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Remote Sensing offers promise for studying sea ice conditions and ti:e processes
which change them. Al present, there is too little common ground between remotely
observable data and the quantities described in sea ice models. Qur interest is in
identifyimng measurements which can be made from satellites ﬁnd which ‘describe
properties relevant to the balances of mass, heat and momentum of the ice cover, As a
prerequisite, we wish to describe the random spatial structure of sea ice and its field of

motion, so that adequate sampling strategies can be devised.

The research performed under this grant has been focussed on the piece-like
structure of the ice pack, as described by the distribution of Hoe sizes. Objectives were 1)
to clarify how the several useful definitions of floe size distribution are interrelated, 2) to
consider the practicality of different measurement techniques, 3) to make measurements
of typlcal distributions, and 4) to investigate the efiect of sample size on the sampling

error.

These objectives have been accomplished. The results are contained in a paper
daringly entifled "Sea Ice Floe Size Distribution"” and attached here as Appendix L
Summertime distributions of N{p), the number of floes per unit area with diameter no
smaller than p, behaves roughly as g with x ranging from -1.7 te -2.5. The sampling
theory gives the variance of an estimate for the fraction g of a test area with diameter D
covered by floes of diameter d as g(1—g )N ™!, where Nw{J,/d)? can be thought of as the
nurnber of independent samples in the test ares, This relationship and similar ones for
other test regions have been copnfirmed by measurezments of sea ice images: LANDSAT
visual images, U-2 aerial photgraphs, and a mosaic of NASA aerial photographs.

The basic procedures and theoretical facts are in hand for measuring floe size
distribution. Different distributions can be defined and interrelated. Distributions have
been measured for several stages of break-up—all of which show distinet floes. The
extension to winter conditions where foes are not well defined should be pursued; a useful
approach would be a study of lead geometries. Ancther useful step would be the

application of these measurement technigues to many images of sea ice to observe the
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seasonal and regional variability of floe size distribution.

The sampling theory devised for floe size distribution has application to any problem
involving spatial sampling, It was applied to the sampling of ice thickness distribution, as
expounded in the paper "Ice Thickness Distribution~Theory and Measurementi" attached
as Appendix H. The principle result is that for thick ice, samples further apart than about
a hundred meters are independent, while independent samples of thin ice (thinner than

one meter) must be over a kilometer apart.

The velocity field of sea ice is demonstrably the movement of rigid pieces. The
consequences of this on the spatial statisties of the field are summarized in the paper
"Kinematics of Sea Ice" attached as Appendix 1. Included is the description of a model of
the piecewise rigid body motion and its effect on the estimation of open water formation
and ridging from a "large scale" measurement of deformation. The pieces are taken to be
defined by a random set of lines (a Poisson field) with an average piece size of 16 km,
taken from synthetic aperture radar data of Hall and Rothrock (1981). The differential
movement of the pieces is given a Gaussian distribution. Many realizations of these pieces
and their motion are simulated. For each, the total opening and closing at the floe
boundaries is plotted versus & "large scale” esiimate of deformation made from the
velocity at three pcoints. Each realization gives one data point. The scatter in the data
points is several hundred percent and shows how poorly a three point strain rate estimate

allows us to determine the actuel small scale opening and closing.

RECOMMENDATIONS FOR FUTURE WORK

Floe size measurements should be extended into winter. The mmost attractive
approaches are the study of the branching geometries of leads and the identification of
pieces through their motion rather than their appearance. If would be useful, at this
stage, to measure floe size distributions from a variety of ice conditions, and to begin to

observe the spatial and temporal variability of this property of sea ice,
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Further work, currently in progress, is aimed at direct observation of local (small
scale) opening and closing from high resolution velocity field obtained from SAR imagery.
SAR can also provide a better understanding of the statisties of the rigid body motion of

pieces: for instance, whether their rotation and translation depends on floe size,
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SEA ICE FLOE SIZE DISTRIBUTION
by

D. A. Rothrock and A. S. Thorndike
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Sea Ice Floe Size Distribution*

by

D. A Rothrock and A, 8. Thorndike
Polar Science Center
University of Washington

Abstract

Sea ice is broken into floes whose diameiers range from meters to a
hundred kilometers. This fragmentation affects the resistance of the ice
cover to deformation and the melting at floe sidewalls in summer. Floes are
broken by waves and swell near the ice edge, and, throughout the pack, by
isostatie imbalances, thermal eracking, winds and currents. In winter, they
are welded together by freezing.

