Numerical Modeling of D-Mapping with Applications to Chemical Kinetics
 S.K. Dey

March 1984

National Aeronautics and
Space Administration

Numerical Modeling of D-Mapping with Applications to Chemical Kinetics

S. K. Dey, Ames Research Center, Moffett Field, Calıfornıa

N/S^

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field California 94035

NUMERICAL MODELING OF D-MAPPINGS WITH APPLICATIONS TO CHEMICAL KINETICS

S. K. Dey

Computational Fluid Dynamics Branch, NASA Ames Research Center, Moffett Field, California 94035

Abstract. Numerical modeling of D-mappings has been studied and applied to solving nonlinear stiff systems. These mappings have been locally linearized for convergence analysis, and some applications have been made to chemical

 kinetics.Keywords. Nonlinear equations; numerical methods; blomedical.

INTRODUCTION

A numerical method was developed by Dey (1977) for solving nonlinear systems, some applications of which were later made to stiff syscems (Dey, 1982). Convergence analysis was done using nonlinear D-mappings (Dey, 1981).

It is extremely difficult to represent this analysis computationally. Local linearization for such an analysis, which rendered computational modeling of D-mappings feasible, was suggested by Lomax (1983). In this article we discuss linearized modeling of D-mappings and some applications of the method.

D-MATRICES AND D-MAPPINGS

If a sequence of square matrices of the same order satisfy the following condition,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A_{k} A_{k-1} \cdot \cdot \cdot A_{1}=0 \tag{1}
\end{equation*}
$$

each A_{k} is called a D-matrix. A D-matrix is not necessarily a convergent matrix, and conversely.

Theorem 1. A sufficient condition that A_{k} is a D-matrix is that

$$
\begin{equation*}
\left\|A_{k}\right\|_{q} \leq a<1 \tag{2}
\end{equation*}
$$

$\forall k>k$ and that q is the same $V k$.
Theorem 1 is easily proved. Let

$$
\begin{aligned}
& u^{k}=\left(u_{1}^{k} u_{2}^{k} \cdot \cdot u_{J}^{k}\right)^{T} \in D_{k}, \\
& k=1,2, \cdot\left(u_{j}^{k}=\text { value of } u_{j}\right. \text { at some } \\
& k t h \text { iteration }) . \\
& \text { Let us consider a chained linear spaces } \\
& D_{k} \subseteq D_{k-1} \subseteq \cdot \text {. } \subseteq C_{k} \subset R^{n} \cdot R^{n}=n-d i m e n s i o n a l \\
& \text { real space. Let } u^{*} \in D_{k} \forall k \text { and }
\end{aligned}
$$

$$
G_{k}: D_{k+1} \times D_{k} \rightarrow D_{k+1} \cdot \quad \text { If }
$$

$$
\begin{align*}
& G_{k}\left(u^{k+1}, u^{k}\right)-G_{k}\left(u^{*}, u^{*}\right) \\
& \quad=A_{k}\left(u^{k+1}-u^{\star}\right)+B_{k}\left(u^{k}-u^{\star}\right) \tag{3}
\end{align*}
$$

and $\forall k>K$, and if $\left(I-A_{k}\right)^{-1} B_{k}$ is a D-matrix, G_{k} is called a D-mapping (Dey, 1981).

If we now consider a nonstationary iterative scheme of the form

$$
\begin{equation*}
u^{k+1}=G_{k}\left(u^{k+1}, u^{k}\right) \tag{4}
\end{equation*}
$$

and if $G_{k} \cdot D_{k+1} \times D_{k} \rightarrow D_{k+1}$ is a D-mapping, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u^{k}=u^{\star} \tag{5}
\end{equation*}
$$

where $u^{\star}=G_{k}\left(u^{\star}, u^{\star}\right) \forall k$ (Dey, 1981).

