General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
(NASA-Ck-173514) LHE bCUNLAKY LAYER ONprogress Eepurt, 1 Dec. $1983-1$ Jun. 1984(Pennsylvania state Univ.) $76 \mathrm{p} \quad$ UncladLC AOS/AF AOL CSC ROD G3/34 19320

SEMI-ANNUAL PROGRESS REPORT

National Aeronautics and Space Administration

on

NASA Grant NSG-3264

Entitled

"THE BOUNDARY LAYER ON COMPRESSOR CASCADE BLADES"

Submitted by:

Steven Deutsch and William C. Zierke

Applied Research Laboratory
The Pennsylvania State University
Post Office Box 30
State College, PA 16804

A. INTRODUCTION

The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number (R_{c}) near 5×10^{5}. The program is experimental and combines Laser Doppler Anemometry (LDA) with flow visualization techniques in order to obtain detailed flow data [e.g., boundary layer profiles, points of separation and the transition zone] on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process.

This report summarizes the research activity for the period 1 December 1983 through 1 June 1984. Progress made from 1 June 1979 through 1 December 1983 is presented in Refs. (1) through (9). The current report presents the completed suction surface mean velocity and turbulence intensity profiles, at a single incidence angle.
B. PROGRESS DURING THE PERIOD 1 DECEMBER 1983 TO 1 JUNE 1984

B. 1 Description of the Experiment

The ARL/PSU cascade tunnel is shown in Figure 1 . With the current fan system, maximum inlet speed to the cascade section is near $35 \mathrm{~m} / \mathrm{sec}$. Inlet turbuience intensity, as measured with a hot-wire anemometer, is below 0.2% as shown in Figure 2. All data to be presented in this report were taken on the suction surfase of a double circular arc compressor blade at a cascade inlet angle of 53° (see Figure 7).

The cascade test section is detailed in Figure 3. It is worth noting that blade pack side suction, as normally employed in cascade testing to maintain two-dimensionality, is not possible because of the need for an LDA
window. Instead, a strong upstream side suction, controllable in the blade-to-blade direction, is employed. Tailboards are used to control the periodicity of the flow.

As current computer codes assume a two-dimensional, periodic cascade flow, data must be taken in such a flow field to be useful. Here, two-dimensionality is taken to imply that the velocities and angles of the flow are substantially the same in spanwise planes, while periodicity means that velocities and flow angles in planes normal to the blades leading and trailing edges are functions only of the distance from a blade (independent of which blade). In a successful two-dimensional, periodic, cascade flow, the ratio of axial velocity from the leading to trailing edge is one. A typical outlet flow profile is shown in Figure 4, the corresponding turning angle in Figure 5, and the blade static pressure distribution in Figure 6. Interpretation of these figures can be facilitated by referring to the definitions of cascade flow angles given in Figure 7. The periodicity of the flow is clearly excellent. Also apparent from the pressure gradient plot is the strong adverse gradient on the suction surface and strong favarable gradient on the pressure surface near the leading edge of the blade. One might then anticipate at this incidence angle, a separation at the leading edge of the suction surface and some laminar flow near the leading edge of the pressure surface. The axial flow ratio, found to be one, is determined by averaging the local axial velocity over three blade passages, centered at the minimum velocity ratio point of the cential blade wake. On a day-to-day basis, the variation in axial flow ratio was within 3%, while the variation in chord Reynolds number was within 1%. A more detailed exposition of the experimental techniques may be found in [10].

A specfally designed traversing mechanism which matches the arc of motion of an optics cradle to that of the blade curvature is used for the LDA measurements. All measurements then were made in the plane of the local blade normal. Translation of the optics cliadle normal to the blade can be accomplished in stef intervals as small as 0.0254 mm . Prior to LDA measurements, a reference distance was established by focusing the LDA control volume on an insert which fit over the central measuring blade. Narrow lines are etched on the insert so as to be at known locations from the blade surface. Repeatability in establishing a measurement reference was estimated to be $\pm 0.05 \mathrm{~mm}$, and this uncertainty is probably the major source of scatter in the velocity data.

