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ABSTRACT

An implicit, finite volume code for solving two-dlmensional, compressible turbu-

lent flows is described. Second-order upwind differencing of the inviscid terms of

the equations is used to enhance stability and accuracy. A diagonal form of the

implicit algorithm is used to improve efficiency. Several zero- and two-equation

turbulence models are incorporated to study their impact on overall flow-modeling

accuracy. Applications to several external and internal flows are discussed.

I. INTRODUCTION

A computer code for solving the time-dependent, Reynolds-averaged, compressible

Navier-Stokes equations is described. The code solves the two-dimensional (2-D) planar

and axisymmetric equations in arbitrary, curvilinear coordinates utilizing the finite

volume approach. The numerical algorithm (refs. i and 2) is an approximately factored

ADI method based on the work of Beam and Warming (ref. 3) and Briley and McDonald

(ref. 4). It utilizes second-order upwind differencing techniques for the inviscid

terms of the equations and a diagonal form of the implicit operators. These proce-

dures are designed to enhance the overall accuracy, stability, and efficiency of the

algorithm. Rapid convergence to steady-state solutions is achieved through the use

of spatially varying time steps. A variety of inviscid and viscous boundary condi-

tions are incorporated. These include subsonic and supersonic inflow and outflow

conditions, which make use of the method of characteristics, and inviscid and viscous

solid-wall boundary conditions.

Various turbulence models are integrated into the code to compare, evaluate, and

ultimately improve model performance (ref. 5). The models include a zero-equatlon

(Cebeci-Smith) model and three two-equation models. The models use the procedure of

integration to the wall where no-slip conditions at a solid surface are used.

Although in an early stage of development, the option of using wall functions (or

law-of-the-wall boundary conditions) in place of no-sllp conditions is also included.

In addition to the above features, the code uses a self-contained, algebraic,

grid-generatlon routine, a special data-loading system designed to facilitate implicit



integration across interior mesh boundaries, a restart capability, and several types

of input, output, and plotting routines.

In the following discussion, we open with a description of the theoretical basis

of the numerical methods and turbulence models. We then discuss several features of

the code which includes a summary of subroutines. Finally, sample results of invis-

cid and viscous calculations are presented.

2. THEORETICAL BACKGROUND

2.1 Governing Equations

The basic equations governing the flow of a viscous compressible fluid are the

Navier-Stokes equations. These equations, expressed in terms of a stationary two-

dimensional, curvilinear coordinate system and utilizing vector-dyadlc notation, are

written in strong conservation form as follows:

u_tU + _ ._ffi 0

= = Ip , = T

jI¢0E+ P) • u +

_ffi_' +8"' , _ = _,n

in these equations, _ and n are the computational coordinates, t is the time,

_t = _/_t, _ = _/3_ are partial derivatives, and the summation convention is used

on the repeated subscript _ = _,_. The computational coordinates are related to

Cartesian coordinates through the coordinate transformation

(I)

x ffix(_,B) , y = y(_,B) (2)

The geometric variables in equation (i) are the differential volume element u

(actually an area in 2-D) and the surface element vectors _ (actually line elements

in 2-D), which are defined below.

r

u = x_y n - xnY _

= 3S_y _Yn

o + +

(3)
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where _ and _ are unit Cartesian base vectors and x_ = a_x, x n = _nx, etc. (see

fig. I). An important property of the surface vectors is the metric identity

+ -0 (4)

which permits _ to be taken either inside or outside the derivatives in operations

involving the gradient operator 7, i.e.,

i _[ o, _f i ÷_o f u _ u.... _S_ o f (5)

where the symbol o represents any vector product operator.

The physical variables appearing in equation (i) are the density p, the fluid

÷ _/2 the specificvelocity vector _ = _u + _v, the total specific energy E = e + u • ,

internal energy e, and the pressure p. The variables U and_ are the fluid-state

vector and flux tensor (or dyadic), respectively. The flux tensor is split into

inviscid and viscous components _' andS". The tensors , r, and q appearing in

_" are, respectively, the unit tensor, the viscous stress tensor, and the heat flux

vector, which may be written (using Stokes hypothesis) as

-9-

= + -

DV [_ _)_B 2 I__(_) + (_ -_ _ •

= -_e Ve = - -6- 8_8 e

(6)

where _@ is the conjugate of _u. For laminar flows, _v = _ and _e = y_/Pr are

the molecular viscosity and conductivity coefficients, where Pr = Cp_/K is the

Prandtl number. It is assumed that the fluid is a perfect gas governed by the equa-

tion of state

p = (y - l)pe = pc2/y , e = CvT , 'y = Cp/C v
(7)

where y is the ratio of specific heats, c is the sound speed, and T is

temperature.