Floe size can be measured by several properties p- for instance, area
or mean caliper diameter. Two definitions of floe size distribution seem
particularly useful: /(p), the fraction of area covered by floes no smaller
than p; and N{p), the number of foes per unit area no smaller than p. A
theorem from stereology states that F(p) can be measured by sets cther
than areas, such as the fraction of a line or of a point set covered by floes no
smaller than p. I N behaves like p* for small p, where g is mean caliper
diameter, o must be greater than -2 so that the smell floes occupy finite
area. If ~2<o<-1, the perimeter of small floes is infinite.

Several summertime distributions have been measured. On a log-log
graph, their slopes (local values of «) range from -1.7 to -2.5. One
distribution follows a power law; the others have steeper slopes for larger
floes, and more gradual slopes for smaller fioes. Another sampling strategy
is to measure the lengths of line segments on fces, The distribution of
these chord lengths is equivalent to the distribution of floe diameters.

The variance of an estimate of the fraction g of area covered by fioes in
any size range is g{i-g)K~!, where X is the equivalent number of
independent samples. K ean be found from the autocovariance of the
indicator function for the chosen size range. For line sampling of a narrow
range of floe diameters, X is the ratio of the sample length to the foe
diameter.

§i. Introduction

The sea ice covering the Arctic Ocean is not a uniform continuous sheet like the ice
that might cover a small lake. Instead it has irregular top and bottom surfaces and is
broken into distinct pieces, calied fioes. In the summer these floes are-easily identified in
remote images of the ice pack such as Figure 1: they are somewhat rounded in shape and

are separated from each other by a lacey region of open water. They have diameters

* Subrmitted to Journal of Geophysical Research
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ranging up to 100 kilometers. In the winter, floes still exist but they are less easily
identified. Then the ice pack appears to be highly fractured, but the cracks, called leads,
often cannot be resolved where the floes are actually in contact. To make matiers worse,
foes are constantly being "welded" together as new ice forms in the leads that separate

them.

The division of the ice pack into floes affects its large scale geophysical properties. It
seems likely, for instance, that the way the ice pack deforms in response to forces applied
by the winds and the currents and at tﬁa coastline is controlled more by the geometry of
the pack than by the material properties of sea ice. In this paper we discuss some of the
geometric properties of the ice pack including the sizes and shapes of the ice floes, the

arrangement of floes in space, and the abundance of Boes of various sizes.

Physical processes that determine the floe geometry include: failure under
horizontal forces applied by the winds and currents, failure during isostatic adjustment,
thermal cracking, flexural failure in the presence of ocean swell, meliing around the
perimeter of foes, and abrasion with adjacent foes. These processes break large floes
into litile ones and cause floes to decrease in size. During the freezing season these
processes are roughly balanced by the tendency of adjacent fioes to be welded together.
At presen‘t it is not known which processes arz most important. Perhaps an
understanding of the geometry of floes and how the geometry changes during the annual
cycle will stimulate research on the governing physical processes. In any event, an
understanding of the geometry of the ice pack is of interest in its own right for a number
of practical applications associated with transportation in ice-covered seas and with the

design of offshore structures intended to survive in the presence of ice.

The first section of this paper defines the fice size distribution, elarifying the notions
of "size" and "distribution”. The second section deseribes techniques for measuring the
fioe size distribution. A sampling theory in Section 3 indicates how many measurements
must be taken to resolve the floe size distribution to a specified accuracy. Some

measurements that test the sampling theory and others that illusirate floe size
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distributions of different ice covers are presented in Section 4.

Measurements are presented primarily to illustrate points of technique or approach,
and to indicate the range of distributions in different seasons. These have been made
from three sources:

1) an aerial photographic mosaic of the region of the Arctic Ice Dynainics Joint
Experiment (AIDJEX), 18 August 1975 (Hall, 1979), reproduced here as Figure 1,
2) part of a LANDSAT summer image, 185 km x 155 km, 18 August 1973 (No. E-1391-
22283),
3) four U-2 aerial photographs of areas about 30 km on a side, taken June 21, 1974
(flight No. 74-101; frames 9635, 9637, 9639, and 9641).
The only other published observations we are avare of are in Weeks et al. (1980). Those
measurements were made from airborne X-band side-looking radar data. We also mention
a project currently underway at the Scott Polar Research Institute to measure floe size
distribution near the ice edge from satellite imagery (A. Cowan, personal

communication). Other work on this topic is reported by Losev (1972).

