brought to you by 🗓 CORE

Gr- now

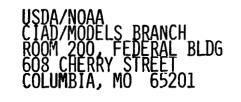
Agristars

YM-N4-04454 JSC 18906

A Joint Program for Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

JANUARY 16, 1984

BRAZIL WHEAT YIELD COVARIANCE MODEL


Yield Model Development

(E84-10103) BRAZIL WHEAT YIELD COVARIANCE MODEL (National Oceanic and Atmospheric Administration) 22 p HC A02/MF A01 CSCL 02C

SUSAN L. CALLIS CLARENCE SAKAMOTO N84-21921

Unclas G3/43 00103

Lyndon B. Johnson Space Center Houston. Texas 77058

1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.	
YM-N4-04454, JSC 18906				
4. Title and Subtitle		5. Report Date	1004	
Brazil Wheat Yield Covarian	nco Model	Januayy 16, 6. Performing Organiz		
Brazii wheat field covarian		0. renorming Organiz	ation code	
7. Author(s)		8. Performing Organiza	ation Report No.	
Susan L. Callis and Clarence	ce Sakamoto			
9. Performing Organization Name and Address	······································	10. Work Unit Nc.		
USDC/NOAA				
CIAD/Models Branch	Champy Ct	11. Contract or Grant	No.	
Room 200, Federal Bldg, 608 Columbia, MO 65201	s cherry st.			
	13. Type of Report an	d Period Covered		
12. Sponsoring Agency Name and Address National Appropriatics and Sr	ace Administration		•	
Lyndon B. Johnson Space Cer	National Aeronautics and Space Administration			
Houston, TX 77058				
15. Supplementary Notes				
16. Abstract				
	regression was developed to	astimata wheat vields f	or the	
	b Grande do Sul, Parana, and			
meteorological data of the	se three states were "pooled	" and the years 1972 to	1979 were	
used to develop the model s	· · · · · · · · · · · · · · · · · · ·			
	since there was no technolog	fical trend in the yield	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were was no technolog riables were derived from mo and average monthly maximum	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during 🛛 🚽	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var	riables were derived from mo	nthly total precipitati	s during	
these years. Predictor var monthly mean temperature, a	riables were derived from mo	nthly total precipitati temperature.	s during	
these years. Predictor var monthly mean temperature, a 17. Key Words (Suggested by Author(s))	riables were derived from mo and average monthly maximum 18. Distributio	nthly total precipitati temperature.	s during	
these years. Predictor var monthly mean temperature, a	riables were derived from mo and average monthly maximum 18. Distributio	nthly total precipitati temperature.	s during	
<pre>these years. Predictor var monthly mean temperature, a 17. Key Words (Suggested by Author(s)) Multiple regression analys</pre>	riables were derived from mo and average monthly maximum 18. Distributio	nthly total precipitati temperature.	s during	
<pre>these years. Predictor var monthly mean temperature, a 17. Key Words (Suggested by Author(s)) Multiple regression analys</pre>	riables were derived from mo and average monthly maximum 18. Distributio	nthly total precipitati temperature.	s during	
<pre>these years. Predictor var monthly mean temperature, a 17. Key Words (Suggested by Author(s)) Multiple regression analys: Predictor variables</pre>	riables were derived from mo and average monthly maximum 18. Distribution	nthly total precipitati temperature.	s during on, average	
<pre>these years. Predictor var monthly mean temperature, a 17. Key Words (Suggested by Author(s)) Multiple regression analys</pre>	riables were derived from mo and average monthly maximum 18. Distributio	nthly total precipitati temperature.	s during 🛛 🚽	

*For sele by the National Technical Information Service, Springfield, Virginia 22161

ĩ

٠

....

. ~

•

1-

.

•

۱

\$

,

:

4

.

÷

Ŋ

J

*** * ;**

ļ

¢

ł

ļ

f : . .