For turbulent flows, the basic equations are time- or ensemble-averaged using

mass-weighted averaging. The resulting equations are called the Reyn01ds-averaged

Navier-Stokes equations and can be cast in a form essentially identical with equa-

tion (i). The stress tensor and heat-flux vector in this case contain turbulent con-

tributions involving two- and three-point correlations, in addition to molecular
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The turbulent correlations are unknown and must be approximated by acontributions.

mathematical turbulence model. The turbulence models used in the code are called

eddy-viscosity models and are represented in equations (6) by expressing _v and _e

in terms of an eddy-viscosity function BT, i.e.,

_v = _ + _T ' _e = Y _ + (8)

where PrT is a turbulent Prandtl number.

The dot product of the area vector _ and the flux tensor _ appearing in

equation (i) is the flux vector which can be expressed in terms of inviscld and vis-

I °i]
a " ( _+q

may be represented in matrix fo_ by the sum

cous contributions as follows:

F_ _ ._= F_ F_

- _ = uS_x + VS_yqa

[ I

L(oE + p)Q_

The viscous flux vector F_

(9)

E B_B_BU (i0)

8:_,n
,,= -B=8_sU = -F_

The above equations have been written explicitly for 2-D plane flow. For axi-

symmetric flow, the corresponding equations can be obtained from the 2-D forms by the

replacements

(ii)v j _..... _ +v
r U _ r

H:Jr -_v 2v _"r 3

where H is a source function to be added to the right-hand side (RHS) of the

momentum equation, _ • 3_ = Sax_mU + Say_aV

from the axis of symmetry.

V

and r = y is the radius or distance
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2.2 Finite VolumeMethod

The finite-volume technique is used to express the equations of motion in dis-

crete form. In this method, a lattice of meshpoints is generated by specifying the

Cartesian coordinates x and y as discrete functions of the computational coordi-

nates _ and _. In the discrete approximation, _ and _ are given either integer or

half integer values, and are used interchangeably with the subscripts i and j (see

fig. i). The discrete representation of the surface vectors and volume element is

given by the following formulas:

(_)i-(I/2),j = l(Yi,j+1 - Yi,J ) - _(xi,j +_ - xi,j ) "

(_)i,j-(1/2) = -i(Yi+l,J - Yi,J ) + _(Xi+l'J - xi'j)

Ui,j = (xi+l - xi)(Yj+l Yj) - (Xj+l xj)(Yi+1 - Yi ) (12)

1 , Ej ixi = _ (xi,j + xi,j+1) = _ (xi,j + Xi+l,j) , etc

In the axisymmetric case, the radial variable r = y in equations (ii) is rep-

resented as an average of the four associated points in the expression for u, and an

average of the two associated points in the expressions for _. For the planar

case, the surface vectors satisfy the numerical analog of the metric identity, equa-

tion (4). A related identity is satisfied in the axisymmetric case. This feature

leads to the important physical property of free-stream maintenance in which the dif-

ference approximation of _ • _ vanishes when p,@,_ are constant regardless of

the difference approximation for _.

In the finite-volume method the state vector is assumed to be an integrated

average over the cell volume (area). It is located at the centroid of a cell and is

This notation is frequently contracted, e.g.,
given integer subscripts, i.e., Ui, j.

Ui+l, j = Ui+ I. The surface vectors are located at cell boundaries and are given

mixed integer/half integer subscripts.

2.3 Diagonal Transformation

The Jacobian matrix of the inviscid flux vector F_ is defined by As = _F_/_U.

This notation will be shortened here by dropping the subscript _. Thus, we write
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_F'

@U _U [°°]
[(pE+ p)Q

(13)

Q =_ • _ =uS x +VSy

In the following development, considerable use will be made of the diagonal rep-

resentation of A. This is written

A = SR-IAR

A = dlag(un,Un,U n + c,u n - c)

s --I_I, _ = _/s, un = _ •

R = CNY , R-I = P-IN-IC-I

(14)

The matrix R is a similarity matrix which diagonalizes A, SA is the diagonal

matrix of eigenvalues of A, and un is the component of velocity normal to the sur-

faces defined by _. The matrix R is factored into three submatrlees which are

written

C ---

m

-c2 i

c i

-c 1

N m

i

e o

i

-u i

-v i

2E._a -XU -XV

i---I-11Il
c 2 2c 2 2c z

1 m n

C- l N_ I = x x p-Z ..
" 1 -1 "

2_ 2-2 my

2 2

i

U

v

I _2
1

X

(15)

where X = Y - i and the empty spaces in the matrices represent zeros. In the

orthogonal matrix N, the elements nx and ny are the Cartesian components of _,

i.e., _ = _n x +_ny, and _ = + jmy is a unit vector orthogonal to _ with

mx = -ny, my = nx. The component of velocity tangent to the surface _ is given by

the dot product um = u • _. Under the transformation R, the vector of conserved



variable differentials is transformed into a vector of differential Reimannvariables,

i.e., dW= RdU or

dW=

2.4 Time Differencing

"dp - c2dp"

pdum

de + pcdun

dp - pcdun

Edpu!
-=Ri

!dpvl
(16)

