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LIST OF SYMBOLS

c,e,p constant values for initial (time-dependent) conditions

Cf skin-friction coefficient '

d displacement amplitude of stagnation point movement

f frequency

H reference length (airfoil chord)

p pressure

Re = UooJl/v Reynolds number

s surface coordinate

T = tUro/Jl dimensionless time

f = T/(2Tr/(i)*) normalized time

t time

U,. kinematic velocity of the stagnation point referred to Um

U(x, t) jUj^ (x.,̂ , t) Outer inviscid velocity distribution referred to Uro

UOQ undisturbed main-flow velocity

u(x,t),v(x,t) velocity components inside the boundary layer (profile-fixed
system) referred to U^

Uj^ (xx , t) ,v^ (xx , t) velocity components (stagnation-point fixed system) referred
to UK

x,y profile-fixed coordinate system (along the airfoil surface)

x^yj^ stagnation-point-fixed coordinate system (along the airfoil
surface)

XQ steady mean position of stagnation point

a = a0 + ax sin u>*T time-dependent incidence

a0 steady mean incidence

a^ oscillation amplitude

Ax,Ay,AT step-sizes in x-, y-, and T-directions

6-!̂  boundary-layer displacement thickness

v kinematic viscosity

iv



T wall shear-stressw

w* = 27rf£/Uco reduced frequency



UNSTEADY .LAMINAR BOUNDARY-LAYER CALCULATIONS ON

OSCILLATING CONFIGURATIONS INCLUDING BACKFLOW

PART II: AIRFOIL IN HIGH-AMPLITUDE PITCHING MOTION - DYNAMIC STALL

W. Geissler*

Ames Research Center

SUMMARY

A previously developed finite-difference procedure for calculating unsteady,
incompressible, laminar boundary layers on an oscillating flat plate is applied to
a wing section undergoing high-amplitude pitching oscillations about various mean
incidences. To start the entire boundary-layer calculation, appropriate initial
conditions and outer boundary conditions are specified, using a stagnation-point
fixed frame of reference. The breakdown of the numerical calculation procedure in
the x,t-domain is interpreted to coincide with unsteady separation. Details of
the boundary-layer behavior in the vicinity of separation are investigated, and a
close analogy between the present results and those for a three-dimensional steady
separation is found.

•\
INTRODUCTION

The experimental and analytical investigation of unsteady flow separation on
oscillating helicopter rotor blades, known as dynamic stall, has been of great con-
cern in recent years. A comprehensive treatment of this problem on the basis of
unsteady laminar and turbulent boundary-layer calculations was given by McCroskey
and Philippe (ref. 1). A large amount of experimental data — obtained in studies of
seven helicopter airfoil sections, including pressures and forces, as well as hot-
wire and hot-film data— are included in reference 2. Some detailed unsteady pres-
sure measurements on oscillating three-dimensional-blade tips with various planforms,.
including a rectangular planform with a NACA 0012 airfoil section, have been made in
the low-speed, 3- by 3-m wind tunnel of the DFVLR in Goettingen as part of a joint
NASA/DFVLR cooperation program (ref. 3).

The most important and least understood problems associated with these compli-
cated, unsteady viscous flows occur in regions of time-dependent reversed flow along
the wing .surface. These regions are, therefore, the main concern in the present
study.

It has already been shown in the first part of the present analytical investi-
gation (ref. 4) that a numerical calculation procedure based on finite differences
can be extended in a straightforward manner into regions of backflow on an .oscillat-
ing surface. Although stability considerations (the CFL condition) limit the region

*NRC, Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt,
Forsthungbereich Werkstoffe und Bauweisen.



over which the boundary-layer calculation can actually be extended, in the flat-
plate case calculations could be continued into parts of the flow with strong back-
flow velocities without severe numerical problems.

In the present work, the same calculation procedure will therefore be used to
treat the unsteady, laminar boundary-layer equations on oscillating airfoils. The
aim of the calculation is to investigate in detail the unsteady separation phenome-
non by following the behavior of characteristic boundary-layer quantities, such as
velocity and vorticity distributions inside the boundary layer, and the development
of wall shear-stress and boundary-layer displacement thickness in the x,t-domain.

The same numerical method that has been applied in the present calculation has
also been used to solve the laminar, three-dimensional boundary-layer equations over
blunt bodies of revolution (ref. 5). It has been pointed out by different investi-
gators (refs. 6 and 7) that a close relationship exists between two-dimensional-
unsteady and three-dimensional-steady boundary layers. Thus, there will be some
emphasis on this problem by way of comparing the previously obtained three-
dimensional-steady results with the present unsteady data.