A schematic of the LDA optics system is shown in Figure 8. A two Watt Spectra-Physics Arjon-Ion laser was used for the measurements. Power on the blue line employed (488 nm) ranged between 0.6 to 0.8 Watts. Stanc'ard TSI optical components were used: the focusing lens (focal distance $=371.3 \mathrm{~mm}$) allowed the measurements to be made at the blade mid-span. The focal volume was ellipsoidal and was predisted to be $0.56 \mathrm{~mm} \times 0.037 \mathrm{~mm}$ in the direction normal to the blade. Opticai shifting at 5 Mbz was employed as needed. To measure close to the surface the optical cradle was tilted 1°. Silicon carbide particles having a mean diameter of 1.5 m were used for laser seeding. In an attempt to maintain a uniform distribution, seed was injected well upstream of the measurement station (see Figure 1) at the flexible coupling.

LDA data acquisition and reduction was accomplished by using a direct link to a VAX $11 / 782$ computer. Software allowed selection of focusing lens half angle, laser wavelength, frequency shift, minimum cycles employed in the calculation and number of particle counts per run (up to 4000). Initial
output was in the form of a velocity histogram. Minimum and maximum velocity limits were set by a cursor from the histogram to eliminate obvious noise. Final output was mean velocity, turbulence intensity and percent of particle counts employed in the calculation. The latter served as a signal-to-noise Indicator. It is probably fair to state that at least 98% of the total particle counts were employed for measurement stations in the boundary Layer; at least 95% were employed for points in the free stream. Mean velocity here was taken as a simple arithmetric average

$$
\begin{equation*}
u=\frac{1}{N} \sum_{n=1}^{N} u_{n} \tag{1}
\end{equation*}
$$

and local turbulence intensity (L.T.I.) as

$$
\begin{equation*}
\frac{u^{:}}{u}=\frac{1}{u}\left(\frac{1}{N} \sum_{n=1}^{N}\left(u_{n}-u\right)^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

Experience has shown that quite satisfactory repeatability of the mean and turbulance intensity can be guaranteed in boundary layer flows iy using $N=1000$ particle counts in regions in which the L.T.I. exceeds 5%, 500 points for L.T.I. less than 5% and 200 points for the free stream.

B. 2 Results and Discussion

Eleven velocity profiles were measured between 2.6% and 94.9% chord. Consider these measurement stations in conjunction with the blade static pressure distribution, Figure 9; particularly the strong adverse gradient on the suction surface. Clearly the pressure gradient (hence Coles' wake parameter II) is varying throughout the region in which the profiles have been measured, so that the boundary layers cannot be considered to be in equilibrium.

At each of the stations the velocity profile was defined by statistically treating the data taken for six individual profiles (seven at 2.6% chord). Some appreciation of the day-to-day variation in the data may be gained by considering the individual profiles shown in figure 10 for the data taken at 53.6% chord. Mean velocity profiles taken at chord locations of 2.6% through 94.9% are shown in Figures 11 through 21, respectively. The profiles are plotted semi-logarithmically to highlight the inner part of the boundary layer. Also shown on these plots are error bars. These represent 95\% confidence levels as determined by a small sample Student T -Test. For the attached boundary layers the level of scatter is about the same as was measured earlier for a flat plate geometry; that is, for a 2% local turbulence level the 95% confidence band represents a roughly 0.4% variation in velocity, a 1.5% variation 15% and a 3% variation 25%, independent of chord position. More than half of this scatter can probably be accounted for by considering the positional uncertainty. The separated profiles at 84,2 and 94.9% chord show sonewhat more scatter. This is perhaps due to the flow's heightened sensitivity to background conditions at these points.

At the present time, only the data at the first seven chord locations has been thoroughly analyzed. We shall consider these first. This data has been previously reported in Reference [11].

