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Abstract

Harmonic grid generation methods for multiply connected plane regions and

regions on curved surfaces are discussed. In particular, using a general

formulation on an analytic Riemannian manifold, it is proved that these

mappings are globally one-to-one and onto.
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INTRODUCTION

One of the most important tasks of computational physics is the generation

of boundary conforming grids in the computational domain. This problem can be

framed mathematically as the construction of certain coordinate charts on a

given Riemannian manifold. In this paper the method of harmonic mappings for

two-dimensional manifolds is considered. The method of two-dimensional

harmonic mappings has been used, for example, to generate grids in multiply

connected plane regions [I] and to generate coordinate surfaces for three-

dimensional domains using the Gauss equations [2]. We will see that the

harmonic mapping method can also be used to generate grids on a portion of a

given analytic curved surface. We will describe and analyze these methods by

unifying them to a general mapping problem on a simply connected Riemannian

manifold.

2. HARMONIC NAPPING METHOD FOR AN ANALYTIC RIEHANNIANNANIFOLD

The slmplest grid generation problem of this kind can be formulated as

follows. Let Q be a simply connected region on a two-dimenslonal manifold

M 2 with compact closure (see Figure I). Suppose (8,$) is a glven (natural)

coordinate system on this manifold. The problem is to find a boundary

conforming coordinate system (_,_). This is accomplished by first mapping

_Q0 in a continuous i-I manner to the boundary of the rectangle 01 in the

(_,_) plane. To map the interior of Q0 to the interior of QI' we use the

following conditions:



(2.1) A_ = 0, A_ = 0

where A is the Laplace-Beltrami operator.

We will see later that more complicated grid generation problems can be

treated in this manner. Let us investigate more closely this technique. We

set (_i,_2) = (e,_) and (xl,x 2) = (_,_) for ease of notation. Then g--_8

and ge8 are respectively the metric tensors of these coordinate systems.

Then from the elementary theory of Riemannian geometry we have the following

explicit expression for the Laplacian (Beltrami) of any scalar function _ on

M2

2

(2.2) A! = geS[_ i F% _]
8 _8 _x

where e,8,% = 1,2. In this context we have used the Christoffel symbol of

the second kind in the x_ coordinates. It is well known that this symbol

obeys the transformation laws,

where, of course, _6 is the Christoffel symbol of the second kind for the

coordinate system x .

2.2. Formulation on a Given Manifold

We note here that if the manifold M2 E E2 (Euclidean space) then x

can be chosen as the Cartesian coordinate system yielding _y m 0 [5].
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This is not possible for a general manifold• However, since any two-

dimensional Riemannian manifold is conformally flat [5], it is always possible

--2
to choose (locally) a coordinate system x known as the isothermal

coordinate system which satisfies

(2.4) g--aB= X2(xl'x2) 6aB"

In this case, one can verify that

_-XaB_B = 0 yielding

(2.5)
2 _xX _ aB _2-_y

A¢ = gab a ¢ X g 17 "ax_ axe a_x ax ax_ax

If we choose _ = x (one of the coordinate functions) then

considerable simplification takes place and we have

Ax_ 3x_ aB 22 xY-- j g •

_xx _x_ axe

By imposing the condition Ax _ = 0, we in effect impose conditions on the

resulting metric tensor. Yielding the equation

2--X

--gab_ x - O, X = 1,2
_x_ _

as the generating equations to be solved in the (xl,x 2) plane. For example,

we consider a portion of a spherical surface• In this case we can obtain an

--X
isothermal natural coordinate system x using the stereographic projector
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tanI_/2) exp(i8)X + iX =

where (O,O) are the spherical coordinates. Imposing hx _ = 0, 6=1,2 yields

as before

2 --_

g_6 8 x - 0 I = 1,2
6

with Dirichlet boundary conditions. A practical grid system for a conical

wing shape [3] is given in Figure 2. Similar computations could be performed

for other simple surfaces where some isothermal coordinates are explicitly

known. For certain simple surfaces, isothermal coordinates are given in

[4,5].