LOCALLY LINEARIZED D-MAPPING
Let us innearize (4) on $D_{k} \times D_{k}$, using
first-order approximation of $G_{k}\left(u^{k+1}, u^{k}\right)$ near (u^{k}, u^{k}). Then,

$$
\begin{equation*}
u^{k+1}=G_{k}\left(u^{k}, u^{k}\right)+G_{k}^{\prime}\left(u^{k+1}-u^{k}\right) \tag{6}
\end{equation*}
$$

where G_{k}^{\prime} is the Fréchet derivative of G_{k} on $D_{k} \times D_{k}$. Equarion (6) may be expressed as

$$
\begin{equation*}
u^{k+1}=A_{k} u^{k}+b_{k} \tag{7}
\end{equation*}
$$

where $A_{k}=-\left(I-G_{k}^{\prime}\right)^{-1} G_{k}^{\prime}$,
$b_{k}=\left(I-G_{k}^{\prime}\right)^{-1} G_{k}\left(u^{k}, u^{k}\right)$. We have assumed that (I - G_{k}^{\top}) is invertible. Now we may prove a second theorem.

Theorem 2. If (1) $\left|A_{J}-A *\right|<E$, where E is a matrix consisting of elements that are positive and arbitrarily small and
(i1) $\left|b_{j}-b^{*}\right|<\varepsilon, \varepsilon$ is a vector consisting of elements that are positive and arbitrarily small, then (5) is true (convergence) if A_{k} is a D-matrix (Dey, 1983a).

Theorem 3. If G_{k}^{\prime} is a D-matrix, so is A_{k} (Dey, 1983a).
This principle may now be applied computationally.

PERTURBED FUNCTIONAL ITERATION

Let a nonlinear system be expressed as

$$
\begin{align*}
& u=G_{0}(u) \tag{8}\\
& u \in D, \quad G_{0}: D \rightarrow D
\end{align*}
$$

A Gauss-Seidel-type iteration for the solution may be expressed as

$$
\begin{align*}
& u^{k+1}=G\left(u^{k+1}, u^{k}\right) \tag{9}\\
& G: D \times D \rightarrow D, u^{k} \in D \forall k
\end{align*}
$$

A perturbed iterative scheme (Dey, 1977) may be expressed as (in the element form)

$$
\begin{equation*}
u_{j}^{k+1}=\omega_{j}^{k+1}+G_{j}\left(u^{k+1}, u^{k}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \omega_{j}^{k+1}=\left[G_{j}\left(G_{j}^{k+1, k}\right)-G_{j}^{k+1, k}\right] \\
& x\left[1-\partial_{j} G_{j}^{k+1, k}\right]^{-1} \tag{11a}\\
& G_{j}^{k+1, k}=G_{j}\left(u_{1}^{k+1} \cdot \cdots u_{j-1}^{k+1}, u_{j}^{k} \cdot \cdots \cdot u_{j}^{k}\right) \tag{11b}\\
& G_{j}\left(G_{j}^{k+1, k}\right)=G_{j}\left(u_{1}^{k+1} \cdot \cdots u_{j-1}^{k+1},\right. \\
& \left.{ }_{G_{j}}^{k+1, k}, u_{j+1}^{k} \cdot \cdots u_{j}^{k}\right) \\
& \partial_{J}\left(G_{j}^{k+1, k}\right)=\left[\partial G_{j} / \partial u_{j}\right]_{u_{1}^{k+1}, u_{2}^{k+2}} \cdot \cdot \\
& u_{j-1}^{k+1}, G^{k+1, k}, \\
& u_{j+1}^{k} \cdot \cdot \cdot u_{J}^{k} \tag{1,1d}
\end{align*}
$$

The w_{j} term $1 s$ a perturbation parameter which accelerates the rate of convergence of (9) and stabilizes the numerical algorithm.

It has been proved (Dey, 1981) that if G is a D-mapping on $D_{k+1} \times D_{k}$, a necessary and sufficient condition for convergence is

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\omega_{j}^{k}\right|=0 \mathrm{v} j \tag{12}
\end{equation*}
$$

Following Theorems 2 and 3 we may prove that if G_{k}^{\prime} is a D-matrix, then (12) is true (linearized sense). Recent results (Dey, 1983b) using local linearization indicates that if

$$
\begin{equation*}
\max _{j, m}\left|G_{j m}\right| \leq B / J \tag{13}
\end{equation*}
$$

where $G_{j m}=\partial G_{j} / \partial u_{m}$ and $0 \leq \beta<1, G$ in (9) is a \bar{D}-mapping. In order that (13) may be correct, certain input parameters for the system (e.g., mesh size and time-step) have to be chosen in special ways. If this cannot be found a convex-type operation may be defined as follows:

$$
\begin{equation*}
\hat{G}_{J}(u, u)=\left(1-\alpha_{J}\right) u_{J}+\alpha_{J} G_{1}(u, u) \tag{14}
\end{equation*}
$$