Perhaps the most interesting feature of the seven profiles is the falloff of velocity with distance from the wall in the inviscid region. This is, of course, a consequence of the blade-to-blade normal pressure gradient. On a linear plot (c.f., see Figures 29-35) it may be shown that the decay of velocity with distance is 1 inear for $53.6 \%, 43.3 \%, 33.3 \%$ and 23.0% chord, but that some significant profile curvature occurs at the remaining three chord locations. Note also that the near wall profile at 2.6% chord has a distinctly different shape than the others.

Local turbulence intensities are shown at each of the chord locations in Figures 22 through 28. With the exception of the 2.6% chord location (and perhaps the 7.6% chord location) the profiles may be observed to have a classical shape. The increase in uncertainty near the strong mean profile curvature at the edge of the boundary layer, which is particularly noticeable In the $23.0 \%, 12.7 \%$ and 7.6% chord location data, is a consequence of the very large skewness of the velocity ifistograms there. The intensity profile at 2.6% chord is interesting. The decrease of the local turbulence with decreasing distance to the wall is perhaps indicating a profile just recovering from separation. It is also worth noting that the free stream intensity level near 2%, which is roughly a factor of ten too high, is characteristic of laser anemometry. This LDA bias may be recounted for by requiring that the free stream have the correct value $(0.18 \%$, say, as measured by a hot-wire). The correction factor found in this way can be used as a correction throughout. The change in L.T.I. value in the boundary layer, however, can be shown to be small.

As will be shown in the next section, the turbulence intensity profiles may be of more than academic interest. They provide at least a rough indication of the boundary layer thickness and in this way give an indication of the acceptability of the analysis to be presented next. In this light, it would seem that values of the skewness and kurtosis would also be of interest, as one way of assessing the effect of the normal pressure gradient on the turbulence.

C. AN ANALYSIS

The presence of a normal pressure gradient makes the interpretation of the boundary layer profiles difficult. In particular, we wish to determine the shear velocity, u_{τ}, Coles' wake function Π, and a host of integral
parameters. To do this we must, following References [12, 13], account for the effect of the normal pressure gradient. Assume that the measured profiles represent a composite velocity profile. This implies that each of the profiles have, to zero order, a region where viscous effects predominate, a region in which viscous cffects are negligible (and the normal gradient acts) and an intermediate region in which the viscid-inviscid results match. Mathematically, the measured profile is the sum of a boundary layer profile and an inviscid profile less what appears in both. The last quantity is commonly called the edge velocity, U_{e}. That is

$$
u_{\text {meas }}=u+u_{i n v}-U_{e}
$$

Clearly both the boundary layer velocity u and the measured velocity $u_{\text {meas }}$ must go to zero at the wall, so that

$$
u_{e}=\left(u_{i n v}\right)_{w}
$$

and the scheme reduces to finding that value.
Consider each of the profiles as shown in Figures 29 through 35. Here the circles represent the measured values of average velocity. One must determine a way to extrapolate the invisciod portion of the profile to the wall. A rigorous approach does not appear possible so one must settle for a selt consistent attack which produces plausible results. Consider Figure 31 (12.7%) as a representative profile. We note that there are 26 data points (say, $N_{\text {inv }}$) from the position of maximum velocity to the measurement position furthest from the blade. One might argue then that the actual inviscid region contains anywhere from one to 26 data points. In addition, it is clear that. the inviscid profile exhibits some curvature. If one least square fits each
of these possible inviscid regions with a quadratic, one finds that there is a region in which U_{e} changes only slightly with the number of points. Specifically, this region is well represented by choosing $N_{\text {inv }} / 2 \pm N_{\text {inv }} / 4$ points for each of the profiles. In Figures 29 through 35, the triangles represent the boundary layer plots reconstructed by choosing the inviscid region to contain $N_{\text {inv }} / 2$ points. Also shown in Figures 29 through 35, on the velocity axis, is the average value of U_{e} which was determined by assuming the inviscid region is represented by each of the $N_{\text {inv }} / 2 \pm N_{\text {inv }} / 4$ points in turn. In general, these values are quite close. The average values of U_{e} along with its standard deviation (the plus and minus values) are given in Table 1. The boundary layer thickness, δ, was chosen as the position at which $u=0.99 \mathrm{U}_{\mathrm{e}} \quad$.

