@ https://ntrs.nasa.gov/search.jsp?R=19840015069 2020-03-20T22:11:35+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

S777R2

{) #7172

SOFTWARE ENGINEERING LABORATORY SEL-83-008 SEL-83-008

NBU=23137
THRU
N84=23149
Unclas
G3/61 13076

a aE ~um
(NASA-TM-854L3S) EFOCEEDINGS CF THE EIGHTH

ANNUAL SOFTWARE ENGINEERING WOFKSHOF (NAS&{
326 p HC A15/MF A1 CSCL 09E

PROCEEDINGS OF THE I
EIGHTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

NOVEMBER 1983

NNASN___

National Aeronautics and
Spa~e Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

PROCEEDINGS £
OF : I

! EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
"'K o

Organized by: : |

Software Engineering Laboratory
GSFC

DA P S R PR

B R i

e s N

e

FTRIT MW AT e 5397 7 99
AL L A LR TN

b RN P St

3
5 TR b ik e e it

LR
v el

November 30, 1983

BSOS A5 RS i sk SN ol S d

AR

kb R B intel

)Pt 5, 23 LI b

: GODDARD SPACE FLIGHT CENTER o

Greenbelt, Maryland | | | | .

- i

e L

ST e R

FAPREOLAY BT TR

*

4

:
*

W

i
%

»

B
E*‘
h
:
"
L
Z
£,
¥
e
1Y

-y
=
3
£
Vi

—— R A S L e %
T . ' B |

FOREWORD

The Software Engineering Laboratory (SEL) isjahﬂorganization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and creéted for
the purpose of investigating the effectiveness of software
engineering technologies when agplieditoithe development of
applications%software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The Uniyersity of Maryland (Computer Sciences Department)l
Computer Sciences Corporation (Flight Systems Operation) E

The goals of the SEL are (l)'to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The éctivities, findings, and

; recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports
that includes this document.

Single copies of this document can be obtaineda by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

SEVITN

BT R

et Tt

PRatNetTiy - At SHCTIEN SR

gl S AT T T

—miake ST e

it st st e e 2

FESNCEES 5 cbt SR

TR B TR R

i A

B

[P Y

J
a

M v

el e I N

RS s L a

i
i
i
i
i
i

EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Eighth Annual Software Engineering Workshop was held on November 3,
1983 at NASA/Goddard Space Flight Center in Greenbelt, MD. Once again,
the attendance approached 250 persons representing 5 universities, 23
agencies of the federal government and 44 private companies.,

The four major topics of discussion included: 1. The NASA Software
Engineering Laboratory, 2. Software Testing, 3. Human Factors in
Software Engineering and 4. Software Quality Assessment. As in the past
years, there were 12 position papers presented (3 for each topic)

followed by questions and very heavy participation by the general
audience.

The workshop is organized by the Software Engineering Laboratory (SEL),
whose members represent the NASA/GSFC, University of Maryland, and
Computer Sciences Corporation (CSC). The meeting has been an annual
event for the past 8 years (1976 to 1983), and there are plans to
continue this event as long as it is felt they are productive.

This record of the meeting is generated by the SEL and is printed and
distributed by the Goddard Space Flight Center. -“All persons who are
registered on the mail list of the SEL receive a copy at no charge.

Additional information about the workshop or about the SEL may be
obtained by contacting:

Mre Frank E. McGarry
N+5A/GSFC
Ccle 582
Greenbelt, MD 20771

301-344-6846

USSR S WY CPIY- NN LR I Y

NN TR T DL T S v i

~EESEL T T

ST

T

T TRUIRR RO T I
- B

SRt

A3 TS RRTRERG T

e

T TR R

8:00 a.m.
8:45 a.m.

9:00 a.m.

10:30 a.m.

11:00 a.m.

12:30 p.m.

AGENDA

EIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 3 AUDITORIUM
NOVEMBER 30, 1983

Registration — ‘Sign In’
Coffee Donuts

INTRODUCTORY REMARKS J. J. Quann, Deputy Director
(NASA/GSFC)
Session No. | Topic: Current Research in the Software

Engineering Laboratory (SEL)
Discussant: F. E. McGarry (NASA/GSFC)

“Evaluating Software Engineering /
Technologies in the SEL” D. Card (CSC)

“Dynamic Metrics for Software
Management”’ V. Basili (University of MD)

“Characteristics of a Rapid

Prototyping Experiment” M. Zelkowitz (University of MD)

BREAK

Session No. 2 Topic: Testing Software
Discussant: J. Page (CSC)

“Structural Coverage of
Functional Testing” J. Ramsey (University of MD)

“A Methodology for Detecting
Errors™ A. Goel (Syracuse University)

“Testing and Error Analysis of

a Real-Time Controller” C. Savolaine (Bell Labs)

LUNCH

St

A g S T

3
3
i
5
]
i
H
i

| Tingng g Ll T S
P, TN e

1:30 p.m.
| 3:00 p.m.
3:30 p.m.
~ 5:00 pm.

Session No. 3

“Transformations of Software
Design and Code May Lead to
Reduced Errors”

“You Can Observe a Lot by Just
Watching How Designers Design™

“Evaluating Multiple Coordinated

Windows for Programmer
Workstations”

BREAK

Session No. 4

“Cleanroom Certification
Model”

“Projecting Manpower to
Attain Quality”

*‘An Approach to Software
Baseline Generation”

ADJOURN

Topic: Human Factors

Discussant: V. Basili (University of MD)

E. Connelly (PMA, Inc.)

E. Soloway (Yale)

C. Grantham (University of MD)

Topic: Quality Assessment

Discussant: W, Agresti (CSC)

P. Currit (IBM)

K. Rone (IBM)

J. Romeu (IITRI)

T AT R

™ e

< R A e

S SN

PR TE N B i A

SUMMARY OF THE SESSIONS: EIGHTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Prepared for the
NASA/GSFC
FIGHTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

by
Thomas A. Babst

COMPUTER SCIENCES CORPORATION
and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

: !
i
i

e i) ek g, 28 e £ et e e R IS

PRI STV

o i

- ‘ T e ok e B e e T
T T T T e L W e T T T :

| A 1 ANES v TN S PR - L e e e B L

INTRODUCTORY REMARKS ' i

. e s

John J. Quann, Deputy Director, Goddard Space Flight Center
(GSFC) , made the opening remarks at GSFC's Eighth Annual :
Software Engineering Workshop. He stressed the importance
of Softwdre Engineering Laboratory (SEL) activities to GSFC
and pointed out the effect of this work on the Spacelab
project and its relevance to future projects such as the
Space Telescope and Space Station.. ; o

The Space Station, for example, Will require all NASA cen- § !
ters to work together in a disciplined manner. NASA will be '
studying the results of SEL research to identify étfategies
for the desigﬁ} implementation, testing, and interfacing of
the software system. Mr. Quann also emphasized the impor-

tance of conferences, such as this one, as opportunities for
the exchange of ideas among managers, developers, and acad-
emicians. This is the route to excellence in the field of

e et 3 7

oottt s aF i ST b i v am

software engineering.

5w

g e rptn e e e

- - ——— - o R DR . - IS Rt s Ed R M e e s B % &

P 4

L
¥ |
M o
S H I
L oy
g SESSION 1 - CURRENT RESEARCH IN THE SOFTWARE s
? ENGINEERING LABOURATORY ;
: i
2 | Frank McGarry--"The Software Engineering Laboratory" ; 3

Frank McGarry of GSFC summarized the efforts of the Software g
é Engineering Laboratory over the past year. Mr. McGarry ex- f i
? ‘ plained that the SEL is a consortium that also includes i_ %
5 ’ Computer Sciences Corporation Ané the University of Maryland. % i
f _ The SEL has concentrated its efforts in four major areas of E. §
fd | software engineering research: software reliability and i é
é, testing, technology evaluation, software measures, and soft- g ;
?: ware development management. ? !
éw Many experiments have been performed by the SEL on produc- E %
E tion projécts to evaluate software developmentutechnologies § ;
% and to test software engineering theories. The results of : j
§- some of these activities are being presented at this work- §. %
shop. One of the principal areas of future activities will P

y be the development of a software management environment to :
% provide managers with the tools necessary to monitor and % ’ 5

control the software development process.

I Seate ot i

R

T N ST I Coe

T. Babst
CSC
20f18

T ., [TR TR T - : B aecasr - ST SR RS e o i e Rl R el

Dave Card (Computer Sciences Corporation)=--"Evaluating
Software Engineering Technologies in the SEL"
Mr. Card's presentation described the results of a study
that measured the effects of some software engineering prac-
tices, tools, and techniques on productivity and reliability
in a production environment. The study was based on a
sample of 22 similar software systems selected from the SEL
data base. Eight widely used and accepted technologies were
evaluated: quality assurance, software Eodls, aobumenta—
tion, code reading, top-down development, chief programmer
team, structured coding, and desigﬁ time. A statistical
technique was employed to compensate for the effects of non-
technological factors such as program- mer effectiveness and
computer use.

The study concluded that none of the individual technologies
evaluated had‘a:significant effect on productivity during
deveiopment; however, reliability was increaséd Signifie
cantly by quality assurance, documentation, énd code read-
ing. ' A 30-percent improvement was achieved with théée
technologies, and other benefits méy also be obtained. In

particular, a reduction of maintenance costs seems probable.

In response to questions and comments from the audience,
Mr. Card clarified the following points:

e All systems studiedﬁpassed their acceptance tests,
_thus the quality of each was at least "good."

[] ‘The measure of programmer effectiveness used was a
- weighted measure of years of experience. ‘

) Productivity was measured during development. That"
is, it is based on the cost to deliver the system |
to‘the customer. Subsequent maintenance costs are
not included.

T. Babst
CSC
30f18

R

iy 4 R 1 b

o by de eE

PR

e sieniia$

S

. . . N .
i i) ok D e . . e s AT SRt
g T —————— e g NS Be) e Sl SRR S S e e

e

Victor Basili (University of Maryland)--"Dynamic Metrics for
Software Management"

Dr. Basili's presentation described several efforts related

to the development of a general methodology for monitoring

software developmeht for the early detection of problems. A

pilot study, tool implementation, and extension activities i
were discussed. '

The approach of the pilot study was to develop a series of
baselines for critical measures; The actual values realized
by a project under developmént can be compared with the base-
lines to detect significant deviations. A set of explana-
tions was defined for each type of deviation, and the
methodology provided a mechanism for rating the probability
of these explanations. 1In the pilot study, data from eight
projects formed the baseline, and one other project was com-

s e o

pared with them.

Dr. Basili indicated that future plans include extending the
methodology to include additionalfmeasures and developing a
knowledge-based system incorporating this methodology. The
system will be developed using KMS (a spftware system used
in cons;rgctingvkﬂowiedge-based SYSﬁems) at the University
of Maryland. Dr. Basili stressed that this system is not
intended to replace a manager's expert;judgmént but rather
to support it with a formal tool.

e vttt -

In response to gquestions and comments from the audience,
Dr. Basili clarified the following points: S

° Measurement can be extended to the whole life L ; 1
cycle, and this option is under study. ‘ '

° The baselines are defined at discrete points corre-

oot it i

sponding to specific percents of work completed.
In practice, it is difficult to determine the per-
cent completion of a project under development.

T. Babst

CSC
40of 18

T T om e A e ey et O . .
e 3 e TR e T B9 5 SN0 a2 o et Sam ot e e e LU - e,

i;ﬁ&@ﬂﬁ“WT*”’T - : y lJ;)
A I 1
? S
| 4
- ‘ |
!
LI
L {n
i
The best way to do this can be determined only by f
studying the environment in which the methodology ‘
is to be applied. % |
Rate of change can be used as an indicator but is: E
not in the current methodology. b
: f
. Programmers in this environment do not appear to be ! :
changing their behavior to match the metrics. T
x The KMS knowledge-based system may be transport- ﬁ :
i able, but that is not an important consideration % ;
3 now. }
R
: Lo
] : !
3 : .
; ;]
] L
~ b
, Lo
i
L
& |
5 : |
2
e
| :
i
| :
| i
| 5
| §
g : :
B T. Babst g
= CSc
' 50f18

"

E
%
b

SRR - S ek 46 LR R I

:
Be
4
Eq
3
E
3]
i
£
4

Marvin Zelkowitz (University of Maryland) --"Characteristics

of a Rapid Prototyping Experiment"

Dr. Zelkowitz discussed the issues of prototyping in the
context of an actual prototype recently developed for GSFC.
This prototype, the Flight Dynamics Analysis System (FDAS),
is currently under evaluation.

FDAS is intended to provide an integrated software develop-

ment environment for spacecraft attitude, orbit, and mission
analysis research. It consists of a management system and a

library of application software. The application software
was implemented in an extended version of FORTRAN that pro-
vides data abstraction and generalized input/output
capabilities,

Dr. Zelkowitz provided three definitions of a prototype: a
"quick and dirty" throwaway, a partial implementation, and
first build. Some portions of a quick and dirty prototype
may be reused later in the final system, A prototype need
not be cheap to be cost-effective if it enables the full
system to be implemented less expensively and with greater
reliability than it would have been without the prototype.

In response to questions and comments from the audience,
Dr. Zelkowitz clarified the following points:

® The goal of FDAS was not to save code,'although
~ much will probably be reused. !

[Forty-eight percent of the development effort was

spent in implementation. This phase includes cod-

ing and unit testing activities.

) _“‘The;full FDAS system may be implemented in a lan-
o guage ‘other than FORTRAN.

() FDAS is 1n the public domain and w1ll probably be

made available through COSMIC when it is completed.

T. Babst

6of18

p——— S BT ASR e Ee

i i

¥
1
4

P i o EE S o i et O B

BESSION 2 - TESTING SOFTWARE

Jim Ramsey (University of Maryland)--"Structural Coverage of
o Functional Testing"

Mr. Ramsey described the initial results of an evaluation of

the effectiveness of functional testing by examining struc-

tural coverage metrics. A FORTRAN program consisting of :
68 subroutines was instrumented to produce structural cover-
age measures when executed. Then, structural coverage data
were collected by performing (functional) acceptance tests.
These results were compared with data from operational use
of the program.

Mr. Ramsey reported that although the acceptance tests and
operational use largely covered the same software, there ;
were significant differences. Also, about one-third of the
code was never executed. However, this procedure does have
the potential for providing a numerical measure of the ef-
fectiveness of (functional) acceptance tests.

A much larger piece of software is now in the process of t

results should be derived from this additional data.

being instrumented and tested in this manner. More concrete P

In response to the questions and comments from the audience,
Mr. Ramsey clarified the following points:
® Conclusions cannot be made at this time about :

whether larger or smaller modules are more fully ‘?
exercised or aboupwthe nature of the untested code.

° The tests pérformed were derived from the func-

tional requirements of the program, not from knowl-
edge of the code.

B RIS

ey

tiandi a2

O i

B RS S L T

B -

A T IRSER T RSIRATS T TOee

TR T

NG ATY T

e Gt R

;j

IR L g

Amrit Goel (Syracuse University)--"A Methodology for

o Detecting Errors"
Dr. Goel described a mathematical approach to selecting
software tests. No: testing strategy can detect all errors;
however, Error Specific Tests (ESTs) can be devised to iso-
late those types of errors important to the tester.

In this approach, test requirements are formulated in alge-
braic notation. Tests are determined from the requirements
specification and its functional decomposition. Next, tests
specific to each type of error targeted by the user are de-
veloped and enumerated in a test plan. This process of de-

fining functional requirements and structural parts may also
provide insight to software complexity.

In response to questions and comments from the audience,
Dr. Goel clarified the following points:

® The methodology discussed has not been tested on
’ actual software development problems.

e Optimization of the test plan is necessary to avoid
‘ redundant tests. '

® - Automation is essential because of the complexity

and comprehensiveness of the resulting test plan.

) This method of testing is different from program
proofs, although the notaticn is similar.

T. Babst

CSC

80of18

B s s SN e

i
te
i
¢
4
3o

o it g § ekl s wnet i

b s ey &

A

RO PR

ey

Cathy Savolaine (Bell Laboratories)--"Testing and Error
Analysis of a Real-Time Controller"”

Ms. Savolaine reported the results of an error analysis f
based on data collected from the development and testing of
a real-time communications controller system. The system
.o studied was the Satellite Network Scheduler (SNS), which
: controls ground stations as part of a reservation system for
picturephone conferencing. Testing for each release was
performed by an individual not involved in the development
of that release. The number of errors per module was corre-
lated with module size and cyclomatic complexity. Errors
were classified in three groups: omission, commission, and
S requirements. Half of the errors detected before delivery ;
o were errors of omission. In contrast, half of the errors

found during operational usage were errors of commission.

T R it

Ms. Savolaine concluded from these results that complex

s St i ol i

modules should be avoided, more code inspections should be ;
péerformed, and developers should look harder for commission o

errors because these were the principal type found by the
user.

i v AT 1T

In response to questions and comments, Ms. Savolaine clari-
fied the following points:

e ey Y IR DR R SRR e

2 ® Records were kept of the numbers of errors found

% | during code inspection, but the data are not

% readily available. :
%% L The development cost of an autbméted test package |
gﬁ was included in the SNS development budget.

Errors of commission were not further categorized,
| . but this can be done. S

F

A

il L M -, SR

R T E I A SR

I TE TR R T

. ; ° It is not known at this time why fatal errors
' seemed to cluster in the simpler modules.

o

&g T
®

The total number of errors, not error rate, was
compared with size and complexity.

fer T T NRAN T

T, Babst ;
csc
10 of 18 “

RN i L — o

R R

byt

gﬁg’i?f%wWM”-

TETTELL Y ke T I TRec TSP

SESSION 3 - HUMAN FACTORS

Ed Connelly (PMA)--"Transformation of Software Design and
Code May Lead to Reduced Errors"

Mr. Connelly described a series of experiments conducted to
determine how well people can use examples to specify logic.
In this study, individuals were asked to devise solution

algorithms to various problems (specifically, scheduling and
allocation problems).

The problems were initially given to accountants, and later.
to programmefsJ The solution algorithms were fed to an iﬁ—g
ductive processor. Feedback from the processor helped to

systematize the subjects® thinking. The solution algorithms

were compared with FORTRAN programs, and both were tested
for correctness.

Based on the resuits of these experiments, Mr. Connelly con-
cluded that performance is correlated with the number of
languages and operating systems the programmer is familiar
with. He also indicated that the examples had fewer errors

of commission than FORTRAN code developed for the same
problem.

In response to questions and comments ﬁrom the audience,
Mr. Connelly clarified the following point:

°® The dependent variable in the analysis was perform-

‘ance (i.e., the number of incorrect inputs recog-
nized by the program).

T. Babst
CSC
11 0of 18

e S T ey e e A BT R T T i

s R e

LRI ¢ T R

gt

ST ST WPt

o ey il

A

\
N

o S, Ll ey 2k o ivishal oo INECF OSSR S L N T e I EE e S 4 N
4 28 (N

Elliot Soloway (Yale University)--"You Can Observe a Lot by
Just Watching" (How Designers Design)

Dr. Soloway described some observations made during a study
of the work habits of novice and experienced software de-

signers. The experts had 8 or more years of experience; the
novices had 2 years or less; all were familiar with telecom-
munications system software. . Y

Each individual was given the same vague set of specifica-
tions for an electronic mail system and was asked to develop s :
: |

.y

1,

a design. The design process was recorded on videotape. An

ree

3,
,:‘,

interviewer prompted the designers to describe what steps

they were taking. The experts approached the problem sys-

tematically in a top-down fashion. They kept detailed notes

of assumptions, constraints, and expectations. In contrast,

the novices immediately began working on the problem at a :
very detailed level. f

One conclusion drawn by Dr. Soloway was that an effective i
design tool should provide a capability for Kkeeping track of e
notes of the type made by the experts. Most such tools de- I
veloped in the past have focused on what the designer should }'
be doing rather than on facilitating what he/she actually
does. t

In response to questions and comments from the audlence,,v
Dr. Soloway clarlfled the fullow1ng points:

° The expert designers were very 1nd1v1duallst10.

° The experts seemed to have some familiarity with
the problem. It would be: 1nterest1ng to test'them
in other 01rcumstances. :

) The expe;ts'were clearly designers, whereas the

P,

novices could have been programmers who were asked
to design. ‘ ‘

T. Babst Ly
CSC Leiw
120f18 :

. L KA L e i T A M R i KT B e - AR £ ey

The experts continued to "back up" if questions
remained unanswered. It would be interesting to

see and measure where this backup occurs.

It might be possible to build a system to teach

novices to become experts in design.

The experts and novices were separated, but it
might be interesting to see how they worked

together.

The experiment was exploratory in nature, rather
than a rigorous test of any hypothesis.

S T e il R e e e s B i

4
H
“
b
¢
i
h
4
.
!
‘.‘
:
; 4‘
L Al
: :
: ‘
' !
f
H i
K A
H %
: il
: ki
i
;
.
r
-
#
iy
: |
H
: }
i]
¥ f
3
- T, Babst f
CSC . {
13 0f18
!

f

25 A
f

T TR T R RO AAR T AR AT

T TR,

Bl St

.

£
Bra
B,

|
L
é.
Y
#

X
=

et
&
oo

TR TIITTT L T

Charles Grantham (University of Maryland)--"Evaluating

Multiple Coordinated Windows for Programming
Workstations"

Dr. Grantham described the results of some recent research
on the design of a multiple-screen programmer workstation.
Two such workstation designs are under evaluation. One sta-
tion consists of three separate screens; the other consists
of one screen with four windows. The information on each
screen or window is ccordinated with the others. The appro-
priate information to be displayed on each window was deter-
mined by observing the behavior of programmers while
testing, debugging, and modifying software. The module
specification, structure chart; and source listing are dis-
played under both configuratioﬁs. The four-window configu-
ration has an additional user-defined area. Ultimately,
better workstation designs should improve the software de-
velopment process by maximizing the number of tools that are
available to the programmer at one time.