The basic algorithm used to solve equations (i) is an approximately factored ADI

method based on the work of Beam and Warming (ref. 3). The implicit time-differenced

equations are obtained by Taylor series expansions in t utilizing the relations

_tU = [U(t + At) - u(t)]IAt: AUIAt 
i

u(t + oat) ~ u(t) + oAu [
(Z7)f

F_(t + eat) ~ F_(t) + eA_(t)AU I
I

F_(t + eat) ~ F_(t) + 8Ba6(t)_6AU J

In these expressions AU is the incremental or delta variable, At is the time step,

and 0 is a constant (between 0.5 and 1.0). An approximate form of the expansion of

F" is used in which the viscous matrices Ba6 are frozen in time. Substitution of

the above expansions into equations (i) gives the unfactored form of the implicit

algorithm

[I + h'_(Aa - B_6_6)],AU = "h_aFaI,h = At/u , h' = Oh a,6 = _,n

where the summation is taken on both

value of 0 is normally taken to be

time differencing.

(18)

The above equation is simplified by approximately factoring the implicit, or

left-hand side (LHS) operators into _ and q operators. A further approximation

consists in discarding the off-diagonal viscous matrices, i.e., B_6 = 0, 6 # _. By

redefining Ba = B_6, 6 = _, a chain of implicit factored equations in ADI form is

obtained:

a and 6, and I is the identity matrix. The

8 = i corresponding to first-order, backward-



[I + h'_(A_ - B_)]AU* = -h(_F_ + SuFu)_

[I + h'Sq(An - BqSq)]AU AU* _ (19)
U(t + At) U(t) + AU

By suitably defining the partial derivatives in terms of spatial difference

operators, the above equations can be expressed as a system of coupled algebraic

equations which may be solved by block-tridiagonal matrix inversions. This is a

costly numerical process. A more efficient procedure, which is used in the code, is

to simplify the left-hand sides of equations (19) utilizing the diagonal transforma-

tion so that they becomeuncoupled and can be solved by scalar tridiagonal inversions.

This process results in the diagonal algorithm (ref. 6).

To develop the diagonal algorithm we write a typical memberof equations (19) by

dropping the subscripts on the matrices A and B, e.g.,

[I + h'8_(A - BS_)]AU = AUo (20)

_%eviscous matrix B is approximated by the identity matrix multiplied by the

largest eigenvalue of B, i.e.,

s )B = 91 , 9 = p-_max _v'_e (21)

By introducing the diagonal decomposition of A, i.e., A = SR-IAR, and making

the further approximation of taking A, R, S, and 9 to be locally constant (so that

they can be moved outside the partial derivatives) we obtain a diagonal, uncoupled

system of equations or the diagonal algorithm

[I + h"(A_ - 91_)]RAU = RAU o
(22)

Jh" 0AtS/O

After making a suitable specification of the spatial derivatives in terms of finite

differences, the above equations are solved recursively by scalar tridiagonal

inversions.

The approximations involved in the reduction to diagonal form diminish to some

extent the time accuracy of the algorithm (ref. 6). For example, the nonconservative

nature of the implicit operator causes some error in the propagation speeds of strong

shock waves. However, the approximations do not affect the accuracy of a steady-

state solution, which is governed by the spatial flux differencing of the right-hand

side of equations (19) and which is normally taken to be second order.



2.5 Spatial Differencing

To complete the specification of the numerical algorithm, the spatial deriva-

tives in equations (19) and (22) must be replaced by finite differences. This is

done by using central differences for the viscous terms and upwind differencing for

the inviscid terms.

Consider first the RHSexplicit flux differencing of equations (19). To main-

tain strict conservation regardless of the type of differencing used to approximate

the fluxes, the difference approximation for _F_ is written as

_F_ = (F_)i+(i/2), j - (F_)i_(z/2), j (23)

The (F$)i+(I/2), j are fluxes evaluated at the cell boundaries that must be expressed
in terms of the state vector evaluated at the cell centers, e.g., Ui_z, j, Ui, j,

Ui+z,j, etc. To simplify the notation we will drop the subscripts _ and j from

F_ in equation (23), i.e.,

_F_ = _F = Fi+(1/2 ) - Fi_(z/2 ) _ (24)

• _ I FIIFi+(llz) _i+(i12) _i+(i12) - Fi+(ll2) + i+(i/2) J

. ' is repre-(a) I_miscid flux differencing- The inviscid flux vector Fi+(i/2 )

sented in terms of a central average involving _ = _' (Ui) and _i+I = _(Ui+l) and

a dissipation function Di+(i/a):

1
Fi+(i/_)= "f[_i+(_/2)" _ +_', i+l) - l_i+(z/2)IDi+(i/2)] (25)

If Di+(l/2 ) = 0, the differencing for 85F reduces to pure second-order central

differencing.

The dissipation function is expressed in terms of special operators _, _F, and 6

that are defined as follows:

Di+(i/2 ) = [R-I(A_4_U +IAIJFU)]i+(I/2 )

(_4_U)i+(i/2) = e(_Wi+(3/2) - 6Wi-(I/2)) (26)

(_u)i+(_/2)= _wi+(z/2) - _(_wi+(3/2) + _wi_(_/2))

(_W)i+(i/2) = _Wi+(i/2 ) = Ri+(z/z)(Ui+ I - Ui)

The constants _, _, Y control the accuracy of the spatial differencing for D_F'.