One can test the plausibility of the U_{e} and δ values by noting that in a classical equilibrium boundary layer the turbulence intensity has a higher than free stream value at positions $y / \delta \widetilde{〔} 1.25$. We may use $y=1.25 \delta$ and the turbulence intensity measurement (Figures 22 through 28) to define §. The results of this comparison are shown in Table 2. As a second check on the plausibility of the calculations, the U_{e} determined can be compared to the surface velocity. The last may be found from

$$
\mathrm{U}_{\mathrm{e}_{\mathrm{s}}}=\mathrm{v}_{1} \sqrt{1-\mathrm{c}_{\mathrm{p}}}
$$

where

$$
c_{p}=\frac{p_{s}-p_{i}}{1 / 2 \rho v_{1}^{2}}
$$

The surface velocities are compared with the U_{e} determined from the composite solution in Table 2. Though not a proof, the good comparisons indicate that the technique produces plausible results. Comparison of the triangles and circles in Figure 29 through 35 indicate that the near wall region is hardly changed in the analysis. That is, for example, the inner variables (e.g., the shear velocity, u_{τ}) are reasonably independent of the choice of U_{e}. We note further that all the derived boundary layers show a constant free stream velocity with the exception of that at 2.6% chord. This profile, of course, contains the largest inviscid curvature, and the smallest measurable free stream region (due to geometric constraints); possibly these effects combine to produce this discrepancy.

With δ known, Coies' velocity profiles for the wall/wake region of the turbulent boundary layer

$$
\frac{u}{u_{\tau}}=\frac{1}{\kappa} \ln \left(\frac{y u_{\tau}}{v}\right)+c+\frac{\pi}{\kappa} W\left(\frac{y}{\delta}\right)
$$

where
$W\left(\frac{y}{\delta}\right)=1-\cos \left(\frac{y \pi}{\delta}\right)$
can be used to determine Π and u_{τ}. Here Π and u_{τ} were determined by minimizing the error between the data and the expressions above: the constants were chosen from the 1970 Stanford Convention [14]. The resulting simultaneous non-linear equations were solved using a standard IMS (International Mathematical Subroutine Library) routine. As noted by White [15], Coles' profile does not fit the entire boundary layer precisely; for the results presented here the Coles' profile was assumed valid for positions between 5 and 80% of the boundary layer thickness. Note that measurements
were made at points above and below these values. The velucity profile was taken to be

$$
\frac{u}{u_{\tau}}=\frac{y u_{\tau}}{v}
$$

for the lower portion of the boundary layer. The profiles were numerically joined near a y^{+}of 10.7 -- thus defining the sublayer thickness. A spine surve was used to fit the data above 80% of the boundary layer thickness.

In Table 1 , the common parameters for the reconstructed turbulent boundary are given as a function of chord location. A complete nomenclature is given in Table 3. Error estimates ase based on the deviations in U_{e} over the range $N_{\text {inv }} / 2 \pm N_{\text {inv }} / 4$. We note that R_{θ} varies from 1174 to 4015 , and the boundary layer thickness from 0.206 cm to 1.148 cm from 2.6 to 53.6% chord . The large values of G at both 2.6% and 53.6% chord indicate that those boundary layers are near separation. Also note the good agreement between the values of u_{τ} determined by measurement with those determined by the Ludwing-Tillman relation. For the profile at 12.7%, H (and β) indicates a near zero pressure gradient boundary layer -- although, of course, comparisons must be made with care as the measured profiles are non-equilibrium. For the same reason, it is not really worthwhile to compare the pressure gradient parameter β with the derived quantity Π. The trends, however, are the same for each.