§2. Floe Size

Let P(z,y,t) represent some measurable scalar property of the ice pack at the
location (z,y) and at time £. In other contexts one might take P to be the ice thickness,
the surface temperature, or some other local variable. But for our purposes we will
consider P to be related to the size of the floe covering the point (z,y) at time £. If no
floe covers the point, we take P =0. Several measures of size are of interest:

1) area: The area of the z,y plane covered by the floe in question.

2) diameter of the largest inscribed circle: This is not as useful a measure of size
as the total area of the floe, because it is not particularly easy to measure.

3) mean caliper diameter: Imagine calipers consisting of twc parallel lines. A
caliper diameter is the distance between the lines when each touches one side of

the floe without penetrating the interior. The average of these readings as the
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calipers are rotated through all orientations is the mean caliper diameter. ' "i
4) perimeter: The length of the curve defining the floe boundary, assuming the o
curve is smooth and its length finite. This quantity may be related to melting on '
H
the sidewalls of Hoes. D
¥We now show that these properties are highly correlated so that a measurement of 1
any one property gives an approximate value of any other. To study the relations between ! R.t
properties we selected the AIDJEX suramer mosaic and digitized the perimeters of all floes
[
with diameters over about one kilometer (Figure 2). All of the properties defined above L
Loy
were calculated for these 782 floes. The distribution of area/(mean caliper diameter)?, i
for example, is shown in Figure 3. Subsamples of 45 large floes and 379 srnall floes have
substantially the same distribution. ! :,
Table 1 summarizes these relationships; for example, a floe with a mean caliper ’l
diameter o has an area of 0.66 p® + 0.05 p® Note how closely the relationship i
|
Table 1. Statistics on certain ratios of floe properties i
{
Disc Floes {Summer Mosaic} } fé_k
Mean Standard o/Mean tf
Deviation {g) .
. ‘i]‘
Area i) -"
— =0.785 0.6 Lo .08
{Mean Caliper Diameter)? z =0 8 0 0
Inscribed Circle Diameter
Mean Caliper Diameter 1 0.77 0.09 0.12
Perimeter -
Mean Caliper Diameter m=314 3.17 0.04. 0.01
Area il |
— = 0,785 1.14 0.21 0.18
{(Inscribed Circle Diameter)® 4 1
Perimeter !
5 =31 4, 0. 0.13 |
{Inscribed Circle Diameter,? 4 19 54 ,g
Area ~1
——— 47r)~" = 0.080 0.065 0.005 0.08
(Perimeter)® (4m)
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perimeter = 7 « mean caliper diameter
is satisfied. This expression is exact for any convex shape (Miles, 197B); a small concavity
adds perimeter without altering the mean ealiper diameter, The fioes in this sample were

in an intermediate stage of break-up. Floe shapes at the end of the melt season and in

winter may be slightly different.

£3. Floe Size Distribution

Within some geographic region S {e.g., the Beaufort Sea) at some instant ¢ {(e.g., the

first day of August), we consider the scalar property P to be a random function of space

Plzyt) (zy)eS.tel
The observed function can be thought of as having been drawn at random from an

ensemble consisting of all possible functions.

Any particular realization of P contains a full description of the P-geometry. In
general, this geometry is very complicated, and much of it is irrelevant since it would not
be repeated in different realizations. Our aim is to define statistical properties of the F-
geometry that are common among different realizations and therefore deseribe the
ensemble from which the realizations are drawn. Many more realizations of ice floe
geometry will have to be st’qdied before this goal can be reached. The present emphasis

is to develop the general statistical concepts, not to document the full range of possible

geometries.

We assume that the process is ergodic in whatever statistie is of interest to us. This
means that one realization over a sufficiently large region S can teach us all we could

learn by looking at numerous realizations,

Fractionol Area

Suppose P is a property of an ice floe, so that P is constant over any particular floe.
Then one can define the fractionel area F in § covered by Hoes for which the property P

is no less than p. Formeally, use the Heavyside function H(g)=1ifg 20, and 0 if ¢ < 0,
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to write

rps) =5 JHP Gy)-pldaty (1)

S denotes both a region of the plane and its area without confusion. This definition avoids
problems with "edge effects”. If a floe with P = pg lies partially in S, only that part of its
area within S is counted, but the value of py pertains to the whole fece. F(p,S) is a

decreasing function of . If p is a property that cannot be negative, then
Hr%F(p,S) =F(0%.S)
P‘-’

is the coneentration of ice. #(0,S') equals unity.

