0.08 s, respectively. Also shown in Figure 18 is a

stack of a 10-event subset of the Gulf of California data, also preprocessed. The

Mexican data are of generally higher quality, as can be seen through comparison

of the stacked wave fields; the tau image is much more distinct in Figure 18c

than 18b.

Inspection of Figure 18b reveals the strengths and weaknesses of the Cas-

cade Range data set. The large data gap from 26° to 29° causes artifacts to

appear in the stack and is responsible for the fuzzy image and low stack ampli-

tudes from 9.3 to 10.7 s/deg, the same region where the synthetic stack (Figure

18a) exhibits high amplitudes. The image is good from 10.7-11.5 s/deg, indicat-

ing reliable information about the 410 km discontinuity, but degrades for higher

ray parameters because of messy records at close ranges. The stack of the

southern data (Figure 18c) is quite different in character. These data produce a

clean stack for p < 11.5 s/deg, with little information available for higher ray

parameters (corresponding to depths shallower than 350 km).

As expected, downward continuation of the deconvolved CJF synthetic data

with CJF returns a slowness-depth image equivalent to CJF (Figure 19a). Simi-

larly, continuation of the northern data with CJF yields an image quite
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consistent with the input model, although data at higher p are inconclusive (Fig-

ure 19b). Continuation of the same data with a smooth velocity distribution con-

taining no discontinuities, such as the Herrin (1968) model (Figure 19c), yields

an image that is not coincident with the starting velocities. Thus the Herrin

model is not appropriate for these data.

One way of directly comparing two data sets is to continue both groups of

data with a single model, quite distinct from the real structure, and see if the

two outcomes coincide. Because GCA and CJF are most different above 350 km

depth, in slowness-depth space they are disparate mostly for p > 11.5 s/deg.

Unfortunately, poor data quality at large ray parameter values is evident for

both of our data stacks, precluding useful comparison with this approach for

these data.

The slant stacks do confirm, however, that the southern data match GCA

better than CJF. Because the slant stack of the northern data is poor, we

assume that CJF, derived through travel time, dT/dA and synthetic modeling

techniques, is appropriate for the northeast Pacific data. Then we compare the

stacked southern data to stacked synthetics for both models. Figure 20

presents the same data as in Figure 18c in "reduced T" format, in which details

of curvature and stack amplitude are more obvious. Figures 20c and d are the

same stacked data with the minimum loci of GCA and CJF images, respectively,

superimposed. The peaks of the stack line up well with the line for GCA (Figure

20c) but are less coincident for CJF (Figure 20d), particularly for ray parame-

ters of 9.2-9.5 s/deg and 12.8-13.0 s/deg. The shift of the lower discontinuity

from 660 to 650 km depth causes the shift in peaks near 9 s/deg; the Gulf of Cal-

ifornia data are consistent with the 660 km depth. The mismatch at higher
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values of p is indicative of a different shallow structure beneath the northeast

Pacific.

Discussion

At present, the most complete way to obtain a high-resolution view of upper

mantle velocity structure is through body-wave modeling constrained with

dT/dA and travel time measurements, preferably from a seismic array. This

type of analysis is limited to data from regions within 30° of the recording sta-

tions unless multiple bounce phases such as PP or SS are utilized.

The easiest way to identify true structural variation is to compare velocity

profiles constructed with the same data types and analysis techniques. At SCAR-

LET, the close proximity of two major seismic zones along the eastern Pacific

margin facilitates comparative study of the two regions. By analyzing two

different groups of seisrnograms in precisely the same manner, we can describe

exactly which features of each data set do not coincide. Earlier workers have

successfully compared short-period structure between areas using waveform

modeling at regional stations (e.g., Wiggins & Helmberger, 1973; Dey-Sarkar &

Wiggins, 1976). Others utilized array-derived travel time and ray parameter esti-

mates but used no relative amplitude constraints (e.g., Ram & Mereu, 1977; Ram

et al., 1978; England et al., 1978). With the exception of Rademacher et al.

(1983) who employ waveform modeling in study of Greek earthquake data gath-

ered at the 13-station German broadband array GRF, the work presented here is

the first to combine the waveform techniques of wave field continuation and syn-

thetic seismograrn modeling with traditional array methods in determination of
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upper mantle structure.