The boundary layer profiles are shown in inner variables in Figures 36 through 42. Note the striking effect on the outer part of the boundary layer (or the extent of the logarithmic region) with increasing and decreasing values of the wake parameter M. In Figure 36 through 42 the circles represent the measured data points, the triangles the derived boundary layer profile and the solid line the least squares fit law of the wall/wake to the derived
profile. The data are reploted in terms of u / U_{e} vs y / δ in Figure 43 through 49, a form which best emplu'sizes the evolution of the boundary layer. One can clearly observe, in following the data from 2.6% to 53.6% chord, a boundary layer recovering from a separation at the leading edge only to apptoach separation again somewhere beyond the 53.6% chord location.

As noted earlier, profile data taken at 63.2, 74.0, 84.2 and 94.9% chord have not been thoroughly analyzed as yet. The mean velocity data is presented in linear format in Figures 50-53. At each of these locations the velocity is instantaneously negative (backflow) for some range of distance from the wall some of the time as shown in Figures 54-57. At 63.2 percent chord the backflow region is quite small, involving only the region within 0.1 cm from the wall; the maximum percent backflow is about 5. At 94.9% chord, the backflow region has spread to encompass about the first two centimeters from the blade, maximum time in backflow approaches 65%. l'or the 94.9% and the 84.2% chord locations the point of maximum backflow is not at the measurement station nearest the wall.

In Figure 58 the maximum percent backflow as a function of percent cherd, is given. Simpson [16] reported on a set of proposed quantitative definitions for the state of flow detachment in near wall region; incipient detachment (ID) occurs with 1% instantaneous backflow; intermittent transitory detachment (ITD) occurs with 20% instantaneous backflow; transitory detachment (TD) occurs with 50% instantaneous backf1ow; and detachment occurs where the wall shear is zero. The first three of these states are also indicated in figure 58. A measure of wall shear stress would be useful here.

Analysis of the profile data taken for 63.2 to 94.9% chord is continuing.

C. GOALS FOR THE NEXT REPORTING FERIOD

During the next six month period, it is anticipated that:

- Analysis of the profile data at 63.2 to 94.9% chord will be completed.
- Boundary Layer profile measurements on the pressure surface of the blade will be completed
- Flow visualization studies of the blades to determine transition and separated regions will be finished.
- Near wake profile measurements at the current incidence will be done,
- Flow studies at a second incidence will be underway.
D. REFERENCES
[1] Deutsch, S., Semi-Añnual Progress Report for NASA Grant NSG-3264, Jamey 1980.

12 j , June 1980.
[3] Deutsch, S., Semi-Annual Progress Report for NASA Grant NSG-3264, January 1981.
[4] Deutsch, S., Semi-Annual Progress Report for NASA Grant NSG-3264, June 1981.
[5] Deutsch, S., Semi-Annual Progress Report for NASA Grant NSG-3264, January 1982.
[6] Deutsch, S., Semi-Annual Progress Report for NASA Grant NSG-3264, June 1982.
[7] Deutsch, S. and S. Gearhart, Semi-Annual Progress Report for NASA Grant NSG-3264, December 1982.
[8] Deutsch, S., Semi-Annual Progress Report for NASA Grant NSG-3264, May 1983.

