A Mathematical Model of the UH-60 Helicopter

Kathryn B. Hilbert, Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories-AVSCOM Ames Research Center, Moffett Field, California

a blade lift-curve slope, per rad
$a_{o} \quad b l a d e$ coning angle measured from hub plane in the hub-wind axes system, rad
$a_{1} \quad$ longitudinal first-harmonic flapping coefficient measured from the hub plane in the wind-hub axes system, rad
$a_{y} \quad$ lateral acceleration, $m / \sec ^{2}\left(f t / \sec ^{2}\right)$
$b_{1} \quad$ lateral first-harmonic flapping coefficient measured from hub plane in the windhub axes system, rad
$C_{T} \quad$ rotor thrust coefficient, $T / \rho\left(\pi R^{2}\right)(\Omega R)^{2}$
D Drag force, N (1b)
H rotor force normal to shaft, positive downwind, N (lb)
$i_{\text {HS }}$ incidence of horizontal stabilator, positive for leading edge up, rad
K tail rotor cant angle, rad
$K_{1} \quad$ pitch-flap coupling ratio, $\triangleq \tan \delta_{3}$
Q. fuselage rolling moment, $N-m$ (ft-lb)

L fuselage lift, N (lb)
$\left.\begin{array}{l}L \\ M \\ N\end{array}\right\}$
rolling moment, pitching moment, and yawing moment, respectively, $N-n$ (ft-1b)
p
q
roll, pitch, and yaw rates in the body-c.g. axes system, rad/sec
dynamic pressure, $\frac{1}{2} \rho V^{2}, N / m^{2}\left(1 b / f t^{2}\right)$
torque, $\mathrm{N}-\mathrm{m}(\mathrm{ft}-1 \mathrm{~b})$
rotor radius, m (ft)
STA longitudinal location in the fuselage axes system, m (ft)
T thrust, N (1b)
$\mathrm{v}_{\mathrm{i}_{\mathrm{TR}}}$ tail rotor induced velocity at rotor disk, m/sec (ft/sec)
WL vertical location in the fuselage axes system, m (ft)
longitudinal, lateral, and vertical forces in the body-c.g. axes system, N (1b)

Stabilizing surface angle of attack, rad
rotor sideslip angle, rad
blade Lock number, $\rho a c R^{4} / I_{\beta}$
equivalent rotor blade profile drag coefficient
lateral cyclic stick movement, positive to right, cm (in.)
collective control input, positive up, cm (in.)
longitudinal cyclic stick movement, positive aft, cm (in.)
pedal movement, positive right, cm (in.)
increment in
Euler pitch angle, rad
blade root collective pitch, rad
total blade twist (root minus tip incidence), rad
inflow ratio, $\triangleq \frac{{ }^{W_{H}}}{\Omega}-\frac{C_{T}}{2\left(\mu^{2}+\lambda^{2}\right)^{1 / 2}}$
rotor advance ratio, $\frac{\sqrt{\mathrm{u}_{\mathrm{H}}^{2}+\mathrm{v}_{\mathrm{H}}^{2}}}{\Omega \mathrm{R}}$
air density, $\mathrm{kg} / \mathrm{m}^{3}$ (slugs $/ \mathrm{ft}^{3}$)
rotor solidity ratio, blade area/disk area
Euler roll angle, rad
Euler yaw angle, rad
rotor angular velocity, rad/sec

Subscripts:

B body-c.g. axes system relative to air mass

C cant axes system

CW cant-wind axes system
c.g. center of gravity
f fuselage
H hub-body axes system, hub location
HS horizontal stabilator
i induced
p pilot input
TR tail rotor

W hub-wind system of axes

SUMMARY

This report documents the revisions made to a mathematical model of a single main rotor helicopter. These revisions were necessary to model the UH-60 helicopter accurately. The major modifications to the model include fuselage aerodynamic force and moment equations that are specific to the UH-60, a canted tail rotor, a horizontal stabilator with variable incidence, and a pitch bias actuator (PBA). In addition, the model requires a full set of parameters which describe the helicopter configuration and its physical characteristics.

INTRODUCTION

A ten-degree-of-freedom, nonlinear mathematical model that is suitable for realtime piloted simulation of single rotor helicopters is described in reference 1 . This simulation model includes the rigid body equations of motion and an aerodynamic model that provide the aerodynamic force and moment characteristics of the aircraft, a generalized stability and control augmentation system, and a simplified engine/ governor model.

Revisions to the model were made with the following objectives:

1. Improvement of the fidelity of the UH-60 fuselage aerodynamic model over a wide range of angles of attack and sideslip angles.
2. Modification of the tail rotor aerodynamic model to include the option of canting the tail rotor and modeling its associated aerodynamic effects.
3. Incorporation in the model of the control system for the UH-60 horizontal stabilator with variable incidence and the resultant aerodynamic effects.
4. Incorporation of the UH-60's pitch bias actuator as part of the stability and control augmentation system.

This report describes the four major modifications to the model; the fuselage aerodynamic force and moment equations that are specific to the UH-60, a canted tail rotor, the UH-60 horizontal stabilator with variable incidence, and the UH-60 pitch bias actuator. In addition, a section describing the physical characteristics of the UH-60 and the parameters required by the model is also included.

REVISIONS TO THE FUSELAGE AERODYNAMICS

The UH-60's fuselage aerodynamics were modeled using extensive wind-tunnel test data presented in reference 2 . The fuselage force and moment equations were derived from these test data using a regression algorithm (ref. 3). This algorithm basically fits a curve to input data as a nonlinear function of several aerodynamic variables
that are specified by the user $\left(\psi, \alpha, \sin \psi, \psi^{2}, . ..\right)$. These equations replace the fuselage force and moment equations given in reference 1 since they are specific to the UH-60 helicopter.

The equations derived depend on the conventional definition of the angles of attack and sideslip used in the wind tunnel. These angles are not Euler angles. The angle of attack is the geometric angle subtended by the model relative to tunnel axis at zero yaw angle. It is measured relative to the tunnel floor and does not change with yaw angle.

$$
\left.\alpha_{\mathrm{f}} \triangleq \theta_{\mathrm{W}} \triangleq \tan ^{-1} \mathrm{~T}_{\mathrm{f}}\right\rceil
$$

where

$$
w_{f} \triangleq w_{B}+q_{B}\left(\operatorname{STA}_{f}-S T A_{c \cdot g}\right)-w_{i_{f}}
$$

The sideslip angle is the yaw table angle in the horizontal plane of the tunnel, irrespective of the angle of attack.

$$
\beta_{\mathrm{w}_{\mathrm{f}}} \triangleq-\psi_{\mathrm{W}} \triangleq \tan ^{-1} \frac{\mathrm{v}_{\mathrm{f}}}{\sqrt{\mathrm{u}_{\mathrm{B}}^{2}+\mathrm{w}_{\mathrm{f}}^{2}}}
$$

where

$$
v_{f} \triangleq v_{B}-r_{B}\left(S T A_{f}-S T A_{c \cdot g}\right)
$$

The longitudinal forces and moments are dependent on both the angle of attack and on the sideslip angle. The lateral forces and moments are dependent only on the sideslip angle.