5

1

ar sana

ł

; ,

t

۱

ş

BRAZIL WHEAT YIELD COVAPIANCE MODEL

by

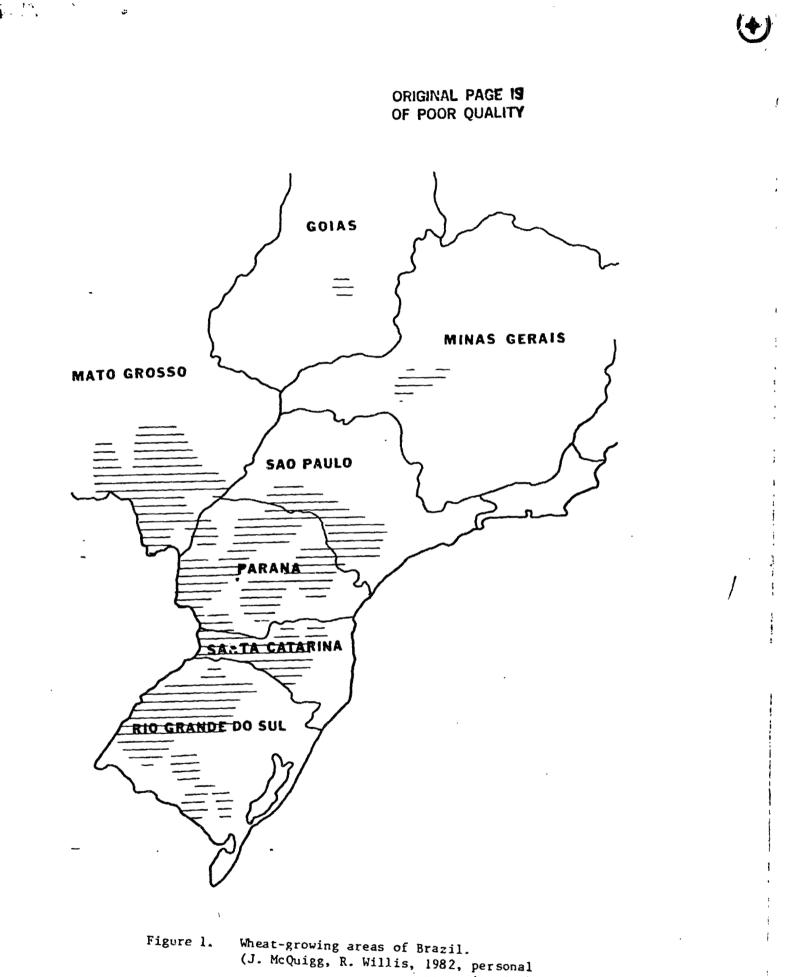
Susan L. Callis

and

Clarence Sakamoto

AISC Models Branch

January 16, 1984


INTRODUCTION

The purpose of this study was to select monthly weather variables that could be used to estimate wheat yields for the wheat growing areas of Brazil. Wheat is grown in seven states in Brazil: Rio Grande do Sul, Santa Catarina, Parana, Sao Paulo, Mato Grosso, Goias, and Minas Gerais. Rio Grande do Sul is Brazil's original wheat-producing state; until 1972 it was the country's most important production area. Increasingly, however, Parana, Mato Grosso and Sao Paulo have grown in importance. In 1977, Parana took over the number one spot. Figure 1 shows the wheat-growing areas of Brazil.

Although wheat has been grown since the sixteenth century, Brazil has yet to develop a high-quality wheat variety that produces well under the country's widely varied climatic conditions. Brazil's wheat crops have continuously been plagued with problems resulting in consistently low yields. Frosts and plant disease occasionally reduce yields. The high cost discourages use of fungicides. Expansion of acreage sown to wheat was met with cultivating problems and high costs. New land areas cultivated in wheat are highly acidic and low in fertility. Fertilizer is costly. Late-season rains frequently delay harvest and reduce yield.

The climate of the southern wheat-producing states is "subtropical humid"; rainfall is relatively abundant and well-distributed throughout the year, with slightly more rainfall in the warm months. There is usually no season of drought. The northern states are "semiarid" with a winter dry season and less total annual rainfall. Summers are hot and winters are mild. Parana and southern Sao Paulo are the northern limit for frost ocurrence.

Wheat is planted in the months of April through June and is harvested in November and December.

ĩ

. . .

communication)

METHOD

Multiple regression analysis of yield with selected agroclimatic indices was used to derive a suitable model. The index P-PET (precipitation minus potential evapotranspiration) was used in the regression equations to represent available soil moisture, monthly precipitation, and monthly maximum temperature.

The regression equation is:

$$\vec{Y} = \alpha + B_1 T X_i + B_2 R_i + B_3 (P-PET)_i + E$$

where

۸

 \hat{Y} = Estimated yield,

 α = Constant,

 B_j = Coefficients of variables j = 1-3,

 TX_i = Maximum temperature for month i,

 R_i = Total precipitation for month i,

 $(P-PET)_i = Precipitation minus PET for month i, and$

E = Unexplained error.