Several cases are listed below.
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Spatial flux differencing options

First-order upwind _ = i , _ = 7 = 0

Second-order upwind 8 = I , _ m 7 = 1/2 _ (27)
Third-order upwind 8 = 1/3 , _ = 7 = 1/6

Second-order central 8 = free , _ = 0 , 7 = _/2

Most of the cases reported in this paper were done with the second-order upwind

option. Assuming A is constant, spatial accuracy may be checked by Taylor series

expansion of equation (24) using equations (25), (26), and (27).

To completely specify the inviscid flux differencing, the method of averaging,

i.e., computation of Ri+(i/2 ) in terms of Ui and Ui+l, must be given. The type of

averaging used here is the nonlinear averaging of Roe (refs. 7 and 8). The specific

formulas used in computing Ri+(i/2 ) and Ai+(i/2 ) are given below.

a = (Pi+l/Pi)I/z , H = E + p/p •

ui+(i/2 ) = (aui+ I + ui)/(l + a)
(28)

vi+(I/2 ) = (avi+ I + vi)/(l + a)

i) [(aHi+ I Hi)/(l (ui+(i/2)
2 2

) = - + + a) - + vi+(1/2))/2 ]o

These formulas are used with equations (15) where it is noted that the unit-vector

being obtained from _i+(I/2)' require no averaging.components nx, ny, mx, my,

(b) V'_scous flux differencing- As stated above, the viscous flux F" = _ ._"

is centrally differenced using equation (24). Explicit formulas for evaluating the
+

n_at-flux vector q at the cell boundary i + (1/2) are described below.

_i+(i/z) =-[_ (_ + Sn_e_i+(i/2) (29)

The viscosity and volume element in this expression are evaluated by central

averaging, i.e.,

1

[U]i+(i/2) = y (Ui + Ui+1) (30)

The surface vector (_)i+(I/z) is given directly by the finlte-volume construction.

The normal derivative term _$e is evaluated by

(_e)i+(i/2) = ei+ 1 - ei (31)
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The two remaining terms are cross-derivative expressions in which a special averaging

procedure is used to center known quantities at the cell face. These cross-derivatlve

terms are given below.

I
= y

I

(3_e)i+(I/2) = _ [ej+l - ej_l]i+(i/2 )

The additional elements of 4", i.e., T and T •

construction.

+ (_)j+(i/2)]i+(i/2)I

are determined by a similar

(32)

An option to use a simplified form of the Navier-Stokes equations called the

thin-layer Navier-Stokes equations is included in the code. Under this approximation

the derivatives tangential to a thin shear layer (say _) are discarded resulting in

a simplified form of the equations. Use of this option gives a reduction of about

15% of the computing time required for the full Navier-Stokes equations.

(c) Implicit differencing- The differencing of the LHS or implicit terms of

equations (22) follows a p_ttern similar to that used for the RHS or explicit terms.

That is, upwind differencing is used for inviscid first derivatives and central dif-

ferencing is used for viscous second derivatives. These differencing expressions are

given as follows:

2 " (fi fi + xi ixil- - 2 (fi+l - fi )

(33)

i _ 2fi) ]= y [li(fi+l - fi-1 ) - IliI(fi+l + fi-i

_f = wi(fi+l + fi-l - 2fi)

where 1 is one of the eigenvalues Un,Un,U n + c,u n - c, and f is a corresponding

element of the vector of differential Reimann variables, i.e., AW = RAU (see

equation (16)).

2°6 Boundary Conditions

Boundary conditions must be specified for the flux vector F_ and delta variable

AW = RAU at the physical boundaries of the mesh. Unfortunately, space does not per-

mit a detailed exposition of boundary techniques here; thus, only a brief summary will

be given. A more detailed description is given in reference i.

We will discuss first boundary conditions for the inviscid Euler equations.
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(a) Invisc_d boundary oonditio_s- The basic principle in specifying boundary

conditions for the inviscid equations comes from the method of characteristics (MOC).

This principle states that the number of conditions or variables that may be arbi-

trarily prescribed at a boundary is equal to the number of eigenvalues of A whose

signs indicate signal propagation from the boundary to the interior domain. The

remaining conditions or variables must be determined by some form of numerical extrap-

olation from the interior to the boundary. This can be done in many ways. The

method used in the code uses a set of compatibility relations associated with each

eigenvalue and derived from a locally one-dimensional approximation. These compati-

bility relations are listed below.

Ei_envalue

_+c

- c

Compatibility relations

a_p + pcl)_un

a_p - pca_u n

(34)

where s' = c/p (Y-I)/2Y is an entropy variable and un and um are the normal and

tangential components of velocity at the boundary. The compatibility relations are

or are not used at boundary depending on the signs of the eigenvalues. The procedure

is summarized below for a left boundary.