In response to queétions and comments from the audience,

Dr. Shneiderman and Dr. Grantham clarified the following
points:

] Many multiple-screen systems do exist, but most are
passive displays that do not have coordinated

screen action. This study addresses dynamic screen
coordination.

) Software maintenance will be facilitated by using
multiple screens in this manner, because additional
details about the module being maintained will be
available.

T, Babst

CSC

14 of 18

: %QSE

T e L AR i e i e e B e e PR

e e

- 4

o, ¥

el o o e e o g

e wn s e a4, A

A N ToTe—y . s T TR o S o R T Y S . 2=/ : wi
™~ . - . . o @ h
*.

3; |
; ‘
A i
o 9
L K
- ° The importance of left/right orientation should be 1
1

considered when selecting and arranging display

- contents.

R T
PL

: [] The layout of information in different screens or : :

: . . . -

> windows was essentially fixed (not dynamically con- g :

3 trolled by the user). ; o
Lo
: §
.

. ; H

g i

s, ;

2

2

:

4

) #

: | 4

;‘: ‘\; -1

: ; ;

. r.; i

3 £ !

. : ,

. i :
!

WOFLOE g g T T A

H

qy\::;:}\;pﬂ;l

:

]

!

i

!

»” I 1
> |
i
i ; L
:)

s

: !

i i

H §

H :

T, Babst
csC
15 of 18

SESSION 4 - QUALITY ASSESSMENT

Al Currit (IBM Corporation)--"Cleanroom Certification Model"

Mr. Currit described the software reliability model used for
software certification in the "cleanroom" development ap-

A 1Ll

proachf The cleanroom is a rigorous methodology that sepa-
rates developers from all testing activities. It replaces
unit and integration testing with rigorous code inspections.
Although it is difficult to produce software with zero de-
fects, it is hoped that this approach will produce code with
- i a very low probability of failure.

Certification of the developed code is dependent on its

g achieving a specified mean time to failure (MTTF) during

?u testing. MTTF is an appropriate measure because it is unam-
g biguous and relates to the customer's needs. The certifica-
§ tion model predicts MTTF based on failure data collected

g during testing. It shows good agreement with published data.
f Although mathematically similar to some popular reliability
% models, it is simpler than most. This MTTF model seems to

? | be an effective tool for determining when software is ready
§ | for delivery.

; % In response to questions and comments from the audience,

é § Mr. Currit clarified the following points:

5 § ° MTTF is measured in terms of usage months rather
- than CPU execution time.

éﬁ' i L The Cleanroom concept replaces unit testing with

i' i statistical testing. - Test data are used to calcu-
>~ late MTTF. | |

%f/ (° Under the cleanroom system, programmers are kept

away from the computer as much as possible. They
only get clean compiles of their code and are not
able to debug programs on the computer.

T. Babst
CSC
16 of 18

TR L A LT T ‘ P = o e S [ty i N
« Bt
2 o3

£
1

i AR L ST AN

R 133> 83 /P L sl Sl AP SN NSRRI Sy

Kyle Rone (IBM Corporatlon)--“Pro;ectlng Manpower To Attain

Quality"

Mr. Rone described the derivation of a model to predict the
manpower required to insert new technology into a system.
This model will also aid in deflnlng the distribution of
manpower needed to achieve maximum quality.

The devélopment environment studied generates software in
incréméntsg as a series of releases. The goal of this re-
search effort is to create a model that matches this strat-
egy. Increasing the manpower at the beginning of a project
and moving more quality ahalysis toward the front seems to
facilitate the early detection of er:oﬁs} Mr. Rone believes
that by following this plan, maintenance costs for the sys-
tem studied, which annually are now approximately 25 percent
of the development cost, will be reduced to around 15 or

20 percent.

In response to questions and comments from the audience,
Mr. Rone clarified the following point:

o Maintenance includes the effort reqdirédﬂto fix
errors documented on discrepancy reports. It does
not include the effort spent to complete change
requests.

T. Babst
CsC
17 of 18

i A Py

R T L Ny) N S

£

o R R IR AN S T R A TR SR TR T -

WREEIAT T

S

&

¢

-
&
3

g

-
.
e !
o
)
3
:
29
-
3
=
L

it
!

8 RIRERSE A DO Rt G e
. B) RNy

%
)

Jorge Romeu (ITT Research Institute)--"An Approach to
Software Baseline Generation"

Dr. Romeu discussed the initial results of an ongoing re-
search effort to define baselines for the management of
software development. A baseline was defined to be an esti-

mate of the usual value of any characteristic of a software
system.

The analysis was based on data collected by the Software
Engineering Laboratory. Correlations were calculated be-
tween effort and other software characteristics, and de-
scriptive statistics were generated. The ultimate goal of
this research is to develop guidelines for estimating costs
and performance characteristics for software development
based on historical data. The baseline approach is widely
applicable and easily implemented.

T. Babst

CSC

18 0of 18

lilaien RO N S B T A P i s 1 o gy e T

s w

T e

e

iR

e e g e e e

i - A T 1t B e e o b e - fo

NI e w e ¢

iy e

TERTIOR

TEie A

BOWE S OERE Y aaTeor o

B MR Sl 2 U S A5 36 LA SR
g .

PANEL #1

CURRENT RESEARCH IN THE SOFTWARE
ENGINEERING LABORATORY (SEL)

D. Card, Computer Sciences Corporation
y. Basili, University of Maryland
M. Zelkowitz, University of Maryland

)

e R PR

et il A5 0 bl it A g’ s

s e £ £

TV W e

e

Lo vanithe

EVALUATING SOFTWARE ENGINEERING

TECHNOLOGIES IN THE SEL

David N. Card

LY

COMPUTER SCIENCES CORPORATION

Frank E. McGarry

GODDARD SPACE FLIGHT CENTER

Gerald Page

COMPUTER SCIENCES CORPORATION

Prepared for the

NASA/GSFC

Eighth Annual Software Engineering Workshop

D. Card
CSC
1of17

e R T e R R e TG

TR R S

L IR

[U PSS N FOF P e

Sl S ks it

e v e

S XY et

e ey R AR A =

]

INTRODUCT ION

The basic goal of software engineering is to produce the
best possible software at the lowest pussible cost. Many
practices, tools, and technigues (collectively referred tO]v
as technologies) have been developed that purport to help do
this, some of which have become widely accepted in the soft-
ware industry. However, few of these technologies have been
effectively evaluated experimentally (Reference 1). ‘This ié
due in large part to an insufficient understanding of the
software development process, a lack of recognized standards
for measurement, and the prohibitive cost of iarge—scale
controlled experiments.' The analysis described in this
paper addresses some of these issues. The specific objec-
tives:of this study were to

L Measure technology use in a production environment

[] Develop a model for evaluating software engineering
technologies

° Evaluate the effects on productivity and reliabil-

ity of some specific technologies

Eight widely used technologies were selected for study, as
identified in Table 1. The extent Of‘general use shown' in
Table 1 is the perceﬁt of:réspondents reportihg'having suc-
cessfully appiied these technologies in a survey by Beck ard

Perkins (Reference 2).

The data analyzed in this study was collected by the Soft-
ware Engineering Laboratory (SEL). The SEL has collected
data from more than 45 projects during the past 6 years
(Reference 3). Table 2 shows some of the characteristics of
these;projects. Although a controlled experiment was not
performed for this study, a carefully matched sample was
selected for analysis from the SEL data base. The sample

D. Card
CsC
20f17

e N T s g Y, e R A e B e

8

T

A28 s A e

LS S n i st SR L e

T e T

e o i S TR Y
Y

|
R T e - .

o Ll3o¢g

J8D
pred '

e

ﬁrm S8 ARIED 18 £ Aiie A r A e LN i R e e CL At ®

TABLE 1. TECHNOLOGY INDICES

SEL
INDEX MEDIAN (%)

 QUALITY ASSURANCE? 49

TOOL USE2 | 49

DOCUMENTATIONZ)

STRUCTURED CODE 70

~ CODE READ | 20

TOP-DOWN DEVELOPMENT 60
CHIEF PROGRAMMER 85

DESIGN TIME o - 32

TEROM SURVEY BY BECK & PERKINS.
2COMPOSITE OF SEVERAL ITEMS.

T T S I S S P .

GENERAL!

USE (%)

49
NA
78
59
a4
60
46

NA

T oW
TN

2R

e G~

4“-"‘&/‘ T

v

L1Jod

28D
PieD) 'd

TABLE 2. ENVIRONMENT STUDIED

TYPE OF SCIENTIFIC, GROUND-BASED, INTERACTIVE GRAPHIC,
SOFTWARE: MODERATE RELIABILITY AND RESPONSE REQUIREMENTS

LANGUAGES: 85% FORTRAN, 15% ASSEMBLER MACROS
MACHINES: 1BM S/360 AND 4341, BATCH WITH TSO

PROJECT CHARACTERISTICS: AVERAGE HIGH Low
'DURATION (MONTHS) . 158 20.5 12,9
EFFORT (STAFF-YEARS) - 8.0 1.5 2.4
SIZE (1000 LOC)
DEVELOPED 57.0 1.3 21.5
DELIVERED : 62.0 112.0 32.8
STAFF (FULL-TIME EQUIV.)
AVERAGE 5.4 6.0 1.9
PEAK 10.0 13.9 3.8
INDIVIDUALS 14 17 7
APPLICATION EXPERIENCE
MANAGERS 5.8 6.5 5.0
TECHNICAL STAFF 4.0 5.0 2.9
' OVERALL EXPERIENCE
MANAGERS 10.0 14.0 8.4
TECHNICAL STAFF 8.5 1.0 7.0

SAMPLE: 22 SYSTEMS USING A VARIETY OF T‘ECHNOLOGIES

43-CAR-(33)-5 .

S M v T T NI R W Rt et ST e ngmidl i it it | ket A i S e e g e el et o B L L L e N

! .3
T e et

TR 0 R

S

e B

Mg oy

M SRS

RS

P raiI B

consisted of 22 scientific software systems developed in
FORTRAN on the same computers to support spacecraft flight
dynamics applications.

LT T T T —

D. Card
CSC
50f17

b
;
l :
3
i
i
:
i

o Y |

ST NG g v -

4

E-‘-«&”‘*W"'w SR T

TECHNOLOGY MEASUREMENT Ty

A degree-of-use score (technology index) was determined for

each of the technologies listed in Table 1 for every system ;
; ; in our sample. These scores are based on both subjective
| and objeéﬁive information. (The table lists the median
score from the sample of 22 projects.) These scores are the
- % percentage of actual’use of a technology relative to its .
2 E l maximum possible use. The exception is design time, which j, f
i is simply the percentage of the development schedule spent : t
in design. ”

For those technology indices having only one component (see
Table 1), such as code reading, the score is the percentage
of code to which this technology was applied. -For those

SRR TR R TR e 3
. ’

§

:)

technology indices having more than one component, such as . ;

! documentation, the score is the percentage of components |

% applied. 1In the case of the documentation technology index,
' the score is the percentage of documents actually produced

LR RS At S

1 | by a project of those that might be produced in this o
. environment. : K ‘

This analysis attempted to idéntify the effects of tech-
nology use on development team productivity and software-
reliability. Productivity was measured in terms of the ; i

TR TUTRNTTOT a4 a3 T

number of noncomment lines of code designed, coded, and R

|

{

| tested per programmer hour of effort. Reliability was

} measured as the inverse of the number of errors detected per

AN AR

noncomment line of code.

s

One assumption made in this analysis is that the effect of
any technology is incremental. That is, a high level of use

7
Lo
2

oq a beneficial technology has more effect than a low level

R

of use. A technology. that is of no value unless applied
perfectly is of no value at all, because it will never be
applied perfectly. ‘

D. Card
CSC ’ :

P N BTN

L e T T s R R i U e iy e o e e, F E SRR AR e -

e

R AR R Aol

FoRERE et @R RN

o
:
i
A
3

3
t
~

TECHNOLOGY EVALUATION

Evaluating the effect of a technology on an actual software
development project is;not easy. In practice, several tech~-
nologies may be applied together, and other factbrs such as
programmer efﬁecﬁiveness and problem complexity also influ-
ence project results, Boehm (Reference 4) has pointed out
thejdiffiCulty of distinguishing the effects of modern pro-
gramming practices from those of related factors. Table 5
lists the nontechnology factors considered in this analysis.
Allhbf“these have been suggested in the software engineering
literature to affedt productivity and/or reliability.

Thus, the next step of this analysis was to ijidentify the
major nontechnology factors and to develop & procedure for
compensating for their effécts on productivity and reliabil-~
ity. The analysis of covariance technigue (Reference 5) was
selected to deal with this situation. The Statistical
Analysis System (Reference 6) software pérformed the
computations reported in this paper.

The technology indices were collapséd for this analysis by
dividing the projects into "high" and "low" groups with re-
spect to each technology index. Although this causes some
loss of information, the resulting analysis is also more
robust, This analytic technique permitted tests of signifi-
cance to be performed between the high and low groups with
respect to productivity and reliability after compensating
for the nontechnology factors (covariates).

The two most highly correlated factors from Table 3 were
initially selected as covariates for productivity and reli-
ability. Programmer effectiveness and computer use were
selected as covariates with productivity. Programmer
effectiveness was also selected as a covariate with reli-
ability. However, because requirements changes was cdr-

D Card
CSC
Tof17

YA N TR I AL PR AN AL e e

el o LR e R e BRI R A e

e e A R P TIT T 7 ey

b

ol e W OB R dh. e et an v e

e A < U it T e et dme *5a

© ek B

Lty Fet e

X3yt

b atiat e T e 4 s e e . < e e

L1JO8

28D
pIe) ‘(I

TABLE 3. OTHER FACTORS

CORRELATIONS

SUBSYSTEM)

FACTOR MEAN

PRODUCTIVITY! | RELIABILITYZ
PRODUCTIVITY 3.0 - 0.51
PROGRAMMER EFFECTIVENESS 5.7 053" 0.68*
(WEIGHTED YEARS)
REQUIREMENTS CHANGES/ 1.4 -0.12 -0.40
SUBSYSTEMS
NUMBER OF SUBSYSTEMS 6 0.21 0.03
NUMBER OF DATA SETS 1 0.26 0.17
NUMBER OF DATA ITEMS 328 0.30 0.21
AVERAGE STAFF LEVEL (FTE) 3.3 0.10 -0.09
AVERAGE MODULE SIZE (NEW) 193 -0.07 -0.15
COMPUTER USE (HOURS/LOC) 0.008 -0.59* -0.19
MANAGEMENT/SUPPORT 19 -0.47 -0.18
EFFORT (%)
DATA DENSITY (DATA ITEMS/ 7 -0.07 0.38%

TpRODUCTIVITY

DEVELOPED NONCOMMENT LINES OF CODE/PROGRAMMER HOURS

2RELIABILITY = ~-ERRORS/DEVELOPED NONCOMMENT LINES OF CODE

+SECOND FACTOR SELECTED.
*FIRST FACTOR SELECTED.

436-CAR-(6f)

related with programmer effectiveness, data density was
substituted as the second covariate for reliability. This

ISR 'S TR

prevented collinearity in the model.

T
.
a4

>
K.
s

Each technology was evaluated independently in this manner.

One potential confounding effect recognized in an earlier ‘

SEL étudy (Reference 7) and by Boehm (Reference 4) was the i
tendency of technologies to be used together, This makes it i

difficult to isolate the effects of one technology from f 1
another and‘pbses the possibility that there might be an ;
interaction of technologies that this procedure could not ;- 3
detect. : o _ , f

&

Productivity Results

- | This approach to the evaluation of technologies resulted in
the generation of a class of models (one for each tech-

nology) of the form

PR ARG E YRR TR
- R

Productivity = Technology + Programmer Effectiveness
+ Computer Use o ’ o

Together, programmer effectiveness and computer use ac- :
counted for 54 percent of the variation in productivity

before the effects of any technologies were included in the 1
models; Table 4 shows the additional variation accounted

coEARR TR AR AR

N

for by the technology factors. The magnitude and signifi-

:

E cance of the effect for each technology are also listed in
§ the table, 1Individually, none of the technologies studied
é[in this analysis showed a Significant effect on productiv-
g; ity. However, this also indicates that any other benefits
%4 derived from these technologies are not at the expense of

>

1 ; productivity.

-~ ;

- Early suggestions were that the principal value of modern
’ programming practices is primarily in the area of maintain-
ability. Shephard (Reference 8) indicated that the effects
of such technologies are more apparent in less experienced

D. Card
CSC
90of17

L R L e il LN A e R ey e

JSO
pIed "'

L13O0I

=

TABLE 4. SUMMARY OF
PRODUCTIVITY ANALYSES

TECHNOLOGY SIGNIFICANCE
INDEX (EFFECT) OF EFFECT (X4)

PERCENT
IMPROVEMENT CONTRIBUTION (X,)

EXPLANATORY

QUALITY 0.87
ASSURANCE

TOOL USE 0.77
DOCUMENTATION 0.36
STRUCTURED 0.82
CODE

TOP-DOWN 0.95
DEVELOPMENT

CODE READ 0.45
CHIEF 0.16
PROGRAMMER

DESIGN TIME 0.60

ISOLATED TECHNOLOGIES HAVE NO DETECTABLE EFFECT ON

-2

3
"

PRODUCTIVITY

0
2

1

436 CAR-(6b)

programmers than in experienced personnel such as those " {
studied by the SEL (see Table 2)., Some other environment- : !

A TESY AT T
.o e

specific considerations are discussed in the summary at the
end of this section. Mills (Reference 9) proposed that pro- : 1
ductivity is a byproduct of quality, that is, a consequence |

R

of minimizing rework (errors). We would thus expect differ- '
ences in reliability (guality) to be easier to detect. !)

Reliability Results

v AT TRy o

& This approach to the evaluation of technologies resulted in
the generation of a class of models (one for each tech- : :

AP A S
-

nology) of the form :

(A A L L

Reliability = Technology + Programmer Effectiveness

+ Data Density

Together, programmer effectiveness and data density ac-

Rl Ll
.

|
)
j
counted for 63 percent of the variation in reliability be- ’
fore the effects of any technologies were included in the : j

B ST X At

models. Table 5 shows the additional variation accounted : t ' 3
‘ for by the technology factors. The magnitude and signifi- }
% : cance of the effect for each technology are also listed in :
: the table. : | ’ §

Three of the technologies studied in this analysis showed %
significant effects on reliability: quality assurance, |

documentation, and code reading. All of these techniques ' | i
are examples of conscious efforts to understand and verify

the software product. Approximately 73 percent of the vari-
ation in reliability can be explained with a model of this @ j

type. Improvements in reliability were obtained without any

— apparent effect on;productivity (Table 4). Furthermore,
: this implies that skimping on these activities will not pro-
duce any cost savings for the developer.

D. Card
CSC
110f17

TABLE 5. SUMMARY OF
RELIABILITY ANALYSES

b TECHNOLOGY SIGNIFICANCE PERCENT EXPLANATORY
| INDEX (EFFECT) OF EFFECT (X4) IMPROVEMENT CONTRIBUTION (X,)

QUALITY 0.02* 29 10

| ASSURANCE

‘;} TOOL USE 0.78 3 1

‘ DOCUMENTATION 0.04* 27 8

i STRUCTURED 0.75 3 1

E‘} CODE

: TOP-DOWN 0.67 6 1

‘ DEVELOPMENT

| CODE READ 0.02* 29 10

!

| CHIEF 0.56 8 1 |'
PROGRAMMER

f. DESIGN TIME 0.96 . 0

-
| Xele *P < 0.05
| - 436-CAR-(8b)

ey —_— = rer——— . - B % ST T T e e o T N YWl
O LU . # s . . &

Summary f
S The numerical results just presented must be considered in 4

the context of the local software development environment.
The results for each technology are discussed below. i

L
-

° Quality Assurance--A program of regular reviews

(e.g., system requirements, preliminary design) improves
; ‘ software reliability at little or no additional cost in de- i
é | velopers' time. Time spent on reviews is retrieved by
' avoiding subsequent problems. Loy

. o Software Tool Use--Extensive computer use in gen-

eral seems to have a negative effect on productivity, al-
though some specific tools may facilitate specitic tasks.

b st R

| This index is based on the tools available in the flight
dynamics environment. None of these tools has a demon- :

SRRt L LA S 56 LI
. : |

strable effect on productivity or reliability.

e iyt et 1 e thme,

) Documentation--The development of effective docu-

T TR IR .

mentation requires a careful review of the product under

ATUSTHE AN ST
i o vl

development. Documentation is, to some extent, a prerequi-

Lok MR L N S
S

site for quality assurance reviews, and thus has a signifi-

§ | cant favorable effect on software reliability.

¢
¥
E
s
R
3
&

N
B
e
1
o
:?:L,/
P
e
%
&
™.
=

°® Structured Code-~-The use of structured code pro-

duced no significant effect on productivity or reliability. : :

However, the benefits of this technique are expected to
T e !

occur in maintenance. ‘ o

o: Top-Down Development--The high-leVel designs of all

of the systems in the sample studied were similar, and a %

substantial amount of code was reused from previous sys-

\

L

tems. Hence, it is not surprising that no benefit was iden- :
tified from the use of top-down development in this :

environment.

D. Card
CSsC
13 of 17

SV - TTE T 3 - e ad A iy sttt . R A e a2 e Ly \. 4
L £ Bl M it e o i £
e - * - E S JR— ; N
s v
h
Ny
.