Thus far, & has been taken to be an area, but one might choose to sample floe sizes
by some other set of lower dimension: either a line drawn through the image, or a set of
regularly or randomly placed points. Sampling in such sub-spaces is called stereology
and has countless applications. Early papers, for instance, concern estimating corpuscles
in tissue and particulates in minerals (Wicksell, 1925; Nicholson, 1970). The subject
contains a thecrem that shows how measurements from different sample spaces are
equivalent (Miles, 1878). The theorem states that if some subset {7 of S is selected, and
U'cU is the subset of I/ for which P exceeds p, then the ratio of the measure of I/’ to the
measure of IJ is, on average, equal to 7'(p,S)

2O
& oy =F.S)

where £ denotes the expected value or ensemble average operator, and g is the

appropriate measure (the number of points, the length of line or the area).

Number density

A second way to describe the distribution of floe size is to find the number of floes

per unit area of a region S for which P isno lessthanp

N(p.S)
Again, edge effects are best handled by counting the fraction of a fioe's area contained in

S, while retaining the value P of the whole fice. N(p,S) is a decreasing function of p.
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The total number of flces in S is $-N (0,85 ), which may be finite or infinite.

The number of floes larger than p and the fractional area covered by floes larger

than p are related by

F@.5) = -a@)awm

where a(p) is the area of a fioe with property p (taken, say, from Table 1), and —dN (P) is
the number of floes with §<P<p+dp5. Use of one rather than the other is a matter of
choice. The advantages of F are its bounded behavior for small p and its appearance in

the fundamental theorem of stereoclogy.

It might seem useful {o consider the total number of floes larger than some cut-off

20 N(20.S) and to define the fraction of these floes larger than »

Q(P-PnFFN(% » P2pg
f] is a cumulative probability function which increases to unity as p decreases to pp. Its
usefulness is limited, because the information about how densely the floes are packed in
space has been lost, and because f depends on pg as strongly as on ». If we envision
picking floes at random, this probability function assigns each floe equal probability,
whereas the guantity F, taken as a cumulative probability, weights each floe (and the

open water) by its area.

Power low distributions.

Consider the distribution of mean caliper diameter p. For small p, N can behave like
p% a=0 with o=0 corresponding to the case of a finite number of floes in §. For a<0, the

number of floes smaller than any finite pp is infinite. Of course, the total area of such

floes must remain finite

Pn P
-fp""dN = —-cxfp“’*'ldp <
0 0

which is satisfied only for a>—2. The total perimeter of the Aoes is proportional to the
integral of pdN, which is finite only when a>~1. The three possible cases are:
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o= U, finite number of floes,
-1<n<0, infinite number of floes, finite perimeter,

—2<p<-1, infinite number of floes. infinite perimeter

Over the range for which the power law holds, the floe geometry has a certain self
similarity

2k = g(k)

That is, for small floes, floes of a fixed size ratio oceur in numbers of a fizxed ratio. In this
case there is no natural length scale to the geometry; provided that we choose 2 sub-
scene which has small seale structure and does not fall entirely on a single floe, the small
seale structure locks the same under arbitrary magnification. It is a common experience
to confuse sea ice images with quite different scales, as in Figure 4, and that’'s why. Self
similarity is illustrated by the Apolionian gasket in Figure 5, which is characterized by a

power law distribution N ~p~1807,

Ezponential distributions.

A construction with guite different properiies is shown in Figure 6. It is called a
Poisson field, because the perpendicular distances from the (randomly oriented) lines to
an arbitrary origin are distributed as a Poisson process (Solomon, 1978). Unlike the
Apollonian gasket, it has a finite number of pieces in a finite region §. Circles inscribed in

the pieces are distributed exponentially

N{p) = N(Q)e—p"
where p is circle diameter, and A is the length scale of the pieces. The Poisson field bears
only a slight resemblance to winter ice, and none to summer ice; the infinite length of the
construetion lines precludes there being many small Soes in the spa.cé surrounded by a

few large HSoes. We do not expect to observe exponential distributions in nature.
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Techniques and observations.