19] Deutsch, S. and W. C. Zierke, Semi-Annual Progress Report for NASA Grant NSG-3264, December 1983.
[10] Deutsch, S., S. A. Gearhart and R. E. Henderson, "A Two-Dimensional Cascade Tunnel Suftable for Blade Boundary Layer Measurements by Laser Doppler Anemometry," ARL/ESU TM 83-93, Applied Research Laboratory, The Pennsylvania State University (19 May 1983).
[11] Deutsch, S. and W. C. 2Lerke, "Some Measurements of Boundary Layers on the Suction Surface of Double Circular Arc Blades in Cascades," ARL/PSU TM 84-77, Applied Researcl Laboratory, The Pennsylvania State University (3 April 1984).
[12] Ball, C. L., L. Reid and J. F. Schmidt, "End-Wall Boundary Layer Measurements in a Two Stage Fan," NASA TM 83409 (June 1983).
[13] Mellor, G. L. and G. M. Wood, "An Axial Compressor End-Wall Boundary Layer Theory," Trans. of Basic Engr., Journal of Basic Engr. (June 1971).
[14] Coles, D. E. and E. A. Hirst, "Computation of Turbulent Boundary Layers," Proceedings of the 1968 AFOJR-IFP-Stanford Conference.
[15] White, F. M., Viscous Fluid Flow, McGraw-H111, Inc. (1974).
[16] Simpson, R. L., Y.-T. Chow and B. G. Shivaprasad, "The Structure of a Separating Turbulent Boundary Layer. Part 1. Mean Flow and Reynolds Streyses," Journal of Fluid Mechanics, Vol. 113, pp. 23-51 (1981).
Table 1