5

° Code Reading--The simple practice of code reading f X

: improves software reliability at little or no additional {

g‘ cost in developers' time. i

;.) Chief Programmer~~The use of a chief programmer ‘ ?
? team produced no significant effect on prod@ctivity or reli- |

ability. However, it may provide other benefits. S ;

o . i ; . + {

é ® Design Time--The percent of schedule spent in de- . '§

: sign showed no éignificant effect on prOductiviﬁy or reli- f\ ;

y ability. The high-level designs of all sYstems studied were E‘ ;

. similar, and the software development problem was well ; é

;7 understood. In this situation, additional design time may ‘- E

;‘ not improve the product. 8
. :
| :
e

Voo

; i

. |

1

¥
&
N
&
;;
K
£
&
&
b
¥
L3
F—al
£
J—

D. Card
CSC :
14 of 17

R R L, el A i e e e e

2 -2

£
o

, i
A
> b

-';,L CONCLUSIONS

:' L
The analysis results presented in the preceding section lead ; j
, to two types of conclusions: those pertaining to the con- g
: duct of software development in the local (SEL) environment, : i

and those of a more general nature. For the most part,
these conclusions are consistent with similar work by other
researchers and with assumptions commonly accepted in the
software development community.

The Local Environment | ' | 1
The results of this analysis provide the following sugges- E §
tions for the conduct of flight dynamics software develop- » !

ment projects:

ray v e Py RS ko

® Use a small team of appropriately experienced in- :

dividuals i 2

: i

: ® Do not depend on the computer to do the pro- . !
é grammer's thinking 7
A ° Read all ccde developed % =
P () Effectively document each phase of development : :
’ ° Conduct regular quality assurance reviews 5 E

The most important lessons are that developers must‘be cap-
able and must consciously seek guality. These conclusions - }
will be fed back into the management of subsequent software

development projects at Goddard SpacejFlight~Center (GSFC) . ' ;

General Implications™

IR U PR o

i, The analytic procedure and some results of this study are :
it applicable to more than just the GSFC flight dynamics envi- ’ ?
%» ronment. The general conclusions of the study are as ;
3 follows: E
o ' : :

L [Technology use can be measured and evaluated in a

%ék production environment.

1

’,5 D. Card

£ CSsC

= 15 of 17

i s RN e A R A S T TR o0 e et L TR 02 L R AL A e g

LT il i e i a a4 VT i e 4 e

WA MRS SPTRTER R T

5
A

I— - - - - T L AR 3
T : 7 :

(] A model that explains much of the variation in pro-
ductivity and reliability was developed for tech-
nology evaluation.

Limited use of the technologiés studied can produce
up to about a 30-percent improvement.

Although the improvements identified in this Stﬁdy were in
the area of reliability, a corresponding decrease_ih main-
tenance cost due to a smaller need for error correcﬁion
should also be realized. Furthermoxe,‘productivity:appears
to be a companion of quality software éevelopment. In addi-

tion, some technologies may produce other beneficial effects
in areas not yet studied by the SEL.

The analysis of covariance model appears to}bé one appfo—
priate technique for evaluating the effectsyof technologies
in this context. However, small improvements in pn:oductiv-~
ity and/or reliability that were not detected by this pro-
cedure might occur. More such evaluation efforts are needed
to provide an empirical basis for the formulation of soft-
ware development standards.

D: Card
CSC
16 of 17

RS T i el SN s e G TT o i sp—_ ;

< aooka v e

i e e 2

S T o]

o ha i -

G el T
%

AL SRR A N S A
. .

R s S AN St St

RS D

...:41\,?.;1}%‘_.,..,,&}7; L‘,{;xr:wﬁ',yfﬂ.,;r,~ RERE T T AT

‘;._.a

ACKNOWLEDGMENT

The authors would like to thank V. Basili, B. Curtis,

S.

Zweben, and W. Agresti for their comments on an earlier

version of this paper.

REFERENCES

B. A. Sheil, "The Psychological Study of Programming,"
ACM Computing Surveys, vol. 13, no. 1, March 1981

L. L. Beck and T. E. Perkins, "A Survey of Software
Engineering Practice: Tools, Methods, and Results,"
IEEE Transactions on Software Englneerlng, vol. 9,
no. 5, September 1983 , ‘

Software Engineering Laboratory, SEL-81-104, The
Software Engineering Laboratory, D. N. Card,
F, E. McGarry, G. Page, et al., February 1982

B. W. Bdehm, Software Engineering Economics. - New York:
Prentice Hall, 1981, pp. 453-456

0. J. Dunn and V. A. Clark, Applied Statistics:
Analysis of Variance and Regression. New York:
John Wiley & Sons, 1974, pp. 307-332

i

D M A A R o R TREREETRNRREE e e T T

SAS Institute, Statistical Analysis System User's Guide,

J. T. Helwig and K. A. Council, December 1979

D. N. Card, "Identification and Evaluation of Software
Measures," Proceedings of the Sixth Annual Software
Engineering Workshop, December 1981

S. B. Shephard, B. Curtis, P. Milliman, et al., "Modern
Coding Practices and Programmer Performance," IEEE
Comguter, vol. 12, no. 12, December 1979

H. D. Mills, "Software Productivity in the Enterprise,"
Software Productivity. New York: Little, Brown & Co.,
1983, pp. 265-270

I).(jard
csc
17 of 17

g e Bk et

ey

TAARTEL I T

I L T T T e

R L. ¥ o

PR

1
b £
| ,] t
” i - i B
wf i N '
o j Nt AL y , L
oRcL. PAC (€ " N84 23139 .
i P A
i | OF POOR QUALITY :
T i .
. 1 |
i £,
; b
r k f’
E {
s !
y- | MONITORING SOFTWARE DEVELOPMENT THROUGH DYNAMIC VARIABLES ‘
* i ‘
f . ! Carl W. Doerflinger :
i Victor R. Basili |
I s
University of Maryland :
: Dept. of Computer Science : \
5 College Park, MD 20742 : !
(301) 454-2002 :
_ ¥ ;
‘ Abstract
!
4 ; : N
- This paper describes research con- The ‘interest in the software develop- ! o
e ducted by the Software Engineering Labora- ment process is motivated by =~ desire to : I
- tory (SEL) on the use of dynamic variables predict costa and quality of projects ! :
‘ as a tool to monitor software development. being planned and developed. For several i 8
The intent of the project is to identify years, studies have examined the relation- i
project independent measures which may be ships between variables such as effort, ¥
used in a management tool for monitoring 4,5 K
3 software development. This study examines size, lines of code, and documentation . H
it several FORTRAN projects with similar pro- These studies, for the most part, used :
files., The staff was experienced in data collected at the end of past projects : ‘
developing these types of projects., The to predict the behavior of similar pro- : !
projects developed serve similar func- jects in the future, In 1981 the SEL con- : 3
tions. Because th se projects are similar cluded that many of these factors were too i
we believe some underlying relationships dependent on the environment to be useful i
exist that are invariant between the pro-
jects. These relationships, once well for the models that had been developed . ‘3
defined, may be used to compare the Any model which attempts to trace these 3
development of different projects to relationships should therefore be cali- 3
determine whether they are evolving the brated to the environment being examined.
same way previous projects in this The meta-model proposed by the SEL is
6

environment evolved. b
designed for such flexibility . y

RN

tion (NASA), the Computer Sc¢ciences Cor-
poration (CSC), and the University cf
Maryland established to study the software
development process. To this end, data
has been collected for the last six years.
The data was from attitude determination
and control software developed by CSC, in
FORTRAN, for NASA. Additional information
on the SEL, the data collection effort,
and some of the studies that have been
made may be found in papers from the

Qverview Another way to isolate out the .

environment dependent factors is by com- : H

The Software Engineering Laboratory paring two internal factors of a project, : 3
(SEL) 1s a joint effort between the thus ignoring all outside influences. One .
National Aeronautics and Space Administra- approach that is used to monitor software z

development examines the time gap between
the initial report of software problems
and the complete resolution of the prob-

lem . Comparing two variables is useful
because it alsc accentuates problem areas
as they develop; providing relative infor-
mation rather than absolute information.
Relative information is useful to the pro-
ject manager because it accentuates trends
as the project develops. If project

[P

gLJ Software Engineering Laboratory Series environments are similar, then similar ;
_ 1,2,3 values should: be expected. Because the :
3088 published by the SEL project envirgnments. in the SEL are simi- §
& . ‘ . lar, it was felt that this approach could i
= be further extended-to provide managers H
i This research was supported by the Nae with information about how a set of vari- . . *

tional Aeronautics and Space Administra-

tion grant NSG=5123 .to the University of
Marylaand. Computer support provided in
part by the facilities of NASA/Goddard
Space Flight Center.

ables over the course of a project dif- £

fered from the same set of variables on . H
other projects (baselines). The managers
could be alerted to potential problems and
use other variable data and project

et rnpivia e

. 434
0730-3157/83/0000/0434501.00 © 1983 IEEE

V. Basili
UofM
1 0of32

TR Mg ® TR

N

M IES AT

“VY;‘,"" L I \{*"‘ﬁ‘j‘m’

]
g,
&

-4

|
|
i

[

ORIGINAL PAGE &
OF POOR QUALITY

knowledge to determine whether the project
was in trouble.

This methodology is flexible enocugh
to respond to changing needs, Every time
a project 1s completed the measures col.
lected during its development may be added
in to calculate a new baseline. In this
changes in the environment, as they occubk.

Baselines might also be developed to
reflect different attributes, For
instance, several projects which had good
productivity might be grouped to form a
productivity baseline. Once baselines are
eatablished, projects in progress may be
compared against them. All measures fal-
iing outside the predetermined tolerance
range are interpreted by the manager.

The implementation of this methodol-
ogy i3 dependent on two factors. The
first factor is the availability of meas-
ures that are project independent and can
also be collected throughout a project’s
development. Variables like programmer
hours and number of computér runs are pro-
ject dependent. By comparing these vari-
ables againat each other a set of relative
measyres may be generated which i3 project
independent. Ffor instance, the number of
software changes may vary from project to
project. The project dependent features
shared by each variable will cancel out
when the ratic of software changes per
computer run is teken. The resulting
relative measure is project independent.

The second factor is the need for
fixed time intervals common to all pro-
jects. T¢ normalize for time, project
milestones were used. The time into a
project might be twenty percent into cod-
ing instead of ten weeks intoc the project,
for instance.

When computing the baselines one
other factor was considered. At any given
interval during development a variable may
measure either the total number of events
that have occurred from the beginning of
development {cumulative) or the number of
of .events that have occurred since the
last measured interval (discrete). Since
these approaches may convey different
information it was felt that they both
should be used.

For simplicity, the baseline for each
relative measure was defined as the aver-
age and standard deviation computed. for
the measure at predetermined intervals.. ‘A
project’s progress may now be c¢harted by
the software manager., At each interval in
a projects development the relative meas-
ures ‘are compared with their respective

435

baseline. Any measures outside a standard
deviation are flagged. These measures are
then interpreted by the project manager to
determine how the project is progressing,
A flagged measure may indicate a project
is developing exceptionally well or it may
indicate a problem has been encountered.

The interpretation of a set of
flagged measures is a three atep process,
First, the manager must determine the pos-
sible interpretations for each flagged
relative measure using lists of possible
interpretations developed and verified
based on past projects.

Second, the union of the lists of
poasible interpretations of each flagged
measure must be taken. The list formed by
this union contains all the possible
interpretations ordeéered using the number
of times each interpretation is repeated
in the different lists. The larger the
number of overlaps a possible i{nterpreta-
tion has, the greater the probability {t
isa the coérrec¢t intevpretation.

Third, the manager must analyze the
combined list and determine if a problem
exists. Interpretations with an equal
number of overlaps all have an equal pro-
bability of being the correct interpreta-
tion. If none of the possible interpreta-~
tions for a given relative measure overlap
then the relative measure should be con=
sidered separately.

When analyzing the interpretations,
three pileces of information must be con-
sidered; the measurements, the point in
development, and the managers knowledge of
the project. A relative measure may indi-
cate difrerant things depending on the
stage of development, For instance, a
large amount of ‘computer time per computer
run early in the project may indicate not
enough unit testing is being done. Per-
sonal Kknowledge may also give valuable
irisight.

A fundamental assumption for using
this methodology is that similar type pro-
Jects evolve similarly, If a different
type of project was compared to this data-
base, the manager would have to decide
whether the baselines were applicable.
Depending on the type of differences, the
established baselines may or may not be of
any values

EXAMPLE 1:
Forty percent into coding a software
manager finds that the lines of source
code per software change is higher than
normal. A list previously developed i{s
examined to determine what the relative
easure might indicate. The poasible

V., Basili
UofM
2 0f32

Py 3

-
L
{

{'.Z

-~

ol

H

PO R e TR TR

PO .

L=
OF P

interpretations for a large number of
lines of source code per software change
might be:

good code

easily developed code

influx of transported code
near build or milestone date
computer problems

poor testing approach

If this were the only flagged measure the
manager would then investigate each of the
possibilities. 1If the value for the meas-
ure is close to the norm less concern is
needed than if the value is further away.

If in addition to lines of source
code per software change the number of
computer runs per software change was
higher than normal, the manager would also
examins this measure. The possible
interpretations for a large number of com-
puter runs per software change might be:

good code

lots of testing
change backlog

poor testing approacéh

The union of the possible interpretations
of these two measures indicates that the
strongest possible interpretations are 1)
good code and 2) a poor testing approach.
The number of possibilities to inveastigate
is smaller because these are the only
measures which overlap. The manager must
now examine the testing plan and decide
whether either of these interpretations
reflect what is actually occurring in the
project. If these two possible interpre-
tations do not reflect what is happening
on the project, the manager would then
examine the other interpretations.

Baseline Development

To develop a2 baseline one must first
have variables whpse measurements were
taken weekly for several projects. Five
variables in the SEL database were used.
The 1lines of source code, number of
software changes, and number of computer
runs were collected on the growth history
form. The amount of computer time and
programmer hours were collected on the
resolurce summary form. Measurement of
these variables started near the beginning
of c¢oding. -In this study, nine separate
projects were examined whose development
was documented, with sufficient data, in
the SEl database. The projects ranged in
size from 51-112K lines of source code
with an average of 75K. No examination
was done for the requirements or design
phases.

Once the variables were chosen the

OOR QUALITY

average and standard deviation was come
puted for each baseline., Some baselines
suffered from limited data points during
the beginning of the coding phase. A cou-
ple of the projects, in which problems
were krown to have existed, were flagged
as soon as data on these projects
appeared, but this was fifty percent of
the way into coding. It is not known how
much earlier they would have appeared, if
data existed at the early intervals.

Interpretation of Relative Measures

Once a set of baselines are esta-
blished new prcjects may be compared to
them and potential problems flagged. To
interpret these flagged relative measures
a list should be developed with each meas<
ures possible interpretations. Each list
must consider the possible interpretations
of the relative measure when it is either
above normal or below normal: What each
component varifable actually measures
should also be considered when the dif-
ferent lists are developed.

A list was developed with possible
interpretations for each relative measure
being examined in the context of the SEL
environment., In another environment the
interpretation of ‘these measures might be
different. These lists are subdivided
into two categories; above and below nor-
mal. The above normal category contains
possible interpretations for the relative
measure when it is outside one standard
deviation from the average in -the positive
direction. The below normal category
refers to interpretations-whern the measure
is outside one standard deviation from the
mean in the negative direction.

One-of the reasons this methodology
works is because of the implicit inter-
dependencies between different relative
measures. To show these interdependericies
more "explicitly a cross reference chart
has also been provided for each interpre-
tation to indicate other relative measures
that can have the same interpretation. A
number. in the cross reference section
indicates the 1list number of a.relative
measure that can have the same interpreta-
tion, The position of the 1ist number in
the l-quadrant cross reference section
indicates whether both interpretations are
found with above normal values, both with
below normal valueZ, or one with above and
the other with below normal values.

With these lists a set of flagged

‘relative measures may be evaluated. When

a relative measure is flagged, its associ-
ated list is examined for possible
interpretations., Overlaps of this 1list
with the lista of other flagged relative

V. Basili
UofM
30f32

PR

st g,

RO N S PN

I-r—_x AR - LT . T B S o I e F [P S % S TR RS -
§ 1 * S e e . et e 8 i o R
i
i

ORIGINAL PACGE 9 |
OF POOR QUALITY. .

!
[t
b
L4
#
§
w
cC ‘
Sample Baseline o0 1
ob Vet |
':,:,"5&(\ - |
e LAY c
., ‘;“_ ‘P{\‘" ; ‘l
. e oo
- “B .
s ;
o e K
:e‘i:“-\'oq’ @
iy ‘
?
(‘@ €
28
¥t yo® §
i &3 e 3
i oF b
i N !
1
s
P
e o o® ;
" o o B
i e 1
)
)
Shypet i
[+) E
/ <
/ 3
D { bl
R i \\\L 'g ! y
B N i & { i
o | N : g 0% A b
- 3\ b%:)b” l E 2
%, g 1
5 3 Lo\ G ¥
b \ % . ‘
- . .
[T . B ‘
L8 R ; i
: % NCS . :
; g . Y m“lg»“ :
i kel H [A 1 .
: Sz H :
H g 1 13
; § 9
i g ¢
: 3 2 w
; 2 2
i g g ‘ H 5
| o E ¥ (g i i
: “ o | H ‘»“'36"'(& : 3
. 3 5 (3 1
L P a o © 0 ¢ " a i
9 24 - - o o o a a
3 g
5 B
VOERODMHME HEM ARE D=
: ®
1
§
i
5
i
V. Basili ST

UofM .
4 of 32

& a e

Relative Measures Examined:

List
List

Computer Time per Software Change
Prograaner Hours per Software Change

List 1 -~ Computer Runs per Line of Source Code
1.ist' 2 - Computer. Time per Line of Source Code
List 3 - Software Changeés per Line of Socurce Code
List 4 - Programmer Hours per Line of Source Code
List 5 - Computer Time per Computer Run
ist 6 Software Changes per Computer Run

List 7 Prograsaer Hours per Computer Run

L]

9

b

List 2: Computer Time per Line of Source Code

1 | cross reference |
type .} interpratation | above | below 1
i normal | nermal |

ceios
nion
seq “A

R e

Mera3 1S w0 e

above
naormal
-high complexity
-low productivity
-bad specificatiors
~lots of testing
-unit testing being done
-code being removed
{testing or transported)

below
normal
=influx of transported code
~near build or mileatone date
=little on line testing
being done
-code error prone
~little executadle code
being written

o

it St intd
=
w
o

[V St

o N e e s

e,

List 1: Cowputer Runs per Line of Source

Code

cross reference

i type 1} interpretatiocn I above | Dbelow
I t 1 normal | noraal
| above ! I

{ normal t 1

§ ~-low productivity 2 & t

§ ~high complexity 12 87894

I ~lots of testing 12 t6 7

| -removal of code 12 3:4 i

) {testing or transported) 1 |

i -5ad spectfications 12 34 '

[[

| below t 1

| normal t i

] =influx of transported code I 2 3 %

| -near bdbuild or milastone date {6 (23489
| -1ittle on line testing 1 12

| being done 1]

| -ilittle executable code i 12

1 being developed ! 1

§ -computer problems 1 13

List 3; Software Changes per Lire of

Source Code

1
1
1
|
1
1
1
1
|
[
1
i
|
|
i
1
|
i
|
|
|

| 1
| type | interpretation
| I

croas referance
above | ‘below
normal | normal

above
normal
-good testing
~error prone code
~bad specifications
-code. being reaoved
(testing or transported)

-— o
NNW»
£ &0

below

normal
-influx of transported code
-near bulld or milestone date
-good code
~poor testing program
~change backlog
~low complexity
—computer prodlems

®mon

we

s sk

A Nt e N

10 4004 yo
d TYNIDRO

AlNvn
BI zmy

et PN

P

.3

R T e . o BOTT o - - N &
CRESL ST A TET ST T S B S e e Sl 1A Nk v LI o . A . - : K "
g
i
?]
1]
4
H
i
: g
| .
“ i A
. i
List 4: Programmer Hours per Line of Source Code
i 1] ! cross reference 1 List 5: Computer Time per Computer Run
; I j el interpretation ! above ' | - below !] I N | cross reference !
e '- S ! norsel | normal | | type | interpretation 1 above | below 3
i above (i ' | l I normal ! normal |
| riormal i 1 I T - ; ; ;
; <high complexity Itr27891 i | :o:;:l ! f i
~error prons code 1356 12789 |
i : : Zbad specifications 1123 i) : -”::::::d‘:::{;“wn teating :6 : :
- ~code being remaved It 23 ! |
' § | (testing or transported)] 1 { | -error prone cdde :?3 56 :2 789 :
1 i ~changes hard to isoclate 1789 i | | -compute bnunddalgorllhl: ! ' ! .
1 =changes hard to make 179 | 1 [being teste : ; i
I -low productivity iy 2 1 t : oy ! , '
] €low
| below : : ll I normat] i t
{ normal 1 i i] -unit testing going on t2 8 ¥ I
I -influx of transported code | 213 1 1 -easy errors belng found 1 17 9 1
1 -near duild or milestone date I§ 23891 - mmees--
B [} ~10w complexity I} 13 i

(134

@ T

2

List 6: Softiware Changes per Computer Run

4 TENIDRIO

List 7: Programmer Hours per Computer Run

ynd ¥ood 40

-, 1
] | cross reference | o
| type | interpretation | above |. below | 1 1 i eross reference | @
Y) | normal ! normal. | | type | tnteppretation ! above | below { i‘iﬁ
- | norsal | normal | d
| above |] | — R
1 normal |] { | above i t | &@ -
! -good teating 13 189 i | normal | ! 1 !
1 ~3ysteam & integration testing [5 i t 1 -high complexity Iv2 48891 !
1 started early | | 1 i -modificationy bejng made to | 19 f
1 -error prone cods 1345 12789 | 1 recently ‘transported code | t |
I ~near build or milestone date | tr 23 | | ~changes hard to isolate t68 9 } 1
1 { f4 .89 1 | ~changes hard to make 18 9 1 i ‘
. i - 1 | [] 1 1 [)
: | below t | I I' beiow 1 1 1 ;
- | normal { { | | normal i | 1 :
qu | ~good code 1389 l i | -easy errors being fixed] 15 9 1 A
o, I -lots of testing 2 17] 1 -error prone code I3 456 12 89 1 3
'Q: ‘ i -poor -testing program j3 89 [} I 1 -lots of testing 2 16 I -
H h i -change backlog 13 i }
] i -
il
el
.
o
]
. =S, =
$og w 2w
o NTE
I3
}
! ;
’ i .
] . e bt . . i S . or s e PR - ORI e e N s . oy 7 - ‘* -
N i

e . L R b e

B R - T T R b i e o s i s S

% List 8: Computer Tiame per Suftware Changs

i i | cross reference |
lnterpretation 1 above | Dbalow 1
1 | 1 normal | normal |

{ 1
{ normal 1
i ~g00d code |
1 ~poor testing prograam I
] ~high coaplexity {
§ -changes hard to lsolate 1
1 =unit testing I
1 -compute bound algorithas]
I being tested 1

|owsmacorun
| below i
| normsl 1
{ ~-neapr build or milestone date |
i -geod testing I
i <error prone code 1

measures form the new 1list of what these
relative measures together might indicate.
The more overlaps a particular interpreta-
tion has, the greater the chance it is the
corregt interpretation. Interpretations
with the same number of overlaps must be
considered equally. The more relative
measures flagged the more serious the
problem may be. It {s up to the manager
to determine whether the deviation is good

A or bad.