The two-dimensional cases studied herein are concentrated on the NACA 0012 air-
foil section pitching about its quarter-chord axis. The steady mean angle of inci-
dence is changed from 0° to 16° with an 8° oscillation amplitude. In addition to the
quasi-steady case, reduced frequencies of u>* = 0.2 and w* = 0.4 have been treated.

The work reported herein was performed while the author was an NRC Postdoctoral
Fellow at NASA Ames Research Center. The use of computer facilities at Ames Research
Center under the auspices of the Aerodynamics Research Branch is gratefully
acknowledged.

INVISCID VELOCITY DISTRIBUTION OBTAINED BY A PANEL METHOD

A three-dimensional, unsteady panel-method was developed (ref. 8) to calculate
the steady and first-harmonic unsteady air loads on oscillating wing configurations.
Results of this method have been compared with many experimental data (refs. 3 and 9)
for different airfoil geometries, incidences, and frequencies. It has been shown
that the panel method is an accurate and computer- time-efficient tool for determin-
ing steady and unsteady air loads on three-dimensional configurations.

In the present case, the unsteady panel-method has been applied to a rectangular
wing, with an aspect ratio of A = 4 and a NACA 0012 airfoil section, pitching
about its quarter-chord axis. For this configuration, extensive steady and unsteady
experimental data have been obtained in the 3- by 3-m, low-speed wind tunnel at
DFVLR-AVA, Goettingen. The experimental work formed part of a NASA-Langley/DFVLR
joint program on the investigation of unsteady air loads on oscillating helicopter
rotor-blade tips with different planforms.

Corresponding to the experimental data three angles of incidence have been used
in the following viscous calculations:

Case A: a = 0° + 8° sin w*T (la)

Case B: a = 8° + 8° sin u>*T (Ib)



Case C: a = 16° -f 8° sin ui*T (lc)

corresponding to no stall, light dynamic stall, and deep dynamic stall conditions,
respectively.

The inviscid velocity distributions will be used as outer boundary conditions
for calculating the unsteady, two-dimensional laminar boundary layer on a wing sec-
tion at y/s = 0.25 (A = 4), where the flow is assumed to be quasi-two-dimensional.
Figures 1-3 show the velocity distributions on the upper surface for the three inci-
dence cases (cases A-C) as functions of the surface coordinate Xj^ and the dimen-
sionless time f (f = T0(i>*/2ir) within a period of oscillation. The velocity has been
referred to a coordinate system which is fixed to the moving, front stagnation point
of the wing section.

All three incidence cases show very steep spatial velocity-gradients over parts
of the oscillatory cycle but those are completely reduced over other parts of the
cycle in the two lower mean-incidence flows (figs. 1 and 2). The velocity gradients
remain large over the whole cycle for the highest mean incidence case (fig. 3).

For the following boundary-layer calculations .the inviscid velocity distribu-
tions remain unchanged.

UNSTEADY LAMINAR BOUNDARY-LAYER EQUATIONS

In a body-fixed frame of reference, the unsteady laminar boundary-layer equa-
tions for continuity and momentum are, respectively,

with the boundary conditions

y = 0 , u = v = 0

y •> °° , u = U(x,t)

The outer inviscid velocity U(x,t) is determined by the unsteady panel-method
discussed in the previous section. '

To start the unsteady boundary-layer calculation on an oscillating profile one
has to take into account the time-dependent movement of the stagnation point. If the
calculation is performed in a body-fixed frame of reference, special treatment of the
stagnation-point region is necessary to get the boundary-layer calculation properly
started (ref. 10). These complications have been reduced by working in a stagnation-
point-fixed frame. From the inviscid velocity distribution, the time-dependent loca-
tion of the stagnation point can be specified. Figure 4 shows the movement of the
stagnation point in body-fixed coordinates for the incidence case A, in which
a = 0° + 8° sin u*T. This time dependency is nearly harmonic and is 180° out of
phase with respect to the angle of incidence. The amplitude of the displacement is
d = 0.01825 for this special case.



Assuming that the stagnation point is always located on the body surface
(y = 0) , one can start the unsteady boundary-layer calculation for both lower and
upper surfaces from the instantaneous position of the stagnation point. A trans-
formation of the boundary-layer equations and boundary conditions (eqs. (2)-(4))
into a stagnation-point-fixed frame of reference is straightforward.

The coordinate along the wall, measured from the stagnation point, can be
expressed by

x = x - x0 + d e
lto (upper surface) (5)

xX£ = -(x - x0) - d e
 w (lower surface) (6)

(03* = reduced frequency, T = dimensionless time)

with XQ as the steady mean position of the stagnation point. The normal coordinate
yx = y remains unchanged.