	$\begin{gathered} \mathrm{U}_{\mathrm{E}} \\ (\mathrm{~m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} U_{T} \\ (\mathrm{~m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} U_{V_{L T}} \\ (\mathrm{~m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} 8 \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \delta^{*} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \theta \\ (\mathrm{cm}) \end{gathered}$	n	6	B	$\mathbf{R}_{\mathbf{g}}$
2.6	$\begin{aligned} & 53.968 \\ & \pm .207 \end{aligned}$	$\begin{aligned} & 1.429 \\ & \pm .019 \end{aligned}$	$\begin{aligned} & 1.379 \\ & 1.014 \end{aligned}$	$\begin{aligned} & 0.2060 \\ & \pm .0056 \end{aligned}$	$\begin{aligned} & 0.0722 \\ & \pm .0003 \end{aligned}$	$\begin{aligned} & 0.0337 \\ & \pm .0000 \end{aligned}$	$\begin{array}{r} 3.544 \\ .169 \end{array}$	$\begin{gathered} 20.1 \\ \pm .3 \end{gathered}$	$\begin{aligned} & 24.659 \\ & 2.751 \end{aligned}$	$\begin{array}{r} 1171 \\ 25 \end{array}$
7.7	$\begin{aligned} & 46.286 \\ & \pm . .313 \end{aligned}$	$\begin{aligned} & 1.880 \\ & \pm .051 \end{aligned}$	$\begin{aligned} & 1.886 \\ & \pm .021 \end{aligned}$	$\begin{aligned} & 0.3817 \\ & \pm .0636 \end{aligned}$	$\begin{aligned} & 0.0682 \\ & \$.0020 \end{aligned}$	$\begin{aligned} & 0.0448 \\ & \pm .0013 \end{aligned}$	$\begin{aligned} & 1.405 \\ & \pm .278 \end{aligned}$	$\begin{array}{r} 8.4 \\ \pm .1 \end{array}$	$\begin{array}{r} 2.195 \\ \pm .178 \end{array}$	$\begin{array}{r} 1339 \\ 230 \end{array}$
12.7	$\begin{array}{r} 44.726 \\ \pm .082 \end{array}$	$\begin{aligned} & 1.938 \\ & \pm .005 \end{aligned}$	1.930 $\pm .005$	$\begin{aligned} & 0.4019 \\ & \pm .0078 \end{aligned}$	$\begin{aligned} & 0.0729 \\ & \pm .0002 \end{aligned}$	$\begin{aligned} & 0.0509 \\ & \pm .0001 \end{aligned}$	$\begin{aligned} & 0.514 \\ & \pm .028 \end{aligned}$	$\begin{array}{r} 7.0 \\ \pm .0 \end{array}$	$\begin{array}{r} 0.377 \\ \pm .003 \end{array}$	$\begin{aligned} & 1469 \\ & 1 \quad 2 \end{aligned}$
23.0	$\begin{aligned} & 41.750 \\ & \pm .095 \end{aligned}$	$\begin{aligned} & 1.753 \\ & 2.006 \end{aligned}$	$\begin{array}{r} 1.750 \\ .1 .006 \end{array}$	$\begin{aligned} & 0.5242 \\ & \pm .008 B \end{aligned}$	$\begin{aligned} & 0.0928 \\ & \pm .0002 \end{aligned}$	$\begin{aligned} & 0.0643 \\ & \pm .0001 \end{aligned}$	$\begin{aligned} & 0.611 \\ & \pm .007 \end{aligned}$	$\begin{array}{r} 7.3 \\ \pm .0 \end{array}$	$\begin{array}{r} 1.171 \\ \pm .010 \end{array}$	$\begin{aligned} & 1733 \\ & \pm \quad 2 \end{aligned}$
33.2	$\begin{aligned} & 37.780 \\ & \pm .083 \end{aligned}$	$\begin{aligned} & 1.409 \\ & \pm .005 \end{aligned}$	$\begin{aligned} & 1.434 \\ & \pm .005 \end{aligned}$	$\begin{array}{r} 0.8038 \\ \pm .0065 \end{array}$	$\begin{aligned} & 0.1658 \\ & \pm .0004 \end{aligned}$	$\begin{aligned} & 0.1111 \\ & 1.0001 \end{aligned}$	$\begin{array}{r} 1.125 \\ . .002 \end{array}$	$\begin{array}{r} 8.8 \\ \pm .1 \end{array}$	$\begin{array}{r} 4.455 \\ \pm .041 \end{array}$	$\begin{array}{r} 2708 \\ \pm \quad 3 \end{array}$
43.3	35.310 1.119	$\begin{aligned} & 1.128 \\ & 2.008 \end{aligned}$	$\begin{aligned} & 1.160 \\ & \pm .007 \end{aligned}$	$\begin{aligned} & 0.9259 \\ & \pm .0106 \end{aligned}$	$\begin{aligned} & 0.2172 \\ & \pm .0007 \end{aligned}$	$\begin{aligned} & 0.1308 \\ & \pm .0002 \end{aligned}$	$\begin{array}{r} 2.415 \\ \pm .007 \end{array}$	$\begin{aligned} & 12.5 \\ & \pm .1 \end{aligned}$	$\begin{array}{r} 3.841 \\ \pm .064 \end{array}$	$\begin{aligned} & 2979 \\ & \pm \quad 7 \end{aligned}$
53.6	$\begin{array}{r} 33.780 \\ \pm .130 \end{array}$	$\begin{array}{r} 0.822 \\ \pm .009 \end{array}$	$\begin{array}{r} 0.880 \\ \pm .007 \end{array}$	$\begin{array}{r} 1.1479 \\ \pm .0161 \end{array}$	$\begin{aligned} & 0.3512 \\ & \pm .0013 \end{aligned}$	$\begin{aligned} & 0.1843 \\ & \pm .0001 \end{aligned}$	$\begin{aligned} & 4.436 \\ & \pm .007 \end{aligned}$	$\begin{aligned} & 1 E .5 \\ & \pm .3 \end{aligned}$	$\begin{array}{r} 6.861 \\ \pm .176 \end{array}$	$\begin{aligned} & 4015 \\ & \pm 15 \end{aligned}$

-16-

Table 2

ORIGNAL. Phifice OF POOR QUALITY

Table 3

NOMENCLATURE

C	Taw of the wall constant ($=5.0$)
C_{f}	Skin Eriction coefficient $\left(=\frac{{ }^{\tau}}{1 / 2 \rho U_{e}^{2}}\right)$
C_{p}	Local pressure coefficient $\left(=\frac{p_{s}-p_{1}}{1 / 2 \rho v_{1}^{2}}\right)$
G	Clauser's shape factor $\left(=\frac{1}{\Delta} \int_{0}^{\omega}\left(\frac{U_{e}-u}{u_{\tau}}\right)^{2} d y\right)$
H_{12}	First shape factor $\left(=\frac{\delta^{*}}{\theta}\right)$
H_{32}	Second shape factor $\left(=\frac{\delta_{3}}{\theta}\right)$.
N	Number of particle counts per run
$N_{\text {inv }}$	Number of data points in the inviscid region
Pe	Static pressure at: the bounday layer edge
p_{1}	Static pressure upstream of the cascade
P_{S}	Local static pressure on the blade surface
R_{θ}	Momentum thickness boundary layer $\left(=\frac{e i J}{v}\right)$
u	Boundary layer velocity
$u_{\text {inv }}$	Inviscid velocity
Umeas	Measured composite velocity
u_{n}	Particle velocity
u^{+}	$=$ Dimensionless velocity in the inner boundary layer ($=\frac{\mathrm{u}}{\mathrm{u}}$)