The two data sets representing the Gulf of California and the Cascade Range

underwent identical data processing. Still, several factors contribute to uncer-

tainties in each model. We have attempted to minimize the effects of source

mislocations with baseline shifts to the travel time data. These location errors

can still have significant effect, however, if a poorly located event is important in

the waveform modeling process. Another problem is the assumption of lateral

homogeneity along our data "profiles". Tectonic regimes change with distance

in both directions from SCARLET. With its wider azimuthal range, the northeast

Pacific data are probably more contaminated by lateral heterogeneity effects

than the ridge data. We have also ignored the possibility of attenuation varia-

tions with depth in the modeling process. Since we cannot uniquely distinguish

between effects caused by attenuation and structure, the relationship of the

velocities to the Q structure is ambiguous for both data sets. Further, if the

attenuation structure varies laterally between the two regions, erroneous

interpretations about lateral velocity variations could be made. Finally,

SCARLET'S teleseismic receiver structure varies with azimuth. The separate

sets of empirical station corrections are designed to eliminate receiver struc-

ture bias. Since there is a 40" azimuthal difference between the Alaskan cali-

bration events and the Vancouver Island earthquakes, however, the northern

corrections (Figure 5) may not be totally appropriate.

When comparing our two data sets and the resultant models, it is important

to remember the differences in data quantity, quality and distance distribution

between the two record groups. Below the 660 km discontinuity, for example,

the gradients of the two models diverge. Many travel time and dT/dA
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measurements for distances up to 40° as well as waveform modeling from 23°-

28" constrain GCA's structure in this depth range. In contrast, CJF's velocities

are not well known near the lower discontinuity because of a lack of data from

26°-29°. Waves from northern earthquakes beyond 29°, though, arrive earlier

than their southern counterparts, necessitating the steeper velocity gradient

for CJF below 700 km.

Closer to the surface, GCA's lower discontinuity is at 660 km and its depth is

well constrained, a 10 km upward adjustment to a 650 km discontinuity for CJF

is suggested by waveform data near 22°. That CJF's 650 km velocity jump is not

compatible with the Mexican data is shown by wave field continuation.

The upper discontinuity lies at 390 km in GCA and 410 km for CJF. At these

depths, the more complete northeast Pacific data From 16° to 20° establish the

depth to CJF's 410 km discontinuity with more certainty than GCA's 390 velocity

break. An unfortunate data gap near 18° for the southern data adds to the

uncertainty of the exact depth of GCA's upper discontinuity because the first-

arrival crossover point is not observed directly. Relative timing of arrivals from

13°-15° do not pin down the absolute depth to the discontinuity beneath the

spreading center; the first arrivals at those distances are very dependent on

poorly known shallow structure. Attempts to move the upper discontinuity in

GCA to 410 km while retaining the steep velocity gradient above it were not suc-

cessful. We could not match relative arrival times, absolute arrival times and

relative amplitudes simultaneously with the deeper velocity jump.

Both data sets have many records from 20°-23°; the character of the AB

branch arrival in this distance range controls the velocity gradient from about

300-400 km, and the first arrivals (CD branch) prescribe the structure in the
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transition zone. We do not require any changes from 400-650 km depth: both

sets of data have amazingly similar first-arrival travel times. The data do

demand a different gradient above 400 km for the Cascade Range. Clear obser-

vations of the AB branch to 21° from Vancouver Island events are in direct con-

trast to null-observations for the south past 19° for nine" events. Perhaps

because the AB branch cuts off so early, the forward branch (EF) reflection of

the 660 km discontinuity is very prominent in the Mexico data as early as 19°

(see Figures 14, 15), while it is not seen from the north until nearly 22° (Figure

12). This repeatable contrast between the two groups of data supports GCA's

steep gradient from 225-390 km and CJF's less severe rate of increase to 350

km.

Changes between the models above 200 km are largely dictated by the

regional uppermost mantle structure and also by the travel times for A < 15°.