With

"ikin

as the kinematic velocity in the stagnation-point-fixed system (the ± signs refer
to the upper (+) and lower (-) surfaces), the velocity component in the Xj^-direction
is transformed:

u'-u + Ukl"; (8)
= V

Inserting expressions (7) and (8) into boundary-layer equations (2) and (3) one
obtains

r̂r- +-^- - 0 (9)

3t "i 3x, "i 3Yl

With the boundary conditions

7l = 0 , Ul - ±Ulkin

• *T
yx -»- - , Ui = u[Xl(x,t),t] ±Ulkin = Ux ±io)* d e

la) T

There is formally no difference between these systems in the boundary-layer equa
tions themselves; however, differences do show up in the boundary conditions. Specif
ically, the function U[x1(x,t),t] must be carefully specified within the new coordi-
nate system. Figures 5(a) and 5(b) show the development of the inviscid velocity
distribution over a period of oscillation for different distances from the stagnation
point (xx = 0) in the zero-mean-incidence case.



Figure 6 shows the stagnation-point movement for incidence case, B,
a = 8° + 8° sin a>*T, and two reduced frequencies: to* = 0.201 and 0.4. The time-
dependent movement looks similar to that in the previous case, with correspondingly
larger amplitude. The influence of reduced frequency on the movement is small in
contrast with the overall pressure distribution. Figure 7 shows the corresponding
time-dependent, inviscid velocity distribution in the stagnation-point frame of
reference.

Figures 8 and 9 display the results for high-angle-of-incidence case C,
a = 16° + 8° sin u*T.

INITIAL CONDITIONS

To start the unsteady boundary-layer calculation, initial conditions have to be
specified at the end of the first x-^step for all f as well as at T = f 0 for
all x.

Conditions at Xj^ = Ax, for all T

Following the ideas of Glauert (ref. 11), the set of boundary-layer equations
(eqs. (9)-(10)) can be transformed into ordinary differential equations by the
assumption that in the vicinity of the stagnation point the inviscid velocity
l^Cx^T) varies linearly with respect to the distance from the stagnation point and
harmonically in time

Uj. = cxx + c£Xl e
1?"*1 (12)

with c, e, and p as constant values which still have to be specified.

The velocity components inside the boundary layer may then be described by

u, = cXjf'On) + cx1e4.'(n)e
iP(0*T (13)

and

v, = -/c~[f(n) + e<f»(n)e
1Pa)*T]

f
c . jn = y j _ c .

It. is easily shown that equations (13) and (14) fulfill continuity equation (9).
Using expressions (13) and (14) in the boundary-layer equations (11) yields, for the
steady part,

fm + fi2 + ffl, + x = o (15)

as the stagnation-point case of the Falkner-Skan series with the boundary conditions

n = 0,. f = f ' = o

n + °° , f ' = 1



and for the unsteady part

*"' -.2fV + f«fr" + <frf" -^ *' +i^+ 2 = 0 (16)

with the boundary conditions for the complex function <f>

n = 0 , R(<t>) = "̂(<(>) = R(4>') = 0.,

) =0

(R(<j>) = Real part (<j>), !(<()) = imaginary part (<|>))

For the solution of the ordinary differential equations (15) and (16), a fourth-
order Runge-Kutta solution procedure has been used; it is described in detail in
reference 11. Figure 10 shows a typical result for the functions f and <f>' for
the cases u*/c = 0 (quasi-steady) and u*/c = 1, 2, and 3. In the R(<f>')-curve the
typical overshoot to values larger than 1 can be observed.

Before the calculation of the time-dependent, initial-velocity profiles can
actually be carried out, the constants c, e, and p in equation (12) must be deter-
mined. Figure 5(a) shows that (for the case of a = 0° + 8° sin co*T) close.,to the
stagnation point U^(T) is varying like a second harmonic with respect to a(T).
This can be taken into account simply by setting p = 2 in equation (12). The best
fit with the given U1(T) values for xx = 0.002 is obtained with c = 60.5 and
e = 0.3305. The dashed line in figure 5(a) shows the corresponding initial velocity
distribution of this best fit. Figure 7 shows the distribution for case B,
a = 8° + 8° sin w*T. In case B, the prescribed velocity distribution behaves like
a first harmonic (p = 1) with 180° phase shift. The best fit at x1 = 0.001 is
obtained with the constants c = 42.6 and e = -0.88; at x.,̂  = 0.004, the best fit
is obtained with c = 47.5 and e = -0.658.

In case C — the high-angle-of-incidence case, a = 16° + 8° sin u*T — the con-
stants at xx = 0.001 are c = 24 and e = -0.667 (fig. 9).