One technique we tried involved the use of a set of dises, graduated in size from 3
mm up fo 2.5 em, corresponding to floes with diameters between about 1 and 10 km.
Beginning with the largest disc, one can identify all the floes into which the disc fits,
These floes have an inscribed circle diameter § no smaller than the disc diameter.
Working with & discs, one can establish £ points (¥,5) of the number distribution of
inscribed cirgle diameter. We used five discs. Floes more than half in the test area were
counted. The method is appealing in its simplicity and is sufficiently accurate to

distinguish the range of distributions oceurring in nature,

This method was applied to the LANDSAT image and four U-2 photographs, the
distributions for two of which are shown in Figure 7. Inscribed circle diameter was

converted to mean caliper diameter p, using § = (0.77)p from Tahle 1.

Another technigue is to digitize each floe boundary on an x,y digitizing tablet by
tracing a cursor around the boundary of each floe. Some preeaution must be taken to
digitize all floes in the chosen size range and lying even partially within the test area,
Each floe is represented by the coordinates of twenty to fifty points around its boundary,

from which one can easily calculate all fioe properties.

This method allows one to treat edge effects without error, counting the (areal)
fraction of a floe within the test area while measuring the floe property of the whole floe.
The test area for the AIDJEX summer mosaic is the box shown in Figures 1 and 2.
Digitizing requires equipment and some set-up time — for instance, writing programs to
compute floe properties — but in an operational mode, this method is probably as guick as

using dise cutouts and provides accurate measurements of all fioe properties.

The AIDJEX summer mosaic was measured in this manner. Its number distribution is

shown iIn Figure 7, and its fractional area distribution in Figure B.

The mosaic and the LANDSAT image are data from the same geographic area in mid-
August, two years apart. The difference between the two distributions {in Figure 7) is

evidence of considerable interannual variability.
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Striking spatial variability is also present. The distributions denoted by U2-35 and
UR-39 in Figure 7 were observed at the same time from regions only 50 km apart.

B o

Further, one ean interpret the ice in U2-39 as being a broken version of the ice in U2-85. L

To the extent that this interpretation is valid, we see that only the large fices broke; U2-39
has fewer 10 krn floes but more 1 km floes.

§4. Chord length distribution

In winter, when it is difficult to identify floes and assign values of P, piece sizes can
* a
be characterized by the distribution of chord lengths. At each point on a random line, R, . q]

) assign a chord length C(z) of the longest segment containing z and lying on a single piece

of ice. d

Either end of the chord touches a crack or ledd. From R select a random test !

: segment S of length L, count the number of chords within S for which C is no less than c,

B R L B

and divide by L to define the chord distribution M{c). For a chord only partly in &, count !
the fraction of its length in &, but assign a value € equal to its total length.

The chord and floe size distributions are closely related. In this instance, take the

i

|
1
;
H
R

floe property to be the mean caliper diamneter p. If a rectangular area with sides a and &

is sampled by a test line S8 parallel to side b, we have that

rurnber of chords - probability that chord is between ¢ and c+dc, {

between ¢ and c+de ol ditmeters given that S hits a fioe of diameter p
: (2) |
}
B probability that § . number of Aoes with
| hits a floe with diameter p diameter between p and p+dp
{ Using the definition
’ G(c.p) = probability { chord > ¢ |S hits a floe with diameter p }

and the densities
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{2) becomes

bm(c)de = f{—%dc}'%}ia b n{p)dp}

o
or

m(c)= —{ﬂg%ﬂpﬂ(ﬂ)dp s (3)

For circular floes with
c?
G = [1._....._2_]1/2

equation {3) is an Abel integral eguation which can be inverted to give the diameter

distribution in terms of the chord distribution

Ny =2 [ (2o Rai(c) . @
e=p
Parts of this development follow Ripley {1981, §9.4).

Figure 9 shows measurements of both N{p) and M(c) from the AIDJEX summer
mosaic, and a calculation of N{g) from M{c) observations using {4). Measurements of

G(c,p) for real summer fioes are shown in Figure 10.

§5. Sampling the floe size distribution

It may be inefficient or even impossible to determine the fractional area distribution
F by measuring the area of each floe in a region . In this section we discuss the errors
that arise when F is estimated using a subset I/ of R. A general theory is presented and
then applied to several specific sampling strategies where U is taken to be a box, a

random straight line segment, or a regular lattice of points.