Inviscid boundary conditions

Plow state Boundar _ condition

I. Inflow, un > 0 Prescribe s',u m

2. Outflow, un < 0 Extrapolate a_(s',u m) = 0

3. Supersonic, un > c
inflow

4. Supersonic, un < -c
outflow

Prescribe p,u n

Extrapolate a_(p,u n) = 0

1 Subsonic, lunl < C Prescribe
flow

Extrapolate

(a) Prescribe normal velocity un

(b) Prescribe pressure p

(c) Prescribe total temperature

f(P,Un) = 0

a_p - pca_u n = 0

c + +
2

12



The extrapolation conditions for _w are numerically approximated by either a
first- or second-order form, i.e.,

_w = 2(wI - wB) or 3wI - Wl+I - 2wB (35)

where the indices I, I + i, and B are indicated in figure 2.
The above conditions result in the determination of a nonconservative state

vector V = (s',Um,Un,p)T at the boundary. The flux vector F_, which is required
at the boundary is constructed from V, i.e., F_ = F_(V).

Inviscid boundary conditions on the delta variables AW= RAU are determined by

a procedure similar to that described above. Details maybe found in reference I.

Boundary conditions are needed on the differences _Wi+(i/2 ) of equations (26).
The procedure presently used in the code for these terms is simple extrapolation,

i.e., _Wl_(I/2 ) = _WB = _Wl+(i/2 ) (see fig. 2). This procedure may lead to some
error, especially for inviscid flows. More rigorous conditions are described in

reference 9 but these have not yet been incorporated into the code.

(b) V_scous boundal'_] conditions- For flows in which viscous effects are impor-

tant at boundaries, the inviscld conditions described above must be modified. The

basic principle in these cases is that thevariables associated with the normal-

velocity component (i.e., the tangential velocity um and the entropy s, or tem-

perature T) may be prescribed independently of the sign of un at the boundary

(since the equations are no longer hyperbolic but parabolic). For viscous flows that

are subsonic at the boundary, the pressure and normal velocity are determined by the

same procedure used in the inviscid case.

Additional boundary conditions may also be imposed. In the code, the option of

using periodic boundary conditions (associated with airfoil "0" grids) is incorpo-

rated. In addition, a centrifugal correction to the wall pressure (determined from

the normal momentum equation) which is important for inviscid flows over highly

curved surfaces, can also be used.

2.7 Turbulence Models

At the present state of development, there is no single model that holds a

decisive advantage over all other turbulence models. For this reason several zero-

and two-equation turbulence models are integrated into the code to investigate their

impact on overall modeling accuracy and to facilitate further development. These

models are described in detail in reference 5 and only a brief summary of them will

be given here. The zero-equation model is a version of the Cebeci-Smith model

(ref. I0) and is summarized below.

13



Ca) Zero-equation model (Cebeci-Smith)-

_T = min(_TI'_To) ' PrT = 0.9
I

]aTl = p_.21_" x _I ,= laTo _'0"0168pUe(S* I_ (36)

ffi0.4yD , V I - exp(-pw  wY/26 .)

where y is the distance normal to the surface, ue is the boundary-layer edge

velocity, 6" is the kinematic displacement thickness, and the subscript w in the

expression for the damper, D, represents wall values. The above model is applicable

to smooth-wall boundary layers, and a modified form must be used for trailing edge

and wake flows (ref. 5).

(b) Two-equate.on models- Two-equation models use two additional PDEs for vari-

ables that are used to define the eddy-viscoslty function, _T" An advantage of these

models over zero-equatlon models is that they can be applied over a wide range of

flow geometries without the need for a special treatment or tailoring of an algebraic

The field equations for two-equation models can be expressed in thelength scale.

form

s 2

k _s = _ +p_s_T = C_D _ ,

(37)

where C_ and Pr s are modeling constants, k is the turbulent kinetic energy,

= e/k is the specific dissipation rate df turbulence, and e is the absolute dis-

sipation rate. The vector Hs represents a pair of turbulence source functions and

D is a damping function the details of which are given in reference 5 along with
->

C_ and Pr s. With these models, a turbulent-pressure term, (2/3)pk_ is normally

included with the viscous stress tensor T of equation (6).

The three two-equation models incorporated into the code are identified below.

Two-equation models

i. k - e

2. k - m2

3. q-_

Chien model (ref. ii): s i = k , s2 = e

Wilcox-Rubesin (ref. 12): s i = k , sz = _2

Coakley model (ref. 5): s i = _ , s2 =

14



The upwind-flux differencing procedure described earlier for the Euler equations

is extended in a straightforward manner to the convective flux of the model equations,

i.e., G_ = 0s_ • _. The implicit factored equation for s (corresponding to equa-

tions (22)) takes the (nonconservative) form

[i + bh"_ + h"(_ - _)]p&s = (p&s) o (38)

where _ = Un, and h" and _ are given as before. The term involving the parameter

b is a critically important implicit source term used to balance the explicit RHS

source term Hs. The importance and use of this term are discussed more fully in

reference 5.