; Monitoring a Software Proiecg'a Development
3 |

s : Once the baselines have been

, developed and the lists of possible

4 i interpretations have been put together a

software mpanager may monitor the actual
development of a project. Example 1
demonstrated how a single interval may be
interpreted, The following discussion
will trace the development of an actual
project. During the actual use of this
methodology, influence would be exerted to
‘ correct problems as soon aa they are iden-
: ! tified. With this study, we must be con-
' | tent to study a projects evolution,

; without hindrance, and see at what points
i probléms could of been detecteds

Project twenty® was chosen for this
examination becauase data existed
throughout the projects development. In
most respects project twenty was an aver-

k; : age project.. The project did have a lower
: i than normal productivity rate. The lower
—— i rate may be partially explained by the

fact the management was less experienced

» ‘when compared to other projects. The pro-
- Ject also suffered from some delayed

; staffing. <Changes in staffing will bse

(3F?5€359Jﬁ1§. E&;ggzwa 5}

e I

OF POOR QuALITY

List 9¢ Programmer Hours per Software Change

| | | cross refersnce !
interpretation | above | Dbelow i
[| ! norsal | norasil |

i
! normal

| -good code

1 -poor testing progras

| -changes hard to i{solate
[~changes hard to make

i
| normal

1 «go0d testing

I -near build or milsstone date
I -e3sy chinges

¥ -transported code belng

! modified

| ~erpror prone code

]
i
|
|
|
{
|
below 1
|
!
|
1
I
[
|

noted when the different time intervals
are discussed.

The tables on the following page show
wnich relative measures were flagged when
project twenty was compared to the base-
lines for each stage of development. The
numerical values represent how many stan-
dard deviations each flagged relative
measure was from the baseline, The base-
line for each relative measure was calcu=-
lated using all nine procjects.

Start of Coding:

At the start of coding only one rela-
tive measure is flagged. The smaller than
normal number of software changes per line
of source code using the discrete approach
reflects work done during the design
phase. The lists designed in the previous
section were directed towards code produc-
tion and testing and do not apply to this
time interval when using the discrete
approach. This measure may indicate good
specifications or lots of PDL being gen-
erated., - The manager might want to examine
this measure later if it constantly
repeated. Since it is the only measure
flagged at this time it will be ignored.

The numbering convention used is an
extension of the one first used by Bailey
6

and Basili .

V. Basili
UofM
Tof 32

T e o R R SR

o e

- e e 6 e

vex

e e Bt

R L s

¢ sl e bt o =

g tos ealilitie .m.‘%‘

Lo e s o

X5

el

< gt B

P T

e it

S

: . . .

i L o

?
i
|
: g
SN T I LAAER W

project: 20

i : method of measurement: cumulative

) {start 20% 40% S50% 60% BO% start 50% start end | relative measures
AT lcode code code code code code sys sys accpt !
B e S R e Aot o a2 08 e e e 4o o
| 1.3 | >1 SD programmer hours/lines of source | B
| - .3 | >1 SD runs/lines of source |
{ 1.8 1.5 1.2 I >1 SD computer time/lines of source | B
P R T R it et R R e T DR L e ————e e —— e m——————————
| 1.1 1.2 1.1 1.1 | <1 SD programmer hours/run | ‘
B e e R R e T T ————— e G, — . ———— —mm———

£ ‘method of measurement: discrete 91 (@]
= T L L e =) .
| number of standard deviations from norm | | 8 g 3
oo m e me e cmmm i ————— e e ————————— | | ‘*
a . §
w |'start 20% 40% S0% 60% B80% start 50% start end | relative measures | % -]
|code code code code code code 3ys 3ys accpt | ! r
e o i o s e i o Pt e e - - - - - - - O "
1 1.0 1.1 1.8 1.5 2.0 2.4 } >1 SD programmer hours/lines of source | c g
| 1.2 1.8 1.8 1.7 | >1 SD runs/lines of source | >
b1] <1 SD changes/lines of source 1 - G2
| 1.1 1.t 2.0 2.0 2.4 | >1 SD changes/lines of source | - m ’
| 1.2° 1.3 1.7 241 2.0 | >t SD computer time/lines of source J 1 = ;s
) e S r Dy S Pmmmmpmm—— D ettt I e e T e et e ket m
i | 1.2 | <1 SD programmer hours/run |
& e S e h e m e nm o e e e n e b e i o o e o e o o 0 > > mte
: | 1.2 | >1 SD computer time/change i
?‘ e e i r e m P s e o o e et e e i e e o o - o0
4l ‘g
i i {
2 ©C <
; o
= .9., g:!
W
o2 g
=
. . R e e - .
— o T e e et e e e S gt e NG gt b . - R . e N " n

S U —

ORIGINAL PAGE (8
OF POOR QUALITY.

20% Coding:

The flagged relative measures found
using the discrete approach at this point
represent the work done from the start of
coding until twenty percent of the way
through coding. The 1liat of possible
interpretations for the flagged relative
measures, generated from the lists made
previously for the f{ndividual relative
measure, would look like:

overlaps interpretation

bad specifications

code removed

low productivity

high complexity

error prone code

lots of testing

good testing

changes hard to isolate
changes hard to make
unit testing veing done
easy errore being found

—_ NN W W

The strongest interpretsz:iions are bad
gpecifications and code being removed. If
the actual history is examined one finds
that during this period there were a lot
of specifications being changed. This
resulted in code which was to be modified
being discarded and new code being writ-
ten. During the early period lots of PDL
was being produced but very little new
executable code. The 1list of possible
interpretations does show that low produc-
tivity is also a strong possibility.

The flagged relative measures which
appear using the cumulative approach, from
this time period on, are stronger indica-
tors than the ones used in the first cou-
ple of intervals because the average is
computed using more data points. The use
of the discrete approach for the interval
of twenty to forty percent is atill depen-
dent on three data points. The list of
possible interpretations for this time
period is:

overlaps interpretation

1 low productivity

1 hilgh complexity

1 error prone code

| bad specifications

1 ¢code being removed
changes hard to isolate
changes hard to. make
lots of testing
unit testing being done
good testing
easy errors

The number of possibilities is larger with
this set of possible interpretations.

Five interpretations are slightly stronger
than the others; During the actual
development, the first release of the pro-
Ject was made, The amount of code actu-
ally written was also lower than normal
during this period. The use of the
discrete approach gives a stronger feeling
that code is not being written. Tran-
sported code tends to be installed in
large blocks which can be isolated using
the discrete approach,

50% Coding:

The relative measures flagged during
this period are the same as the ones
flagged at the twenty percent coding
interval, The deviation from the norm for
this interval is larger. The larger devi-
ation may indicate a more serjious problem.
The problem may of been just as serious
earlier but without the extra data points,
that are now available, it could not be
determined., The possible interpretations
may be taken from the list developed ear-
lier. Bad specifications and code removal
were not factors during this period., The
next three highest priority interpreta-
tions were; high cozpiexity, error prone
code, and low productivity. 1In addition
to this the manager should be concerned
with the continued appearance of the rela-
tive measure, programmer hours per com-
puter run, as seen using the cumulative
approach., This may indicate a lot of
testing going on. This in conjunction
with error prone code as a possible
ifntterpretation may indicate trouble, Dur-
ing actual development this period was
spent developing code for the second
release. The proje¢t manager felt that
code was still not being developed quickly
enough during this period.

60% Coding:

Only one relative measure is shown at
this interval, The number of programmer
hours per computer run using the cumula-
tive approach is lower than normal for the
third consecutive time. This should con-
cern the manager because when examining
the 1ist for this measure one i -ds:

error prone code
lots of testing
easy--errors being fixed

Since the occcurrence of this measure is
persistent it may indicate that the prob-
lem was corrected but not enough effort
was expended to completely compensate for
the past problems. It might also indicate
the problem atill exists. During the

442

V. Basili
UofM
9 of 32

£ st e 44

SEMUMRIL,

P e

CR Y

TR oL

d
i
#
i

e A e

o e et G AT s o et

¥

;-
3
“ -

R TR

L

'l
4
:
o
t
3
£
3
i
:
3

COSTRTR TR REE

TR et

3
3

"‘Lq'{':’«‘\u-a;’v

»

= n}»\aj

e
%

Y

actual project it was found that while a
lot of code was written, it had not been
throughly tested. Release two was made
during this period which could explain a
heavy test load. Two additional staff

members were added to the project during
this phase to aid in coding and testing.

80% Coding:

The eighty percent coding interval
does not show any measures outside the
normal bounds. The addition of two staff
members during the sixty percent coding
phase, as well as the addition of a senior
staff member during this phase, appears to
have adjusted the project back along the
lines of normal development. To fully
compensate for the earlier problems one
might expect some of the measures to swing
in the other direction away from the aver-
age. The fact this over correction did
not occur might explain the problems
encountered in the next section.

Start of System and Integration Testing:

The flagged relative measures at this
time period reflect the build up of effort
for the third and final release. - The list
of possible interpretations for the col-
lective set of flagged measures looks
like:

overlaps interpretation

high complexity

bad specifications

code being removed

error prone code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

conpute bound algorithms
being run

easy errors being fixed

PPN R R VRN

Since the code did have a past history of
poor testing an unusually large build up
of testing should be expected. The two
interpretations that apply most to this
situation are lots of testing and error
prone code.

50% System and Integration Testing:

Only one relative measure is flagged
at this interval. This measure was
flagged using the cumulative approach. An
examination of the measure at the previous
interval shows a very high vqlue. A slow

ORIGINAL PAGE i€
OF POOR QUALITY

drop off from this high measure is to be
expected when using the cumulative
approach, An examination of possible
interpretations that would apply for this
pericd of development include:

high complexity

lots of testing

unit testing being done
testing code being removed

A lot of testing is certainly indicated by
past history.

Start Acceptance Testing:

The relative measures flagged at this
interval reflects the build up in testing
before the start of acceptance testing.
The 1list of possible interpretations looks
like:

overlaps interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate
c¢hanges hard to make
unit testing deing done
good testing

— o NN W

Since little code was being developed dur-
ing the testing period, a large amount of
testing with errors being found is the
most reasonable interpretation of these
flagged measures. The early history of
poor testing may be seen here with errors
being uncovered late.

End Acceptance Testing:

The two flagged relative measures at
the end of acceptance testing reflect the
clean up effort being made on the code.

An average amount of computer time and an
average number of computer runs indicates
that the acceptance testing is going well.,
The project was behind schedule due to the
earlier problems encountered. Clean up
was done during the acceptance testing
phase in an attempt to get the project out
the door as soon as possible.

H

ks .seen in this example, the problems
that occur during a projects development
are reflected in the values calculated for
the relative measures. The methodology
preposed can be used to monitor projects.
The number of possible interpretations
increases with each new flagged relative
measure. The ordering of the measures by

PO T

Sa R

i
¥
3
*
3
3
3
¥

S oo e+ e <o <Rk

i

* g

ey s

443

- V. Basili L

UofM Lo
10 of 32 7

B s ket B o L SRR

L RTTE
HRlstat

'

ORIGINAL PAZE 2
OF POOR QUALITY

the number of overlaps provides an easy
method of sorting the possible interpreta-
tions by priority. Another method of
sorting the possible interpretations could
include a factor that considers both the
number of overlaps and the probability of
a given interpretation being the cause at
a given interval. The weighting of
interpretations for a given interval could
be calzsulated using the pattern of
occurrence of the different interpreta-
tions which have appeared during the same
interval in past projects.

An Alternate Approach

Flagged relative measures might also
be interpreted using a decision support
system. The data for the various relative
moasures would be stored in a knowledge
base along with a set of production rules.
To etaluate a project the values for each
reiative measure would be ertered into the
systiem. The knowledge base would compare
thus relative measures to thelr respective
basel’nes, determine which relative meas-
ures were outside the norm, and interpret
these relative measures using the produce
tion crules. A list of possible interpre-
tations ordered by probability would be
generated as a result.

The difference between a decision
support system and the approach presented
in this paper is the method of interpret-
ing the flagged relative measures, FEach
production rule in the decision support
system is the logical disjunction of
several flagged measures which yilelds a
given interpretation. Each production
rule is assigned a confidence rating which
is then used to rate the possible
interpretations. The lists for the rela.
tive measures provided earlier in the
paper may be easily converted to produc-
tion rules using the cross reference gec-
tion. To develop the production rules for
an interpretation one must generate the
various combinations of relative measures
which might reasonably imply the interpre-
tation. Some relative measures may not
imply a particular interpretation unless
they are found in conjunction with another
relative measure. Once the production
rules are known and a knowledge base con=-
structed a decision support system may be
built. For an example of a domain
independent decisionssupport system see

Reggia and Perricone .

Summary

The methodology presented in this
paper showed that invariant relationships
exiast for similar projects. New projects
may be compared to the baselines of these

invariant relationships to determine when
projects are getting off track.

The ability of the manager to inter-
pret the measures that fall outside the
norm 18 dependent on the amount of infor-
mation the underlying variables convey.
The manager must decide what attributes
are to be measured (e.g. productivity) and
pick variables that are closely related to
them and are also measurable throughout
the project. As an example, a variable
like lines of code may be too general when
measuring productivity. Measuring the
newly developed code, either source code
or executable code, would be more informa-
tive since these variables are more
directly related to effort. How applica-
ble an interpretation is for the period
currently being examined should also be
considered when ordering the list. The
variables the manager finally decides on
are then combined to form relative meas-
ures.

One method of interpreting a relative
measure i3 by associating lists of possi-
ble interpretations with it. When a rela-
tive measure appears outside the norm, the
1ist of possible interpretations is con-
sidered. If more than one relative meas-
ure is outside the norm the lists are com-
bined. The more times a possible
interpretation is repeated in the lists,
the greater the probability it is the
cause. How applicable an interpretation
is for the period being examined should
also be considered when ordering the 1ist.
The manager must investigate the suggested
causes to determine the real one.

Congclusion

The ability to monitor a projects
development and detect problems as they
develpp may be feasible. The methoudology
proposed showed favorable results when
examining a past case.

The use of baselines and lists of
interpretations for comparing projects
provides an easy method for monitoring
software development. Both the baselines
and the lists of interpretations may be
updated as new projects are devéloped. As
more knowledge is gleaned the accuracy of
this system should improve and provide a
valuable tool for the manager.

Acknowledgements

The authors would like to. thank Dr.
Jerry Page of Computer Sciences Corporae-
tion and Frank McGarry of -NASA/Goddard
Space Flight Center for their insight and
advice.

Y
§
K
¥
ks
3

Loy voky by

1 i . i vons e b

=
-
i {
;o 3
=
!

b o

e ey e et it P it i b Ao e e . i ot 84 5 4+

V. Basili
UofM
11 of 32

FUEARE Ll Y,

L g S ey

e i gy e L

i ——————

| ows gt |

Vo BB

ORIGINAL PAGE 8
OF POOR QUALITY Ty

Referencea o

{1} card, David, Frank McGarry, Jerry s
Page, Suellen Esiinger, and Victor f‘
i Basili, The Software Engineering
. Laboratory, SEL-81-104, Software
] : Engineering Labtoratory Series, God- i
{: : dard Space Flight Center, February
: 1982.

b T N

{2] <cChurch, Victor, David Card, Frank

MceGarry, Jerry fage, and Victor f

i Basili, Guide To Data Collection,

SEL-81-101, Software Engineering

i Laboratory Series, Goddard Space
Flight Center, August 1982,

St

P (3] SZL,, Collected Software Engineering
r'apers: Volume 1, SEL-82-004,
Software Engineeriig Laboratory
Series, Goddard Space Flight Center,
July 1982,

Ppisitados

[4) Walston, C. E. and C. P, Felix, A
Method of Programming Measurement -and
Estimation, IBM Systems Journal,

January 1977.

St 4

(51 - Basili, Victor R. and Karl Freburger, '
Programming Measurement and Estima- ;
tion in the Software Engineering : - £
Laboratory, Journal of Systems anmd :]

ST 104 A KATRLD

Software, 1981. D

[6] Bailey, John W. and Victor R, Basili, : RN
A Meta-Model for Software Development : L
Fifth International Conference on
Software Engineering, September 1981,

{71 The Role of Measurements in Program-

ming Technology, - lLecture presented
H at University of Maryland, November [
: 15, 1982, 5

. {8) Reggia, James and Barry Perricone;,

X i KMS Manual, TR-1136, Department of

; J . Mathematics, University of Maryland ¢
Baltimore County, January 1982, §

(9] Minsky; M. L., A Framework for the
Representation of Knowledge, The
i Psychology of Computer Vision, pp.
271<280, McGraw Hil1l, New York, 1975.

RO

PSSP

V. Basili T
UofM o »’
{2 of 32

e R R AR T G e

OVERVIEW |

e A GENERAL METHODOLOGY TO MONITOR
SOFTWARE DEVELOPMENT TO DETECT
PROBLEMS EARLY

e THE METHODOLOGY MUST:

REQUIRE MINIMAL OVERHEAD FOR DATA
COLLECTION

PROVIDE AN EASY WAY TO INTERPRET DATA
BE ADAPTABLE TO CHANGING CONDITIONS

ceiopl

WJon
seq ‘A

METHODOLOGY

DEVELOP A SET OF GOOD PREDICTORS FOR
THE DEVELOPMENT ENVIRONMENT

NORMALIZE THE MEASURES TO DEVELOP
BASELINES BASED UPON PAST PROJECTS

COMPARE A DEVELOPING PROJECT TO
KNOWN BASELINES TO DETERMINE
DIFFERENCES FROM KNOWN BASELINES

INTERPRET THE DATA TO EVALUATE THIS
DEVIATION

IF THERE IS A PROBLEM, DETERMINE HOW
TO CORRECT IT

cgio sl

Wion

Tniseq ‘A

APPROACH

e PERFORM A PILOT STUDY
TRIAL METRICS, BASELINES
EVALUATE FEASIBILITY
(DONE: CARL DOERFLINGER)

e BUILD KNOWLEDGE-BASED SYSTEM
USING PILOT STUDY METRICS

IMPROVING INTERPRETATION AND
KNOWLEDGE MECHANISM

(JUST STARTED: CONNIE RAMSEY)

* INVESTIGATE OTHER METRICS
ERRORS
ERROR CATEGORIES
(IN PROGRESS: DEBA PATNAIK)

. - — . @ ;p

cgJo9gj

Wion
fiseq "A

e MEASUREMENT POINTS (Pi)
COMMON ACROSS DATA BASE OF PROJECTS
NORMALIZED OVER TIME
REASONABLE TO MEASURE

e PILOT STUDY MEASUREMENT POINTS:
START DESIGN
50% DESIGN
START OF CODING
20% CODING
40% CCDING
50% CODING
60% CODING
80% CODING
START OF SYSTEM & INTEGRATION TEST
50% SYSTEM & INTEGRATION TEST
START ACCEPTANCE TEST
END ACCEPTANCE TEST

e T Py

— A — ——.