Forces:
Drag: $\frac{D}{q}=90.0555 \sin ^{2} \alpha_{f}-41.5604 \cos \alpha_{f}+2.94684 \cos 4 \psi_{W}-103.141 \cos 2 \psi_{w}$ $-0.535350 \times 10^{-6} \psi_{W}^{4}+160.2049$

Lift: $\quad \frac{L}{q}=29.3616 \sin \alpha_{f}+43.4680 \sin 2 \alpha_{f}-81.8924 \sin ^{2} \alpha_{f}-84.1469 \cos \alpha_{f}$

$$
-0.821406 \times 10^{-1} \psi_{W}+3.00102 \sin 4 \psi_{W}+0.0323477 \psi_{W}^{2}+85.3496
$$

Sideforce: $\frac{Y}{q}=35.3999 \sin \psi_{W}+71.8019 \sin 2 \psi_{W}-8.04823 \sin 4 \psi_{W}-0.980257 \times 10^{-12}$
Moments:

$$
\begin{aligned}
\text { Pitching: } \quad \frac{M}{q}= & 2.37925 \alpha_{f}+728.026 \sin 2 \alpha_{f}+426.760 \sin ^{2} \alpha_{f}+348.072 \cos \alpha_{f} \\
& -510.581 \cos ^{3} \psi_{W}+56.111 \\
\text { Rolling: } \quad \frac{\ell}{q}= & 614.797 \sin \psi_{W}+\frac{\psi_{W}}{\psi_{W}}\left(-47.7213 \cos 4 \psi_{W}-290.504 \cos ^{3} \psi_{W}\right. \\
& \left.+735.507 \cos ^{4} \psi_{W}-669.266\right) \quad 25^{\circ}<\left|\psi_{W}\right| \leq 90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\ell}{\mathrm{q}} & =\frac{\psi_{\mathrm{w}}}{\left|\psi_{\mathrm{w}}\right|}\left(455.707 \cos ^{4} \psi_{\mathrm{w}}-428.639\right) \quad 10^{\circ}<\left|\psi_{\mathrm{w}}\right| \leq 25^{\circ} \\
\frac{\ell}{\mathrm{q}} & =0.0 \quad-10^{\circ} \leq \psi_{\mathrm{w}} \leq 10^{\circ} \\
\text { Yawing: } \quad \frac{\mathrm{N}}{\mathrm{q}} & =220.0 \sin 2 \psi_{\mathrm{w}}+\frac{\psi_{\mathrm{w}}}{\left.\right|_{\psi_{\mathrm{w}}} \mid}\left(671.0 \cos ^{4} \psi_{\mathrm{w}}-429.0\right) \quad 20^{\circ}<\left|\psi_{\mathrm{w}}\right| \leq 90^{\circ} \\
\frac{\mathrm{N}}{\mathrm{q}} & =-278.133 \sin 2 \psi_{\mathrm{w}}+422.644 \sin 4 \psi_{\mathrm{w}}-1.83172 \quad-20^{\circ} \leq \psi_{\mathrm{w}} \leq 20^{\circ}
\end{aligned}
$$

Plots of fuselage drag, lift and pitching moment vs the angle of attack are shown in figures 1, 2, and 3. Plots of incremental drag, lift, and pitching moment vs sideslip $\left(\beta_{\mathrm{w}_{\mathrm{f}}}=-\psi_{\mathrm{w}}\right)$ are shown in figures 4,5 , and 6 . Figures 7,8 , and 9 show fuselage sideforce, rolling and yawing moments vs sideslip. For all these plots, the wind-tunnel data are shown as well as the data generated from the equations derived using the regression algorithm.

CANTED TAIL ROTOR

The UH-60 helicopter was designed with a canted tail rotor mounted on the right side of the vertical fin. In order to find the aerodynamic force and moment contributions from the canted tail rotor it was necessary to introduce two additional axes systems: the cant axis system (subscript C), and the cant-wind axis system (subscript CW). Once these axes systems and the transformations between them have been defined, the development of the tail rotor flapping, force, and moment equations parallels the development done in reference 1 for a noncanted tail rotor (sketch A).

Sketch A
The velocities at the rotor hub in the cant axis system are:

$$
\begin{aligned}
& u_{T R_{C}}=u_{T R} \\
& v_{T R_{C}}=w_{T R} \cos K+v_{T R} \sin K
\end{aligned}
$$

$$
\mathrm{w}_{\mathrm{TR}_{\mathrm{C}}}=-\mathrm{v}_{\mathrm{TR}} \cos \mathrm{~K}+\mathrm{w}_{\mathrm{TR}} \sin \mathrm{~K}
$$

where $K=$ tail rotor cant angle. So when $K=0^{\circ}$, the cant axis system coincides with the axis system codirectional with the body-c.g. system.

$$
\mathrm{v}_{\mathrm{TR}_{\mathrm{C}}}=\mathrm{w}_{\mathrm{TR}}, \quad \mathrm{w}_{\mathrm{TR}}^{\mathrm{C}}, ~=-\mathrm{v}_{\mathrm{TR}}
$$

The advance ratio for the tail rotor in the cant axis system is:

$$
\left.\mu_{T R_{C}}=\frac{\sqrt{\mathrm{u}_{\mathrm{TR}}^{\mathrm{C}}}{ }^{2}+\mathrm{v}_{\mathrm{TR}}^{\mathrm{C}}}{2}\right) ~ \mathrm{R}_{\mathrm{TR}} \mathrm{R}_{\mathrm{TR}} \quad
$$

The angles of attack and sideslip for the tail rotor in the cant axis system are defined as (sketch B):

Sketch B
The angular velocities in the cant axis system are:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{TR}}^{\mathrm{C}}
\end{aligned}=\mathrm{p}_{\mathrm{B}} \mathrm{~F}=\mathrm{r}_{\mathrm{B}} \cos \mathrm{~K}+\mathrm{q}_{\mathrm{B}} \sin \mathrm{~K},
$$