The viscous no-slip boundary conditions used with the two-equation models are

k = q = 0 and _ = 0 for the k - _ model, _q_ = 0 for the q - _ model, and an

analytic BC, _ = 20_/(0.15py2), for the k - _2 model. At inviscid inflow and out-

flow boundaries these variables are treated in the same manner as s and um (see

eqs. (34) and (35)).

Optional boundary conditions using wall functions (ref. 13), or matching to the

law-of-the-wall, are also provided in the code. Compared with the conventional pro-

cedure, this procedure is applicable only for high-Reynolds-number flows (i.e., not

transitional flows) but has the advantages of requiring fewer points to resolve the

boundary layer and can lead to substantial reductions in computing time. Our experi-

ence with this procedure is limited, however, and we will show no results of its use.

2.8 Time Step Selection

For time-accurate calculations, a spatially constant time step is used. For

airfoils, the value of At chosen is &t ~ L/20c_, where L is the chord length of

the airfoil and c_ is the free-stream sound speed.

For achieving rapid convergence to a steady-state solution, a spatially varying

We define the local explicit time step in the _ direction to betime step is used.

At_ or

= • + (39)

which is the characteristic time required for an inviscid disturbance to propagate

cell at the velocity lUnl + c. Utilizing this characteristic time, twoacross a

options for a spatially varying or local time step are incorporated in the code.

They are
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Local time-step options

(a) At(_,q) = CFL • min(At_,At n)

CFL = O (5-20)

(b) nt(_,n) = CFL • max(nt_,ntn)

CFL = 0 (1-I0)

In most of the computations reported in this paper, option (a) was used with a

Courant number of CFL = 6-10.

For vlscous-flow problems at high Reynolds numbers where a finely spaced mesh is

used adjacent to solid surfaces, the above formula (option (a)) leads to very small

values of At in the neighborhood of the surface and results in slow convergence.

In these cases, the formula is modified by placing a lower bound on At, i.e.,

At > Atml n ~ L/20c_ (40)

This procedure results in a much faster convergence to steady State.

In starting a calculation from a uniform initial state, a local time step using

option (a) is normally used with CFL = i. As the iterations progress, the CFL number

is increased by a factor of i.i per step to its maximum value. For high-Reynolds-

number viscous calculations, the time-step limit of equation (39) is imposed gradually

over a period of about 50 cycles.

3. CODE ORGANIZATION AND DESCRIPTION

3.1 Summary of TURF Subroutines

The code is named TURF (turbulent upwlnd resolution of flow). A summaary of

TURF subroutines is listed in table I along with a brief description of the function

of each subroutine.

Input data (in the form of data statements) must be specified in the routines,

MAIN, MSHA, MSHB, INCA, OUTA, CPLOT, AND SPLOT. These data are extensive and will

not be discussed here. A manual explaining the code and how to set up test cases is

currently under preparation and will be available in the near future.

3.2 Grid Generation

Algebraic grid generation routines are self-contained within the code (i.e.,

MSHA and MSHB). Examples of the types of grids that can be generated are shown in

figure 3. They are basically of two types: (i) sheared parabolic and elliptic con-

formal mappings and (2) generalized H-grids where the points on two arbitrarily
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defined curves are joined by straight lines. Spacing functions using uniform, expo-

nential, and cubic-spline spacing are used to space grid points in both coordinate

directions (SPAC). Combinations of different gridding procedures can be used to

build up composite grids such as the airfoil grid shown in figure 3(a). A routine

to compute the coordinates of NACA four-digit airfoils is also provided. For other

airfoils and shapes a general curve drawing routine (CURV) is used to generate

numerical coordinates from a set of specific input coordinates using linear or cubic-

spline interpolation. Two types of airfoil grids can be generated: C-grlds and

0-grids. To date most numerical experience has been with airfoil C-type grids.

3.3 Data Loading System and Vectorization

A special data loading and sweep system is used (in MAIN) that is designed to

permit implicit integration across interior mesh boundaries (see fig. 4). This inte-

gration is achieved through the use of two data-array systems (or commons) called BIG

and SMALL. Each system contains the same variables (e.g., _, pu . . .) but while the

array BIG contains the data for the whole grid, the array SMALL contains the data for

a single _ or _ grid line.

below.

(a) BIG array :

(b) SMALL array:

Both array systems are one dimensional, as indicated

where IDM is the maximum dimension in the I direction.

are density RO and R, and u-momentum ROU and RU.

RO(LV), ROU(LV), . . .

LV = I + IDM * (J - i), _ = I, n = J

R(L), RU(L), . . .

L=I or J

The variables shown here

The general procedure for performing difference operations (either explicit in

RHS or implicit in LHS) along a particular _ or _ grid line is to first load the

corresponding data from the BIG array into the SMALL array. The data in the SMALL

array run sequentially while the data in the BIG array may not. Next, finite differ-

ence operations are performed on the SMALL array variables. Finally data from the

SMALL array are off-loaded back into the BIG array. In this manner a single subrou-

tine is used for differencing in either direction, which simplifies and reduces the

amount of coding required. This procedure also permits implicit integration across

internal mesh boundaries (fig. 4), thus allowing larger time steps than explicit

procedures.