———

el A T S—

£ 3oL
Wion
seq ‘A

s o

e T et

T W AT
- - o

e MEASURES (Mi)

AVAILABLE ACROSS MOST OF PROJECT
INVARIANT TO SIZE, CALENDAR TIME, ETC.
AVAILABLE ON SEVERAL PRIOR PROJECTS
EASY TO COLLECT

DATA AVAILABLE IN SEL:
COMPUTER TIME
COMPUTER RUNS
PROGRAMMER HOURS
LINES OF SOURCE CODE
SOFTWARE CHANGES

TRAIL METRICS FOR PILOT:

COMPUTER RUNS/LINE OF SOURCE CODE
COMPUTER TIME/LINE OF SOURCE CODE
SOFTWARE CHANGES/LINE OF SOURCE CODE
PROGRAMMER HOURS/LINE OF SOURCE CODE
COMPUTER TIME/COMPUTER RUN

SOFTWARE CHANGES/COMPUTER RUN
PROGRAMMER HOURS/COMPUTER RUN
COMPUTER TIME/SOFTWARE CHANGE
PROGRAMMER HOURS/SOFTWARE CHANGE

BASELINES/DEVIATIONS

e ASSUMPTIONS:

|
{ METRICS HAVE SIMILAR BEHAVIOR AT EACH
; POINT

|

METRICS DO NOT VARY TOO MUCH OR TOO
LITTLE AT Pi

PROJECT ENVIRONMENTS ARE SIMILAR

DEVIATION FROM NORM IMPLIES SOMETHING
INTERESTING

e PILOT STUDY:
DATA: 9 PROJECTS IN BASELINE

BASELINES: METRIC AVERAGE AT Pi
CUMULATIVE
DISCRETE

227 DEVIATION: MORE THAN ONE STANDARD
) DEVIATION FROM THE NORM 4

e e e R A o e ek & { o S oL S R = TR ——
— —

o - - — - @

ORIGINAL PAGE 19
OF POOR QUALITY
{
{
1
o «F
SAMPLE BASLEINE ‘,,‘%;:"O |
‘
7 o o
/ <
_ 1[’:,:;‘:\‘o [
~C < ‘
~ N, W*’ B
s\\ \\ E #,«@\,.o |
\;\ \\ g\ . ;
» i
\ \ b :
\ \ i
\ \ {
‘L \ " :
\ e |
\ ®
‘ ¥
\‘ !
\ - 1
iy S 2]
w 7 \ *® - 3
rqm 4
w 4 1
2@ £ 1 !
z 8 ~~‘~ \ ! :
/4 ~] e 0
wo S O W :
a T e l\ o°°\ ;
w ’2 \ \ ;
.:. w \ 1 3
-= \ \
W\
’é 2 \ Yy °
£ V1 |
o= \ \ S
Ou Vil s ;‘
Zo \ l| s"o‘:wtc’ ‘
S0 - '
wI « ~ o o © - o~ °
(2 E - - - o =) -] o 1= f
o3 NNY H3d IAIL HILNAWOD |

V. Basili
UofM

=3 - L el v . R = - s &,

19 of 32

A

ot . v
S e e e - - P —

cejo ot
Wion
fnrseqg ‘A

INTERPRETATION

SET OF MEANINGS FOR EACH Mi AT EACH Pi
FOR DEVIATION ABOVE THE NORM
FOR DEVIATION BELOW THE NORM

SET OF MEANINGS AT Pi COMBINED

MOST LIKELY INTERPRETATION DERIVED FROM SET OF
MEANINGS

MANAGERS PERSONAL KNOWLEDGE ELIMINATES SOME
INTERPRETATIONS

PILOT STUDY:
MEANINGS ASSOCIATED WITH Mi AT Pi GIVEN BY MANAGERS

VALUE OUTSIDE STANDARD DEVIATION GENERATES
MEANING SET

RANKING BASED ON NUMBER OF TIMES EACH MEANING
APPEARS

MEANING + RANKING + PERSONAL KNOWLEDGE =
INTERPRETATION

PROGRAMMER HOURS PER LINE OF

SOURCE CODE

TYPE

INTERPRETATION

CROSS REFERENCE

ABOVE BELOW
NORMAL NORMAL

- O ——

o S e - —

ABOVE NORMAL

HIGH COMPLEXITY
ERROR PRONE CODE
BAD SPECIFICATIONS

CODE BEING REMOVED
(TESTING OR TRANSPORTED)

CHANGES HARD TO ISOLATE
CHANGES HARD TO MKAE
LOW PRODUCTIVITY

l

Wion

BELOW NORMAL

INFLUX OF TRANSPORTED CODE
NEAR BUILD OR MILESTONE DATE

LOW COMPLEXITY

12789
356 2789
123
123
789
79
12
123
6 12389
3

€Jo|
fiseq "A

C

ALITVND ¥ood 40
Bl 29vd TWNIDINO

cglo e

Wion
Iiseq ‘A

TPy Ty s e

SAMPLE MEANINGS FOR PILOT ON
TENTH PROJECT

AT 80% CODE:
TWO METRICS ABOVE NORM, ONE METRIC BELOW NORM

ABOVE NORM:
1. (héU[l)VlBE"FlG)OF COMPUTER RUNS/LINES OF SOURCE
2. NUMBER OF PROGRAMMER HOURS/LINES OF SOURCE
(S.D.=1.3)
BELOW NORM:
3. (héU{;ﬂBEF}))OF PROGRAMMER HOURS/COMPUTER RUN
D.=1.
OF OCCURANCES MEANINGS CONTRIBUTORS
2 HIGH COMPLEXITY 1.2
2 REMOVAL OF CODE 1,2
2 LOTS OF TESTING .3
1 LOW PRODUCTIVITY 1
1 BAD SPECIFICATIONS 2
1 CHANGES HARD TO MAKE 2
1 EASY ERRORS FIXED 3

PERSONAL KNOWLEDGE: NO CODE REMOVED
STANDARD AMOUNT OF TESTING

.

PILOT STUDY CONCLUSIONS

e METHOD VIABLE

|
| WORKED FOR ONE PROJECT STUDIED IN
DEPTH

MEASURES WERE EASY TO GATHER

ADAPTABLE TO CHANGING ENVIRONMENT
\ AND KNOWLEDGE

AUTOMATABLE

e NEXT STEPS:
ADD OTHER METRIC
KNOWLEDGE BASED SYSTEM

nion
['seq "A

CEJo €T

T‘é*‘ :

- s e 4 y— -

OTHER METRICS UNDER STUDY

e METRICS: ERRORS AND ERROR CLASSES

e MEASUREMENT POINTS: SAME

NUMBER OF TEST
RUNS TO DATE

o BASELINES: SAME
CUMULATIVE AND DISCRETE

ORIGINAL PACE IS
OF POOR QUALITY

©
—
i
650

<
—*
600

500 550

T
450

T
400

i
350
DAYS

T
300

T T T T
100 150 200 250

T
50

AVERAGE NUMBER OF ERRORS OVER TIME

3OVH3IAV HOHHS

V. Basili
UofM
25 of 32

ERRORS OVER TIME

500 A
450 —

350 -
o 300 -

| v
! - 250

, w 200
150

100

Ll

50

: =3 5 3

R B S w— —— —

ALITYND ¥O00d 40
gl 39Yd TUNIDINO

e TIME IN DAYS
[
{
® S

I ! | ! I 1 1 I I i

o0 100 150 200 250 300 /O 4O 5O

| 1 1

500 550 600 650

e

B a o Al oa eclind S Pia b Dl dees et i B0

CHANGES DUE TO ERROR BY CAUSE

ERROR SUM

eﬂi
|]
o]

SRR s P SRR, _ ccmam b D g e aa e

{ £3
) v o
‘» C =
| S5
i e ez
; ! 1 1 1 | E2
‘ 1 2 3 4 5 66 7 88 8 @ 1 2 3 3 3z
@ @ @ © 2 @ © © © ©® ©e © e 3
@ 0 @ © @ ©@ © © 8 ® ©° ©8 o 3
RUNS
e LEGEND: ERRORTYP BN +CLERICAL ERROR [ZZZZ3 COMPS DESCR INCO
S o B DESIGN ERR OF | (ZZZ7Z) ERR IN LANGUAGE
1] B FUNCT SPECS INCO ZZZZ3 MISUNDERSTAND EX
S Em— OTHER [ZZZ7Z) REQ. INCORRECT

RS

B e R T e T o T T U T O R e T T e

(@

[®

£Jog

WJion
iseq A

CHANGES DUE TO ERROR BY CAUSE

CUMULATIVE FREQUENCY

300
200

e U

100 o

Q

1 2 . 4 S 6 7

2 9 0) Q 0 Q0

Q0 g 0 0 Q2 Q2 2

RUNS

LEGEND: ERRORTYP

M OTHER

94

SO0RN

s +CLERICAL ERROR
B OESIGN ERR OF 1
EEEE FUNCT SPECS INCO

Lzl

A

oW

74
"z
"z
."‘w
V1 [
7%
7 o
S N IR
@ 1 2 3 3
@ @ ©8 8 3
@ 8 ©8 @ 3

[ZZZZ3 COMPS DESCR INCO
ZZZZ) ERR IN LANGUAGE
(ZZZZ) MISUNDERSTAND EX
ZZZ7Z] REQ. INCORRECT

ALITYND ¥00d 40
/d TYNIDNO

51 3O\

e . . i

€ 3o 67

nion

iseq ‘A

NEXT STEP

e WE ARE GOING TO BUILD A KNOWLEDGE-
BASED SYSTEM

e HOW WILL THIS SYSTEM BE USED?
A TOOL FOR MANAGEMENT

WILL INDICATE WHETHER A CURRENT
PROJECT IS ON SCHEDULE

AUTOMATED

CAN BE UPDATED EASILY TO INCLUDE
INFORMATION FROM NEW PROJECTS AND
NEW INTERPRETATIONS AS MORE IS
LEARNED

MANAGER MUST USE HIS OWN
KNOWLEDGE OF THE PROJECT WHEN
LOOKING AT THE RESULTS

i e e

R et S e P -

cgioog
Wion
iseqg "A

e BUILDING A KNOWLEDGE-BASED SYSTEM:

— USE KMS — A GENERAL SYSTEM USED FOR BUILDING

KNOWLEDGE-BASED TOOLS (AVAILABLE AT UNIVERSITY
OF MARYLAND)

— THERE ARE TWO DIFFERENT APPROACHES:

- PRODUCTION RULES
- HYPOTHESIZE AND TEST

WE WILL TRY BOTH AND COMPARE

e METHOD

1.
2.

3.

BUILD RULES FOR KMS

INPUT DATA FROM MANY SIMILAR PROJECTS IN SAME
ENVIRONMENT

GIVEN NEW PROJECT, CAN COMPARE CERTAIN METRICS
TO THOSE IN THE SYSTEM IN AUTOMATED MANNER.
KNOWLEDGE-BASE INDICATES ABNORMALITIES.

UPDATE

-~

—

!_—__—-—_~———‘—_—-—"Wf" 2 et 3ty)

POTENTIAL

SCENARIO

BETWEEN MANAGER AND SYSTEM

KB = KNOWLEDGE-BASED SYSTEM
M =MANAGER

KB: READY FOR COMMAND
M: OBTAIN DIAGNOSIS

KB: STAGE:

(1) START CODING
(2) 20% CODING
(3) 40% CODING
(4) 50% CODING
(5) 60% CODING

- B —

.. MI §
s{’\ KB: GOODNESS OF TESTING:
\ (1) GOOD
{ (2) FAIR
; (3) POOR
M: |

KB: DIAGNOSIS:
POOR TESTING PROGRAM
GOOD CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE

cgioi¢g
nion
fiseq "A

(6) 80% CODING

(7) START SYSTEM TESTING

(8) 50% SYSTEM TESTING

(9) START ACCEPTANCE TESTING
(10) END ACCEPTANCE TESTING

<0.60 >
<0.05>
<0.25>
<0.10>

-8

)

PRSI ST -

(*

——— T T R R T TR e R \Aae

SUMMARY

e CHOOSE MEASUREMENT POINTS (Pi)

e CHOOSE A SET OF NORMALIZED INVARIANT

MEASURES (Mi)

? e DEVELOP A SET OF BASELINES FOR EACH Mi
AT EACH Pi

’? e CHOOSE BOUNDS ON DEVIATIONS FROM THE
BASELINES

! e ASSOCIATE POSSIBLE MEANINGS FOR
.. DEVIATIONS (+ AND -) FROM THE
' BASELINES FOR EACH Mi AT EACH Pi

e DEVELOP A MECHANISM FOR DERIVING
INTERPRETATIONS

 INCORPORATE PERSONAL KNOWLEDGE OF
s PROJECT

- o GENERATE MOST LIKELY INTERPRETATION(S)

P R ETAE TR N e p

>

Rk Y G vl‘t{r,nt\uvhy’l

Pk ¥

B

ORIGINAL PAGE 18
OF POOR QUALITY

CHARACTERISTICS OF A PROTOTYPING EXPERIMENT

JUDIN SUKRI AND MARVIN V. ZELKOWITZ
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20743

i B

INTRODUCTION

In 1982, NASA Goddard Space Flight Center began a project to prototype a new proposed
software system. Since the system, the Flight Dynamics Analysis System (FDAS), was to be a
source code control system, and not the more typical flight dynamics software which NASA per-
sonnel were more familiar with, the decision was made to prototype an initial implementation in
order'to gain insights into the actual features needed to build a full FDAS and to evaluate the

idea of a prototype in the NASA environment. This report describes the status of that project at
the end of 1983. o

PROTOTYPING

In developing the prototype for NASA we need to undemtand what a prototype is. More
importantly, for NASA, the issue of prototyping must answer the following questions:

(1) What are the goals of a prototype? Is it to develop the requirements for a product? Evaluate
its performance? Predict its final costs?

{2) What are the issues involved? How does one design for a prototype? Docs the software

lifecycle change? Do we want multiple prototypes for different phases of the life cycle? How
do we use a prototype when built?

{3) What tools can be used to design a prototype? to build a prototype? to evaluate a proto-
type?

(4) How does one measure a prototype? How do you know if your prototype was successful?
Should you invest the cost and build the full system or abandon the project? What
SHOULD a prototype cost? 10% of the final product or 50% or even 100%?

FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)

The Flight Dynamics Analysis System (FDAS) is being built to aid experimenters try alter-
native flight dynamics models. Currently if an experiment is to be run (e.g., try a new orbit cal-
culation model), the experimenter must access the Fortran source library, know which module to
modify, make the changes, test the changes, recreate a new load module, and then run the experi-
ment. The experimenter must have detailed knowledge of the software.

With FDAS, the experimenter enters the system, and interacts with a data base, directs the
system. to modify the correct module and aids in the change. Thus changes to software are easier,
require less time and less expertise about the internals.

FDAS consists of two major components - s source code control system to manage the
libraries of software modules needed for each application program, and a form of data abstraction
allowing applications programmers the ability to write programs using flight dynamics data types
{e.g., state, cartesian coordinates, vector locations, etc.). These features are somewhat indepen-
dent and can be evaluated separately.

In order to manage source code, the applications programmer enters a tree chart of modules
(the program's structure). Usually this will be a full system developed by someone else. The
applications programmer can then tell the system to edit specific modules and to replace other
modules by new ones. The system maintains the current set of modules for the system, and keeps
track of which modules have been altered and which ones need to be compiled. In some ways, this

M. Zelkowitz.
UofM

> a e B

1 of 22

. N84 23140

RS P A Pt B ks

T

e oot it Tty i ¢

ciien? oW Nl e

il AL ey

TR TR T Ty

T U v A S ST

*‘wvwmww'—""v"‘"‘& T '@ g : TTTTE) T - hd

URSINAL PAEE IR K

OF POOR GUALITY, i

P i

1 model is very much like a combination of both the Source Code Control System (SCCS) and the :
: MAKE processors running under UNIX systems. Ly

3 ' Jo order to aid the applications ‘programiner, a form of data abstraction bas been proposed, :

;) : A set of standard types have been defined. A pregrammer may code using these types, and a

: preprocesscr converts (bis code into standard Fortran. A generalized input-output structure has
been defined for data of this type, The programmer may write (PUTOUTPUT) the name and :

' valuz of any datum {rom one module; and read (GETINPUT) the name and value of that datum
in another module. An intial design decisibn was to restrict abstract data to their own statémeats:
and not mix them with the Fortran statements.

. In order to build the prototype, the following general strategy is being used:

(1) A subset of the requirements for FDAS were written and a prototype built to those :
reqnirements. -

(2) Data was collected automatically by the FDAS proiotype on user interaction with the
system.

S R S R IR

B s

(3) The usual Software Engineering Laboratory data on programmer activities were collected ¢
during the development phase.

(4) The prototype will be evaluated by four groups representing four different views of the
system. A group of applications programmers (the "users”) will use FDAS and report o its uselul-
mess in solving their flight dynamics problems, a group from the Software Engineering Laboratory
will evaluate the FDAS model as an appropriate one for solving flight dynamics problems, a
research group is looking at FDAS as an example of s source code control system, and the
developers are evaluating the implementation itself, and issues such as efficiency, size, and exten-
dability to a full system.

(5) Beginning in the early spring of 1984, a new task will begin to design the "full” FDAS
system. The experiences in the prototype will undoubtedly be helpful in designing and building
the full system, but there is no committment to using either the design or the source code of the .
prototy pe. i

i (6) After the full system is built, it will be compared with the initial eflort. The
eflectiveness of the prototype on the final product will be evaluated. Was FDAS cheaper to build?
Will it be more relinble? Will it be more efficient? Will it have a better man/machine interface?

v AR BSS e iR TR R

i iand

Geti s

A

AT el TN

B
-

S

':, INITIAL EVALUATION i
¢ .
' The initial requirements for FDAS began early in 1982. The requirements and initial design ! H
4 ’ for the prototype were done in the fall of 1982 and the initial implementation of the prototype ; ;
P began in January, 1983. As with many software projects, the task was bigger than expected, so an !

£ ! initial prototype was tested in July of 1983, but the ”full” prototype was not available until I

E | October. The evaluation phase is to last until late February, 1984. ;

&4 ~“Although it is a prototype, it is not a smali system. There are 34K lines of Fortran source '

b code running under VMS on a VAX 11/780 computer. Of the 34,000 lines (including comments), -

5 there are 20,200 lines of executable Fortran scurce statements. The plo&otype was installed with - {

only one small applications system of 3,000 lines for experimeontation. This size of 34K is already S s
within the size range of other larger "full” systems built by NASA. ;

|

| Some of the data collected can be summarized by the following table. In addition to FDAS,
there is data from 11 previous projects monitored by the Software Engineering Laboratory and
data from two other projects now under developmeat.

th : - 11'Proj:2:Cont'1-" Cont 2 FDAS
Design = 22% 31% 31% 39%
Code 48% 43% 69% 61%
Test 0% 20%e 0%+ . 0%e

M. Zelkowitz
UofM

2 of 22 @:

E 28 8 SURuEaia gl Bate ARk e

B o =02 S0t

-

i

ORIGINAL PARE !
OF POOR QUALITY,

s. Data still being collected

As can be seep, bistorically, coding is over twice the design effort. That is also true with one
of the current projects and is 2linost tree with the other contemporary project. But it is most
definitely not true with FDAS. This reflects the high design costs since it had "never been done
before.” It also reifects the velatively fow priority given to full debugging and testing, up to NASA
standards, of the resulting code. Sivce the prototype has a limited lifetime, "hard” problems were
deloted from the prototype requiremeats, and users had to live with annoying but non-critical
bugs. (Note: At the time that this was writtea, the full data from testing FDAS was not yet
eutered into the data base, so full testing data is not yet available,)

The timc spent in design, can be summatized as follows;

Hours 11 Proj Contl <Cont2 FDAS
Design 21709 5885 10758 4508
Total 100324 10085 34461 10477+

¢ Still being ccllected

As can be sces, the 10,477 hours represenxs a sizeable eﬂmt and is beyond the "toy” proto-
type stage.

Just using the system has shown some other ‘useful aspects-to-the system, One critical com-
mand, the DEFINE command, has been particularly hard to use, so it will need a better definition
and docuimentation in the full system. The overhead lmposed by FDAS also seems tolerable. For
example, with compilation times of 10 seconds standard, a preprocessor overhead of 2 seconds is
tolerable. In addition, since the linkage time for the application system is 18 seconds, the 3 second
FDAS overhcad on top of this is also small. However, the use of the preprocessor secms unduly
inflexible and should be revised for the full system;

A fina! complexity in this evaluation is the-always cha.ngmg reqmremcngs When originally
conceived, FDAS would be an experimental system used on a VAX 11/780. However, in the two
years since the idea was proposed, the operational groups at NASA are interested in the system,
and would like such a tool on their cperational computer - an IBM 4341: Thus part of the evalua-
tion {new requirements?) is to comsider a 4341 implementation, or an implementation that can
easily be transported to both systems. While this will urdoubtedly make a comparison between
the full systeni and the prototype harder to do, since the operational environments (and hence the
projects’ reqmrements) are different, it is certainly to NASA's advantage to have built the proto-
type so that all groups can view it before a final decision was made to build it in one particular
environment,

SUMMARY

The evaluation phase is still going on, eo it is not postible to give a full evaluation. How-
ever, some results are now apparent.

(1) The source code control aspects of FDAS are useable, and can be developed into 3 good
operational system.

(2) The data abstraction language and preprocessor need to be rethought and the features
need to be generalized.

(3) The prototype and the underlying aprlication are both written in Fortran. There is no
peed for that to be so. It should be possible to monitor any source code application package
regardless of the language in which FDAS is written. -

{(4) The use of the prototype has uncovered many minor and major defecis in the design of
such a flight dynamics analysis system. Some original assumptions made during the design phase
turned out not to be true under actual usage conditions.

M, Zelkowitz
UofM
30f22

i

:
.
H

Ria e e

| S
ORIGINAL PAGE 3 T
OF POOR QUALITY |

19
&

Because of these experiences, m‘.my: detects in FDAS have been discovered before a full sys- ’ :
tem is built. From the data collected so far, it appears as if FDAS wi be a large system when 9
built. The development of the prototype should aid NASA in avoiding costly mistakes later.