In developing the model, various procedures of the Statistical Analysis System (SAS Institute, Inc., 1979) were used. The procedures used and the operations performed with each are summarized in the Appendix. The selected model had the highest R^2 and included variables that were significant at the 10 per cent level and agronomically meaningful.

DATA

The Brazil crop data were obtained from the Foreign Agricultural Service (Sam Ruff, Personal Communication, 1982). The data was recorded with year of yield as year of harvest, so the weather influencing the crop occurred during year - 1. Meteorological data from 1972 through 1977 were used to model because there is no apparent trend in the yield data during this period. Furthermore, 1977 represented the latest available data. Table 1 lists the stations used to derive the meteorological data sets for each state. Figure 2 shows the location of each station.

PROCEDURES

Since Rio Grande do Sul's meteorological data has the longest period of record, initial models were developed for this state alone. Various weather variables were tried in regression equations in many different combinations. The results were not good. Several different trend, were tried with different regression models, but none were significant at the 10 per cent level. From historical accounts, it is believed that some sort of trend of increased yield began in 1962 because of increased use of fertilizer and more adaptable varieties of wheat. Yet the yield data did not indicate this. It was decided to model for years 1972-1979 for which it was believed no trend existed. Eliminating years of data created the problem of fewer degrees of freedom. However, by combining data for the states of Rio Grande do Sul, Parana, and Santa Catarina, a covariance model could be devloped.

يە بېر

Variables used in the regression equations for the covariance model, included "dummy variables" for Parana and Santa Catarina. The "dummy variables" adjust the contributions to yield of both states to a base yield which, in this case, is Rio Grande do Sul's yield. The "dummy variable" for Parana was not significant at the 10 per cent level in the final model. The coefficient for Santa Catarina's "dummy variable" is negative, indicating that its yield is below that of the norm set by Rio Grande do Sul.

STATE	METEOROLOGICAL STATION	WMO NUMBER
Mato Grosso	Campo Grande	83611
	Ponta Pora	83702
	Pres Prudente	83716
Parana	Londrina	83766
	Santa Branca	83810
	Curitiba	83842
	Porto Uniao	83864
Rio Grande do Sul	Ijui	83805
	Sao Borja	83901
	Passo Fundo	83914
	Julio de Castilhas	83935
	Santa Maria	83936
	Sao Gabriel	83957
	Bage	83980
Santa Catarina	Porto Uniao	83864
	Vacaria	83918
	Sao Joaquim	83920
Sao Paulo	Pres Prudente	83716
	Bauru	83722
	Jau	83723
	Tiete	83777
	Ataliba Leonel	83803
	Tatui	83816

Table 1. Meteorological Stations Used to Derive Data Sets for the Brazil Wheat Model.

5

-

37.4.4K

. .

-

Figure 2. Location of Meteorological Stations Used to Derive Data Sets for the Brazil Wheat Model.

6

رمور موجد 🚓

The following is the selected model:

DUM	Dummy variable to adjust Santa Catarina's yield
TM7	July Mean Temperature
P-PET8	August P-PET
SP-PET8	Squared August P-PET
P-PET9	September P-PET

RDFN11 Deviation from normal of November precipitation

Too high temperatures in July and too much rainfall in November both reduce yield. The negative coefficient for the linear term P-PET8 suggests that in August excess precipitation above demand, PET8, is damaging to yield. This is reasonable in Brazil when in August the crop is in the tillering stage. The quadratic term indicates that increased yield is favorable at some level when PET is higher than precipitation. However, one is cautioned not to extend this interpretation beyond the limits of the data base used. The statistics of the selected model are summarized in Table 2.

The same variables were used in regression equations for only the two states of Rio Grance do Sul and Santa Catarina. The problem encountered was that models with agronomically reasonable variables had too low an R²; models with acceptable R² had too many variables for the number of degrees of freedom. Finally, modeling was attempted for the northern states of Mato Grosso and Sao Paulo. Overlapping plots of weather variables versus yield were made for both states. From these plots, it was determined that modeling for a combination of data for these two states would not be acceptable; their climates are too different. Next, reasonable weather variables were tried in regression for both states separately. No suitable models were derived. For information, plots of yields for both states are shown in Figure 3.