Let P(z,y) be a measurable property at the point {z,y) and let T denote any
condition on P. Define the indicator function I(z,y) to be 1 if P sazisﬁes T and zero
otherwise. For example, if P represents mean caliper diameter, and I" the condition 1 km
< P < 2 kn, the indicator function will take the value II = 1 over all flces with diameters

between one and two kilometers, and will be zero elsewhere. Use the symbol g to denote
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the fractional area of R for which P satisfies I With our earlier point of view that P is a

random function, we have
g = ug! f II(z,y) dR = Prob (P satisfies T)
R

Here the measure of R, up, is included to normalize g properly. The probability of g is
assumed to be independent of z,y; any point in R has egual e priori probability of
satisfying the condition I

Now let § be an estimate of ¢ based on the random subset IJ.

g= p,ﬁl_gﬂ(m yydu . (5)
We now show that the mean of § is g and show how th= variance of § depends on the size
of the sample UJ.
The mean and variance of 7.

Since F is a random function, so is II. II has the trivial probability density:
Prob([1=1) = g; Prob(II=0) = 1—g. Thus El equals g. Then using (5), £§ equals g.

From (5), we have

WTE=E(§-9)2=E[¢AE“{;H(z.y)dU -g

i _5 (=" y"YdU" ~ 9} (6)
= pﬁa{ Rylz.y.z'y)dudUu'

where Rp is the autocovariance function for the indicator function. Its properties are
discussed in the next section. This equation describes how the variance of the estimator
depends on the sample set I/ and on the way the floes satisfying the eondition T' are

arranged in space, as characterized by Rn.

The autocovariance of the indicator function.

The indicator function II depends on the property P being studied and on the
condition I'. In another context, P might be associated with ice thickness and I" with any

narrew range of thicknesses (Rothrock, in press). But here we associate P with mean
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caliper diameter and I" with any narrow range of diameters. In both cases, II bas certain

spatial structure that shows up in its autocovariance.

Consider the one dimensional analogy in which the line is broken into intervals of
random lengths, and the property P is interval length. Let I be the condition
D < P(z) < D+e. Then II{z) is a random function of x taking the value zero for most =
and the value 1 over intervals of length greater than D and less than D + &. The notable
strueture of II in this case is that all of its "up" segments have length J. For small € the
up segments will be rare and the intervals between them will have random lengths. The
situation is approximately that of a single "up" segment of length D placed at random on

a line segment of length L>»D. To determine the autocovariance for this random

function, note that

Rile) = E[l(z+a) = D /L) + [(z) = D /L) = ENl{z+a)Ti{z ) ~ D2/L?
The expression EIl{x-+a)II(z) represents the probability that x+a and z both lie on the

random up segment that we denote by V. We have
EX{z+a)ll{z) = probability[{z+a)e V and z € V]
= probability (z € V) - probability[(z+a)eV { z € V]
This last probability is evaluated by considering all possible locations that allow V to cover

z, and the fraction of those that also cover z+a. Then EII{(z-+a)I(z) is

- . overlap of segments centered on z and on z+a
probability (= € V) length of segment centered on x

1~-la|/D , lal<b ,
=g
o , lal>D .

For large £, this is approximately Fp{c), but we adjust the amplitude so that the variance
R(0) is g(1-g), keeping Ry zerc for large a. Then -
i~lal/D , la|<d

Rula)rg(l-g)
0 . la|>P
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In two dimensions, a similar argument can be used to find Rp(x,x’) = Rp{s) where s is
the distance between x and x'. Take the foes to be dises of diameter J, and again denote
one rare disc by V. For ¥V to cover x, its center must lie within a cirele of diameter D,

centered on x. We have that ETI(x")I(x) is equal to the product of gy and the fraction

overlap of circles whose centers are a distance s apart
area of circle centered on x

which is
ens~lz—|z |(1-z”P 2 | |z]<1 ,
~15 (S -
2n h(ﬁ) where A(z)=
0 , iz|>1.

Again adjusting the variance, we have

Rufs)= g(1~g)2n~'h(5) . ()
Figure (11) allows comparison of equation (7} with observed autocovariance functions for

three different narrow ranges of floe size.