ACKNOWLIDGEMENT :

This pajer was supported by NASA grant NAGS-368 to the University of Maryland. We
also acknowledge the many programmers and analysts at NASA Goddard Space Flight Centes
and Computer Sciences Corporation, including Sharon Walagora and Glenn Snyder, principal e S
designers of the prototype, for their efforts in building FDAS. This report is mainly a collection of :
their experiences,

[P—

e s g rie v

iyt o rstrme, S esees

M. Zelkowitz : o
UofM ; o

4 of 22 ;
AL e 8 » INCU PR VAR g S

R S

:
3
d
A
g
¢
1
:
L
&
o
:

CHARACTERISTICS OF A

PROTOTYPING EXPERIMENT

‘Marvin V. Zelkowitz
Department of Computer Science

University of Maryland

TSI L e e e e T

M. Zelkowitz

UofM
"5 0f22

)

LN R e

IR

e - - oy EEm e R AT

PROTOTYPING IS OF CURRENT INTEREST i

But is it:

A Quick and dirty throw-away? *

3 Subset implementation?

Release 1 of full system?

M. Zelkowitz
UofM
6 of 22

i

R L e sl o, S S A e T T e e LIS

ORIGINAL PAGE 19
OF POOR QUALITY
DO YOU MODEL:
Input-output behavior? |

N
v

Part of algorithm? -

M. Zelkowitz
UofM
7 of 22

@-amldﬂuﬂ-_&d:ahm LS st sRebs0s

-

[s

e T TN YT Spe———

pap— e e S

PR

o A —— e ——— e —— — ——

'-r

e s TR T e e T e i e —— i 'ij

USES OF A PROTOTYPE:

Feasibility & full system
User interface
Performance

Costs

T e Ve Sl LY T B S o

M. Zelkowitz

UofM
8 of22

§ihe SR L O Sl S-S A

alsdeconie;

RESEARCH ISSUES:

What are profiles of a prototype
(baselineé)?

How to evaluate a prototype?

el G~ N A S e F e b E

How to measure a prototype?

M. Zelkowitz
UofM
906122

e RO

Bl LY

i

TSR R TR

?
§
|:

B e S e

PROTOTYPING MODELS

Prototype is cheap, system expensive
Prototype is expensive, system cheap
Both expensive, but better system

(more reliable, better user interface)

R i il | SR e, B e PG

M. Zelkowitz
‘UofM '

10 of 22

v S % ih oo

T LS S Sr U PE OF SR 4

FTERRERLT L TR R an QT ISR T

RLTARR TIR T

‘;,-,;{_.\\\vyn\‘,)éy ki .7\-5- >[T‘lw‘\;ﬂ”fﬂ11f\fé""ﬂv‘mw“w‘v RO A
1) / N

NASA/GSFC FDAS PROTOTYPE
(FLIGHT DYNAMICS ANALYSIS SYSTEM)

Now:
Access Fortran library |
Modify subroutines
Recompile and link
Rﬁn experiment

=== Need details of implementation

FDAS:
Access FDAS
F DAS‘ accesses Fortran code

Modifications easier

)

———> Modifications require less time and effort

M. Zelklowitz

UofM

11 of 22

Ser T RO T U A R e SR BT T s tae

i e at et % A

3
%
3
B
4
5 wod
i 1
B .
P ¢
¥ H
:
g 3
i, 2
i i
H i
¥ H
H ;
¥ i
E 1
i i
1

5 RIS y
" E e e AT S v b L

i
-
.
%%
:
:
Y
t
3
3
<
5
,

3
<

FACTOR

A
Requirements
g Size

Eixecution
Algorithm design
User interface
Cost

R SRS SRR L A A 36 LA o
" F N .

e .

|

»

3

A

:

.

(.

1
;.
1
.
»
?_".__/'
;r;» -~
2

%
e
e

-

:

g
oo

A

i
i

@51131 Project

Known
Known

- Known

Known
Known
Known

|

FDAS

D D D 0\ 9 D

FACTORS IN SOFTWARE DEVELOPMENT

M. Zelkowitz

UofM
12 of 22

e g g e e e s

it o ot e S

P s A

X5 a ot rem o

.its BN

T N
- @

R e R

: GOALS OF FDAS: T

Decrease cxperimental setup time -

AL ks e
T

. . . ! .;
Solve more problems than is possible today BT
¥ Lower required knowledge of system R
3 Ifase of use of experimental system :
Lower software costs to add to FDAS e
% |

e meiiae

M. Zelkowitz
UofM
13 0of 22

i 2RI L e, Oy T Ml e R L B i R

M ¥

;
"

%

L
i.
[

%
.
=
e
L
>

i

¥

L

¥

FEATURES:

AT TR T T

ol

Source code control
Data abstractions
(e.g., state, cartesian)

Generalized input-output

M. Zelkowitz
UofM
14 of 22

B R

R T T R

B S SN L e

ST 2 S

3
&
3
H
k
Ex
&
%
5 .
i
I
N
i

SCHEDULE
Requirements - Summer-Fall, 1982

Implementation - January-June, 1983

ACTUAL SCHEDULE:
Requiréments - Summer—Fall, 1982
Rel.ease 1 - January-July, 1983
Release 2 - July-October, 1983
Evaluation - October-December, 1983
M. Zelkovit

UofM
15of 22

o LI T w SV TP

P TupeE

,—.-;:' .. G‘,ﬂ“w"’”_:’—"" G e B eI R A L N e e

bt i e o pealiait e S ot e s e

L e e o e - S

R L S i

b e

TERRRRTERL R

T‘v‘,-‘:ra'\‘-aw, R P EAF

-\

Xz 73 *7\::

i ‘}“\if'iv""'r*'fﬂiw\‘m":‘1‘""‘%”?"’"’??"f"’ e e 2 S A)) e N R =TT
A qE 2 . ‘. o .

!

SIZE OF FDAS
Source code - 34K

Fxeciutable Fortran statements - 20.2K

Application area - 3K

M. Zelkowitz v

UofM
16 of 22

P R L T T R

ez g e i

EFFORT BY MILESTONES | ’ v

Phase 11 Projects Pred. Cont 1 ant 2 FDAS o ’1
Design 22% 1% 31% 31% 39% . ;
Code #3% 36% - 43% 69% 61% ! :
Test 30% = 41% 26%*+ 0%+ 0%+

Code/Design 2.2 2.1 1.4 2.2 1.6
Hours

~ Design 21709 2045 2885 10758 4508
| Total 100324 11835 19085 34461 10477

. * - Data still being collected

M. Zelkowitz
UofM
17 of 22

e TR T T e e S T TR
R e R i T e e

B L . ; S ST GNP i : c e e ¥
Awe o il L. N e S At SR M W e m Vet L e S 1

FermaTaT 0

T

AL S S S D

TR T R RS e AT

R At

AT B

EVALUATORS

NASA/GSFC - FDAS for flight dynamies
" OSC SEL - Use of data types
UNIV. OF MD - FDAS as source code support

Developers - Evaluate FDAS capabilities

M. Zelkowitz
UofM
18 of 22

<

P T Y (N

[

e ATt e

LRt S

SRR

P e = A A o B S E -
. “~

EVALUATION CRITERIA

Usable - How easy to set up

Flexible - Can user alter code easily
Adaptable - Can FDAS be altéred

Consistent - Can it be used across applications
Reliab’lef Can new applications be added
Stable - _Doeswi»s f@il

Speed - How fast does it execute

M. Zelkowitz
UofM
19 of 22

o ket SAsow . B cwn e

o s oo 2 Siria e b i £ e P g i

ey Y

4
i

Vg e

. voaas

N
Py
-
5
o
i

A

SOME SUBJECTIVE COMMENTS:

As expected, some hard decisions delayed
Addition of release 1 to schedule

Some features dropped

Reliability not up to nsual standards

But system is not an operational one P

Floating requirements

Full system on VAX or 4341s?

M. Zelkowitz

[

: .

4 z

. 2

H 3

: 3

i i

: §

i

i {

r 1
*

: i

: 3]

.

¥

H

UofM
20 0f 22

N

TRE T ARG Y STy eI

ADDITIONAL COMMENTS

PEEYTY ST

'+ Some commands redefined

TERWTANT NI TAE L8
RUSES

(DEFINE not well understood) o

Cost of system minimal compared to system overhead

(preprocessor-2 sec. compiler-10 sec.)

RSO B AT UNE RSN T

: (build time-3 sec. link time-18 sec.)

M. Zelkowitz
~UofM ‘ i
210f22

SRR Y e —— S R v, T o R a2 e i ot . J[

- - T T T T T
1= - B S

X e

=

SUMMARY

Still need to complete evaluation -
More data to collect

Need to evaluate error data
Prototype profile reflects quick development

.L - Problems in user interface discovered early

|
|
|
i

‘M. Zelkowitz

UofM
22 of 22

RN

g 2o A s e

e s e s it

tou
g ey

PANEL +#2

TESTING PROCEDURE

T

- e

£
b ;
@ 1
5 :
’ ’
¥ $

J. Ramsey, University of Maryland ; ;
A. Goel, Syracuse University ' ;
C. Savolaine, Bell Labs

RALRME. S3Erit SRE Ry

sam cpey

B SLE B S Rl 7 k28

LN AT e A

3
4
.
: .
: : :
4 i }
§ : H
5 i H
3 i -
» g
: §
‘ H
: .'.
‘ i L
g 4
3 i i
! . i
3 ¥
i B
L ! :
3 ! % !
- H §
- i ;
g H :
vl
: : : L]
4 : :
- i .
N i :
] | #
S }
] | :
; b3
- : | I
; i]
i i ;
. - i#
3 £
£ 4
- :
e
" L4 v
Y

LTIV | gy T £ e T

FrTamRE LR

"N§4 23141

Structural Coverage of
Functional Testing.
James Ramsey
University of Maryland

at College Park.

Abstract

A FORTRAN program has been instrumented to produce
structural coverage measures. The structural coverage
profiles of functionally generated acceptance tests
and operational usage are used to examine two areas in
software engineering: the examination of faults and
the applicability of reliability models.

This paper describes a study performed at NASA s Goddard Space
Flight Center, Greenbelt, Maryland by researchers at the University of
Maryland at College Park. A ten thousand line FORTRAN program was modi-
fied to produce a structural coverage metric. After execution, the
modified program produces a list of executed statements. ' The program
was executed using both functionally generated acceptance tests and
operational usage cases yielding structural coverage measures [CSC 78].

The program’s software failures during maintenance were recorded.

The' study collected structural coverage data for both acceptance
test and operational usage and error data about faults ﬁevealed durigg
maintenance. Using these data, some simpleyquestions;cén 5e answered
immediately. - '"How much of the;che is'éXecuted by functioﬁally gen—l
erated acceptance testing? (both by individual tests and by tﬁé entire

test suite)". Individually, the test cases execute from 27% to U47% of

‘This research is funded by NASA grant NSG-5123.

J. Ramsey
UofM
1 of24

e S 3 A T AR AR W i e

- — T T

Lok gkt b e e s ey e

T

5
¢

SRR LRSS PESERTRREI Ee aT
- N . L}

Y e W,’m 7\3}(, L{ &) YRREYET PPN TR L ST O T R Ay PR e
; .

the executable statements. In total, 56% of executable statements are
executed., This percentage does not include statements executed in

either unit test or system test.

"How many procedures are executed by functionally generated accep-~
tance test"? Anywhere from 48% to 69% for individual tests, for a total

of 75% of procedures.

More complicated questions compare acceptance test coverage to
operational usage coverage. "Does acceptance test execute the same code
as operational usage"? Yes, more or less. "Does operational usage
exercise code not exercised by acceptance test"? Yes, about 8% of the
total executed code. The code executed by operational usage but not by

acceptance test contained a mix of statement types different than accep-

tance test alone.

There were eight faults revealed during maintenance., Rach fault
was contained in one procedure; one procedure contained two faults.
There are not enough faults to reach any firm conclusions, however I

feel there is enough information to inspire interesting questions,

Are there faults revealed in maintenance inksections of code unexe-
cuted in acceptance test? No, although 8% of the code could- contain
such a fault. TIf faults had occurred id the untested 8% then perhaps
the functional tests’could be improved by structural coverage testing.
Since structural coverage testing wouldrrequire exeéuting every state-

ment, it might'have executed the “code and'revealed the fault.

"Are faults more likely to be éevealed in- heavily: executed pro-

cedures?" Procedures were classified by the number of times they were

J. Ramsey
UofM

2 of 24

T S T e SR

e e AT vt S . mah t

T

G e i ot e e &

ity ek b

ORIGINAL PAGE (S : -
| OF POOR QUALITY

SR
e N

executed in operational usage. Half of the procedures were executed by

more than 90% of the operational usage cases. About half of the ’ i

- m——
L e

revealed faults occurred in this group of procedures (3 of 8). i

Information on each fault was collected using the SEL change report ‘

W e

form [SEL 82]. Faults are categorized by "time to isolate the error",

"the time to understand and implement', and the section "type of -l

copopt#,

Z : Time to isolate the change seems to be independent of procedure

b g e SRR e w

-overage. - Increased usage sesms to be associated with a longer time to j

st

understand and implement a change. This might be explained by suggest- ;

ing that the lightly exercised procedures contain fairly simple code

RiZand - AL cbt 38 SRR Ll

whereas the heavily exercised code is, by necessity, more complicated

SR R N

and requires more time to modify. There are too few faults to reveal

any interesting patterns between fault types and procedure coverage in

operational usage.

FIp TR R AR T RSN

H
4
4
2

References

:CSC 78] Computer Sciences Corporation, Acceptance Test Methods,
CSC/TM-78/6296, 1978.

— imtad¥e e ATE. 4

LSEL 82] Guide to Data Collection, SEl.=81-101, Software Engineering
Laboratory Series, Goddard Space Flight Center, Greenbelt, Mary-
land, August 1982.

‘yﬂﬁmﬁyTﬁ“WWvW”*““"“*"”

* Tlme to isolate the error is cla %LfLed as tak:ng. less than one
hour, one hour to one day, greater than one day, npverifound. Tine-to
, understand and implement the change is classified as taking: less than : :
=L one hour, one hour to one day, one day to three days, or greater than : :
: 1 . three days. Faults are categorized as originating in the: requirements,
functional specification, design (either involving data or expres51on),
thernal env1ronment, use of language, clerical or other.

AR e

TR
~

SR

it
5
i
i

J. Ramsey
UofM
3of24

f 4
: ORIGINAL PAGE i€ o
. OF POOR QUALITY ' (41
- T “Statement Coverage cTTTTTT T t
by 10 Acceptance Test Cases. I
! e _____(Percentage of Maximum) : v
‘*‘ Case Proes Exec Assign Calls Do If Reads Writes
.| {
: £1 50,0 | 27.5 | 31.1 | 27.5 | 3u.4 | 3h.1 | 17.6 6.3 f
3 t1a 48.5 24.9 28.3 18.2 | 33.1 32.7 17.6 6.3
;g t1b 44,1 21.2 23.9 20.1 23.6 | 27.0 17.6 4.9 i

£2 50.0 | 27.2 | 30.6 | 27.5 | 3u.4 | 33.9 | 17.6 6.3 |
e t2a 48.5 24.8 28.3 18.2 | 33.1 32.7 17.6 6.3 .
S t2b 44,1 21.7 24.4 20.1 24,8 | 27.8 17.6 5.3 ;
= t3 48,5 | 2u.4 | 27.8 | 18.4 | 32.5 | 32.0 | 17.6 5.8 5
3 t4a 54.4 30.3 33.8 26,3 | 39.5 | 38.2 | 32.4 10.7
x the 52.9 28.6 33.3 24.2 | 38.9 | 36.9 17.6 6.8
= thd 44,1 21.6 24.3 20.1 24.8 | 27.6 17.6 4.9
2 £5 69.1 | u7.1 52.6 55.7 | 54.8 | 55.0 | U1.2 12.6
] t5a 64.7 | 39.0 | u3.9 | 38. 45.2 | 48.9 | 32.4 10.2
v
g t6 67.6 | u2.7 47.4 51.7 | 48.4 | 51.8 | 29.4 10.7 }
g t6a 55.9 29.9 34,2 24,4 36.9 | 37.8 | 26.5 9.7 SR
: t6b 58.8 | 33.7 37.0 39.7 | 36.3 | 43.0 | 20.6 5.8 Lo
] O
g t7 66.2 | 39.0 43.8 40.4 | 44,6 | U8.7 | 26.5 9.7 L
;- t8 66.2 45.6 | 51.2 50.0 54,1 55.0 38.2 12.1 !
; t9 66.2 41.0 46,0 42,3 46.5 50.9 35.3 1.7 :
g t10 66.2 | 40.2 | U4.9 40.9 | 45.2 | 50.3 | 35.3 1.7 :
Union 75.0 | 56.0 | 63.5 | 68.4 | 68.8 | 65.1 | 41,2 14.6
3 Intersect 42.6 18.1 20.8 10.0 | 22.3 | 24.7 17.6 4.9 | ;
3 :
3 Lo

J. Ramsey

UofM

4 of 24

h
H
2
:
{

T R e gt e o o

ORIGINAL PACE S
OF POOR QUALITY

B Statement Coverage 1
by 60 Operational Useage Cases.
(Percentage of Maximum) x
Case Procs Exec Assign Calls Do If Reads Writes
1 57.4 31.8 35.3 29.9 33.1 43,0 29.4 6.8
2 63.2 39.8 4y.5 46,2 51.0 50.6 29.4 9.2
3 66.2 2.6 47.9 44,0 49.7 54,6 38.2 10.7
i 54,4 29.3 33.4 20.6 26.3 36.9 41,2 11.7
5 54. 4 29.1 33.0 28.7 33.8 36.7 29.4 7.3
6 52.9 25.5 28.7 20.1 31.8 34.3 26.5 6e -
7 48,5 23.5 26,0 22.5 24,8 31.3 26.5 6.3
8 574 31.6 34.9 30.9 33.1 4.0 26.5 6.3
9 sS4, 4 29.0 33.1 20,1 35.7 36.5 41.2 11.2 :
10 54,4 29.1 33.0 28.7 33. 36.7 29.4 T.3 g
11 6U4.7 40.5 by, 4 46.9 u8.4 50.7 32.4 9.2
12 54,4 29.0 32.9 8.7 33.8 36.5 29.4 7.3
13 51.5 30,1 35.6 19.4 43.3 40.6 29.4 9,2
14 51.5 29.9 35.3 19.4 43,3 40.5 29.4 9.2
15 51.5 26.4 29.1 25.4 28.7 36.1 26.5 6.8
16 67.6 41,7 5.6 51.9 ug.n 50.2 35.3 9.2 ;
17 54,4 29.6 34.1 20.6 36.3 36.9 41,2 1.7 ;
18 54,4 29,1 33.0 28.7 33.8 36.7 29.4 7.3 ;
19 54,4 29.5 34.0 20.6 36.3 36.9 41.2 11.7 ‘
20 54,4 29.0 32.9 28.7 33.8 36.5 29,4 T.3
21 sh.4 | 26.0 | 28.4 | 27.0 | 24.8 | 33.6 | 20.6 4.4 |
22 63.2 38.5 43,2 37.1 43,3 48,2 41,2 12.1 :‘*
23 4y .1 23.1 27.0 14.8 26.8 32.1 23.5 6.3 !
24 4y 1 22.9 26.5 15.8 26.8 32.0 23.5 6.3
25 57.4 31.7 34.5 31.5 33.8 42.8 29.4 6.8 -
26 50.0 28.7 34,1 18.2 42,7 38.2 29.4 9,2
27 54,4 26.1 28.3 24.9 33.1 35.2 26.5 6.8
28 54,4 29.3 33.5 20.3 36.3 36.7 B1.2 1.7 §
29 54,4 29.5 34,0 20.6 36.3 36.9 41,2 1.7 i
30 63.2 1.4 45.8 45.9 51.0 54,8 29.4 9.7 ‘
31 54,4 28.3 31.7 28.9 31.8 37.5 26.5 6.3
32 4y .1 23.2 26,7 15.8 26.1 32.8 23.5 .3
33 48.5 24.9 28.8 1541 31.2 35.1 26.5 7.3
34 30.9 .- 13.0 16.0 5.0 15.9 14.3 23.5 5.3
35 57.4 33.1 36.4 39.2 38.2 40.5 | 29.4 T3
36 54,4 29.1 33.1 20.73 3547 36.5 ‘}&1.2 11.7 :
37 64,7 40.5 - .,y 46.9 u8. 4 50.7 32.4 9.2 ;
38 54,1 29.3 33.6 20.6 36.3 36.9 §1.2 11.2 :
39 U, 7 40.7 44,5 7.6 k9,0 50.9 32.4 9.2
40 55.9 | 29.3 | 32.7 | 28.0 | 35.0 | 39.6 | 29.4 7.3 | @
H .
J. Ramsey
UofM :
50f24 v B

AN

I et b e i i o o ot SRR

.
]
N
.
o
4%
i
7
,
2
‘.
2,
v

<
-3

-1
%
»