2.3. Surface ConstructlonUsingHarmonlcMappings

We now consider the problem of generating a coordinate surface in E3

connecting two one-dimensional boundaries (lying in two boundary surfaces).

Again, the idea is to place implicitly restrictions on the metric tensor (see

Figure 3). Let the unknown manifold M2 be immersed in E3 with Cartesian

coordinate system xi, i = 1,2,3. The tangent vectors are

Bi "- 8xl i = 1,2,3, a = 1,2

where (_I,_2) are some coordinate system for M2. The Gauss [7] equations

are

Bi Ni
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where "If" denotes covariant differentiation, Q=_ is the second fundamental

form and Ni is the normal to the manifold. Multiplying by g=_ yields

=_ 82 xi _ Fk i i Bh k
g g _ Bk + Fhk _ B_ g_ = (kI + k2)N i

5__ 5__

where Fk_ and F k are respectivelythe Chrlstoffelsymbolsof the second

kind of the _ coordinate system on the manifold and the xi coordinate

system on E3. Also (kI + k2) is twice the mean curvature. If xi are

i = 0 and recallingour earlierdevelopment,weCartesiancoordinatesthen Fhk

obtain

gU_ 82 xi + BkiA_k = (kI + k2)Ni"
5__ 5__

If we impose A_k = 0 for k = 1,2,we get

=_ 82 i
g x = (kI + k2)Ni

which could be used as generatingequationsfor M2. This techniquehas been

exploitedby Warsl [2], [6].

3. MULTIPLY CONNECTEDDOMAINSAND THE CONSTRUCTIONOF AN ABSTRACTRIEMANN

SURFACE

We will first describe briefly the constructionof an abstract Riemann

surface for an algebraic function as a compact and orlentable surface that

could be realizedin the Euclideanspace E3. Considerthe function
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2N

wz--[I (z- ri).
i=l

Then w will be single-valued in the two-sheeted cut plane as shown in Figure

4. Projecting each of these planes stereographically to their Riemann spheres

and joining the spheres along the cuts after appropriate rotations, we get a

closed surface that is topologically equivalent to a surface of genus N-I.

We have thus obtained a surface on which w is single-valued, in a form which

could be realized in E3.

If we are now interested in generating grids by harmonic mapping on a

mulitply connected domain _ with appropriate cuts as shown in Figure 5, we

see that this domain will have a corresponding image on a suitable abstract

Riemann surface S. We will now introduce the Riemannian metric in this

surface to convert it to a metric Riemann surface (conversely, an analytic

Riemannian manifold with isothermal coordinates will become an abstract

Riemann surface). Thus, we see that the problem of generating grids on a

multiply connected plane domain and that on a portion of an analytic curved
^

surface are equivalent. Let S be the universal covering surface (simply

connected) of our Riemann surface S. On this covering manifold the domain of

interest fl will have many (disconnected) images and these images can be

transformed to each other by what is called the covering transformation. We

will thus work with the fundamental domain on this manifold that is left

invariant by the group of covering transformations. Since any simply

connected Riemann surface can be conformally mapped to a plane [4], the
A

covering surface S will have a one-to-one conformal transformation with a

domain G on the plane (see Figure 6).
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A

Let P be a point on the Riemann surface S and P be one of its images
A

on the universal cover S. The projection mapping _ is defined by

=P,

^

(note _-I is not single-valued). Let f map S to G, then f is

univalent and

--I _2 ^= x + i = f(P)

or

p = (= o f-l)(_) =_(_).

Thus, _ = _-l(p) is the uniformizer for the Riemann surface S. This

procedurehas providedus with a global familyof isothermalcoordinates

(_I,_2) on the manifold S. We have to note that_ -I is not single-valued

if S is not simply connected and the potential _ may have stationary

points (for a surface of genus g, a potential with m poles will have

2m + 2g - 2 stationary points). However, it is to be expected that a

suitable _ can be found with no singularitiesin the domain of interest.