The roll and pitch rates in the cant-wind axis system are:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{TR}}^{\mathrm{CW}}: ~=\mathrm{q}_{\mathrm{TR}_{\mathrm{C}}} \sin \beta_{\mathrm{TR}_{\mathrm{C}}}+\mathrm{p}_{\mathrm{TR}_{\mathrm{C}}} \cos \beta_{\mathrm{TR}}^{\mathrm{C}} \\
& q_{T R_{C W}}=-p_{T R_{C}} \sin \beta_{T R_{C}}+q_{T R_{C}} \cos \beta_{T R_{C}}
\end{aligned}
$$

The flapping coefficients are:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{TR}_{\mathrm{C}}}=\frac{1}{\Delta_{\mathrm{TR}_{\mathrm{C}}}}\left[\mathrm{~K}_{\mathrm{I}_{\mathrm{TR}}}\left(1+\frac{3}{2} \mu_{\mathrm{TR}_{\mathrm{C}}}^{2}\right) \mathrm{f}_{\left.1_{\mathrm{TR}_{\mathrm{C}}}-\left(1+\frac{\mu_{\mathrm{TR}_{\mathrm{C}}}^{2}}{2}\right) \mathrm{f}_{2_{\mathrm{TR}_{\mathrm{C}}}}\right]}^{\mathrm{b}_{1_{\mathrm{TR}_{\mathrm{C}}}}=\frac{1}{\Delta_{\mathrm{TR}_{\mathrm{C}}}}\left[\left(1-\frac{\mu_{\mathrm{TR}_{\mathrm{C}}}^{2}}{2}\right) \mathrm{f}_{1_{\mathrm{TR}_{\mathrm{C}}}}+\mathrm{K}_{1_{\mathrm{TR}}}\left(1+\frac{\mu_{\mathrm{TR}_{\mathrm{C}}}^{2}}{2}\right) \mathrm{f}_{2_{\mathrm{TR}}^{\mathrm{C}}}\right]}\right.
\end{aligned}
$$

where:

$$
\left.\begin{array}{l}
\Delta_{\mathrm{TR}_{\mathrm{C}}}=1-\frac{\mu_{\mathrm{TR}}^{\mathrm{C}}}{4}+\mathrm{K}_{\mathrm{I}_{\mathrm{TR}}}^{2}\left(1+\frac{\mu_{\mathrm{TR}}^{\mathrm{C}}}{2}\right. \\
2
\end{array}\right)\left(1+\frac{3}{2} \mu_{\mathrm{TR}}^{\mathrm{C}}{ }^{2}\right) .
$$

The forces on the tail rotor in the cant-wind axis system $\left(T_{T R_{C W}}, H_{T R_{C W}}, Y_{T R_{C W}}, Q T R_{C W}\right)$ are the same as the equations given in reference 1 with $\mu_{T R}, p_{T R}, q_{T R}, a_{1_{T R}}, b_{1_{T R}}$, and $\delta_{T R}$ replaced by ${ }^{\mu_{T R_{C}}},{ }^{P_{T R}}{ }_{C W},{ }_{T R_{C W}},{ }^{a_{1}}{ }_{T R_{C}}, b_{l_{1}}$, and $\delta_{T R_{C}}$, respectively, where the rotor blade profile drag coefficient is:

$$
\delta_{\mathrm{TR}_{\mathrm{C}}}=0.009+0.3\left(\frac{6 \mathrm{C}_{\mathrm{T}_{\mathrm{TR}}}}{\sigma_{\mathrm{TR}}}\right)^{2}
$$

and the inflow ratio is:

$$
\lambda_{T R}=\frac{{ }^{\mathrm{w}_{\mathrm{TR}}} \mathrm{C}}{\Omega_{\mathrm{TR}} \mathrm{R}_{\mathrm{TR}}}-\frac{\mathrm{C}_{\mathrm{T}_{\mathrm{TR}}}}{\sqrt[2]{ } \sqrt{\mu_{\mathrm{TR}}{ }_{\mathrm{C}}^{2}+\lambda_{\mathrm{TR}}^{2}}}
$$

The induced velocity at the tail rotor is:

$$
\begin{aligned}
v_{i_{T R}} & =-\lambda_{T R} R_{T R}{ }^{\Omega} T R \\
& +w_{T R} \\
v_{i_{T R}} & =-v_{i_{T R_{C}}} \cos K
\end{aligned}
$$

The forces on the tail rotor in the cant axis system can be calculated using a transformation from cant-wind axes to cant axes:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{TR}}=-\mathrm{H}_{\mathrm{TR}} \mathrm{CW} \\
& \cos \beta_{\mathrm{TR}_{\mathrm{C}}}-\mathrm{Y}_{\mathrm{TR}}^{\mathrm{CW}} \\
& \sin \beta_{\mathrm{TR}_{\mathrm{C}}} \\
& \mathrm{Y}_{\mathrm{TR}_{\mathrm{C}}}=\mathrm{Y}_{\mathrm{TR}_{\mathrm{CW}}} \cos \beta_{\mathrm{TR}_{\mathrm{C}}}-\mathrm{H}_{\mathrm{TR}_{\mathrm{CW}}} \sin \beta_{\mathrm{TR}_{\mathrm{C}}} \\
& \mathrm{Z}_{\mathrm{TR}}=-\mathrm{T}_{\mathrm{TR}}
\end{aligned}
$$

Similarly, through another transformation, the body axis forces and moments can be calculated:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{TR}}=\mathrm{X}_{\mathrm{TR}}^{\mathrm{C}} \\
& \mathrm{Y}_{\mathrm{TR}}=-\mathrm{Z}_{\mathrm{TR}}^{\mathrm{C}} \\
& \cos \mathrm{~K}+\mathrm{Y}_{\mathrm{TR}_{\mathrm{C}}} \sin \mathrm{~K} \\
& \mathrm{Z}_{\mathrm{TR}}=\mathrm{Y}_{\mathrm{TR}} \cos \mathrm{~K}+\mathrm{Z}_{\mathrm{TR}} \sin \mathrm{~K} \\
& \mathrm{M}_{\mathrm{TR}}=-\mathrm{Q}_{\mathrm{TR}} \cos \cos \mathrm{~K}+\mathrm{Z}_{\mathrm{TR}}\left(\mathrm{STA}_{\mathrm{TR}}-\mathrm{STA}_{\mathrm{c} \cdot \mathrm{~g} \cdot}\right)-\mathrm{X}_{\mathrm{TR}}\left(\mathrm{WL}_{\mathrm{TR}}-\mathrm{WL}_{\mathrm{c} \cdot \mathrm{~g} \cdot}\right) \\
& \mathrm{L}_{\mathrm{TR}}=\mathrm{Y}_{\mathrm{TR}}\left(\mathrm{WL}_{\mathrm{TR}}-\mathrm{WL}_{\mathrm{c} \cdot \mathrm{~g} \cdot}\right) \\
& \mathrm{N}_{\mathrm{TR}}=\mathrm{Q}_{\mathrm{TR}} \sin \mathrm{~K}-\mathrm{Y}_{\mathrm{TR}}\left(\mathrm{STA}_{\mathrm{TR}}-\mathrm{STA}_{\mathrm{c} \cdot \mathrm{~g} .}\right)
\end{aligned}
$$

HORIZONTAL STABILATOR

The purpose of a horizontal stabilator with variable incidence is to eliminate excessively nose-high attitudes at low airspeed caused by downwash impingement on the stabilator and to optimize pitch attitudes for climb, cruise, and autorotational descent.