For GCA, velocities must be low to 200 km depth to accommodate the large gra-

dient above the upper discontinuity. Since the gradient in CJF is more

moderate, the low-velocity zone and speeds below 100 km are constructed to fit

the travel times at close distances. These structures are by no means unique.

Better control on velocities at asthenospheric depths would improve the entire

velocity profile for each region.

The wave field continuation experiments emphasize the resolution capabili-

ties of each data set as a function of ray parameter. For this technique to be

valuable, we need dense, very high-quality data. The method has potential as a

basis for model and data set comparison and in quantifying data resolution.

Now that we have documented the changes between CJF and GCA in detail, it

is instructive to compare them to a model designed for the entire western
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United States, T7 (Burdick & Helmberger, 1978). Figure 21a displays all three

velocity profiles, and Figure 21b displays the cumulative one-way vertical travel

times of T7, GCA and CJF. The velocity-depth plot reveals that CJF is more simi-

lar to T7 than GCA, especially below 200 km. Above that depth, the relatively

unconstrained structure varies widely from model to model. CJF is actually

intermediate between T7 and GCA between 200 and 350 km, having slightly lower

velocities than T7. The one-way travel times illustrates CJF's median character

very nicely (Figure 21b). Relative to the Herrin model, all three regional models

are similar below 400 km depth. Above 240 km, GCA's slower velocities result in

very positive residual values, while CJF's times flatten with respect to Herrin. as

do T7's residuals. The various low-velocity zone shapes affect the near-surface

cumulative times.

That CJF is intermediate in character between continental and ridge models

is not surprising because it represents a transition region between tectonically

active continent and very young oceanic material. Dey-Sarkar & Wiggins (1976)

model western Canada upper mantle structure, including some data near the

continental margin for A < 22°. The AB travel time branch for their model WCA

extends to 24°, but is constrained only by data sensitive to structure inland,

beneath the main continent. Their observations for A < 20° are in good agree-

ment with our records for the Cascade region. Similarly, Burdick &; Helmberger

(1978) observe the AB branch in the western United States to 24°. but their data

are gathered much farther inland than our records.

In the oceanic regime, Ram & Mereu's (1977) work with Indian Ocean data

recorded at the Gauribidanur seismic array confirm the analysis of Paper I:

they do not observe the AB branch past a distance of 19°. England et al.'s (1978)
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oceanic model NAT predicts an AB branch that extends beyond 20°, but the

travel paths used for the model vary widely in azimuth and sample regions

under much older oceanic lithosphere.

Significant evidence exists for the variation of velocity gradient between 200

and 400 km as a function of tectonic regime. For some shield areas (e.g., King &

Calcagnile, 1976) the gradient is very shallow; it is more moderate beneath tec-

tonically active continental areas and older oceanic material (Fukao, 1977; Bur-

dick & Helmberger, 1978; England et al.. 1978) and very steep beneath at least

one oceanic ridge (Paper I). The transition from a young oceanic plate to a con-

tinent, represented by CJF, has structure intermediate to the young ocean and

young continent regimes. From 200-350 km the gradient is moderate and from

350-400 km the velocities increase very quickly. On a global scale, results from

the assimilation of many different upper models for differing tectonic settings

support lateral heterogeneities in the mantle to depths close to the 400 km

discontinuity; these heterogeneities are functions of surface tectonic regimes.
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Figure Captions

Figure 1. a) Locations of the 22 earthquakes used in this paper. Dots show the

epicenters of the eight calibration events; stars denote the 14 events closer than

30°. The short lines are 2° arcs drawn around the midpoints of the great circle

paths to Pasadena for all events. Notice that the calibration events bottom

beneath the Pacific Ocean, while for the other events, rays turn near the con-

tinental margin, b) Same information for the 29 events from Paper I. Notice the

narrower azimuthal distribution of events.

Figure 2. Record sections for two events near Vancouver Island, a) Event 19 in

Table 1. A weak first phase is followed by the strong reflection from the 400 km

discontinuity from 16°-18°. Past 19°, the AB branch is now a secondary arrival

moving out with distance. It is still very strong at 20°. b) Event 8 in Table 1.

The same general patterns are visible.