TEST RESULTS

A jackknife test was run on the selected model. In this test, a year was eliminated from the crop data and the model was used to predict that year's yield. This process was done for each successive year beginning with 197?. The test had to be run separately on each state. The results are printed on Tables 3 through 5 and plotted on Figures 4 through 6.

þ

11

APPENDIX

Definition of Variables

P-PET, precipitation minus potential evapotranspiration, is used a measure of the amount of moisture available for plant growth. Potential evapotranspiration is determined by the procedure developed by Thornthwaite (1948). It requires only temperature:

$$\mathsf{PET} = \left(\frac{10\mathsf{T}}{\mathsf{I}}\right)^{\mathsf{a}}$$

where I = heat index, which is the sum of the 12 monthly indices i,

$$i = \left(\frac{I}{5}\right)^{1.5/2}$$

e (A.s.

T = monthly temperature in °C, and

a = an empirical exponent 6.75 x $10^{-7}I^3$ - 7.71 x $10^{-5}I^2$ + 1.79 x $10^{-2}I$ + 0.49.

The duration of daylight is used to adjust potential erapotranspiration as a portion of 12 hours.

Statistical Analysis System Procedures Used

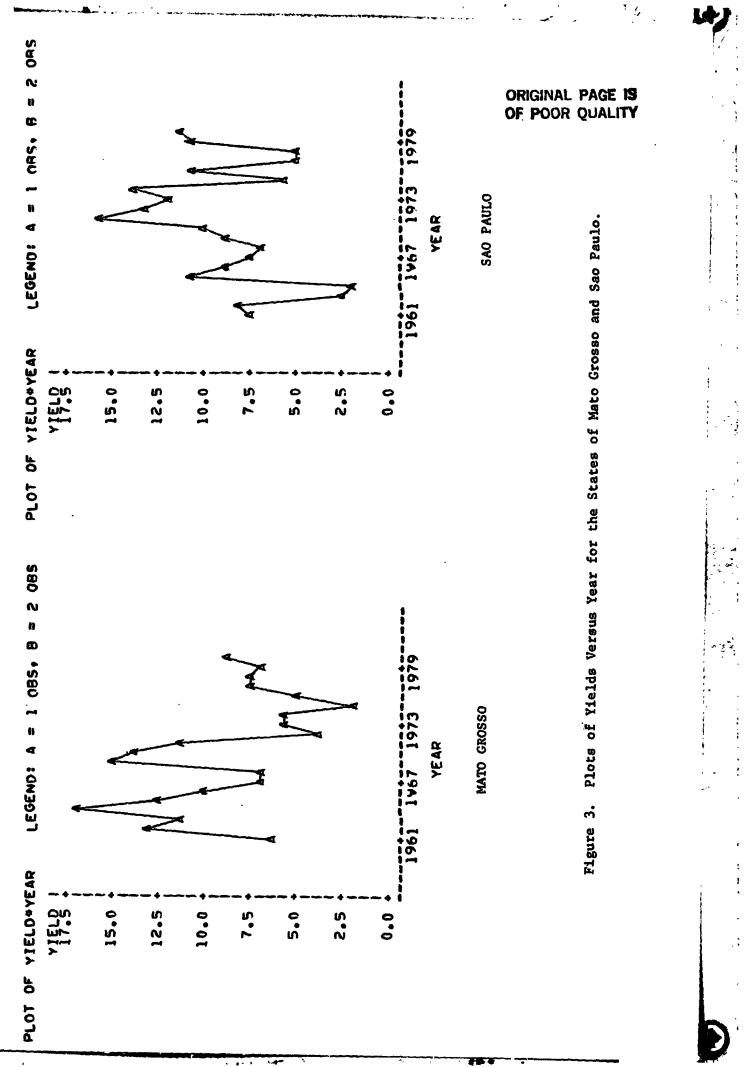
24 T A M

PROC CORR	Computes correlation coefficients between variables, including Pearson product-moment and weighted product-moment correlation.
PROC PLOT	Graphs one variable against another, producing a printer plot.
PROC STEPWISE	Provides five methods for stepwise regression. Stepwise is useful when selecting variables to be included in a regression model from a collection of independent variables.
PROC STEPWISE FORWARD	Begins by finding the one-variable model that produces the highest R ² . For each of the other independent variables, FORWARD calculates F-statistics reflecting the con- tribution to the model if the variable were to be included.

PROC STEPWISE BACKWARD Begins ty calculating statistics for a model including all the indepedent variables. The variables are deleted from the model one by one until all the remaining variables produce F-statistics significant at the .10 level.