The position of the horizontal stabilator for the UH-60 is programmed between 8.0° trailing-edge-up and 39.0° trailing-edge-down as a function of four variables:

1. Airspeed
2. Collective Control Position
3. Pitch Rate
4. Lateral Acceleration

A detailed description of each of these four feedback loops is given in reference 2 .

Figure 10 is a block diagram of the UH-60 horizontal stabilator control system (ref. 2). This logic has been incorporated in the generalized stability and control augmentation system of the math model. The stabilator logic also includes the provision for a fixed horizontal tail incidence that is to be specified by the pilot.

PITCH BIAS ACTUATOR

The UH-60's control system includes a pitch bias actuator (PBA), a variable length control rod which changes the relationship between longitudinal cyclic control and swashplate tilt as a function of three flight parameters: pitch attitude, pitch rate, and airspeed. The main purpose of the PBA is to improve the apparent static longitudinal stability of the aircraft. A detailed description of the PBA is given in reference 2.

The PBA was modeled directly from the block diagram shown in figure 11 (ref. 2). The airspeed feedback is on 1 y active between 80 and 180 knots since below 80 knots, the airspeed feedback for the stabilator performs the same stability function. The pitch attitude and rate feedback is active throughout the entire speed range. As can be seen from the block diagram, the PBA actuator authority is 15% of 1 ongitudinal cyclic full throw and has a maximum rate limit on the actuator travel of 3% per sec. The output of the PBA is added to the total longitudinal cyclic control. The PBA logic includes an on/off switch to inactivate the PBA, if desired.

UH-60 DESCRIPTION REQUIREMENTS

Table 1 lists the parameters required to model the UH-60 and the values used in the math model. This table is identical to table $\mathrm{J}-1$ in reference 1 , except that most of the required fuselage parameters have been eliminated because of the modifications to the fuselage aerodynamic model. The values listed for the UH-60 in table 1 were obtained from reference 2.

Table 2 lists the nonzero feedforward, crossfeed, and feedback gains for the UH-60 control system (see fig. 4 of ref. 1). A detailed description of the four control couplings is given in reference 2.

Table 3 lists the parameters that are required to model the two General Electric T700-GE-700 engines that power the UH-60 and the values that are used in the math model. These values are based on available T700-GE-700 engine data for the AH-64 helicopter.

UH-60 TRIM CHARACTERISTICS

Table 4 lists the four control positions, $\delta_{e}, \delta_{a}, \delta_{c}$, and δ_{p}, the lateral and vertical velocities in body axes, v_{B} and w, and the Euler pitch and roll angles, θ and ϕ, for the UH-60 trimmed in level flight at a variety of airspeeds.

Dimensional stability derivatives for the UH-60 math model are presented in tables 5 through 10. These derivatives were generated under the following conditions:

- level flight
- pitch bias actuator on
- horizontal stabilator active
- engine/governor model off
and with the following perturbation sizes:

$$
\begin{aligned}
\Delta u_{B} & =1.0 \mathrm{ft} / \mathrm{sec} & \Delta r_{\mathrm{B}}=5.0 \mathrm{deg} / \mathrm{sec} \\
\Delta \mathrm{v}_{\mathrm{B}} & =1.0 \mathrm{ft} / \mathrm{sec} & \Delta \delta_{\mathrm{e}}=0.1 \mathrm{in} . \\
\Delta \mathrm{w}_{\mathrm{B}} & =1.0 \mathrm{ft} / \mathrm{sec} & \Delta \delta_{\mathrm{a}}=0.1 \mathrm{in} . \\
\Delta \mathrm{p}_{\mathrm{B}} & =5.0 \mathrm{deg} / \mathrm{sec} & \Delta \delta_{\mathrm{c}}=0.1 \mathrm{in} . \\
\Delta q_{B} & =5.0 \mathrm{deg} / \mathrm{sec} & \Delta \delta_{\mathrm{p}}=0.1 \mathrm{in.}
\end{aligned}
$$

The force and moment dimensional stability derivatives were obtained by considering both positive and negative perturbations about a reference trim condition. The derivatives are defined as follows:

$$
\begin{array}{ll}
X_{(~)}=\frac{1}{m} \frac{\partial X}{\partial()} & M_{(~)}=\frac{1}{I_{y y}} \frac{\partial M}{\partial()} \\
Y_{(~)}=\frac{1}{m} \frac{\partial Y}{\partial()} & L_{(~)}=\frac{1}{I_{x x}} \frac{\partial L}{\partial()} \\
Z_{()}=\frac{1}{m} \frac{\partial Z}{\partial()} & N_{()}=\frac{1}{I_{z Z}} \frac{\partial N}{\partial()}
\end{array}
$$

MODEL VALIDATION

Validation of the UH-60 math model was accomplished by comparison of trim and stability derivative data that were generated from the UH-60 math model with data that were generated from a similar total force and moment math model of the UH-60, developed by Boeing-Vertol for the Advanced Digital/Optical Control System (ADOCS) program (ref. 4).

Tables 11 through 15 show level flight trim characteristics and dimensional stability derivatives generated by the Boeing-Vertol UH-60 math model for comparison with the data presented in tables 4 through 10. These derivatives were generated under the same conditions as the UH-60 derivatives were, but with significantly larger perturbation sizes, a slightly higher aircraft gross weight, and a faster main rotor
rotational velocity. Figures 12 through 17 illustrate six of the more important UH-60 stability derivatives vs airspeed. For these plots, the UH-60 data are shown as well as the data generated from the Boeing-Vertol UH-60 math model.

CONCLUDING REMARKS

The mathematical model of a UH-60 helicopter described in this report was developed for real-time piloted simulation. To date, this model has been used successfully in two handling qualities simulation experiments on the six-degree-of-freedom Vertical Motion Simulator (VMS) at NASA Ames Research Center (refs. 5 and 6) in support of the ADOCS program.