Figure 3. a) Composite record section of 290 seismograms from, eight events

spanning 9°-39.5°. Inclusion of all available records does not eliminate the gaps

in the data seen here. Records are corrected for event depth and receiver

structure and are low-pass filtered with a 5 Hz high frequency roll off. Each

trace has the same maximum amplitude, b) Synthetic record section made with

model CJF (Table 3); 301 seismograms are shown.

Figure 4. a) Data record section of 10 events representing Gulf of California

upper mantle structure. The section spans 9°-40°; 373 records are shown, b)
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GCA synthetic record section on the same scale. Source wavelets vary with dis-

tance. Again 301 seismograms comprise the section.

Figure 5. a) Empirical station corrections in contour format. These values

include the effects of station elevation and shallow structure. Note the wide,

east-west band of negative values near 34° latitude becoming more positive to

the north and south, b) P residuals of the same source area relative to station

GSC (Raikes, 1978). Adjustments for elevation, sediments and Moho variation

have been made. The same pattern is observed; much more negative residuals

are found just north of the Salton Sea with more positive delays both south and

north. The contour interval is 0.25 s.

Figure 6. Reduced travel time data, a) The 1068 times (152 secondary arrivals)

are plotted with only depth and receiver corrections applied. Note the large

scatter for A < 15°. b) The same data after distance-varying baseline shifts are

applied. The model derived from these data, CJF (see Table 3, Figure 9), is

superimposed along with the Gulf of California model (see (c)). Notice that

GCA'-GCA is too slow for A < 12°. 14° < A < 18° and A > 30°. c) Models GCA' and

GCA. The combined model GCA'-GCA consists of GCA1 for the top 150 km under-

lain by GCA. GCA1 represents the axial region of the Gulf of California while GCA

is more appropriate for adjacent continental areas.

Figure 7. Ray parameter measurements for the northeast Pacific data,

displayed with the corresponding curves for both CJF and GCA. These data are

not very useful in distinguishing between the two models but are generally more
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consistent with CJF.

Figure 8. Relative amplitude patterns for the northern data, a) Near 18°, the

first arrival (AB branch) is very weak, while the reflection from the 400 km

discontinuity is quite strong, b) At 18° the CD branch has moved in closer to the

first arrival but not yet crossed it. c) At 20°, the arrow indicates the approxi-

mate onset of the AB branch, now a large secondary phase, d) The larger phase

5 s behind the first break on this noisy record may be the AB arrival, still com-

parable in size to the CD branch at 21°. e) The record at 23° shows the

reflection from the 650 km discontinuity 2 s behind the first-arriving CD branch.

This relatively poor-quality record is typical of observations in this distance

range from Queen Charlotte Island Fault events.

Figure 9. Models CJF and GCA. CJF is derived for the Cascade Ranges data set

using GCA (Paper I) as a starting model. The important differences between the

two are in the absolute velocities and gradients above 400 km; also, CJF's veloci-

ties are higher below 800 km.

Figure 10. Comparison of five crustal models for the northwest United States-

Vancouver Island region. There is little agreement between the studies.

Figure 11. Observed and synthetic record sections for event 19 of Table 1. a)

Data. Only a subset of the usable data are shown, b) GCA synthetics. From 16°-

18° the first arrival is too large and the second phase too early. Past 19°, the

second arrival (AB branch) is too late and decays in amplitude too quickly.
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indicating that GCA's large gradient above 390 km is too severe for the northern

data, c) CJF synthetics. Relative amplitudes and timing are better than GCA at

all distances.

Figure 12. Data and synthetic sections for event 9 (Table 1). a) Data. This

earthquake has large-amplitude arrivals 8-9 s after the first arrival; the first 5-7

s are important for the modeling. First arrivals are weak from 19°-20°; the AB

branch is not obvious in this distance range. Initial phases are stronger past

21°. Near 22°, the reflection from the 650 km discontinuity (EF branch) is visi-

ble as a second arrival, b) GCA synthetic section. Before 22°, the first arrival

and the EF branch are both too strong. The 650 km reflection is a little late at

all observed distances, c) CJF synthetic section. The first-arrival relative ampli-

tudes are correct. CJF's slightly shallower 650 km discontinuity matches the

data better from 22°-23°.