PROC STEPWISE STEPWISE The stepwise method is a modification of the forward selection technique, differing in that variables already in the model do not necessarily stay there. After a variable is added (as in the forward selection method) the stepwise method looks at all the variables already included in the model and deletes any variable that does not produce an F-statistic significant at the .10 level. Only after this check is made and the necessary deletions accomplished can another variable be added to the model.

PROC STEPWISE MAXR (Maximum R² improvement) Unlike the three techniques above, this method does not settle on a single method. Instead it looks for the "best" two-variable model, the "best" three variable model, and so forth.


PROC PETM Uses latitude and mean monthly temperature to calculate Thornthwaite's potential evepotranspiration for each month.

> **ء** يَ ر

PROC ZINDEX Uses monthly PET's, precipitation, SS (beginning moisture in surface layer), AWCS (available water capacity in surface layer), SU (beginning moisture in the underlying layer), and AWCU (available water capacity in the underlying layer) to calculate Palmer's soil moisture budget, drought index Z, ET, and ET.

, **(**

-1

23 **1.5**5

ł

0.66192865 C(P) = SUM OF SQUARES 127.2110/023 164.9713/977 192.18245000 STD FHWOR 1.45414184		
ПЕ SUM OF SOUMUES 17 17 17 17 17 192,18245000 В VALUE STD ЕЖИЛ Catarina) -4, 20,22435 1,45414184	7.0000000	
17 17 17 10/023 17 164 9713/97 23 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 194	MEAN SOUARE	F PROH>F
H VALUE STD Емиля T 27.91471003 1.45414184 43 2atarina) -4.79052435 1.45414184 43	2].20]84504 3.82]845¤7	5.55 0.0n24
27.91×71003 Catarina) -4.30×22435 1.45414144 43	TYPE II SS	F PROR>F
	54320431 28045116	39 0.00.0 0.00.3
-0.0001621431 0.000000038 21 0.000016214 0.00000000000000000000000000000000000	44000 40000 40000 40000 40000 4000000	559 52 000000000000000000000000000000000

ORIGINAL PAGE IS OF POOR QUALITY

÷ ...

١

۶. .

÷

i

į !

ļ

Statistics of Brazil Wheat Model Table 2.

٨.,

• •

* .