For these simulations, however, high levels of stability augmentation were added to the baseline UH-60 math model, thus effectively masking many of the characteristics of the basic aircraft. The baseline UH-60 model has not been evaluated in real-time piloted simulations nor has it been validated with flight data to determine the accuracy with which it models the actual aircraft dynamics and handiing qualities. In addition, neither the analog and digital stability augmentation system (SAS) nor the flight path stabilization (FPS) system of the actual UH-60 helicopter is included in the model.

REFERENCES

1. Talbot, P. D.; Tinling, B. E.; Decker, W. A.; and Chen, R. T. N.: A Mathematical Model of a Single Main Rotor Helicopter for Piloted Simulation. NASA TM-84281, September 1982.
2. Howlett, J. J.: UH-60A Black Hawk Engineering Simulation Program, Volumes I and II. NASA CR-166309 and CR-166310, December 1981.
3. Systems Contro1, Inc.: SCI Model Structure Determination Program (OSR) User's Guide. NASA CR-159084, November 1979.
4. Landis, K. H.; and Aiken, E. W.: An Assessment of Various Side-Stick Controller/ Stability and Control Augmentation Systems for Night Nap-of-the-Earth Flight Using Piloted Simulation. Helicopter Handing Qualities. NASA CP-2219, April 1982.
5. Landis, K. H.; Dunford, P. J.; Aiken, E. W.; and Hilbert, K. B.: A Piloted Simulator Investigation of Side-Stick Controller/Stability and Control Augmentation System Requirements for Helicopter Visual Flight Tasks. AHS Paper A-83-39-59-4000, May 1983.
6. Landis, K. H.; Glusman, S. I.; Aiken, E. W.; and Hilbert, K. B.: An Investigation of Side-Stick Controller/Stability and Control Augmentation System Requirements for Helicopter Terrain Flight Under Reduced Visibility Conditions. AIAA Paper 84-0235, January 1984.

TABLE 1.- UH-60 DESCRIPTION REQUIREMENTS

Description	Algebraic symbol	Computer mnemonic	Units	UH-60
Main rotor (MR) group				
MR rotor radius	R_{MR}	ROTOR	ft	26.83
MR chord	c_{MR}	CHORD	ft	1.73
MR rotational speed	$\Omega_{\text {MR }}$	OMEGA	$\mathrm{rad} / \mathrm{sec}$	27.0
Number of blades	n_{b}	BLADES	$\mathrm{N}-\mathrm{D}$	4.0
MR Lock number	$\gamma_{\text {MR }}$	GAMMA	$\mathrm{N}-\mathrm{D}$	8.1936
MR hinge offset	ε	EPSLN	percent/100	. 04659
MR flapping spring constant	K_{β}	AKBETA	1b-ft/rad	0
MR pitch-flap coupling tangent of δ_{3}	K_{1}	AKONE	$\mathrm{N}-\mathrm{D}$	0
MR blade twist	${ }^{\mathrm{t}_{\text {MR }}}$	THETT	rad	-. 3142
MR precone angle (required for teetering rotor)	${ }^{a_{0} M R}$	AOP	rad	0
MR solidity	$\sigma_{\text {MR }}$	SIGMA	$\mathrm{N}-\mathrm{D}$. 08210
MR lift curve slope	$\mathrm{a}_{\text {MR }}$	ASLOPE	rad^{-1}	5.73
MR maximum thrust	$\mathrm{C}_{\mathrm{T} \text { max }}$	CTM	$\mathrm{N}-\mathrm{D}$. 1846
MR longitudinal shaft tilt (positive forward)	i_{S}	CIS	rad	. 05236
MR hub stationline	$\mathrm{STA}_{\mathrm{H}}$	STAH	in.	341.2
MR hub waterline	WL_{H}	WLH	in.	315.0
Tail rotor (TR) group				
TR radius	$\mathrm{R}_{\text {TR }}$	RTR	ft	5.5
TR rotational speed	${ }^{\Omega} \mathrm{TR}$	OMTR	$\mathrm{rad} / \mathrm{sec}$	124.62
TR Lock number	$\gamma_{\text {TR }}$	GAMATR	N-D	3.3783
TR solidity	${ }^{\text {GTR }}$	STR	$\mathrm{N}-\mathrm{D}$. 1875
TR pitch-flap coupling tangent of δ_{3}	$\mathrm{K}_{1 T R}$	FKITR	$\mathrm{N}-\mathrm{D}$. 7002
TR precone	${ }^{a_{0}}{ }_{T R}$	AOTR	rad	.01309
TR blade twist	$\theta_{\text {tTR }}$	THETR	rad	-. 3142
TR lift curve slope	$\mathrm{a}_{\text {TR }}$	ATR	rad^{-1}	5.73
TR hub stationline	$\mathrm{STA}_{\mathrm{TR}}$	STATR	in.	732.0
TR hub waterline	$\mathrm{WL}_{\text {TR }}$	WLTR	in.	324.7

TABLE 1.- CONTINUED

| Description. | | $\begin{array}{lll}\text { Algebraic } \\ \text { symbol }\end{array}$ | $\begin{array}{l}\text { Computer } \\ \text { mnemonic }\end{array}$ | Units |
| :--- | :--- | :--- | :--- | :---: |$]$ UH-60

TABLE 1.- CONCLUDED

Description	Algebraic symbol	Computer mnemonic	Units	UH-60
Controls				
Swashplate lateral cyclic pitch for zero lateral cyclic stick	${ }^{C_{A_{1}}}$	CAIS	rad	0
Swashplate longitudinal cyclic pitch for zero longitudinal cyclic stick	$\mathrm{C}_{\mathrm{B}_{1}}$	CBIS	rad	0
Longitudinal cyclic control sensitivity	CK_{1}	CK1	rad/in.	. 04939
Lateral cyclic control sensitivity	CK_{2}	CK2	rad/in.	. 02792
Main rotor root collective pitch for zero collective stick	C_{5}	C5	rad	. 2286
Main rotor collective control sensitivity	C_{6}	C6	rad/in.	. 02792
Tail rotor root collective pitch for zero pedal pasition	C_{7}	C7	rad	. 1743
Pedal sensitivity	C_{8}	C8	rad/in.	-. 07734