Figure 13. Comparison of GCA and CJF for Gulf of California data from 13°-17°

(event 2 of Paper I). For each set of three traces, the data is topmost, GCA is in

the middle and CJF is plotted lowest. The reflection from CJF's 410 km discon-

tinuity arrives much too late at all distances. CJF's first-arrival amplitude is

also much too large. GCA's relative amplitudes and timing match the data

better.

Figure 14. GCA and CJF compared to Mexican event 14 (Paper 1). The distances

shown here are not corrected for the event depth of 96 km. See Figure 13 for

format explanation. From 18.5°-19.5°, CJF predicts a very large AB arrival that
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is not in the data, while GCA's sharp gradient above 390 km cuts off that branch

before 19° for this event depth. Beyond 20°, CJF's slightly shallower 650 km

discontinuity results in small timing errors.

Figure 15. GCA and CJF compared to Mexican event 24 (Paper I). This earth-

quakes' depth is 52 km; distances are not corrected. See Figure 13 for format.

As in Figure 14, we see that the large AB branch produced by CJF up to 20.5° is

not present in the data. CJF's more moderate gradient above 350 km is not

sufficient for the southern data set.

Figure 16. GCA and CJF compared to the 80 km deep event 27 of Paper I. As

before, distances are uncorrected for source depth; see Figure 13 for format.

Due to the smaller differences between GCA and CJF below 450 km, the synthet-

ics for the two models are similar from 25°-30°. For this distance range, the

model differences are constrained by travel times, not these subtle waveform

variations. GCA's amplitude ratios from 25°-27° do fit this record section

better.

Figure 17. Northeast Pacific preprocessed record section. Nine events from 7°

to 42° have been cosine tapered, deconvolved, and resampled to a 0.1° distance

interval; there are 269 seismograms. Notice that the overall data quality is

poorer than that of the southern data (Figure 4).

Figure 18. Slant stacks, a) CJF deconvolved synthetics, b) Northeast Pacific

processed data. Note the linear artifacts at high ray parameters, c) gulf of
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California processed data. The image is much clearer for lower p than in (b).

The stack loses power for p > 11.5 s/deg.

Figure 19. Downward continued data, a) CJF synthetics continued with CJF. The

model and "data" agree. A plotting artifact makes the model line appear lower

than the image, b) Northern data continued with CJF. The agreement is satisfac-

tory, c) Northern data continued with the Herrin (1968) velocities. Notice that

the image falls consistently below the line; the Herrin model is not appropriate

for these data.

Figure 20. Reduced T slant stacks. These (p,r) diagrams have been replotted

relative to an arbitrary line: r = -21.667 p + 130. a) Gulf of California data, b)

GCA synthetics. A line drawn at the onset of the image, c) Gulf of California data

with the line of part b superimposed. The data and synthetics match well, d)

Gulf of California data with a similar line for the CJF synthetic stack superim-

posed. The agreement is not as good, particularly from 9.4-9.8 s/deg and 12.7-

13.0 s/deg. The differences are subtle, however.

Figure 21. a) Comparison of CJF, GCA and T7 (Burdick & Helmberger, 1978).

Between 200 and 350 km depth. CJF's velocity gradient is similar to T7's but the

absolute velocities are lower, b) Cumulative one-way vertical travel times for

these three models.



Table 1
Epicentral Information

Event
No.

1
2
3
4
5
6
7
e
9

10
11
12
13
14
15
16
17
IB
19
20
21
22»

Day

19
25
12
01
24
20
17
02
11
13
21
11
14
28
03
07
01
03
25
26
06
13

Date
Ho.

Jul.
May
Apr.
Sep.
Mar.
Hay
Aug.
Jun.
Jul.
Har.
Jun.
Jul.
Har.
Feb.
Feb.
Apr.
Aug.
Mar.
Jul.
Jul.
Oct.
Feb.

Origin Time
Year

1978
1979
1978
1979
1980
1979
1978
1978
1978
1979
1979
1979
1979
1979
1979
1979
1979
1980
1978
1977
1978
1979

Hr.

09
16
03
05
03
08
16
20
02
12
17
12
15
21
09
06
10
14
23
15
21
05

Hin.