\mathbf{u}_{τ}	Friction velocity $\left(=\sqrt{\frac{\tau}{\rho}}\right)$
U_{e}	Velocity at the boundary layer edge
$\mathrm{U}_{\mathrm{e}_{\mathrm{s}}}$	Velocity at the boundary layer-edge as derived from the local pressure coefficient
V_{1}	Velocity upstream of the cascade
W	Coles' universal wake function
x	Streamwise coordinate
y	Coordinate normal to the blade surface
y^{+}	Dimensionless coordinate normal to the blade surface in the inner boundary layer
β	Clauser's equilibrium parameter $\left(=\frac{\delta^{*}}{\tau_{W}} \frac{\partial p_{e}}{\partial x}\right)$
δ	Boundary layer thickness
δ^{*}	Displacement thickness $\left(=\int_{0}^{\infty}\left(1-\frac{u}{U_{e}}\right) d y\right)$
δ_{3}	Energy thickness $\left(=\int_{0}^{\infty} \frac{u}{U_{e}}\left(1-\frac{u^{2}}{u_{e}^{2}}\right) d y\right)$
Δ	Defect thickness $\left(=\int_{0}^{\infty}\left(\frac{U_{e}-u}{u_{\tau}}\right) d y\right)$
θ	Momentum thickness $\left(=\int_{0} \frac{u}{U_{e}}\left(1-\frac{u}{u_{e}}\right) d y\right)$
K	Karman's mixing length parameter $(=0.41)$
v	Kinematic viscosity
II	Coles' wake parameter
ρ	Fluid density
τ_{W}	Wall shear stress

ORIGINAL PARE IG OF POOR QUALITY

Figure 1.

Figure 2.

ORIGINAL PAGE RS

 OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

CASCADE ANGLES

W1 INLET VELOCITY
W2 OUTLET VELOCITY
β_{1} INLET FLOW ANGLE
β_{2} OUTLET FLOW ANGLE
WXI INLET AXIAL VELOCITY
WX2 OUTLET AXIAL VELOCITY
TURNING ANGLE $\theta=\beta_{1}+\beta_{2}$

AXIAL DIRECTION

ORIGINAL PAEE IS
OF POOR QUALITY

unconh prest y
OF POCR QUALITY

ORIGINAL PAGE IA OF POOR QUALITY

\pm

T

[^0]

ORIGINAL PAEE E OF POOR QUALITY

Ghanco frey Mt
y POOR QUAWHA

-9E axn8ta
ORICINAL PACE SS
OF POOR QUALITY

$$
\begin{aligned}
& \text { CHORD POSITION }=0.73 \text { INCHES } \\
& \text { UTAU }=1.680 \mathrm{M} / \mathrm{S} \\
& \mathrm{PI}=1.405
\end{aligned}
$$

Figure 37.

ORIEINAL PAGE IN OF POOR QUALITY

CHORD POSITION $=2.22$ INCHES
UTAU $=: .753 \mathrm{M} / \mathrm{S}$
$P I=0.611$

ORIGINAL PAGE 没 OF POOR QUALITY

Figure 42.

ORIGINAL FRETE! 9
OF POOR QUALITY

*
-72-

MOTAYOVG TNADYGd

MOTaン2Ovg inaoygd

Figure 58.

[^0]: Figure 21.