IS il Siel BPL AR
R e St A N

BRSO SER

TR R TR AREE L AR T SRS BT

BN RS

AL P B

aindad

N ‘\-7« A quﬁ‘c'{n‘ﬁ‘-“?\:r’,m TRes T MR ST

b | R I S ‘—-,m- @ﬁ.{
£
{
ORIGINAL PAGE IS .
OF POOR QUALITY 4
" Statement Coverage T {
by 60 Operational Useage Cases. 1
(Percentage of Maximum) 5
(cont.) k
Case " Procs Exec Assign Calls Do If Reads Writes y
41 57.4 30.0 34,1 24,2 36.9 38.0 35.3 11.2 ’j
y2 52.9 31.4 37.2 20.8 45,2 43.3 26.5 8.7
43 54,4 29.0 33.1 20.1 35.7 36.5 41.2 1.2
ny 66.2 4o.4 44.8 41.1 45.2 50.7 4y, 1 13.1
i5 66.2 46.6 51.9 51.0 54.8 57.8 47,1 13.6
46 64.7 39.2 43.8 38.8 45.2 49,3 41,2 11.7
y7 57.4 30.0 34,2 24,2 36.9 38.0 35.3 1.2
48 66.2 39.1 43.7 | 40.7 44,6 49,1 35.3 11.2
ko 66.2 45,8 51.1 50.2 54.8 55.4 47.1 13.6
50 66.2 49,2 45.9 bh2.6 46.5 51.3 4y, 1 13.1
51 57.4 31.1 34,0 30.4 34.4 42,1 29.4 7.8
52 54,4 29.6 34.0 20.6 36.9 37.2 41.2 1.2
53 50,0 | 27.5 | 31.3 | 26.1 | 29.3 | 35.5 | 25.5 | 7.3
54 8.8 31.5 34,8 30.1 33.1 4y,2 26.5 6.3
55 58.8 33.9 36.8 40.0 36.3; - 43.4 29.4 7.3
56 54,4 29.1 33.0 28.7 33.8 | 36.5 29.4 7.3
57 54 .4 29.0 32.2 27.5 34.4 40.1 26.5 6.8
58 54,4 29.6 34,1 20.6 36.3 36.9 41,2 1.7
59 50.0 24,4 27.6 17.2 31.8 32.1 26.5 7.3
60 29.4 12.3 14.6 4.5 15.3 14,1 23.5 5.3
UNION 80.9 64.1 71.9 78.2 76.4 T7.2 55.9 17.5
INTERSECT | 27.9 | 10.3 | 12.2 | 3.8 | 12.1 | 11.h | 20.6 4.4
J. Ramsey .
Uof M
6 of 24
ST g T e PP SRR SR S SR e S s KR P N u:p»

g LT e

T W e

SLNICCL RS W A R A

B T e R e e el e T T B PR

Comparlson Tof ~

Case Procs Exec

Acpt 75.0 56.0
Usage 80.9 64.1
Union 80.9 64,4
Intersect 75.0 55.7
A-U 0.0 0.3
- { 1 5.9 8.4

]

et v e 4 w8 T o N 8 P M e o o o Vi s o

Ass3ign

- g Akt o Sl g 1 ot s | A A g e I Ll M D o e s

Statement Coverage
by 10 Acceptance Test Cases
and 60 Operational Tsage Cases.
(by percentage of Max1mum)

e s s e e e L L LT

Caiils

Do

76.4 | 77,2 | 55.9 | 17.5

68.8 | 65.1 | u1.2 | 14.6

0.0 0.0 0.0 0.0
7.6 J 1200 | w7 | 2.9 |

e o e v e o1 o

If

Comparison of Statement Coverage 77777
by 10 Acceptance Test Cases
! and 60 Dbbritlondl Usage Cases.
Case Procs mxee Asamgn Calls Do T Reads
Acpt 51 2408 1187 286 108 490 14
Usage 55 2757 1345 327 120 581 19
Union 5% 2768 353 327 120 581 19
Intersect 51 2397 1179 285 108 490 14
A-U 0 11 3 0 0 0 0
U-A] 360 155 Q1 12 91 5

Reads

1.2
55.9

Writes

30
36

36
30

0
b

L o s

Writes

1“.6
17.5

J. Ramsey
UofM
7 of 24

T A AR,

i

Lav e AT A

TR T 1

R et ot

?
i
g,

P e I A R

rtine i v s o vk 3w

e e ——— i oAl

ORIGHNAL PAGE &
OF POGR QUALTTY

il

i

B ""Time to Understand and Implement the Change vs] g

Number of Times Procedure was Exercised / ¥

| Total Operational Executions. {
: (Effort to Isolate the Cause in Parenthesis) |
ST | ;

100% (Th<1d) (1 h<1d) |

@ (1 hour <) !
. 90% :
80% (1h<1d) (>1 day) :
' 70% .
& 60% f
- 50% (1 hour <) ;
4o% (1 hour <) ;

30% ’

20% :

__10% (1h<14d) - 1

' <"1 hour T hour < 1 day T day < 3 days ~>73 days :

Rt AR J Tve LA RS L S A

ee
k. | !
: ; i
: A
g : |
E |
| H
fo |
| 1
| ;
3 |
l; .
| :
{ J |
£ “ ‘
e '
i | ; |
N ! ‘ |
E x
r |
FAR i "
e l
) 1 !
3 ! '
$ i
3 |
% i
[y i ‘
ll i %
B !
o i
‘2 1 ‘;
& ! ‘i
!
;
Kl

"“!f‘éﬁ“\\!’rywmqu Lt

%

J. Ramsey

U

of M

8 of 24

“

3

3

»

1
A

ﬁ‘ AOORETT T g

ooy b

ORIGINAL PAGE (g ' ¢
OF POCR QUALITY

Timé to isolate the Change vs .
Number of Times Procedure was Exercised /
Total Operational Executions.

(Effort to Understand and Implement in Parenthesis)

O W S Vg SR S NS

100% (1h < 1d) (1th < 1d) i
(1d < 3d) :

90% L
80% (th < 1d) (1d < 3d) i
70% :)
60% o
50% (1h < 1d) R
40% (1 hour <) : :
30% e :
10% el (< 1d) N 7 H
e <~T hour Thour < T day | 5 T day | never found | L

R

I T T P

J. Ramsey

i
%
P
UofM ;
9 of 24 1:;»

29, it 4 TR g T Lo . R L3
i

AT

T AT g

SRR TR, 3

ORIGINAL Piles v
OF POOR QUALITY

T T T T F4a1Es oy CRF Classification vs
Number of Times Procedure was Exercised /
Total Operational Executions.

Req. | Func. Design Extern, | Lang.
Specs. Data BXp Env.
_____ ;-...;._.._.- o im ta i e e ot cen o e o oot en o om0 it o o e s s o v o e e i e e o

100% XX X

D N B

P v v 8 b e A 2 = . e

s e e o e 8 s b e s S s oy > T b S e w we o " o ey e > T S e T e T T VTV M e o Sl S e o S A i . o

L Ramséy
UofM
10 of 24

B R

. e

R

e B

o s Bt i st 41

.
s it St i and

LURE AR e by o

ST T eastameenn i . < AW

RN 2 R gy il

2

?”’?m‘ww‘ﬁ "-';:V N -7 '""':I - o - T i 3
r;f‘“m : ; L

"N84 23142 |

Examining Functional Acceptance Testing
With Structural Coverage Metrics

v -
James Ramsey TR

University Of Maryland ; i
At College Park S

November 1983

T T AT SRR M T S

- J. Ramsey
UofM
11 of 24

T

Overview
Functionally generated acceptance tests are examined using |

structural coverage metrics.

T L

Reliability Models

COREETG e

Software faults P
“ : 4
-
Management of acceptance testing process
K. »
2 3
;
SR

H i

S

] - . 2
4

j

-'~ J. Ramséy ‘
UofM aor

12 of 24 R

e e T i Ll e A e s e B e e e e . _— Iy e
s L el A R e g e T e e T R Ly

i

i

#
i
4
P

o

DEFINITIONS
L Functionally generated acceptance test:
i derived from the program’s specifications

Structural coverage metrics:
procedure coverage

PP T b e

~ How many procedures were executed?
b statement coverage

How many statements were executed?

Reliability Models | s
Given a history of software failures, predict:
mean time to next failure
total number of faults in the program

CT TN RS P IS R

 OTET R

J. Ramsey
UofM
13 of 24

T R e S T e T T e, et P .
CEREIE AT b il I g e e B W = —_

H :
Ny \

Lo oy Ammesadd s

2 ot b b e e i a5t

P

b S e G

Liramnd

;
The programs: :
Finished: ','f
3 A subset of a large satellite system
: FORTRAN ‘
68 procedures S
: 10k lines of source
3 4.3k executable statements)
Ten acceptance tests
: not a rigorous sampling of the input domain ﬁ
but not trivial
s 60 operational use cases
j 4 Fault data for acceptance test and operation
: |
3 In progress:
] A whole satellite system:
e FORTRAN
- 300 procedures
- 50k lines of code
20k executable statements
Fault data for system test, acceptance test, and
operation
< |
- |
g s
e %
J. Ramsey
UofM
14 of 24

S T L i EE B

RS s 2d CE s S S R e B e T B

S SN TEEE S L S SO A

7 SRR RN R CA Y R e

[}

173
) 2 Bers I RN

Structural Coverage of Acceptance Test

Executable Statement Coverage
by 10 Test Cases.

Case Procedures Executable % Unique
Executed (%) Statements (%) Code

tl 50.0 27.5 0.0

t2 50.0 272 0.0

t3 48.5 24.4 0.0

t4 60.3 37.9 4.4

tO | 69.1 47.1 1.7

t6 67.6 42.7 0.0
t7 66.2 39.0 0.0
t8 | 66.2 45.6 1.0
t9 66.2 | 41.0 0.0
-~ t10 - 66.2 40.2 0.0

Cumulative 75.0 56.0

i Intersect 42.6 18.1

Note:

44% of executable statements were not exercised in accep-
tance test. They may have been executed in system / unit
testing. |

J. Ramsey
UofM
15 of 24

Vi T L e i | i e R e R L e L

T e e b e it e b it i i e et o0 408 R e ten

= s L 2 e e i - rm——r—
’-ﬂ Eﬁi‘?mwa ” " s ‘fg . .

Structural coverage of 60 executions by users after accep-

tance test:

60 O

Structural Coverage of

erational Usage Cases.

Procedures Executed
Executed (%) | Statements (%)

Cumulative

Intersection

80.9
27.9

cases.

SRR R T T RTIE

TN R

TSI |

TR TR

i

¥

3

¢

4 H

";

B

£

&

£

2

¥

£

-9

[

B
-t

10% of the code was executed by ALL of the operational

- B P v
L S ol S VR A

64.9 :
10.3

J. Ramsey
UofM
16 of 24

E"“"g’ e ot o Mt &

PR Y

I S N TN

e ittt -

-

Are the acceptance tests representative of operational usage?

SRETVES e L e
« .

This assumption MUST be true if using acceptance test
failures to predict failures in operational usage.

LA

BT

A MERTe TR T o T
g

3 H ¥
I3 §
z s
H i
3
. ki
: s
¥

RN et s AR A 1 L T S S
. B k

=
T e N

4RSS AT

RS S

B
S U SR A

TR T
oo,

J. Ramsey
UofM
17 of 24

R s {8 TTETRRTRTTET Uy o N g o o Daalh i s T s 7 L TR TR A i - ChAm. NS & ¢ |
@S, i I S : * ; - ~ 7?7 . \V

'qu:uﬂ
i A

|
Are the acceptance tests representative of operational usage? ?
' :
A
"
;
z;
]
. . . age K D) é. b'i
T Might not be valid to use reliability data gathered in accep- b
S tance test to predict failures in operational use | o
E | The “mix’’ of statements in the 8.4% differs from the ‘‘mix”’
of statements in the 55.7%
| ~ twice as likely to execute a CALL or IF ; :
Otherwise, cannot distinguish acceptance tests from opera- B
tional usage cases by their structural coverage numbers :
;
;
J. Ramsey
UofM
18 of 24

—_ T N A A 4 4oty sl ot eyt om AP v

e No faults were revealed in the 8.4%

-, If faults had been revealed in the 8.4%, then there was
L a flaw in the test plan

S chance to augment the tests

chance to re-evaluate how tests are written

RIS TR T R AL TIRPY DUERUHERIE O Y e

R ALEET W

\

!

e T AR ATV R AL ARE: & el R A L e
Yo "\?,mﬂ ﬂlj\ﬁf’{y“\"‘\aﬂl’fﬂ Le

£
T
[
k
b
B

J, Ramsey
UofM
19 of 24

T s v

R

L2 M e TR BT T

B TR

e et b < oo . o et e i atadE T e

Eﬂ?‘?ﬁwwlw”w‘w s & . T . T . L2l g -
” ‘ . ' - Q .'

L e
L | o
l“: !‘
!
g Faults
? 8 faults revealed in operation |
. all repaired by changing one procedure
one procedure contained two faults |
i ! i
= :
) How are these related? SR
S) B
L Time to isolate the fault f 2;
| o o

Time to understand and implement the change

Number of times the procedure is executed / 60

RS SRR vk LR A

Questions:
2 Are faults more likely to be revealed in heavily exer-
| cised code? lightly exercised code? -
S Are there relationships between time to isolate the F
S fault and how thoroughly the procedure is exercised? o
; z , , :
;:%:‘ ! : . L] L3
N Are “‘time to isolate”” and ‘‘time to understand and ‘
s implement”’ related? . _
: ¢
3
J. Ramsey : .
UofM
20 of 24 :

Are heavily exercised procedures more likely / less likely to
contain a fault? Enticing but inconclusive with only 8 faults.
Number of Times Procedure was Exercised /
Total Operational Executions
Faults Procedures
100% * %% PPPPP
PPPPP
PPPPP
PPPPP
: PPPPP

= 90% PPP
. 80% * * PPPP
| 70% p
o 60% | PPPP
50% * PPPP
0% * PPPPP
P

30% PPP
20% o | |
10% B PPPPP |

s PP
0% uuuuu

auuuuu
uuu

,,,,T‘. ""\"\74"1\7?3"”‘&;"?“3’-‘\,"wfp'w" EIASE ARSI B S A A A st

™ w ‘g“\&‘;':*"miz"ww“i"#f”wvw e
"“I h' s‘»“z B "t‘m Yiiee ' .
N\
i i e et et it s o e
e
f
|
]
i

Half of the 55 procedures were executed by 90% or more of
operational usage cases.

UofM
21 of 24

: " L s e S SR T IR N D
J R e el P AT O e, F e TR ; ‘

J. Ramsey

I T e)

e

Ja—

']
! i
' ¥
¥
b
e
:]
. \
i
) .
: l
: 1
{ J
: 4
Cd
3
s
¥ :
i
eyt R

Is there a relation between time to isolate the fault and how
well the procedure was exercised?

Number of Times Procedure was Exercised /

Time to Isolate the Change vs
Total Operational Executions |

(Plus Effort to Understand and
Implement the Repair)

Time to Isolate
the Change

TUTSREILEE g B -
s oem NN -

100%

90%
80%
70%
60%
50%
40%
30%
- 20%
10%

< 1hour | thour < lday | > 1 day
hours hours

days

hours days
hours o
minutes | L

hours

S RO F O e G L £ SR

4144 e R BN G o e S L

Time to isolate the fault is Vrelated to time to understand and
implement the fix.

J. Ramsey
UofM
22 of 24

AR SR O i Tt L 1

i e U i el R T ITF R e T JEpERTEN

e —— s —wt i x e L AN Y NS RN R e

e WS et

. 4

. » ¥

Conclusions :

Generated a method of comparing acceptance test and opera- .

t tional usage

] Acceptance test is representative of operational usage except -

for the “mix” of statement types (at least in this study) P

; ; . '] [. [g ’

Structural coverage metrics may provide insight into Ly

j; software faults o
% 4
3 ! :

%

to

' B

» !

SR

i !

i

J. Ramsey | r :
UofM - : ¥
23 of 24

LR L e e g e e s e R R

TER TR

TR ATRERT T

R ITVIV gman § T A

£.8 28

R s

R e sl AR

Future Activities

The next study will attempt to reinforce the results of this
study.

More faults and fault data

Larger, more representative NASA /SEL program

Exact order of acceptance test

J. Ramsey
U of M
24 of 24

4

BT SR T R

Ao

LA TR ARy e

3
&
&
£
£
£
£
.
4
4
)

" N84 23143

, € S
ORIGINAL PAG
OF POOR QUALITY

An Error-Specific Approach to Testing

Peter M. Valdes1

Amrit L. Goel2

Syracuse University

The main objective of software testing in the soft-
ware development life cycle is to verify conformance of the
implemented software with its intended requirements, Such
requirements include

1. System requirements

2. Functional requirements

3. Programming requirements

Non-conformance with such requirements causes what are
knewn as spftware errors.

Specificying an appropriate testing strategy to
expose software errors is still an art. Traditional
approaches do succeed in revealing many errors but nomne
is powerful enough to expose all errors. The best that can
be hoped for is to use a specific test strategy to expose a
specific error type in specific program locations. LE is
this limitation that we exploit to develop a new approaéﬁ"“~«“
to sbffware testing which we call an error-specific testing
(ééT) strategy. It is in fact a dual to the traditional

testing approaches.

Ikesearch Assistant.

2Profcssor of Electfical § Computer Engineering, Syracuse
University, Syracuse, NY 13210

A Goel
Syracuse U
10f22

i Soin s e aina

i o i et e L ¢ gt 51

P T Sy

s g e

:;“.
+ “
;Ev 4
3 The EST approach hypothesizes and tests on specific ﬁ
¥ . ;
3 error-types in specified program locations. When applied
, to all error tYpeé of interest, it becomes powerful enough % |
A to satisfy the original objective of testing. o
2 -
%' In the presentation we give highlights of the EST H W
i

approach. Then we show how such an approach can be used ¥ W

- ' : to expose errors in a simple program, triangle. The material
presented here is not meant to be self-contained. Mathematical
results and other features (positive and negative) of this

testing stranegy are discussed in technical reports available

i from the authors. Further work on the use of this approach

g ; for determining software reliability (a different definition
% i than commonly usedj is also in progress and will be published
! :

: ‘ in the near future.

: |

,

A. Goel
Syracuse U
2 of 22

R T P

Tirs Ay

An Error - Specific Approach to Testing

Peter M. Valdes
~Amrit L. Goel

Syracuse University
Syracuse, N.Y 13210

L T Ll AT e e e i S

‘A. Goel

Syracuse U

3 0f22

S WL e T T

i e o e

e ool oL

T TR RS TR T

1.

3.
4.
5.
6.

OUTLINE

Testing

Error-Specific Testing (EST)

Related Work

EST Methodology

Assumptions and Limitations

EST

6.1
6.2
6.3
6.4

6.5

6.6

of Triangle.
Functibnal Requirements (FRi's) Decomposition
Structural Parts (SPi's) Decomposition
FR-SP Mapping
Error Hypotheses
Function-Based Errors (EF's)
Structure-Based Errors (ES's)
Test of Error Hypotheses
Function-Based Error Testing Strategy
Structure-Based Error Testing Strategy
Recording Test Results in the
FR-EF and SP-ES Matrices

Extensions of EST Philosophy

A.Goel
Syracuse U
4 of 22

L

el e T e e T TR TR e iAo L 2o s

S U U O W

SUURLILNWRGE. Ay SIPS

b e N i e

Ny N R

s

TR

WETTRARNS b

;
v

B

=

13

E

&

%

5‘,“

%

e’
f‘f P
s
350
B

N
"9/",

TESTING

« The main objective of testing is to verify conformahce
of the implemented software with its intended requirements
such as
« System requirements
« Functional requireménts
e« Programming requirements

e Non-conformance with intended requirement is known as
a software-error.

A. Goel
Syracuse U
50f22

i L e e e s e

5 RIS T =

e

RS st i T R R B R

TR N

ek AR

T e ey

k, £
4 i
F !
Error-Specific Testing _— ; ;
e Traditional testing strategies can expose embedded o
4) ; |
: . software errors but none is powerful enough to expose ‘
all possible errors - therefore ‘
: :) ‘ % 1
- e use a specific strategy to expose @
2 specific error type in specific l
‘ ,'
: | program locations, i.e., Error Specific !
Testing (EST) :
2 e EST is really a dual approach to traditional testing. ?
§ When applied to aii possibie hypothesized errors, it |
; becomes powerful enough to satisfy the original ob- 9
: Jective of software testing. e
:
|
|
=, i
B t
!

A. Goel
Syracuse U
6 of 22

L e e e e e RS s e T L G et e

TR TAYT RETEREERAT ket sk @ DU ERESE TR L e S o T VR

;
|
|
i
i
1
i
|
|
!
!
|
!
i
i
i

4

Error - Specific Testing %

Focuses on specific error types in specific locations i
Intuitively appealing and simple to use ;
Number of test cases is bounded 1

. X 1
Can be automated o

Permits trade-offs in allocation of resources

o Ve 10 e g

(Gt il ot b e i s s

i bkt >

A e e e o

A. Goel ' 1 !
Syracuse U oo
7 of 22 L

g H iz L e i e R . R
B T R il A L S SR T e SR i s e e A TR i

I .«n.A)

Traditional Software Error-Specific Testing (EST)

.

g M ke o B

% Testing
|
Specify Testing strategy Error-type in a specific 7
| or strategies program location and- an f
appropriate testing strategy ;
§ % Expose Different types of Specific error-types in f
é | software errors in the specified locations §
: | various program :
§ locations a
i .
l .
% Limitations Not all possible Only the specified error ;
errors can be (and some incidential errors)
exposed Is exposed. However,!t can be

'F
ga
¢
2
&
L
kS
T
i
:
:
A
1
&
&
13
&
9
[
FA
e’
&~
s
]
&
H
i
£

used to expose all errors if
all these errors are tested
for existence using appropriate
testing strategies.