TABLE 2.- UH-60 CONTROL SYSTEM CHARACTERISTICS

Description	Algebraic symbol	Computer mnemonic	UH-60
Feedforward gains	in./in.		
Longitudinal stick to longitudinal cyclic	$\delta e^{/ \delta} \mathrm{e}$	SK (1)	1.0
Lateral stick to lateral cyclic	δ_{a} / δ_{a}	SK (5)	1.0
Collective stick to collective control	δ_{c} / δ_{c}	SK (9)	1.0
Pedals to directional control	$\delta_{p} / \delta_{p_{p}}$	SK(10)	1.0
Crossfeed gains			
Collective stick to longitudinal cyclic	$\delta_{e} / \delta^{c} \mathrm{c}_{\mathrm{p}}$	SK (4)	-. 1640
Pedals to longitudinal cyclic	$\delta_{\mathrm{e}} / \delta_{\mathrm{p}}$	SKM (2)	-. 5746
Collective stick to lateral cyclic	δ_{a} / δ_{c}	SK (8)	-. 16
Collective stick to directional control	δ_{p} / δ_{c}	SK(11)	-. 2889
Feedback gains	in./rad/sec		
Pitch rate to lateral cyclic	δ_{a} / q_{B}	$\operatorname{SKV}(3,2)$	1.3
Roll rate to longitudinal cyclic	δ_{e} / p_{B}	$\operatorname{SKV}(6,1)$	-. 88

TABLE 3.- UH-60 ENGINE CHARACTERISTICS

Description	Algebraic symbol	Computer mnemonic	Units	$\begin{gathered} \text { UH-60 } \\ \text { T700-GE-700 } \end{gathered}$
Engine/governor				
Engine gain	K_{E}	HPK	HP/LB fuel	1.75
Engine time constant	${ }^{\tau} \mathrm{E}$	HPT	sec	1.25
Throttle time constant	${ }^{\tau}$	THTAU	sec	1.25
Throttle position		THROT	\%	100.0
MR rpm lower limit	${ }^{\Omega}$ LIM	OMLIM	rad/sec	9.0
Gear ratio	$\Omega_{\text {TR }} / \Omega_{\mathrm{MR}}$	TRGEAR	$\mathrm{N}-\mathrm{D}$	4.62
Proportional governor feedback gain	$\mathrm{K}_{\mathrm{g}_{1}}$	GKG1	$\mathrm{LB}_{\text {fuel }} / \mathrm{rad} / \mathrm{sec}$	2000.0
Integral governor feedback gain	$\mathrm{K}_{\mathrm{g}_{2}}$	GKG2	$\mathrm{LB}_{\text {fuel }} / \mathrm{rad} / \mathrm{sec}$	2500.0
Rate governor feedback gain	$\mathrm{K}_{\mathrm{g}_{3}}$	GKG3	$\mathrm{LB}_{\text {fuel }} / \mathrm{rad} / \mathrm{sec}$	500.0

TABLE 4.- LEVEL FLIGHT TRIM CHARACTERISTICS

Engineering symbol	Equivalent airspeed, knots						
	1.0	20.0	40.0	60.0	100.0	140.0	Units
δ_{e}	0.1266	-0.3670	-0.2083	-0.4238	-1.063	-1.800	in.
δ_{a}	.2321	-.9956	-.7560	-.2322	.1812	.3964	in.
δ_{c}	5.719	5.361	4.580	4.194	4.425	5.718	in.
δ_{p}	-1.279	-1.066	-.5830	-.5802	-.2606	-.005715	in.
v_{B}	-.006069	-.08037	-.08960	9.989	7.996	8.813	$\mathrm{ft} / \mathrm{sec}$
w_{B}	.1485	3.430	5.108	6.133	7.264	-1.235	$\mathrm{ft} / \mathrm{sec}$
θ	5.052	5.834	4.340	3.489	2.469	-.2996	deg
ϕ	-2.340	-1.342	-1.005	0	0	0	deg

TABLE 5.- X-FORCE STABILITY DERIVATIVES

Engineering symbol	Equivalent airspeed, knots							
	1.0	20.0	40.0	60.0	100.0	140.0	Units	
X_{u}	-0.02349	-0.01040	-0.01122	-0.01900	-0.03238	-0.04063	$1 / \mathrm{sec}$	
X_{v}	-.03402	-.02237	-.009834	-.002259	-.0005939	-.002359	$1 / \mathrm{sec}$	
X_{w}	.02542	.03743	.04295	.04814	.06427	.07982	$1 / \mathrm{sec}$	
X_{q}	2.809	2.828	3.221	3.352	2.788	1.626	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$	
X_{p}	-.2585	-.1883	-.05796	.01583	-.1132	-.3844	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$	
X_{r}	-.2071	-.1151	-.01708	-.08981	-.06855	-.05904	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}^{2}$	
$\mathrm{X}_{\delta_{\mathrm{e}}}$	-1.659	-1.582	-1.498	-1.402	-1.083	-.7098	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$	
$\mathrm{X}_{\delta_{\mathrm{a}}}$.04358	.03288	.01803	.01082	-.01658	-.009678	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$	
$\mathrm{X}_{\delta_{\mathrm{c}}}$.9709	.9707	.7004	.5931	.6461	.6144	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$	
$\mathrm{X}_{\delta_{\mathrm{p}}}$.9544	.9143	.8656	.8695	.6988	.5020	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$	

table 6.- Z-FORCE STABILITY DERIVATIVES

Engineering symbol	Equivalent airspeed, knots						Units
	1.0	20.0	40.0	60.0	100.0	140.0	
Z_{u}	0.02274	-0.1460	-0.1252	-0.04741	-0.008851	0.0003375	1/sec
z_{v}	-. 008874	-. 02547	-. 01531	-. 02032	-. 01720	-. 04257	$1 / \mathrm{sec}$
Z_{w}	-. 2931	-. 3834	-. 5617	-. 6696	-. 7897	-. 8696	1/sec
$\mathrm{z}_{\text {q }}$. 3604	2.237	2.865	3.502	4.981	6.638	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
z_{p}	-. 01037	. 3402	. 8662	1.358	2.676	3.935	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
z_{r}	-. 2059	-. 3000	-. 4176	-. 4981	$-.5056$	-. 3598	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
$z_{\delta_{e}}$	-. 1372	-1.037	-2.030	-3.271	-6.138	-9.118	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\begin{aligned} & 0_{0} e^{2} \\ & Z_{\delta_{a}} \end{aligned}$. 004142	. 04533	. 09963	. 3733	$.5627$. 8477	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$z_{\delta_{c}}$	-7.921	-7.377	-7.478	-8.324	-9.630	-10.76	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{z}_{\delta_{\mathrm{p}}}$. 5791	1.074	1.626	2.372	3.995	5.543	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 7.- Y-FORCE STABILITY DERIVATIVES