> Assuming $G_{j j}(u, u) \neq 1$, it has been found that \hat{G} is a D-mapping (locally linearized) for the following:

$$
\begin{aligned}
& \text { 1. } \alpha_{j}=(-1)^{P}\left(1-G_{j J}\right)^{-1} \text { if } G_{j m}=0, \\
& m_{j f} \neq j \text { and } p=0 \text { if } G_{j J}<1, p=1 \text { if } \\
& \text { 2. } a_{j}=\min _{\substack{1 \leq m \leq j \\
m \neq j}}\left(\frac{\beta / J}{\left|G_{j m}\right|},(-1)^{p} \frac{(1+B / J)}{1-G_{j J}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } G_{j m} \neq 0, m \neq j \text { and } p=0 \text { if } G_{j J}<l \text {, }, ~=1 .
\end{aligned}
$$

$$
\begin{equation*}
p=1 \text { if } G_{j J}>1 \tag{15a}
\end{equation*}
$$

where β is such that

$$
\begin{align*}
& l>B \geq J\left(1+\frac{\left|1-G_{j J}\right|}{\left|G_{j m}\right|}\right)^{-1} \tag{15b}\\
& 3 . \alpha_{j}=1 \text { if (13) is satisfied. }
\end{align*}
$$

The algorithm of perturbed functional iteration including a linearized convergence analysis may be briefly expressed as follows. At each iteration level, compute $G_{j m}$, $\mathrm{m}=1,2$, . ., J. If (13) is satisfied, set $\alpha_{j}=1$; otherwise, compute α_{j} using (15). If $a_{j} \neq 1$, replace G_{j} by \hat{G}_{j}, as given by (14). Compute ω, using (lla)-(lld) and compute u_{3} at the new iteration level by (10). If (12) is satisfied at some iteration level, convergence is found; if $G_{j J}=1$, the method fails.

In general, for a $J \times J$ system the method requires (1) $J^{2}+J$ functionals to be computed for convergence analysis, (ii) partial linearization along the diagonal, and (111) no Jacobians.

It has been proved analytically (Dey, 1977)
that in the vicinity of the root, the method should display a superlinear rate of convergence.

A DEGENERATE IMPLICIT CODE

Let a nonlinear model be represented by

$$
\begin{equation*}
\mathrm{du} / \mathrm{dt}=\mathrm{f}(\mathrm{u}), \quad \mathrm{u}=\left(\mathrm{u}_{2} \mathrm{u}_{2} \cdot \ldots \cdot \mathrm{u}_{\mathrm{J}}\right)^{\mathrm{T}} \tag{16}
\end{equation*}
$$

$u(0)=u_{o}$ (initial condition). Approximating (16) by a two-point backward-difference scheme, we get:

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}+\Delta t f_{j}\left(u^{n+1}\right), \Delta t=\text { time-step } \tag{17}
\end{equation*}
$$

This nonlinear system may now be solved by the above method which forms a degenerate implicit code (since the one-step, matrixinversion principle is not used for solution). If a convex-type operation of the form (14) is used, (16) becomes

$$
\begin{equation*}
d u / d t=(I-\alpha) d u / d t+\alpha f(u) \tag{18}
\end{equation*}
$$

where $\alpha=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{J}\right)$ and $I=$ the identity matrix. If (16) is a stiff system, (condition number of $f^{\prime}(u) \gg 1$), it generally requires Δt to be very small if a functional iteration of the form (9) is applied for solution. In (18), α scales the elements in the Jacobian matrix $f^{\prime}(u)$, and using (15) for a_{j} 's mean (for a given Δt), D-mapping is found so that perturbed functional iteration converges.

APPLICATIONS

Application 1.