Conditions at T = T0 for all KI

To start the calculation at arbitrary times TO during the cycle, quasi-steady
initial conditions have to be calculated. This is carried out by a two-dimensional
finite-difference procedure, which takes into account the corresponding instantaneous
inviscid velocity distribution at T = T0 as outer boundary condition. The numeri-
cal method for.this- two-dimensional procedure is the same as the two-dimensional
unsteady method which is described in detail in reference 4 and which is used with
only minor changes for the present unsteady boundary-layer calculations as well.
Figure 11 shows a result for case A (a = 0° + 8° sin io*T). Wall shear-stress and
boundary-layer displacement thickness are plotted versus xx at T = 0. For com-
parison, the corresponding results obtained by a steady integral method (ref. 12)
using the same outer boundary condition, are also displayed.

Figure 11(a) shows some characteristic numerical oscillations of TW which do
not attenuate with increasing x . This behavior has already been observed for
three-dimensional, steady boundary-layer calculations (ref. 13). Some uncertainties



are obviously induced at the initial position. To overcome these oscillations, a
simple iteration procedure has been applied with a linear interpolation of the
boundary-layer profiles over three mesh points in the Xj^-directibn. Figure 11 (b)
shows the final result after this interpolation; the oscillations of TW are com-
pletely suppressed. The results are now in very good agreement with the data
obtained by the integral method.

The interpolation procedure has also be applied in the unsteady calculations.

UNSTEADY FINITE-DIFFERENCE PROCEDURE

Details of the finite-difference method have already been outlined in refer-
ence 4. This Crank-Nicolson-type method, which is second-order accurate, proved to
be sufficient and accurate for the oscillating flat-plate problem; it is used in the
present case without changes. Restrictions with respect to numerical stability are
taken into account (CFL condition). It was shown in reference 4 that the calculation
can be continued into reversed-flow regions with zero spatial pressure gradient as
long as the CFL condition is not violated. One aim of the present investigation is
to explore the behavior of the unsteady boundary layer with spatial pressure gra-
dient, specifically in regions of reversed flow.

After the initial and outer boundary conditions have all been specified, the
numerical calculation over the entire Xj-T range can start. At f = T0 + AT the
calculation progresses from the point Xj = Ax in the x^direction to xlmax and
is then repeated at the next time-step. For simplicity, the Ax and AT step-sizes,
as well as Ay through the boundary layer, are kept constant. The Ay step-size is
doubled as soon as the number of grid points through the boundary layer exceeds 100.
The calculation stops at a given time T1 such that T^ = T0 + 1 is one period. It
has been found that in the present cases it was sufficient to stop the calculations
after the first cycle.

SEPARATION AND REATTACHMENT LINES

A question of particular interest in the present study is where to stop the
boundary-layer calculation in the x^direction. It was mentioned in the previous
section that violation of the CFL condition is an indicator for limiting the calcu-
lation domain. However, it should be noted that this violation of the CFL condition
is caused by the behavior of boundary-layer quantities, specifically the normal
velocity inside the boundary layer as the solution approaches breakdown. As will be
discussed in detail in the next section, this sudden breakdown of the numerical cal-
culation over parts of the cycle indicates separation. It is not difficult to follow
the corresponding separation boundaries, as long as those boundaries are extended
from higher to lower x^positions during the marching process in time. Problems
occur, however, in the reattachment zone, a result of a lack of information about
this region from previous time-steps. Therefore, a simple procedure was developed
to overcome this problem. Whenever the unsteady calculation reaches the maximum
Xj^-position with a positive wall shear-stress value, the boundary-layer calculation
is continued on a quasi-steady basis. The quasi-steady calculation is extended until
the wall shear-stress tends to zero. In the next time-step, the additional (quasi-
steady) points are taken into account in the unsteady calculations, etc.



This procedure does not give the physically correct reattachment line, but it
does allow the calculation to be continued over a complete cycle of oscillation. It
was found that uncertainties along the reattachment line have only minor influences
on the forward-moving separation region, which was the main concern in the present
investigation.

RESULTS

Case A: a = 0° + 8° sin u*T

Figures 12-19 show results of the unsteady boundary-layer calculation for the
zero mean-incidence case. Close to the front stagnation point, the wall shear-stress
TW is changing very rapidly with both xx and T (figs. 12 and 14) corresponding to
the steep inviscid velocity peak at that position. To check the validity of the
numerical method, quasi-steady results are included which show only minor differences
within this region.

A similarly close correspondence is observed for the boundary-layer displacement
thickness &i. Some oscillations did occur in the numerical results of TW versus
xx (fig. 12) and 6X versus time (fig. 15), but they were removed by the iteration
procedure described in the section on initial conditions (not shown).

Marching farther downstream, a position is reached where flow reversal occurs
for the first time; no evidence of separation appears. Figure 16 shows some typical
velocity profiles at the beginning of backflow.