Engineering symbol	Equivalent airspeed, knots						Units
	1.0	20.0	40.0	60.0	100.0	140.0	
$\cdots Y_{u}$	0.03381	0.01808	0.002607	-0.003401	-0.0007094	0.001946	1/sec
Y_{v}	-. 04733	-. 05825	-. 08184	-. 1044	$-.1430$	-. 1838	1/sec
Y_{w}	. 004331	. 006895	. 008117	. 01029	. 01025	. 007387	1/sec
Y_{q}	-. 3585	-. 002115	. 2133	. 4611	. 7513	. 9988	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
Y_{p}	-1.723	-1.972	-2.381	-2.608	-2.610	-2.228	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
Y_{r}	. 6383	. 5788	. 9683	1.249	1.658	2.051	$\mathrm{ft} / \mathrm{rad} / \mathrm{sec}$
$Y_{\delta_{e}}$. 07659	. 04994	. 03957	. 02118	-. 01624	-. 07161	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{Y}_{\delta_{a}}$. 9420	. 9542	. 9389	. 9284	. 9305	. 9674	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{Y}_{\delta_{C}}$. 1005	. 06201	. 1970	. 2470	. 3408	. 3814	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{Y}_{\delta_{p}}$	-1.486	-1.338	-1.359	-1.587	-1.941	-2.176	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 8.- M-MOMENT STABILITY DERIVATIVES

$\begin{aligned} & \text { Engineering } \\ & \text { symbol } \end{aligned}$	Equivalent airspeed, knots						Units
	1.0	20.0	40.0	60.0	100.0	140.0	
M_{u}	0.003554	0.001085	-0.0002337	0.001929	0.002507	0.005558	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
M_{v}	. 01350	. 01115	. 007824	. 006016	. 001636	-. 007029	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
$M_{\text {w }}$. 002024	. 003433	. 006749	. 008916	. 0092.12	. 008923	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
M_{q}	-. 8161	-. 8910	-1.067	-1.230	-1.606	-2.015	1/sec
M ${ }_{\text {p }}$. 3139	. 2894	. 2468	. 2008	. 1031	. 007006	1/sec
M_{r}	-. 003352	-. 02974	-. 08964	-. 1130	-. 1039	-. 02461	1/sec
$M_{\delta_{e}}$. 3346	. 3516	. 3721	. 3997	. 4594	. 5230	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
M_{δ}	-. 003559	-. 003824	-. 001497	. 005281	. 02829	. 06496	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$M_{\delta_{c}}$	-. 005557	. 02730	. 06350	. 08925	. 09507	. 1029	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$M_{\delta_{p}}$. 01538	-. 006399	-. 02969	-. 03336	-. 07520	-. 1707	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 9.- L-MOMENT STABILITY DERIVATIVES

Engineering symbol	Equivalent airspeed, knots						Units
	1.0	20.0	40.0	60.0	100.0	140.0	
L_{u}	0.07627	0.02327	-0.007782	-0.006377	-0.002139	0.001610	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
L_{v}	-. 04124	-. 03956	-. 03447	-. 03690	-. 03737	-. 03928	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
$L_{\text {W }}$. 005022	. 01749	. 02836	. 02586	. 02264	. 01740	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
L	-2.272	-1.730	-1.566	-1.522	-1.424	-1.269	1/sec
L	-3.551	-3.604	-3.819	-3.954	-3.911	-3.626	$1 / \mathrm{sec}$
L	. 07467	. 04429	. 2726	. 4375	. 6039	. 7766	1/sec
${ }^{L} \mathrm{r}$. 07467	. 04429	. 2726	. 1210	. 1502	. 1426	rad/in./sec ${ }^{2}$
$L_{\delta_{e}}$. 04363	. 04924	. 1010	. 1210	. 1502	. 1426	rad/in./sec ${ }^{2}$
L_{δ}	1.334	1.339	1.329	1.316	1.316	1.332	rad/in./sec ${ }^{2}$
	-. 1471	-. 03080	. 1981	. 2095	. 2580	. 2719	rad/in./sec ${ }^{2}$
L_{δ}	-. 8406	-. 7759	-. 7967	-. 9414	-1.163	-1.300	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 10.- N-MOMENT STABILITY DERIVATIVES

Engineering symbol	Equivalent airspeed, knots						
	1.0	20.0	40.0	60.0	100.0	140.0	Units
N_{u}	0.002149	-0.005618	-0.005796	-0.003739	-0.002896	-0.003813	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
N_{v}	.009759	.008566	.01245	.01529	.01823	.01979	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
N_{w}	-.001943	-.003705	-.006419	-.01079	-.01253	-.007266	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
N_{q}	-.3396	-.7563	-.5837	-.4874	-.4424	-.5254	$1 / \mathrm{sec}$
N_{p}	-.1013	-.2857	-.2310	-.1499	-.1136	-.1801	$1 / \mathrm{sec}$
N_{r}	-.3342	-.3662	-.5336	-.6547	-.8515	-1.011	$1 / \mathrm{sec}$
$\mathrm{N}_{\delta_{\mathrm{e}}}$.001120	-.009063	-.01760	-.03105	-.04719	.005004	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{~N}_{\delta_{\mathrm{a}}}$.02734	.02695	.02598	.02691	.02582	.02299	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{~N}_{\delta_{\mathrm{c}}}$.06306	.06005	.01613	-.04757	-.1096	-.08942	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{~N}_{\delta_{\mathrm{p}}}$.6040	.5550	.5701	.6785	.8460	.9274	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$

table 11. - LEvEL FLIGHT TRIM CHARACTERISTICS BOEING-VERTOL UH-60 MATH MODEL

Engineering symbol	Equivalent airspeed, knots						Units
	0.5	20.0	40.0	60.0	100.0	140.0	
δ_{e}	1.1947	0.5938	0.3636	0.5149	-0.5356	-1.0539	in.
δ_{a}	.4393	-.7920	-.7106	-.3199	-.1098	-.0917	in.
δ_{c}	5.3976	5.0054	4.2440	3.8582	4.2054	5.6883	in.
δ_{p}	-.2598	-.2409	-.05631	-.1254	.0974	.1798	in.
v_{B}	0	0	0	13.165	9.4517	11.308	$\mathrm{ft} / \mathrm{sec}$
w_{B}	0	4.0507	6.5824	3.8820	4.8946	-13.840	$\mathrm{ft} / \mathrm{sec}$
θ	5.1186	6.9262	5.5167	2.2425	1.6799	-3.3533	deg
ϕ	-2.5666	-1.6093	-1.2929	0	0	0	deg