32
45
42
27
59
14
52
41
55
00
03
28
13
27
58
18
50
17
30
22
26
34

S.

08.6
27.3
03.5
17.6
51.3
00.1
28.4
43.7
01.6
17.2
17.5
02.9
32.4
06.1
16.1
33.0
26.6
04.6
50.9
18.5
31.8
25.9

Lat.
deg.

5646.14
5236.66
5625.38
5358.68
5258.14
5638.82
5953.10
50 15.54
52 45.90
49 59.22
51 19.36
55 19.38
5006.48
6038.52
40 53.40
41 59.22
41 01.86
4036.00
5018.18
44 14.64
4027.12
5527.18

Long.
deg.

-151 38.82
-16701.14
-15241,
-165 12.
-16740.
-156 43.
-15331.
-12741.
-13206.
-12941.
-130 18.
-134 57.
-12942.

46
24
20
50
92
28
24
28
90
90
96

-141 35.58
-12424.
-12648.
-127 13.
-12501.
-127 34.
-12857.
-12435.
-15709.

78
96
26
98
62
72
22
72

Depth
km

33.
23.
14.
69.
33.
71.

123.
21.
10.
10.
10.
10.
10.
10.
28.
15.
15.
5.

11
15.
32.
33.

Mag.
flfr

5.7
6.0
6.0
5.8
6.2
6.4
5.7
5.1
5.4
5.4
5.0
5.1
5.3
6.4
5.2
5.5
5.3
5.0
5.3
5.1
4.8
5.9

*This event is used only for the receiver corrections of Figure 5.
Source: U. S. Geological Survey P. D. E. Monthly Listings



Table 2

dT/dA Data

Event
No.

1
2
3
4
5
6
7
8

9

10

11

12
13

14

15

16

17

18

19

20

21
22

A
deg.

33.096
39.909
33.024
39.175
40.318
35.461
35.703
17.450
19.084
17.485
21.406
20.922
22.449
17.424
19.317
17.381
19.569
19.812
20.127
24.685
19.412
19.468
30.094
31.852
8.007
10.152
10.563
12.690
9.226
11.438
7.203
9.435
17.422
19.125
17.392
19.283
13.308
15.512
9.693
35.062

P
s/deg.

8.71
8.22
8.71
8.24
8.15
8.53
8.52
12.57
10.51
10.92
10.40
12.51
9.56
11.99
10.49
10.90
11.52
10.97
12.16
9.16
10.98
11.48
8.98
8.72
12.68
13.42
13.94
13.63
14.23
13.28
14.68
13.95
12.48
10.54
11.10
11.91
12.95
12.74
13.42
8.57

RMS
Error, s

.088

.096

.073

.061

.081

.060

.096

.422

.099

.480

.266

.427

.266

.346

.256

.388

.370

.386

.303

.265

.323

.283

.180

.164
**
**
**
*»
**
**
**
**
.500
.240
.420
.365
**

.189
**

.077

Arrival
Type

F
F
F
TJl^

F
F
F
F
F
L
F
L
L
F
F
L
L
F
L
F
F
L
F
F
F
F
F
F
F
F
F
F
F
F
L
L
F
F
F
F

No. of
Stations

48
52
30
68
59
78
50
20
9
19
30
26
11
20
21
19
12
45
36
23
19
19
25
30
8
12
13
7
12
9
9
13
23
19
22
12
10
9
10
57

** For these events, dT/dA is calculated graphically.
F denotes first arrivals, L later phases.



Table 3

Model CJF

Depth
km

0.
10.
11.
19.
20.
45.
46.
80.
81.

100.
125.
150.
175.
200.
225.
250.

Velocity
km/s

5.500
5.500
6.700
6.700
7.900
7.900
7.500
7.500
7.900
7.952
8.025
8.100
8.175
8.225
8.275
8.325

Depth
km

275.
300.
325.
350.
375.
400.
410.
411.
450.
538.
620.
650.
651.
700.
800.
970.

Velocity
km/s

8,400
8.475
8.560
8.660
8.760
8.860
8.900
9.250
9.476
9.800

10.060
10.360
10.650
10.750
11.100
11.400
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