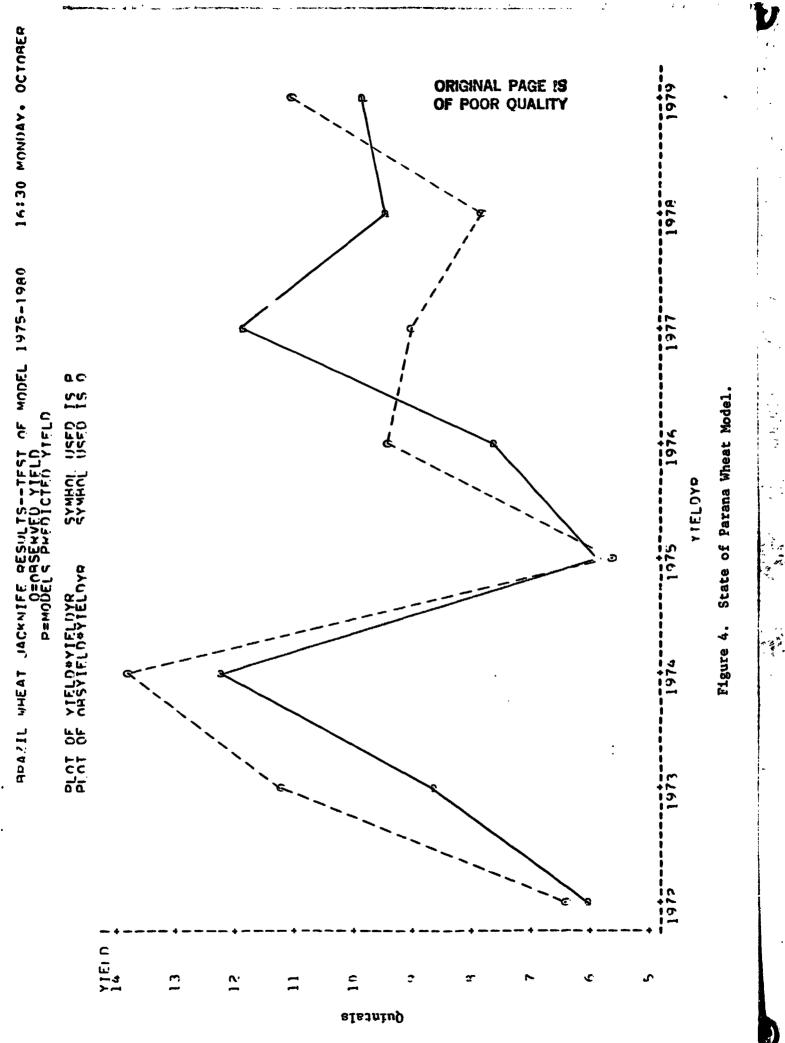
,

ŝ

	iiit ad		-			•	* • • • • • • • • • • • • • • • • • • •				
	99EQ	42	745	50-4	120	87 F	21	d C	(1)	c	
	• 0CT0HER	HETAZ	40.4 4 1 1	4100	• • • • • •	CONRTH	- C O	a.c.	1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-:S	
•	MONDAY.	HETAI	3.0919	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	С. С. С. С. С. С. С. С. С. С. С. С. С.	CO~~R1B6 (45	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		20 90 4	
	05:0			∿∿- ⊂⊃0		202				201	
	M 16	MSRES	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	ういい うした ういし	916	CONRIBS	016.	200 20 20 20 20 20 20 20 20 20 20 20 20		.0578	
	STF	נודמרכ	444 	666 	44	CONKING (6644 1577	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000	
	≻ S	PDER	540 5000 5000	υτ 500 700	443		\$P		CC		
	1 5	Ud		т.с.т Поп	жэ: ••• •••	CONPTB3	300 100 100 100	1-1 1 1		06 . [
	L Υ S	5 5 7	71234 666833 608320	3105 6516 6279	7795	n:		1 1		•	
	- 4 2		000			אן אואנוט			200	20	
	А I, А	01317210		rro	·α.σ.	CONKIEL	3.0914 1425.		-0-		
	5 T A L L X T C	YIELD	5.0553 12.1937	→ C → → ~ 4 → ~ 4	10-4- 	RFTA7 C	C 11: 13:		0-1	5012	
	- - -	άγC	Nati	ሳወሎ	T.J	ΒF	000				
•	⊷ ۲	VIELDYR	277	~~~~	55	HFTAG	012020	`` .	t — .[· 🏊	
		nk Tübrüler	525	220	227	. 186	000			-	
						3FT A 5	い したい なな しんい 25	- ^ I - - ^ ^ / - 		1	
		ምር ነ ուլ Υ			1972	36				0.0.0	
		TAJ	2773 2773 2703	0440 1400 1400	018 929	HF 1.44	()))))))))) ())) ()) ())			÷.	
F 23		la i	• • •			T	••	••	•••		 2,-

ORIGINAL PAGE 19 OF POOR QUALITY 5

1


t

1 • !.

> E a SR

. ب پ

Results of Jackknife Test for State of Parana Wheat Model Table 3.

• •

1

4

•

1			•	. HUA/IL	HUAZIL NHEAT JACKN P=M	LFE RE N=PRS	SULTSTES	T NF M D VIFLD	יו אין	MODEL 1475-1980	7	130 MUNDAY		OCTORER
. .	LE TA3	e Y 164 6 48	FND:401.YR	YIELDYM	יישוע אונריי,	0 OBSYTELU		Q.	PDER	DF RF S	MSRES	BETAL		HETAZ
-	· 2376 · 2773		737	222	チーム の~ C エ・ワー		7123 6668 6083	6-4	5508 6570 7298		3304 9201 9680	160 CE	+ + + + + + + + + + + + + + + + + + +	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	0000 000 000 000 000 000 000 000 000 0			001- 02- 05- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	~7.1 0.7.1	2 - 0	0.6310	1000 1000	880 866 9866 9806 9806 860 860 860 860 860 860 860 860 860		24 24 24 24 24 24 24 24 24 24 24 24 24 2	248 248 249 249 249 249 249 249 249 249 249 249		40.
	979 929	2201	6261 472	アリ	0.7 0 0 0 1	-5- t 5	6418 6779	-0 -0	6341 8739			22.9 22.9 22.9 22.9 22.9	1 1 C CC	1 1 1 1 1 1 1
	HF 7 44	111		HETA6	GF TA 7	CONNTRI	CONP 102	CONR I B	13 CUNR	164	CONRIBS	COVRIB6	CONPIR	2187 F
i	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000234 0.000173 0.000173	111 111 111 111	31211	0.03988 0.04540 0.04107	1929 1929 1929		2000 2000	0-40	CONI IC-L		50 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.3m
	145520 145520 145124 124820			2224 2224 2225 2225 2224 2227 2227 2227		7-45 7-45 7-45 7-45 7-45 7-45 7-45 7-45			жест 1111 1111	50450 500 50	1.0004 0.10535 1.7348 1.7348	-1.6714 -0.6761 -3.9234		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