TABLE 12.- X , Y, AND Z-FORCE STABILITY DERIVATIVES BOEING-VERTOL UH-60 MATH MODEL

Engineering symbol	Equivalent airspeed, knots						Units
	0.5	20.0	40.0	60.0	100.0	140.0	
X_{u}	-0.0150	0.0184	-0.0274	-0.0201	-0.0422	-0.0517	$1 / \mathrm{sec}$
$\mathrm{x}_{\delta_{\mathrm{e}}}$	-1.7041	-1.5711	-1.3039	-1.2532	-. 7256	-. 2927	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
Y_{v}	-. 0465	-. 0523	-. 0693	-. 0950	-. 1336	-. 1749	$1 / \mathrm{sec}$
$\mathrm{Y}_{\delta_{\mathrm{a}}}$. 9664	. 9648	. 9417	. 9148	. 9364	. 9924	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{Y}_{\delta_{\mathrm{p}}}$	-1.7151	-1.6223	-1.6140	-1.7968	-2.1322	-2.3677	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
Z_{u}	-. 0050	-. 1573	-. 1332	-. 0546	-. 0158	-. 0324	$1 / \mathrm{sec}$
z_{w}	-. 2748	-. 3475	-. 5395	-. 6523	-. 7658	-. 8418	$1 / \mathrm{sec}$
$\mathrm{Z}_{\delta_{\text {e }}}$	-. 1134	-1.0026	-1.8678	-3.0911	-5.8800	-8.8178	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{z}_{\delta_{\mathrm{c}}}$	-8.5829	-8.1266	-7.8250	-9.0061	-10.4761	-11.8225	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$
$z_{\delta p}$. 6799	1.1830	1.7228	2.5612	4.3935	6.3606	$\mathrm{ft} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 13.- M-MOMENT STABILITY DERIVATIVES BOEING-VERTOL UH-60 MATH MODEL

Engineering symbol	Equivalent airspeed, knots						Units
	0.5	20.0	40.0	60.0	100.0	140.0	
M_{u}	0.0005	0.0091	-0.0043	0.0040	0.0022	0.0019	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
M_{v}	. 0085	. 0022	-. 0006	. 0011	-. 0019	-. 0068	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
M_{W}	. 0021	. 0122	. 0050	. 0072	. 0082	. 0113	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
M_{q}	-. 7674	-1.0262	-1.2832	-1.5541	-1.9808	-2. 1616	1/sec
M_{p}	. 2938	. 2859	. 2567	. 2379	. 1797	. 1937	1/sec
Mr_{r}	-. 0688	-. 0595	-. 1181	-. 1149	-. 0860	-. 0750	$1 / \mathrm{sec}$
$\mathrm{M}_{\delta \mathrm{e}}$. 3287	. 3366	.3850	. 4133	. 4543	.4997	rad/in./sec ${ }^{2}$
$M_{\delta_{a}}$	-. 0051	. 0042	. 0134	. 0128	. 0397	. 0585	rad/in./sec ${ }^{2}$
M_{δ}	-. 0183	-. 0352	. 1574	. 1362	. 1294	. 1418	rad/in./sec ${ }^{2}$
$M_{\delta_{p}}$. 0411	-. 0010	-. 0499	-. 0562	-. 0881	-. 1113	rad/in./sec ${ }^{2}$

TABLE 14.- L-MOMENT STABILITY DERIVATIVES
BOEING-VERTOL UH-60 MATH MODEL

Engineering symbol	Equivalent airspeed, knots						
	0.5	20.0	40.0	60.0	100.0	140.0	Units
L_{v}	-0.0260	-0.0250	-0.0267	-0.0258	-0.0304	-0.0343	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
L_{q}	-1.7256	-1.8067	-1.5485	-1.4919	-1.3987	-1.4051	$1 / \mathrm{sec}$
L_{p}	-3.3484	-3.5455	-3.7116	-3.7659	-3.6853	-3.3574	$1 / \mathrm{sec}$
L_{r}	.2119	.3507	.4149	.4878	.6814	.8556	$1 / \mathrm{sec}$
$\mathrm{L}_{\delta_{\mathrm{a}}}$	1.3118	1.3297	1.3147	1.2866	1.2907	1.3128	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{~L}_{\mathrm{f}}$	-.9313	-.8816	-.8968	-1.0035	-1.1990	-1.3063	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$

TABLE 15.- N-MOMENT STABILITY DERIVATIVES BOEING-VERTOL UH-60 MATH MODEL

Engineering symbol	Equivalent airspeed, knots						Units
	0.5	20.0	40.0	60.0	100.0	140.0	
N_{v}	0.0081	0.0108	0.0119	0.0141	0.0176	0.0195	$\mathrm{rad} / \mathrm{ft} / \mathrm{sec}$
N_{p}	-. 1856	. 0322	. 0251	-. 0446	-. 0706	-. 0955	1/sec
$\mathrm{N}_{\mathrm{r}}^{\mathrm{p}}$	-. 2879	-. 3902	-. 5142	-. 6283	-. 8389	-1.0394	1/sec
$\mathrm{N}_{\delta}{ }_{\mathrm{a}}$. 0266	-. 0286	-. 0268	-. 0110	. 0014	. 0032	rad/in. $/ \mathrm{sec}^{2}$
$\mathrm{N}_{\delta_{c}}$. 0665	. 0576	. 0222	-. 0191	-. 0544	-. 0041	$\mathrm{rad} / \mathrm{in} . / \mathrm{sec}^{2}$
$\mathrm{N}_{\delta} \mathrm{p}$. 7153	. 6731	. 6720	. 7668	. 9319	1.0023	rad/in./sec ${ }^{2}$

——— WIND TUNNEL DATA
$\longrightarrow \frac{D}{q}=f\left(\cos \alpha_{f}, \sin ^{2} \alpha_{f}\right)$

Figure 1.- Fuselage drag vs angle of attack.

Figure 2.- Fuselage lift vs angle of attack.

Figure 3.- Fuselage pitching moment vs angle of attack.

Figure 4.- Incremental fuselage drag vs sideslip.

Figure 6.- Incremental fuselage pitching moment vs sideslip.

Figure 7.- Fuselage side force vs sides1ip.

Figure 8.- Fuselage rolling moment vs sideslip.

Figure 9.- Fuselage yawing moment vs sideslip.

Figure 10.- UH-60 horizontal stabilator control system.

Figure 11.- UH-60 pitch bias actuator.

Figure 12.- Drag damping vs airspeed.

Figure 13.- Vertical damping vs airspeed.

Figure 14.- Side-force damping vs airspeed.

Figure 15.- Pitch damping vs airspeed.

Figure 16.- Roll damping vs airspeed.

Figure 17.- Yaw damping vs airspeed.

[^0]
[^0]: -For sale by the National Technical Information Service, Springfield, Virginia 22161