Except for the scalar tridiagonal solver routine (TRX), essentially all impor-

tant DO loops in the code are vectorized on the Ames CRAY XMP computer. Work is
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currently under way to vectorize the TRXroutine (by interchanging DOloops) and it

is anticipated that when this is accomplished computing times can be reduced by a
factor of 2 to 3.

4. RESULTS

Representative results of inviscid and viscous flow calculations are shownin

figures 5-9. Thesewere steady-state calculations run with a spatially varying time

step that used, except for one case, the second-order upwind method. Computing times
on tile AmesCRAYXMPcomputer for the viscous airfoil calculations using the full

Navier-Stokes equations take 128 and 160 sec for the zero- and two-equation models,

respectively, for 500 time steps using a 160 x 50 C-mesh. Steady-state lift and

drag convergence is achieved between 200 and 400 steps. Computing times for airfoils
using the Euler equations, on a 120 x 30 mesh take 48 sec for 500 steps and converge

to a steady state in 100-300 steps.

4.1 Inviscid Flows

(a) Lifting transonic airfoil- Results of inviscid flow calculations are shown

in figures 5 and 6. Computed surface pressures for the invlscid transonic flow about

an NACA 0012 airfoil in free air are shown in figure 5. This figure compares results

obtained using the present method with those obtained from reference 14 which used

the central-differencing and flux-splitting (second-order upwind) methods. The

three methods are in basic agreement except in the neighborhood of the shock wave

where the present method shows a sharper shock capture.

Cb) Oblique shook re_ection- Figure 6 shows a calculation of a shock-reflection

problem investigated by Yee et al. (refs. 6 and 15). Figures 6(a) and 6(b) show con-

tour plots and pressure distributions using the second-order upwind method. A uni-

formly spaced 60 × 20 cell H-mesh was used in the calculations. Supersonic inflow

and outflow boundary conditions were imposed at the upstream and downstream bound-

aries, respectively, and free-slip (Un = 0) conditions were given at the lower

reflecting surface. The Rankine-Hugoniot obllque-shock relations were used to impose

conditions along the top boundary of the mesh.

Although the oblique shock wave is captured with reasonable accuracy, there is a

distinct undershoot in the pressure distribution ahead of the shock wave and a

smaller overshoot behind it. These may be essentially removed by a high resolution

option (ref. 2) in which a switch to first-order spatial differencing is done at
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locations of relative maximaand minima in the pressure distribution. Results using

this option (labeled UW211-HR)are shownin figures 6(c) and 6(d).
t

4.2 Viscous Flows

(a) Lifting transonic airfoil- Results of viscous turbulent flow calculations

are shown in figures 7-9. Transonic calculations of an RAE 2822 airfoil are compared

with experimental measurements (ref. 16) in figure 7. The calculations were done at

the experimental geometric angle of attack and nominal Mach number and do not account

for wind-tunnel-wall interference effects.

The meshes used in the transonic airfoil calculations were 120 x 50 (coarse) and

160 x 50 (fine) C-grids (see fig. 3(a)). The mesh points were exponentially spaced

away from the airfoil surface and the cell spacing adjacent to the surface corre-

sponded to a y+ of 0.8. About 23 mesh points were contained in the boundary layer,

and the outer boundary was placed at i0 chord lengths from the airfoil. The cell

spacings in the streamwise direction over the central part of the airfoil were

Ax/c = 0.036 and 0.024 for the coarse and fine meshes, respectively, with finer

spacings used at the leading and trailing edges.

Boundary conditions for the airfoil calculations were as follows: no-slip veloc-

ity conditions at the airfoil surface, constant total enthalpy, entropy and tangential

velocity component (um) around the outer C part of the mesh, and constant (free-

stream) statlc-pressure conditions along the vertical back (outflow) boundary.

Computed Mach contours for the RAE airfoil, which illustrate the flow geometry

and indicate overall computational quality, are shown in figure 7(a). Computed

pressure distributions are compared with experimental measurements in figure 7(b).

The computations were done with the q - _ two-equation model and include results

using both the coarse- and flne-mesh systems. Pressures obtained using the various

other turbulence models showed very little difference from the pressures obtained

with the q - _ model. Almost identical results were achieved using the coarse- and

fine-mesh systems, except in the region of the shock wave where small differences can

be observed.

Skin-frictlon results are compared in figure 7(c). Since the computed results

using the coarse mesh were very similar to those obtained with the fine mesh, only

results obtained with the fine mesh are shown. For the zero-equatlon model, the

boundary layer was assumed to be turbulent starting at the leading edge. The q -

two-equation model predicts (natural) transition at an x/c = 0.05. The other two

models indicate fully turbulent boundary layers starting at the leading edge. Of the

two types of models tested, the zero-equation model gives the best overall prediction
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of skin friction downstreamof the shock wave. This trend in model performance is

usuallyreversed, however, for flows with extensive separation. An example of this

is given in the oblique shock boundary-layer interaction flow to be discussed shortly.