\

i

A.Goel
Syracuse U
8 of 22

2

R . i PUSNESS e e S e e AT e T T T e AT Maassna Bk T
L e Ee e Ll -

L 8 L

g -
o ORIGINAL PAGE (S
€ OF POOR QUALITY, A
e
. RELATED WORK f
b7 5‘
; g
? Traditional :
‘ : , i
] < “
_ Use of non-error specific test :
" Strategies, e.g., path testing, ; !
i cause-effect graphing Lo
3 :
j Weyuker and Ostrand :
: Introduced error-based testing which uses al i
3 available information in exposing certain types of errors. y
3 '
% Howden i
3 | ;
4 | Realized the limitations of traditional test |
. i
3 |
1 strategies but used them to expose certain types of 4
y | errors (weak mutation). .
1 i
; s
j ‘ Clark, et al. ;
Used the notion of error-sensitive-testing. J et
it i
X B . 1
> o
-)
- : l ¥
i i §
| %z i
A. Goel i
Syracuse U R
9 of 22
5 "?mk~wwém¢awwﬂvkﬁ%+~ﬂ;@@@*&¢$;L:T?J

e e . : T e Te - T @W"‘

£

1
. {d

{
3 S
EST METHODOLOGY ; ‘3
i 1. Determinc s/w functional requirements (FR;'s). ﬁ
) 2. Decompose code into structural parts (SPj's). : ;
! 3. Hypothesize specific error types of interest for :
1 each FRi and SPj. %~ :
- . . : .
< 4. Specify EST strategy for error types in (3). ; p
: S ¥
. S. Determine test requirements for each EST strategy. ;
= 6. Optimize test requirements. i
§4 7. Generate test cases from the optimized test requirements. ;
E 8. Execute test cases, debug exposed errors, retest the z
:
g changed code including affected code. ?
; i !
: o
v Y
o
>
i :
>~ ;

P2

A. Goel
Syracuse U
10 of 22

e T T L i ey, S R G

Ry - v s a0 T g

ASSUMPTIONS/LIMITATIONS

+ FUNCTIONS REQUIREMENTS ARE CORRECT

. EST STRATEGY AVAILABLE FOR EACH HYPOTHESIZED
ERROR TYPE

+ NEED TO TEST FOR EACH HYPOTHESIZED ERROR TYPE

A. ‘Geel
Syracuse U
11 of 22

3

HRAT T

R LTt 0

X ERTE YRGS

EOTAERR I

v TETEAT

3

|3

5

¥

4

4
A
)
3
[
K
G
?_/
=
5
&

LT LT

Error-Specific Testing of TRIANGLE

XI.

Functional Requirements Decomposition

FRl
FR,
FR3
FR,
FRS

FR6

IF
IF

IF

iF

IF

IF

AJ(A > B > C) then not A

(A =8

Description

C). then equilateralfA

(A=B>CorA>B =2C) then Isosceles A
but not equilateral

(A >B

(A >B
and A <
(A >B

> C and Az

> C and A2

B+ C

> C and A2

>

<

A

B

B

B

2
2
2

+ C2) then right A
+ C2) then obtuse A

+ Cz) then acute A

A. Goel
Syracuse U
12 of 22

- e R e e

RS e

ey tewin

ANt

T Ay ecbmeems

Code E ;

Statement # o 1 i

E procedure TRIANGLE (A, B, C)
| oo
E if A > B go to 1l]

O

i - go to 2 e L
1 4if B> C go to 3 |

2

3 b
4 2 Print ('Illegal Input') return %J ;
5 3 if A = B go to 4 ; %
6 if B =C go to 4 : %

7 A:=2a*a -
‘ B:=B*B : ; s

9 C:=cCc*cC ;

10 D:=B+C i

11 if A#D go to 5

12 - Print ('Right A') return

13 ' if A < D go to 6

14 % i Print ('Obtuse A') return

e

R o ERP L PR L A IS Ak

e =

i e s o s tom 2 e

M e S Nl et

-
(8]
Lt TR LY T
e e Pt 2,

: li - 6 Print ('Acute A') return % %
: 16 | 4 if A =B go to 7 o
% 17 % go to 8 : :
% . | ‘ . : ;
{ 18 ; 7 1if B=Cgo to?9 ; |
&) | : ¥)
4 19 8 Print ('Isosceles A') return i !
% 20 9 Print ('Equilateral A') return % |
% 21 end procedure : !
3 ;

T

L H

~ A, Goel P
~ Syracuse U [R
13 of 22

53
H
%
bis

k3

&

#

X
[
n

A

AET LR ST A

iR

NS

SR ACTRUT S TURRTIOS R T e o
g »

CAVTEIRST

x;voy»\},;» (‘yv‘\;h?\)r\.l’v:'r\ L oTe B ., T e

B S
DN RS

1I.

Structured Parts Decomposition

Statement Number
(see TRIANGLE code)

SP1

SP|

(-]

DUCTT— o

A. Goel -
Syracuse U
14 of 22

T

A 0 T I o SR * Bl A N

ST ARRE e IR TR b Ny ST AT MR TR £ Al DL S A A A R B ot ol 3]
\ARASE M o L o T ’;ﬁ‘;ﬁ,a i\,xu_n ﬂ,n"\xﬂyff'f x ; o ‘ 4 o
A ‘ ~] - : ' T T T T k5

; ‘ , I1I1. Functionalﬁlnng u:lzemenl; ‘-Mshsfgcguredk Parts Mappin
§§ ’ ‘ ‘ SPI SPz BP3 SP‘ SPS SPS SP-, SPB SPQ Slig 55-1,. 8&2 s&l_ SIi‘ 855—256—«{ 7.
| FRy 111 R e
FR, 1 1 1l 1 1 1
FRy 1 1 1 1 1 1l 1 1 |
FR, 1 1 1 1 1 1 1 9 9 \‘;
rns 1 1 1 1 l 1 1 1 .g &—2
FRg 1 1 1 1 1 1 1 S §

8! 3vyg -

ALITvYnd

" i
¥

:

E

[20D 'V

¢tio sl
[1-9SNoeIAS

R £

LS L A

i 15 A

TEPRIERR ALY AT RS IS R

FUPT A EPFTI ORI OITR s T T e T

~

S

i

v
i
>
2
Fu

kN
Ll

Iv.

CRIGINAL PAGE 19
OF POOR QUALITY

Error Hypotheses

Functional-based Errors (EF's)

EF) Non-satisfaction

of Fnl‘(i;e. program not

catching an illegal input)

EF, Non-satisfaction
EF3 Non-Satisfactiop
EF4 Non-satisfaction
EFg Non-satisfaction
EF¢ Non-satisfaction

Structuie-based Errors (ES's)

ES1.1v BS3.1r BS5)yr
ESg,1r ESg 1r ESy3 1

ESys5.17 ESy0.1
Note for subscript notation:

zf'1.2' ES; 17 ESg5 o
ESg 2+ ESg a¢ ES;3 3¢
ES14.17 ESy5.2¢

ES10.2
ES; 1

ES;.2
BS9.3

of FR2

of FR3

of FR4

of FRS

of FR6

Incorrect relaticnal cperator

Left of dot gives structure par+
number when error is possibly
embedded. Right of dot gives
error number for the given
structured part.

Incorrect transfer of control
flow.

Incorrect Arithmetic Operator

Incorrect Arithmetic Expression
(Formula)
Incorrect Assignment

o e e S

St otk e e e S

e cemr Sor T a2 e =

s dmaate, S

A. Goel
Syracuse U
16 of 22

ORIGINAL PAGE [
OF POOR QuALITY

V. TEST OF ERROR HYPOTHESES

Function-based Error Testing Strategy

. Assume functional requirements given as

1f (input conditions) then (output conditions)

. Generate test requirements for every valid and invalid

combination of the inputs

E
]
3
3
5,
o

input Condition valid Combination Invalid Combination
FR, ~A > B >0C) (A<B) A (B2C) (A>B)A (B>C)
(A >B) A (B <C) (A =B) A (B =¢0)
(A <B) A (B <C) (A= B) A (B >C)
etc.
FR, (A =B =C) (A=B) A (B=0¢C) (A #B) A (B=0C)
(A =38} Ao (B#C)
: ; ‘ (A ¥ B) A (B #C)
FRy (A=B Cor (A = B) @ (8 > C) (A >B) A (B #0)
A>B=C) (A>B) Ao (B=0) (A #B) o (B =0)
‘ . etc.
FR, (A >B >Cand (A>B) A (B>CA (A>B) a (B>C)A
a2 = 82 4+ c? @? =8% + ¢} a? # 8% + c?)
| ! etc.
PR, (A >B>C and (A>B) A(B>CA (A>B) A (B5>C)a
a? > 2 4 (2 (a2 > 82 4+ ¢? (a2 > % + ¢c?)
and A < B + C) (A <B +0) (A >B + Q)
| L etc.
FRg (A>B>Cand (A>B) A(B>CIA (A>B) A (B>C)A
a2 < 8?4+ cd (a? < 8% + c? a2 > 82 + c?)
etc.
A. Goel .
Syracuse U
17 of 22

I e SN B L L

SR TR L

H
)

4

&

i

it

3

o nZ b 4 b 0t aro® N & o o sy, RN ¥k

oS Sy

N ORI T H R

i A h S e g a n

Sixcde.

A NS e

L dnsnen v wlh

rin e

¥ o

Sk B TIQTEEEE TS TSl

A
g,

3

:

ORIGINAL PAGE i
OF POOR QUALH

K‘."év

A

2

Structure-based Errors Testing Strateqy:

Structural Part

Incorrect Relational Operator

Sihple relational expression (SRE)
of the form A < B

SR# of the form A < B

A

B or

SRE of the form A
A f B

SRE of the form A B

v

SRE of the form A > B

Incorrect Construct in a SRE

SRE of the form A < k
where k = constant

SRE of the form A < k

SRE of the form A = k or
A=k
SRE of the form A > k

SRE of the form A >'k

Incorrect Relational Operator
and Constant

SRE of the form A < k

tA

SRE of the form A < k

H
=

SRE of the form A
SRE of the form A > k

SRE of the form A > k

AR AR S 0 YIS A AP b e A ¥ 0 b A 0 R R et e 1

Tésting Strateqgy

Test Cases:

Test Cases:

fest Cases:

Test Cases:

Test Cases:

|
Test Cases:
where A* =

Test Cases:
where A, =

Test Cases:

Test Cases:
Test Cases:
Test Cases:
|

Test Cases:
Test Cases:
Test Cases:

Test Cases:

e T L el e i o N i s

ey W

A =B, A>B

< B,A=B

=B, A#¥B
A=B, A>B
A<B, A=2B
A =%k, A* < k
max {domain of A}
A=k, A, > k
min {domain of A}
A=k

e

=k, A <k

=k, a, >k

"Q
A <k,a=k, A, >k,
(A < Aa*) A (A* < k)
A* <k, A=k, A, > k)
(A > Aa,) A (A, > k)
A*<k'A=k'A*>k'
(A < A*) A (A* < k)
A* <k, A=k, A, >k,
(A < A%) A (A* < k)
A* <k, A=k, A, >k,
(A >3n,) A (A, > k)

A. Goel
Syracuse U
18 of 22

" sisen ey

Sy e el e ickiar s b

v»...m(ﬂ.,....‘,
P e ey .

- x e e i

oo A eh

bt e s e 61

g A e

5 4
ORicH L, ri o g 7 |
CF POUR ity .
3
!
Testing of TRIANGLE's ES's ' ' "
Hypothesized Error : Testing Strategy :
¥P
|
ES ES , ES Simple traversal of go to .
§1.2' 2,17 75.2° statement i
ESg.2+ BSg a2+ ES13 20
ES)3,2¢ BS14.17 BSyg.2 |
ES10.2
ES; , Test Cases: (A = B), (A > B) ! ;
ES; (83=0c), (B >C) F
ESg , (A =8), (A#B) :
g R
ESg 4 (B=c), (B#C) . .
ESg , (a2 = 82 + c%, 3
: ;
(a? ¢ 8% + ¢ : z
: 3
Eslo 1 (32‘ = Bz + cz) ’ ! ;
! (A,z > 82 + c?) T
E$13.1 (A = B), (A >B) : 5
ES B=¢C), (B >C i
515.1 (B =)' () E
ES,; 4 Simple traversal of statements :
. 7, 8, 9, 10 H
¥
ES, 5 Simple traversal of statements ;
* 7, 8, 9, 10 -
ES, 4 Simple traversal of statements
: * 7' 8-' 9’ 10 ;
’
]
' 1
?
A. Goel -
Syracuse U
19 of 22

Ta D TR N

e T

CVEERT T e

R TE AR i o LA A

TR

A IAE UTE AT TRE TR T

vI.

e Chan IR A canint

ORIGINAL PALE 15
OF POOR QUALITY

'

Recording Test Results in the FR-EF and SP-ES Matrices

Let Mo pp = element of FR-EF matrix

M

Sp-ES = element‘of SPfES matrix

Then, assuming wé have a sufficient error-based strategy

HFR-EF 0 If test result is negative
or =
HSP-ES b 3 If test result is positive

If error-based strategy is imperfect

HFR-EF rdi If test result is negative
‘ test's relative degree of
or = imperfccticn is rdi
MSP-ES 1 If test result is positive

e v ST TP

but

B T e A

D% AR et b

A. Goel
Syracuse U
20 of 22

4.. WP .

b
{,a
3
.
9

.

3
™
Y
I3

Cew B

FRy
FR,
g' j FR 3
i FR4
FRg

PRG

T TSR

;

'5 SPl
SP2
SPy,

FR-EF_Matrix

SP-ES Matrix

EF,

EF

ORerizss o

e
ek
waNE G
ey A
Y
NN
ce-

ﬁ:d‘%&,‘&w}«f

EF 4 EFS EF

. ﬂ‘#’_

A. Goel
Syracuse U
21 of 22

D

R S WY Py

P T S VO A

e

CAg e e

i
P
)

EXTENSIONS OF EST PHILOSOPHY

S MR ANIATIETTS T,

i . MEASURE OF COMPLEXITY
£
: . MEASURE OF CORRECTNESS

A i

» TRADE-QFF STUDIES FOR ALLOCATION OF
RESOURCES

Bager,] "“,1'»5(&1w:’up' .p,- R

RN

IR AR RGO T

SN

A. Goel
Syracuse U
22 of 22

o ST FONE AR B e e b e £ - &£ aee . - - " B . - o R
. - o S~ L et e e v 7 R C IR St S S lepeerrme ot .o 2l

— s

FI

b T

LN TN i b s ettt et e e e & et 1od st o et e

ORIGINAL PAGE 1S

OF POOR QUALITY + N84 231 44

‘I

g

t

4

ﬁ Testing and Error Analysis of a Real-Time Controller

é C. G. Savolaine

% Bell Laboratories

E Holmdel, New Jersey (7733

1

$ i. INTRODUCTION

! This paper outlines inexpensive ways to organize and conduct system
] testing that were used on a real-time satellite network control
3 system. This system contains roughly 50,000 lines of executable
v source code developed by a team wof eight people. For a small
T investment of staff, the system was thoroughly tested, including

automated regression testing, before field release.

Detailed records were Kkept for fourteen months, during which
several versions of the system were written. A separate testing
group was not established, but testing itself was structured apart
from the development process. The errors found during testing are
examined by frequency per subsystem by size and complexity as well
as by type. The code was released to the user in March, 1983. To
date, only a few minor problems have been found with the system
during its pre-service testing and user acceptance has been good.

2. THE SYSTEM BEING TESTED

The Satellite Network Control System (SNCS) is & real-time, mini-
computer based, cali-processing system developed for
Picturephone{R] Meeting Service (PMS). It controls the switching
of both- 1.5 and 3.0 Mb/s digital circuits over a satellite using
Frequency Division Multiple Access (FDMA) technology. The SNCS
runs on a dedicated Festern Electric 3B-20S computer (similar in
capacity to a DEC VAX 17/780) and supports interfaces to:

1. Earth stations

2, A customer reservstions system
3. A satellite maintenance center
4. A computer operator console

8atellite ‘connectivity requests are sent to the SNCS, which
verifies these requests and assigns satellite transponder channels
to each. Every 15 minutes commands are generated and sent to
microprocessors located in the earth stations that tune the modems.
The real-time control interface to the microprocessors is
complicated by inter-dependencies among the commands across earth
stations. To compensate, a sequencing is generated by the SNCS for
the commands, which changes with every reconfiguration, The
central SNCS multiplexes these earth station work 1lists and
simultaneously distributes them to the stations, maintaining this
sequencing.

3. TESTING. METHODOLOGY

A prototype of the system was available ‘in February, 1982, It
needed significant enhancement to provide full service, and it had
not been thoroughly tested. The methods used in testing the system
while new versions were being developed concurrently are described

|
C. Savolaine !
Bell Labs
1of17

!
)
)
i

|
B
3
/
{

i W

Ry y memmrne s

o ey £

v

-

N
»

ORIGINAL PAGE 8
OF POOR QUALITY

here. The next section will evaluate their usefulness.
The major techniques used were:
e tester selected from the developﬁent team
e rotation of testing assignment
e testing was automated
e formal testing of all versions
o careful tracking of error causes and effort to correct
» deferring correction of low severity errors
e full regression testing
e releasing test cases to user with code

A person from the development team was assigned the full-time task
of creating and organizing test cases. The system was divided into
subsystems and test cases were created consisting of multiple test
situations per case. Each test case had the objective of testing a
particular system feature. The running of all cases was automated
with a difference program used on the output to isolate potential
errors. This made full regression testing possible. This testing
was done on each version even though only the last: version was
released to the field. :

The testing assignment was rotated among the éroup, changing with
each of the three versions created. Tests were automated and
conducted by the tester, but problems, after being given a severity
code, were assigned to individuals ip the development team. The
correction of bugs having a low severity was deferred to the next
version to avoid correcting multiple versions.

Each error was classified into _one of three types: omission,

commission or regquirements. The errors due to a requirements
misunderstanding often’ stimulated additional documentation to
clarify the mis-conception. The: system wa§ divided into nine

subsystems, and each error was allocated to one of these. The
subsystems and their errors were then analyzed verses code isize and
complexity as determined by th_Mccabg;cqmngxiLy<mg§§uﬁe.FT]

For every error, the time was recorded to find the cause, to fix
it, and. to test it. In addition, the number of iterations through
the cycle and whether other errors were caused or “found ' in the
process was recorded.

Test cases were released to the user along with the code. This
provided a foundation for their testing efforts as well as serving
as detailed documentation. By running khown good . cases - in . the
users - environment, problems unique to their configuration could be
identified quickly. -)

e e e e A s GihBsv: 4k . Wi AT

C.-Savolaine

o i e e e R A T

A o e SR R T

<t

o Ao b

yens S b iAo bt kot N2

a NG e

]".\z?vm':r‘(vﬂw’m:r,xav'm"'V BT
No{Y s - R N

i

Ty

ORIGINAL PAGE i3
OF POOR QUALITY,

4. RESULTS

By devoting 15% of the available resources to testing, an extensive
set of test cases was created and automated. By rotating the
person responsible for testing, the testing process became more
robust and independent of individual traits. It also made a task
that was perceived to be onerous more palatable. The training
investment in rotating the testing position was low, since each
tester was previously in the development team. ‘

By automating the running and output comparison of the test cases,
it was easy to run regression tests on a system that was growing
and changing. The number of test cases grew steadily. Phased fixes
were manageable because the less critical errors were the ones
being deferred, and none were delayed more than 2 few months.

The bugs correlated wel! with subsystem complexity and lines of
code. Nearly half the errors were attributed to omission. Of
these, half occurred in the two largest and most complex
subsystems. About half the errors required only a one line
correction. For the first version, the time to find an error and to
correct it were equal. For later versions it took longer to find
the errors than to fix them.

Inviting the user to participate in generating and reviewing the
test cases made it possible to gain early user involvement.
keleasing the test cases with the code gave the user an extensive
set of test cases upon which to build, and served as examples for
user training.

Thus, by formalizing and automating the testing process a
thoroughly tested, stable system, plus test cases were delivered to
the user on schedule.

C. Savolaine
Bell Labs
30f17

s s o

s

Ssmsitmia

s o e

g At o e s s

|
i
!
f
|
|
|
2
|

R

\ ORIGINAL PAGE 19
: OF POOR QUALITY

5
i
‘;.
g
References !
I
; : 1. McCabe, Thomas J., "A Complexity Measure,'" IEEE Transactions on i
S Software Engineering, Vol. SE-2, No. 4, December, 197€, pp.
308-320.
2. Metzger, P.W., Managing a Programming Project, Prentice-Hall, ﬁ
| g Inc., 1981. R
. E 3. Myers, G.J., The Art of Software Testing, John Wiley & Sons, v .Q
S Inc., 1979. i :
4
§
" by
1
M
|
§)
-
= ¥
-
¥ /
: i
= !
e J
e v
. R
: P
B
F £
:
;
;
: R
E o
F : |
': % |
& - ! i
p |
5
v 1
: i
] : ’
‘ | : |
— |
! ! |
)
3

C. Savolaine
Bell Labs
4 of 17

LT il A L

ORIGINAL PAGE (9 |
OF POOR QUALITY

TESTING AND ERROR ANALYSIS '1
OF A REAL-TIME CONTROLLER |

® System under test
® Testing methodology

¢ Dagta and Analysis
- Error distribution

- Error classification

e Conclusions

C. Savolaine
Bell Labs
50f17

- p— e P - - - -
. - el - :—-{::-” v — 5 o s gt

ORIGINAL PAGE IS

OF POOR QUALITY

; SATELLITE NETWORK CONTROL SYSTEM
EARTH
STATION
EARTH
STATION

SATELLITE

OPERATOR
CoNSOLE MAMTEMANCE

C. Savolaine
Bell Labs

6ofl7

TESTING METHODOLOGY

¢ Development team personnel

® Full-time essignment

® Full regression testing

® Change management tracking system

C. Savolaine
Bell Labs

7 of 17 @

J s canad Bia Aadincaaiieg

—

DEVELOPMENT/TESTING CYCLE

FEB SEPT DEC MARCH JUNE i1st TR

1982 1982 1982 1983 1983 1904

+ + —f)e + + + -
DEV Q]

DEV 1 DEYELOPMENT

DEV 2]
Y
|TEST UW

TEST 1 ?
|TEST 2

INTERNAL TESTING

TEST 3
[PRESERVICE TEST}
FIRST FIELD RELEASE LugeR Tf ST1] L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>