Figures 17 and 18 display wall shear-stress and boundary-layer displacement
thickness at different time-levels up to the point at which the numerical calculation
breaks down. This breakdown occurs very suddenly and appears to be a violation of
the CFL condition. Before the breakdown, the slopes of both the TW- and (̂ -curves
are steepening considerably. The breakdown positions are indicated in figures 17
and 18 by end lines.

x_

Strong deviations between quasi-steady and unsteady results are now apparent in
the sense that the unsteady calculation can be extended beyond the points of quasi-
steady separation.

Figure 19 shows the whole domain of unsteady boundary-layer calculations for the
two frequency cases 01* • = 0.201 and 0.400; the quasi-steady separation line is
included as reference. The circles (w* = 0.201) and the triangles (u>* = 0.4) indi-
cate the positions where the unsteady boundary-layer calculation approaches breakdown
as a result of a violation of the CFL condition. On the reattachment side, some
severe numerical uncertainties occur which could riot completely be suppressed; they
are obviously caused by the simple quasi-steady extrapolation procedure (preceding
section). It has again been proved by recalculations with various mesh sizes and
mesh-size ratios (Ax/AT) that these uncertainties have no influence on the forward-
moving separation region which is of main concern in the present study.

For the case to* = 0.201, the region of reversed flow is indicated in figure 19.
The effects of reduced frequency on the separation boundaries are such that with
increasing ID* the most downstream position of flow reversal is slightly reduced;
the upstream moving separation is shifted in time and is strongly accelerated toward



the leading edge; and the reattachment positions are shifted in time with increasing
frequency. These tendencies are much more pronounced in the higher incidence cases.

In the corresponding experimental data (ref. 3) that have been obtained at a
chord Reynolds number of 1.2 million, no sign of severe unsteady separation was
observed; however, at a position close to the leading edge, a strong deviation from
inviscid theoretical values for the unsteady first harmonic pressures indicated the
presence of a separation bubble at that position. That bubble is presumed to be
followed by attached turbulent flow over the remainder of the airfoil.

Case B: a = 8° + 8° sin a>*T

Figures 20-24 display results of TW and 6^ for the higher mean incidence case
of oij = 8° on the upper surface of the profile. Figures 20 and 21 show the varia-
tions with respect to -x.̂  and figures 22 and 23 the variations with respect to
time. Figure 24 gives the position of the upstream-moving separation and makes it
possible to identify the various locations in figures 20-23. Again, the wall shear-
stress initially goes negative without any sign of separation; however, the break-
down occurs abruptly. The breakdown points (indicated by the vertical dashed lines)
move upstream very fast. The reason for the numerical breakdown of the boundary-
layer calculation is clearly indicated in figures 22 and 23, which show TW and 6X,
respectively, versus time. The slopes of both TW and 6l progressively increase as
breakdown is approached. An example of the steepness of the curves (d61/dT') is given
in figure 23.

In the interest of gaining more insight into the flow behavior in the vicinity
of unsteady (upstream moving) separation, figure 24 shows the breakdown points
(circles), the location of zero wall shear-stress, and the quasi-steady separation
line; the unit vectors of wall shear-stress in the Xj-f-domain are also included.

A horizontal rw-vector indicates zero wall shear-stress. A vector pointing
into the negative x1-direction is an indicator of backflow. Equivalent to proce-
dures that are used in three-dimensional flows, the slopes of the unsteady wall
shear-stress vectors can be integrated forming "limiting streamlines" .in the
Xj^-T-domain; these lines are also included in figure 24. As in steady three-
dimensional flow, the breakdown (separation) line coincides with an envelope of the
limiting streamlines.

In the region where the acceleration of the forward-moving separation is very
large, the Tw-vectors turn very sharply, forming strongly curved limiting
streamlines.

Figure 25 shows corresponding results obtained with a similar boundary-layer
calculation procedure for a blunt body (spheroid) at incidence (ref. 14). The wall
streamlines (fig. 25(b)) form an envelope beyond which the boundary-layer calculation
breaks down. In front of the envelope, the wall shear-stress vectors are pointing
to windward of the body, indicating reversed secondary flow on the entire body sur-
face. The calculation was continued all over the body surface following the separa-
tion line to the rear. Figure 25(a) also gives the streamline coordinate mesh and
the location of the separation line over the entire body surface.

A comparison of the separation characteristics of two-dimensional-unsteady and
three-dimensional-steady flow gives evidence of a close analogy between both (this
has already been pointed out by other investigators; refs. 6 and 7).



Figure 26 shows the separation lines for the quasi-steady case, as well as for
the unsteady cases with w* = 0.201 and co* = 0.400 over the whole oscillatory
cycle. Note the strong reduction of the maximum downstream position of separation
with increasing frequency. Again (as in the zero-incidence case) the increasing
frequency causes an increasing upstream acceleration of the separation point. This
particular behavior of unsteady separation has also been observed -in water-tunnel
experiments (ref. 15).