(bJ Symmetric airfoil in a channel- Calculations of the transonic flow over an

18%-thick circular arc airfoil in a channel are compared with measurements (ref. 17)

in figure 8. The shadowgraph and experimental pressure distributions of figures 8(a)

and 8(c) show the basic features of the flow -- an oblique shock-wave pattern, a thick

zone of separated flow, and nearly critical values of the pressure coefficient down-

stream of the shock wave.

The numerical grid used in these calculations was an 80 × 60 H-mesh, the middle

segment of which is shown in figure 3(b). The top mesh boundary is fitted to the

channel wall and a plane of symmetry is used so that only the flow in the upper half

of the channel need be computed. Boundary conditions at the upstream boundary were

taken as constant total enthalpy and entropy conditions. Constant pressure condi-

tions were taken at the downstream boundary. Along the top wall of the channel

inviscid free-slip conditions were used, and along the alrfoil surface viscous no-slip

conditions were used. Invlscid free-slip conditions were also used along the symme-

try plane upstream and downstream of the airfoil. The turbulence models utilized in

the calculations included standard and modified forms of the Wilcox-Rubesin k - 2

model described in references 1 and 5. The numerical scheme for computing the invis-

cid fluxes was an earlier version of the second-order central scheme reported in

reference I.

Numerical calculations of the pressure distribution along the airfoil surface

are compared with measurements in figure 8(c). A plot of computed Mach contours is

shown in figure 8(b) which may be compared with the shadowgraph of figure 8(a).

(c) Oblique shock boundary-_ayer interaction- As a final case, calculations of

an oblique shock-wave boundary-layer interaction flow are compared with experimental

measurements (ref. 18) in figure 9. The flow consists of an oblique shock wave

impinging on a turbulent boundary layer at a free-streamMach number of 2.9 and a

unit Reynolds number of 5.7 x 107 . The shock wave is sufficiently strong to cause

substantial separation with a corresponding plateau in the measured pressure distri-

butions (fig. 9(c)).

The numerical grid used in the calculations was a i00 x 50 H-mesh. Supersonic

inflow and outflow conditions were used at the upstream and downstream boundaries,

respectively, and a boundary-layer program was used to provide profiles of the state

variables at the upstream boundary. Along the top surface, boundary conditions were
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determined from the Rankine-Hugoniot conditions for oblique shock waves (in subrou-

tine SHOCK). Results using both the zero-equation Cebeci-Smith model and the two-

equation q - _ model are shown. The second-order upwind schemewas used for the

inviscid flux differencing.

ComputedMachcontoursusing the two models are shown in figures 9(a) and 9(b),

and experimental pressure measurementsare comparedwith computations in figure 9(c).

It may be seen that the zero-equatlon model significantly underpredicts the amount of

separation and the extent of upstream influence (indicated by the plateau in the

experimental pressure distribution). The use of the two-equation model substantially

improves predictions of surface pressure.

5. CONCLUDINGREMARKS

In the preceding sections we have described a code for solving the compressible

2-D and axisyr0metric Navier-Stokes equations in arbitrary curvilinear coordinates

using the finite volume approach. Important features of the code, the numerical dif-
ferencing procedures, boundary conditions, turbulent models, and time-step selection,

were discussed. In addition, the general layout and operation of the code, including

self-contained grid generation and plotting routines, were described. Finally,

applications to a representative set of invlscid and viscous flow problems were

presented.
Although muchof the code is in a final state there are several areas in which

improvements are needed. These are: (a) vectorization of the implicit operator,
(b) time-step selection and convergence acceleration, (c) improved boundary condi-

tions on the dissipation variables, _Wi+(i/2 ), of equation (26), and (d) fully checked
out law-of-the-wall boundary conditions for the turbulence models. Work in these and

other areas is proceeding.
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TABLE i .- SUMMARY OF TURF SUBROUTINES

Subr out ine Funct ion

MAIN

MSHA

MSHB

CURV

SPAC

FOIL

MTRC

CURT

MPLT

INCA

SHOCK

PROF

RHS

VISC

FLX

RBC

SORC

WALL

DELT

LHS

TRX

LBC

OUTA

MAPO

CPLOT

SPLOT

HEAD

Input data, loading and time-stepping loops

General-purpose grid generation

Airfoil grid generation

Space curves

Spacing functions

NACA 4 digit coordinates
Surface vectors and volume elements

Curvature of boundary surface

Mesh plots

Initial conditions (uniform ICs)

State behind oblique shock wave

Initial starting profiles for boundary layer

Right-hand side control and flux differencing

Molecular and turbulent viscosities

Flux vectors at interior cell boundaries

Flux vectors at external mesh boundaries

Turbulent source functions and time step

Law-of-the-wall boundary conditions

Boundary-layer thickness functions

Left-hand side control and update

Scalar tridiagonal solver

Implicit boundary conditions

Output printer plots, field data, surface data

Routine used for printer plots

Contour plots M, p,

Surface data plots Cp, Cf, _*, 8

Plot heading routine
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