(Bul , 1979) ${\stackrel{\circ}{u_{1}}}=-10,004 u_{1}+10,000 u_{2}^{4}$; $\dot{u}_{2}=u_{2}-u_{2}-u_{2}^{4} ; u_{1}(0)=u_{2}(0)=1$. An approximate solution is
$\begin{aligned} u_{2}(t)= & i 10,004 \exp (-3 t) /[10,008 \\ & -4 \exp (-3 t)]\}^{2} / 3\end{aligned}$
$u_{1}(t)=(10,000 / 10,004) u_{2}^{4}$. As $t \rightarrow \infty, u_{1}(t) \rightarrow 0$, $u_{2}(t) \rightarrow 0$. Linearizing this system near $u_{1}(0), u_{2}(0)$, the condition number is 10^{4}.

Using linearized convergence analysis for the degenerate implicit code we got $\Delta t \cong 10^{-5}$, a sufficient condition for convergence if $x_{j}=1$. Introducing (18) and computing $\alpha_{j}{ }^{\prime} s$ in a subroutine using (15) we used $\Delta t=10^{-3}$ to 10^{8}; correct results were found. No program interruption was cased. Detalls may be found in Dey (1983b).

Application 2. Irradiation of Neutral Water

The model developed by Charterjee and Magee and the analysis of its numerical solution are given in Chatterjee and others (1983). The equations and the rate constants are given in Table 1 . For our present analysis we linearized the system and computed a_{j} 's. Stıffness was measured by Strate (1983) at $t=0,0.1,1$, and 10 . Condition numbers are, respectively, $10^{19}, 10^{12}, 10^{12}, 10^{10}$ (approximately). This may be seen to be true in fig. 1. This pattern of solution was ana-
lyzed by Chatterjee and Magee and was found to be valid. Here, difference equations were formed by approximating the derivatives by using the two-point trapezoidal rule.
D-mappings were introduced, and time-accurate solutions were computed with $\Delta t=10^{-8}, 10^{-6}$.

CONCLUSION

Numerical solutions of stiff systems are generally obtained by using multistep implicit codes (Miranker, 1981) whach require inversion of matrices obtained by computing Jacobians. This has been avoided in the technique explained here. However, the code is dependent on the Jacoblans for its convergence analysis Such a linearized analysis seems to be quite effective, and, in contrast with its nonlinear counterpart, the complete analysis can be done computationally. More applications are under consideration.

ACKNOWLEDGMENT

I thank my ll-year-old son Charlie Dey for writing codes for the first problem in TRS-80 color computer.

REFERENCES

Bui, T. D. (1979). Some A-stable and L-stable methods for the numerical integration of stiff ordinary differential equations. J. ACM, 20, 3.
Chatterjee, A., J. L. Magee, and S. K. Dey (1983). The role of homogeneous reactions in the radiolysis of water. Radiat. Res. (to appear).
Dey, S. K. (1977). Perturbed iterative solution of nonlinear equations with applications to fluid dynamics. J. Comp. Appl. Math., 3, 1, 15-30.
Dey, S.K. (1981). Convergence analysis of a perturbed iterative scheme for solution of nonlinear systems. Int. J. Math Sc1., 4, 2, 383-391
Dey, S. K. (1982). Applications of perturbed functional iterations to nonlinear stiff initial value chemical kinetic problems. Proceedings of the International Conference on Stiff Computations, Park City, Utah, April 12-14.
Dey, S. K. (1983a). Numerical modelang of linearized D-mappings with applications to stiff systems. NASA TM (to be published).
Dey, S. K. (1983b) Simulations of D-mappings in flow models. Proceedings of Modeling and Simulation on Microcomputers. 83 Society of Computer Simulation, San Diego, Calıf., Jan. 27-30
Lomax, H. (1983). NASA Ames Research Center, private communication.
Miranker, W. L (1981) Numerical Mechods for Stiff Equations D. Reidel Publ. Co., Boston.
Strate, G. (1983). NASA Ames Research Center, private communcation.

Fig. 1 Concentrations of species (Ex 2) vs. time for $I=6.667 \times 10^{-7}$ in the logarithmic scale up to $t=30 \mathrm{sec}$. (Here steady state is reached for all the species.)