Some numerical uncertainties in the reattachment region again show the diffi-
culties associated with the simple, quasi-steady treatment of this region. The
influences of these uncertainties died out with increasing time and were not notice-
able in the region of forward-moving separation.

In the next sequence of figures (figs. 27-29) some characteristic boundary-layer
quantities are plotted for the case GJ* = 0.2 at a specific x^position which can
be identified in figure 24^ The three-dimensional plots, as well as the contour
plots, are made over the T-y^plane, showing the development in time through the
whole boundary layer. At T = 1, the boundary-layer calculation comes to the break-
down previously mentioned.

Figure 27(a) shows the behavior of the vorticity (only the term 9u/3y is dis-
played). Moving in time toward the separation line, the vorticity is forming a maxi-
mum away from the wall, and vorticity is spreading into the fluid. Figure 27(b)
shows the steepening of equal vorticity lines approaching separation at f '= 1.
Vorticity lines not originating from the wall are observed close to separation.

Figures 28(a) and 28(b) give the corresponding results for the tangential veloc-
ity. Close to separation, the velocity profiles have a point of inflection with a
reversed-flow region close to the wall. The lines of constant velocity are also
steepening close to breakdown.

A very typical behavior is shown in figures 29(a) and 29(b), where the normal
velocity grows very rapidly in the outer part of the boundary layer.

In figure 30, vorticity contours in the T-y -domain are plotted for various
Xj^-positions starting at Xj^ = 0.3 (fig. 30(a)) and marching back to xx = 0.064
(fig. 30(h)). The right-hand side of each figure (f = 1) coincides with the numeri-
cal breakdown of the boundary-layer calculation.

It is important to notice the strong increase of maximum vorticity strengths as
the leading edge is approached (decreasing xx), as well as the increasing steepness
of the contour lines at breakdown. The figures again indicate a strong vorticity
ejection away from the wall.

Figure 32 is a three-dimensional plot of vorticity over the x1-y1-domain. A
typical, strong vorticity source is observed at the wall, coinciding with the invis-
cid velocity peak at that position. Figure 32 displays a series of vorticity contour
plots which are now given in the x^yj-domain at various time-levels starting at the
stagnation point and moving toward separation (see fig. 24). The spreading of the
vorticity from the wall is less dramatic than that observed in the time-domain. Note
the regions of negative vorticity which decrease in size when moving upstream.

The experimental pressure data again show only small deviations from (inviscid)
potential theoretical calculations (ref. 3). Turbulence may be strong enough to keep
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the boundary layer close to the wall. A corresponding laminar separation bubble,
over which transition to turbulence occurs, has also been observed in the
experiment.

Case C: a = 16° + 8° sin w*T

In the highest mean incidence case (a0 = 16°), the separation line (fig. 33) is
located very close to the front stagnation point during the entire cycle of oscilla-
tion. The difference between the quasi-steady and unsteady (oj* = 0.201) separation
position is small. A very fine mesh size of Ax = 0.001 has been used to calculate
the unsteady boundary layer in these regions of extreme inviscid velocity changes.
It is remarkable that now the upstream moving breakdown of the boundary layer occurs
during the downstroke of the airfoil. This movement is partly caused by the specific
coordinate system which is fixed to the stagnation point.

Figure 34 shows the behavior of some characteristic boundary-layer quantities
plotted over the x-j^-yj-domain for a specific time (f = 0.486). The changes of vor-
ticity (fig. 34 (a)) along the wall are now severe. There is, on the other hand, a
steep increase of vorticity inside the boundary layer as breakdown is approached.
Figure 34(b) presents the corresponding contour plots for vorticity; the vorticity
created at the wall reaches the high value of 31 in this case. The outward spread-
ing of vorticity is much steeper and stronger compared with that of the smaller inci-
dence cases.

Figure 34 (c) shows the behavior of the tangential velocity, with s-shaped pro-
files close to breakdown. Figure 34 (d) shows the normal velocity, which reaches
values of more than 250 inside the boundary layer; the other terms are of the order
of 1.

Figure 35 shows the development of vorticity in the x^y^domain for different
times as separation is approached. Tongues in the equal-vorticity contours are
pointing away from the wall; the vorticity level is very high. Marching along the
forward-moving separation between T = 0.366 and f = 0.466, the vorticity strength
goes down and the slopes of the contour lines close to breakdown are reduced.

Figure 36 displays vorticity-distribution and plots of equal vorticity lines in
the f-yj-domain. The spreading of vorticity is similar in the x1-y1~domain. Some
oscillations in the results occurring beyond the vorticity maximum indicate that the
time-step in the numerical calculation (AT = 0.01) was too large.