We will now consider the problemof producinga grid on Q as above using

harmonic mapping techniques. This method will provide non-isothermal

coordinates in general. However, we will use the fact that the domain of

interest Q on the manifold could be covered by a global isothermal

coordinate system to develop the rest of the theory. Thus, the harmonic

mapping problem on a curved surface or a multiply connected plane domain with

multivalued coordinates (xl,x 2) has been reduced to a problem of finding

slngle-valued coordinates (xl(_l,_2),x2(_I,_2)) on a simply connected

domain in the unlformlzlngplane G.
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We will now express the Laplace-Beltrami operator in these uniformizing

variables,

1 _2 _2

A = 7 (_(_I)2 + _(_2)2 )' % = %(_i,_2).

Thus, we have Axe = O, e = 1,2, in the image _0 on the plane region G.

Let us now show that this grid generation procedure does map the interior

of _0 to the interior of _I in a one-to-one manner. The problem has been

reduced to the uniformizing plane and therefore the following theorem applies

[8], we include the proof for completeness.

TREOP,_ 1: The coordinate functions (xl,x 2) obtained by harmonic

mapping techniques map _0 into the rectangle _I have non-vanishing

gradients in _0"

Proof: Suppose Vx I = 0 at _ s _0' then

1"
W(o) = xI + i x ,

where x I* is an harmonic conjugate of x 1, must satisfy

_W

_--_= 0 at °O'

which implies that Z(o) = W(o) - W(o O) should have a zero of order greater

than or equal two. If this is true, then the argument of Z(o) around a_0

is at least 4_ which means that x1(o) - xl(o0) should vanish at least four

times on a_0" But we chose RI to be a rectangle and therefore this
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function has exactly two zeroes on _0" Therefore,we conclude that Vx1
o

Vx2 are never zero in _0" We remark that if _I had been a more
and

complicated region, then this proof would be no longer valid.

THEOREM 2: Le____tT be the harmonicmapping of _0 into _I" That is,

T : 8f10+ Bill homeomorphically

and

o

AT = 0 on _ .
-- 0

Then if T __is C1 __°n _0\{Pi}_=l where {Pi }Ni=lC 8_0'
then the Jacobian

O

of T never vanishes in _ .
-- 0

Proof: Let

P _ _n0\{Pi}_=I.

Then 8_0 is smooth at P and we may unambiguously define an orthogonal

coordinate system _(P), _(P) where _(P) is the tangent vector on 8_ 0

obtained by traversing _0 at constant velocity and _(P) points into _0"
o

This yields an orientation of _a 0. Now let {Rn}_= I C a with Rn + p.

Then computing the Jacobian of T at Rn in the coordinates _(P), _(P), we

have for C # 0,

1 2 2 l)(Rn ) = J(TI(Rn)"C.(Xs Xn - Xs Xn

Since T is CI, these values converge to the value at P, namely
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1 2 2 I)( x -X x (P).C. xs n s n

But since P is a boundary point and _i is a rectangle, then one of the two

terms vanishes and the remaining term is nonnegative if both curves have been

oriented counter-clockwise. Thus, we conclude that the Jacobian of this

mapping is well-deflned at the boundary and nonnegative.

Now consider

X(C) = (3x2)I(3_l) + i[(3x2")I(_I)]

( xl)IC x2) + '

2_
where x is the conjugate harmonic function to x2. Thus, making use of

the Cauchy-Riemann equations we have

Re(x(c)) --_(xl,x 2) I lVxll2
)

o

which is harmonic in _ and hence, is positive in _ by the maximum
0 0

principle. Here we have used the fact that Vx I # 0 and the nonnegativity of

the Jacobian in the boundary.

Thus, the harmonic mapping method produces for multiply connected plane

domains as well as portions of analytic Riemann manifolds, a locally i-i

mapping function. We will now prove that these mappings are globally I-1.