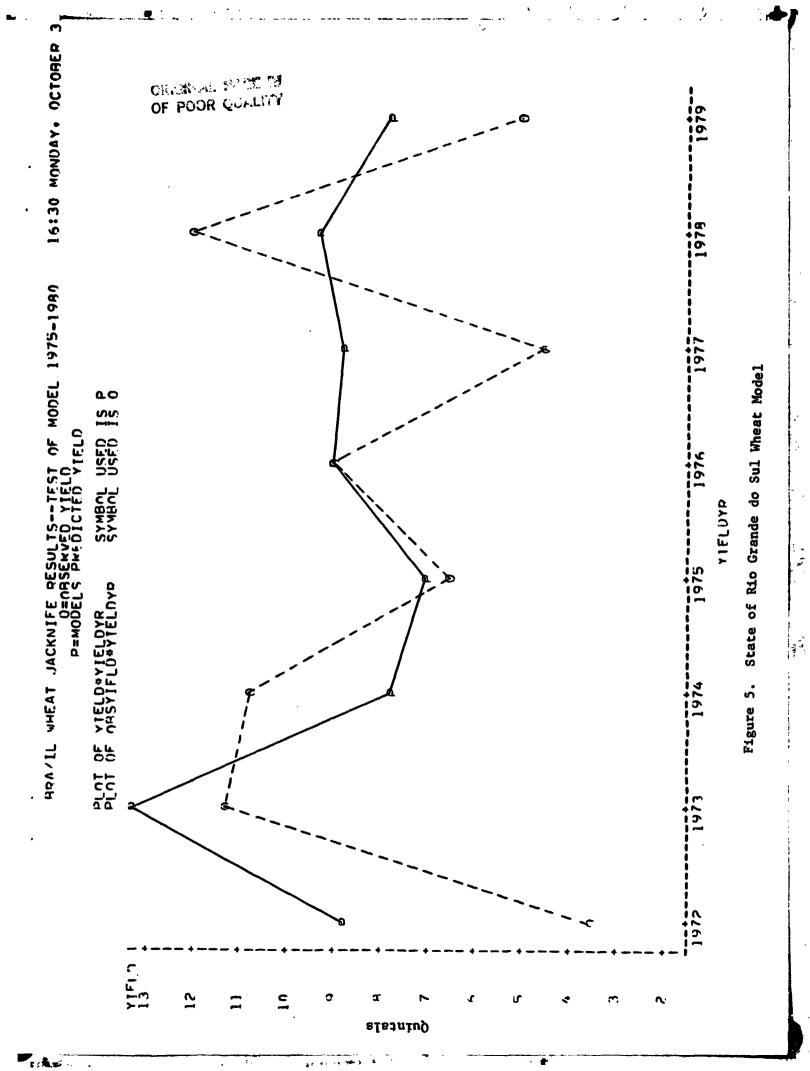
. ,

. . 7

maarmahaart.manna.

\$

ORIGINAL PAGE IS OF POOR QUALITY


14

Results of Jackknife Test for State of Rio Grande do Sul Wheat Model Table 4.