In this very high incidence case (a = 16° + 8° sin wT), strong deviations of
the experimental pressures from inviscid potential theory are observed (ref. 3).
These deviations start very close to the leading edge and are expressed by a strong
phase shift and by a reduction of the leading-edge peak of the steady and first har-
monic unsteady pressures. A strong ejection of vorticity from the wall may now have
overcome the effect of turbulence to shift energy toward the wall. The present
results give an indication of the amount and strength of this spreading vorticity.

CONCLUSION

A finite-difference procedure has been developed for investigating dynamic stall
on oscillating configurations. This procedure calculates the unsteady laminar
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boundary layer over a wing with a NACA 0012 airfoil section oscillating in pitch
about its quarter-chord axis. Results from an unsteady panel-method are used as the
outer boundary conditions, and initial conditions in both the time- and x-domains
have been specified. To start the numerical calculation at the instantaneous loca-
tion of the front stagnation point, a transformation of the unsteady boundary-layer
equations and boundary conditions into a stagnation-point fixed frame of reference
was performed.

Three incidence cases were treated in the present study: case A,
a = 0° + 8° sin cut; case B, a = 8° + 8° sin ait; and case C, a = 16° + 8° sin wt.
Emphasis was on determining the separation lines in the x-T-domain. The forward-
moving separation occurred, with a sudden breakdown of the numerical calculation
shown as a violation of the CFL condition. Characteristic boundary-layer quantities
show strong variations near this breakdown. Specifically, the normal velocity
inside the boundary layer shows a steep increase.

In a manner similar to that of three-dimensional steady boundary layers, where
separation lines have been specified as envelopes of limiting streamlines, corre-
sponding "limiting streamlines" in the two-dimensional x^f-domain show the same
behavior in forming an envelope. Before breakdown occurs, a considerable region of
backflow develops, through which the numerical calculation continues without
complications.

Investigation of the vorticity distribution in the vicinity of unsteady flow
separation was emphasized in the present study. In all cases, a strong spreading of
vorticity into the fluid was observed close to breakdown. The vorticity level was
increased to very high values in the high mean incidence case (case C).

In case C, experimental investigations show severe deviations of the pressure
distribution compared with calculated inviscid results which were not visible in the
smaller incidence cases. It is assumed that if the spreading of the vorticity is
strong enough to overcome the effect of turbulence, which has the tendency to keep
the flow attached.to the wall, a concentrated leading-edge vortex may form which is
fed.by the spreading vorticity developed in the laminar boundary layer. Detailed
investigations have provided some insight into the mechanism of vorticity spreading
and of the amount of vorticity developed in the boundary layer close to separation.

The present study deals with a weak interaction procedure: the outer boundary
condition cannot adjust to the displacement effect of the boundary layer. This
shortcoming could be removed by a strong interaction procedure with a recalculation
of the outer boundary condition during the time-marching process.
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NACA0012

=00+80sin
oj* = 0.201

Figure 1.- Inviscid velocity distribution (panel-method) over a period of oscillation
referred to the moving-stagnation-point coordinate system, f = 0.5: a = 0°,
f = 0.75: a = -8°, f = 1: a = 0°, T = 1.25: a = 8°, T = 1.5: a = 0°.
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NACA0012
a = 8° +8°sincoT

cj* = 0.201

Figure 2.- Inviscid velocity distribution (panel-method) over a.period of oscillation
referred to the moving-stagnation-point coordinate system, f = 0.5: a = 8°,
T = 0.75: a = 0°, T =1: a = 8°, f = 1.25: a = 16°, f = 1.5: a = 8°.
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NACA0012
a=

= 0.201

Figure 3.- Inviscid velocity distribution (panel-method) over a_period of oscillation
referred to the moving-stagnation-point coordinate system, f = 0.5: a = 16°,
f = 0.75: a = 8°, T = 1: a = 16°, T = 1.25: a = 24°, f = 1.5: a = 16°.
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Figure 4.- Displacement of stagnation point: zero-mean incidence case.
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- PANEL METHOD
-- INITIAL CONDITION

ATx, = 0.002:
60.5x1 +60.5-0.3305x1e2icj*T
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Figure 5.- Inviscid velocity distribution, harmonic fit for initial conditions:
zero-mean incidence case.
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Figure 6.- Displacement of stagnation point: case A, afl = 0°.
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N AC A 0012

a = 8° + 8° sin o>t

co* = 0.201

— PANEL METHOD

— INITIAL CONDITION
AT x, = 0.001:

U1(T) = 42.6-x1 -42.6 -0.88- x-, e
AT XT = 0.004:

U1(T) = 47.5-x1 - 47.5- 0.658 -

ico*T

8° 16° 8°
a

Figure 7.- Inviscid velocity distribution, harmonic fit for initial conditions:
case B, aQ = 8°.
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Figure 8.- Displacement of stagnation point: case C, a = 16°.
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NACA0012 a= 16° + 8°sincj*T co* = 0.201
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Figure 9.- Inviscid velocity distribution, harmonic fit for initial conditions:
case C, aQ = 16°.
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=cx., +cx1eeico*T

Figure 10.- Unsteady initial conditions.
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--*-- FINITE DIFFERENCE METHOD
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Figure 11.- Steady initial conditions.
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I5r
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'w

NACA0012
00 + 8°sinco*T
cj* = 0.201

NO ITERATION

-X- UNSTEADY

--0- QUASI-STEADY
(INTEGRAL-METHOD)

x" x a x x o—x—x o

.01 .02
X1

.03 .04

Figure 12.- Development of wall shear-stress with distance x1 from the
stagnation point, comparison with integral method: case A, afl =0°.
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.1

NACA 0012
0° + 8°sinco*T
co* = 0.201

T = 0.2

NO ITERATION

X 3RD PERIOD

UNSTEADY

QUASI-STEADY (INTEGRAL METHOD)

.01 .02
X1

.03 .04

Figure 13.- Development of boundary-layer displacement thickness with distance
from the stagnation point, comparison with integral method: case A, a0 =0
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N AC A 0012
0° + 8°sincj*T

= 0.201

—*— UNSTEADY

—O— QUASI-STEADY

8° 0°
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Figure 14.- Development of wall shear-stress over a period of oscillation.
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0°+8°sinco*T

o>* = 0.201
NO ITERATION

UNSTEADY

-O- QUASI-STEADY

j_

8° 0°
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-8°

Figure 15.- Development of boundary-layer displacement thickness over a period of
oscillation.
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Y1

MAC A 0012

a=0° + 8°sincj*T
w* = 0.201
X =0.174

0.10
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Figure 16.- Unsteady velocity profiles with backflow: case A, a = Oe
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NACA 0012

-1

UNSTEADY

—0- QUASI-STEADY

T = 0.40

•35 n.25 (a =8°)

Figure 17.- Development of wall shear-stress close to unsteady separation;
comparison with quasi-steady results.
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Figure 18.- Development of boundary-layer displacement thickness close to unsteady
separation; comparison with quasi-steady results.
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Figure 19.- Quasi-steady and unsteady separation lines over a period of
oscillation: case A, a0 = 0°.
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Ax = 0.004
AT = 0.002

Figure 20.- Development of wall shear-stress close to separation: case B, a. = 8'
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NACA0012
a =8°+ 8° sin wT
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T = 0.97

.2
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Figure 21.- Development of boundary-layer displacement thickness close to separation:
case B, an = 8°.
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Figure 22.- Behavior of wall shear-stress over time close to separation.
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2r Ax = 0.004
AT = 0.002
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Figure 23.- Behavior of boundary-layer displacement thickness over time close to
separationo
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Figure 24.- Unit vectors of the wall shear-stress, "limiting streamlines," close to
separation.
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Figure 25.- Three-dimensional boundary-layer calculations on a spheroid.
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Figure 26.- Quasi-steady and unsteady separation lines over a period of
oscillation: case B, a0 = 8 ° .
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(a)

N AC A 0012
=8° + 8°sin
cj» = 0.201
x1 = 0.064

.85

Figure 270- Vorticity distribution and vorticity contours with respect to time,
close to separation. (a) Three-dimensional plot; (b) Contour plot.
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N AC A 0012
= 8°+8°sinwT
w* = 0.201
x1 = 0.064

Figure 28.- Velocity profiles and velocity contours with respect to time, close to
separation.
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(a)

NACA 0012
= 8° + 8°sincjT
w* = 0.201
xv= 0.064

Figure 29.- Normal velocities and normal velocity contours with respect to time,
close to separation.
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x1 = 0.300 = 0.292

Figure 30.- Vorticlty contours close to separation: case B, ct0 = 8° (w* = 0.2).

44



= 0.088 x-, = 0.080

Figure 30. - Concluded
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Figure 31. -Vorticity distribution with respect to x1,
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Figure 32. - Vorticity contours with respect to xx: case B, aQ = 8° (ID* = 0.2).
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Figure 33.- Quasi-steady and unsteady separation lines over a period of
oscillation: case C, aft = 16°.
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Figure 34.- Vorticity and velocity distributions with respect to ~x.1, close to
separation.
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Figure 35.- Vorticity contours with respect to xx: case C, cx0 = 16° -(w* = 0.2).
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Figure 36.- Contour plots and three-dimensional plot of vorticity:
case C, ctQ = 16° (w* = 0.2).
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