Although our present focus is on mappings in R2, the next two lemmas are

presented in RN for future extensions to mapping problems in higher

dimensions.
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m
o

LEMMA I: Let _0 and _I be compact subsets of _ with _ =0 0

and _i convex. Let T be a continuous mapping from _0 into _ which
o

is differentiable in _ and satisfies

i. T(_0) = _1

o

2. IT'(x)I_ 0 for all x _
-- 1

then T maps _0 onto _i"

o

Proof: The first thing to notice is that T is an open map on _ and
0

o

hence, T(a ) is open. We claim that T(_ O) C _1" If not by compactness,0
_ o

there is an x _ _ satisfying
-- 0

0 < distIT(x ), _i) = max dist(T(x), _1) ,

O

But T is open on _ and _ is convex, which implies that
0 1

y + dist(y, _i ) has no local maxima. This contradicts the assumption that
o o

T(_0) _ _i" Thus, we have T(_ 0) C _i and even T(_ 0) C _i. If we fail
O

to have equality, there is a y _ _I\T(_0). But for any such y, we must have

inf liT(x)- yll = inf liT(x) - yn,

x _ a0 x € _0

o o O

since T is open on _ . However, one can always produce a y _ _ \T(_o)I I
o

arbitrarily close to T(_ ) and relatively far from _I = T(_0) to violate0

this condition. This completes the proof of this lemma.
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LEMMA 2: Let _0 and _1 be compact homotopic subsets of _ with

_I convex. Let R , 0 < e < I be the homotopy with

R (R1) = Ru

m
o

=_

Rl(x) = x for x 8 _I

o

]R'(x)l _ 0 for x € _ .
a -- -- 1

Let T, 0 _ _ < 1 be the mapping from fl . satisfying

TI(_) = _ for x £ _I

o

[T'(x) I # 0 for x _
1

T(x(3_a) = 3_I

Tu o Ru is a homotopy on _I" Then Ta is a one-to-one and onto

transformation from _ into _0" In particular, TO maps _0 one-to-one

and onto _I"

Proof: Recall that for a differentiable map T : _ . _ (for _ compact

subset of _) we can define
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(a) d = degree (T,y,_) = _ signlT'(_)l
T(x) = y

0

o

provided y _ T(8_) and for each x € _ above, IZ'(_){ # O. Furthermore,

this integer d is invariant under homotopy (homotopy invariance theorem)

provided no solutions are introduced on the boundary [9]. Now to prove the

lemma, set

S =T oR.
(I (% 5

o

Thus S is a homotopy on _i and for each x _ _ ,5 -- 1

I I 0

and hence, IS_(x__)l is always positive or always negative. But IS_(_)I = 1
o

and hence, IS'(x) l > 0 for all x € _ . We know from Lemma I that T
-- -- I 5

o o

maps _ onto _ and _ onto _I" Thus, S maps _I onto _I ando 5 o 1 o 5 5

_1 onto _1" Let y € _1 and note

degree(SI, y, _i ) = 1

since SI is the identity. Both S5 is a homotopy which introduces no

solutions on the boundary and hence, by degree theory

degree(S5, y, _i ) = I,

o

since {S'(x){ > 0 for all x € _ . Thus, (a) actually counts the number of
5-- -- 1
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x s, so that

Sa(x) = y.

o

Since this number is one we conclude that, S maps _ , one-to-one and onto
a I

o

, and hence T maps _ one-to-one and onto _I and finally _0 one-to-
1 a a

one onto _I as was to be shown.

CONCLUSION

Grid generation methods using harmonic mappings have been analyzed in a

unified framework and a rigorous justification for these methods is given. We

have proved that for these mapping methods, mesh intersection, or overspill

cannot occur. Our conclusions are limited to two-dimensional manifolds,

although substantial portion of the theory developed is applicable for higher

dimensions. An extension of this theory should include the generalization to

higher dimensions and to the method of nonharmonic mappings.
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