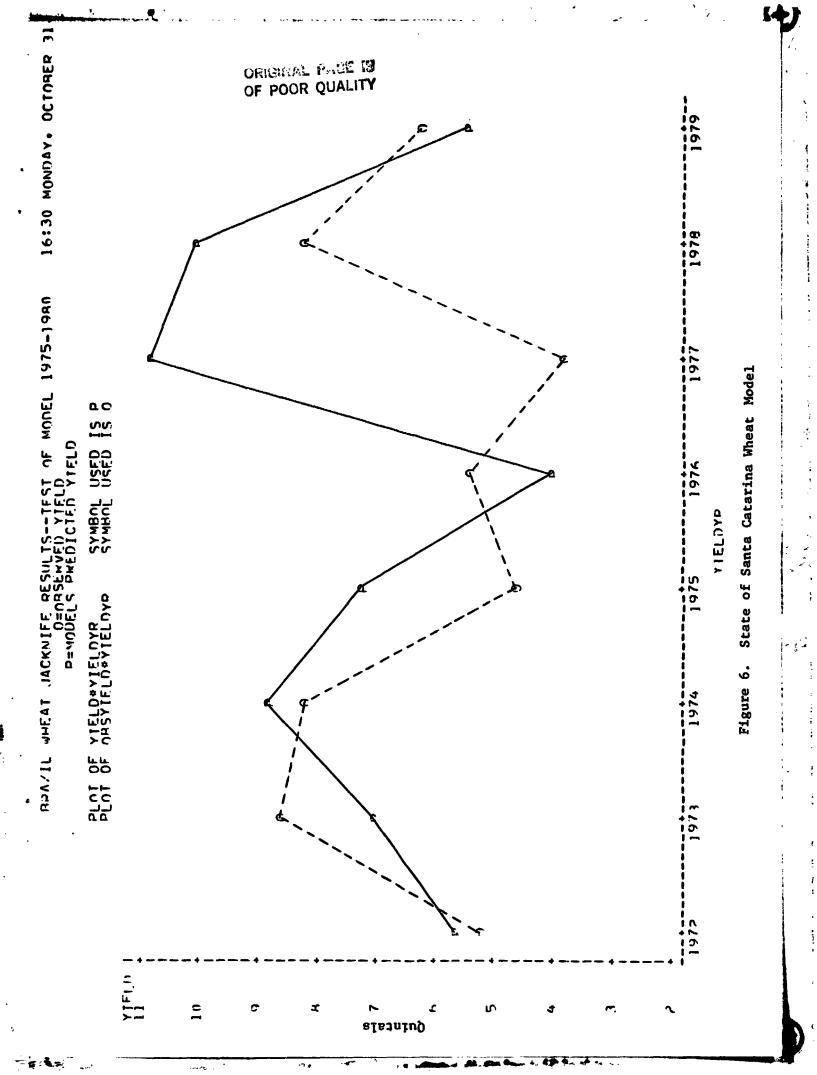
¥ .

• • × ·

÷.,

<u> </u>	<u> </u>	MUCCULLOG	· ·	ear a ear na chuinge ar nne-
0010461	HETAI	00010000000000000000000000000000000000	CONR 1 HG	2012 2012 2012 2012 2012 2012 2012 2012
MONDAY.	15 Ja21	00000000000000000000000000000000000000	195	00000000000000000000000000000000000000
16:30	۶ES	ໞໞຬຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ	4 CONN	00-0000 11 11 11
086	JFRE	C4CLWT-4	CONRIRG	00000000000000000000000000000000000000
1975-1980	PIJEP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[H.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ήF MODEL FLD	c	443 4935 4935 49747 4777 90777777 907777 907777 907777 90777777 90777777 9077777777	CONR	410-000-000
-TEST 9 VIELD TEN VIE	05d	00000000 00000000000000000000000000000	Calgivos	2.1191 0.846305 0.846305 0.836307 2.8383077 2.8383077 2.8383077 2.838307 2.83807 2.838
F PESULTS- =ORSEMVED ELS PMEDIC	OBSYIELD	N&I47WJA • • • • • • • • • • • • • • • • • • •	CONR I H I	10040 10000 10000 10000 10000 10000 10000 10000 10000 10000 10
ROA/IL WHEAT JACKNIF O P=MDD	YIELD	10000000000000000000000000000000000000	HETAG	00000000000000000000000000000000000000
JHN UHE	γιεισγρ	2222 2222 2222 2222 2222 2222 2222 2222 2222	۵5	7555 7555 7555 77555 77555 77555 77555 77555 157555 157555 15755 15755 15755 15755 15755 15755 15755 15755 15755 1
č ,	דווחייחן אצ	5755555 5755555 5755555555555555555555	RET	CCCCCCCCC CCCCCCCCCC CCCCCCCCCC IIIIIII
			14	561/25 578/25 261/25 267/35 267/35 262/35 265/35 275/35 265/35 27
	HEG-NDI YO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HETA4	
	RETA2	10000000000000000000000000000000000000	BETAR	

P;


ORIGINAL PAGE 38 OF POOR QUALITY

Results of Jackknife Test for State of Santa Catarina Wheat Model Table 5.

:

· · · ·

. . .