Saompling by orea

Returning now to the question of the veriance of §, consider the case where the

sample set I is a box of side 4. Then

A4AA
var § =A'4{0{0 Rolz.y.z'y") dedyde 'dy’

Make the coordinate change z'.y'— 5,0 with s = [{z—z")? + (y—y")8]"? and 6 = tan™?
{y'-y)/{z'-z). Withs and @ fixed, the region for integration for z and ¥ is the overlap of

iwo boxes of side 4 whose lower left-hand corners are offset a distance s in the #

direction:

. VA = A—sl;iosei A-glaind| _
var § =4 Rpu{s)sdsdédz
s':—l'.o t§£0 £=n y'£n I'I( ) dy
24
=A'*_g' {End®—84s +2s%)s Rp(s)ds . (8)

il A O T

[ TS - s s

Ry

i eam

3
i
1
|
j




-15-

To illustrate the use of this result, substitute the approximate expression (7) for

Rp(s) into (B) to obtain

&
var § = g(1-g)eni4~* f (RrAR~ 8As+252)sh(-—-)ds

V2ip-i
=g(1-g)en~D%U? [ (en~BDA™'n+20%U2nB)nh(n)dn
[l

For A>>D, this is roughly

-~ 1 =
var § = g(1~g)(nD3a2 . (9)
In many equations that follow, the variance of 7 is proportional to g {1~g):

var § = g{1-g)K!
For M independent point samples (Bernoulli trials with probability of success equal to g ),
the constant of proportionality is simply X =M. For area sampling we have that
K w A%/ (nD?/4) = (box area)/{(disc area) which we can think of as an equivalent number
of independent samples. If, for example, we wish to estimate g for a class of floes that are
thought to cover about 0.10 of the area, and we want the estimate (5) to be good to +0.02,
then var § = (0.02)% = (0.1)(0.9)K', which implies & = 225. This can be achieved by
selecting 225 point measurements separated widely enough to be independent or by
measuring densely over a box of side 4 = {(n,/4)"2K"2D, roughly K*? or 15 times the

diameter of the floes in question.

Equation (8) was tested using the digitized AIDJEX summer rmosaic. Using the

measured autocovariance of the indicator function for a fairly narrow range of floe size,

var § in {B) was gvaluated for several values of 4, as shown in the right-hand column of '

Table 2. An independent measure of the variance of § was obtained directly by choosing
several different test areas of side A, measuring 7 in each one, and noting the mean and

variance of the set of samples of §. These are shown in Table 2, and confirm the

theoretical resuits.
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Tahle 2. Comparison of theory with measurement for variance of estimator 7,

sampling Aoes in AIDJEY summer mosiac with boxes of side L.

Small floes: 1<p<4.7km, g = 0.20

Measurements from mosaic Theory, Eq. (B)
L, km number of samples Vuar § Vuar §
5 25 .28 .19
10 25 .15 .12
19 25 .09 .08
32 o 07 05
47 4 .05 04
100 02
200 .01
Large floes: p>13.5km, g = 0.21
Measurements from mosaic Theory, Eq. (8)
L km number of samples Vvar g Vwar §
5 25 .36 32
10 25 .30 .29
19 25 21 20
32 8 .16 .14
47 4 .08 .10
100 .05
200 .03
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Sampling along a line "

|
Let U be a random line segment of length L. At each point along the line, the floe f

diameter {(not the chord length) is determined and § is evalvated using equation (5). Lt

Then the variance is

L L L
var§ =12 [ [Ry(|z—='|)dz dz' = 2L72 [(L—s)Rp(s)ds .
oo 0

Using the form given above for Ry and taking >0 , we get the approximation

1
var § = g(l—g)4n"1f(1—z)h(x£—)d:r Rig (1-—-g)—€- ., L>»D | {10)
(]

o e o oy oty

z. Sampling on a reguiar lattice

When U is an M x# lattice of points with spacing A, the expression for the variance of

§ becomes

b i ik pi i, €t e e

var § = M“"’i f ﬁ iRH(Sz‘jk!)

izif=le=1i=1
where Sy is the distance between the ij and &I lattice points. The covariances RH(S,W)

can be thought of an an #2xM? matrix of covariances between any pair of lattice points.

The diagonal elements are simply g{1—g). If A is chosen large enough so that the points ;

are uncorrelated, then the non-diagonal elements are zerc and E}f

var § =g{l-g)¥~% . (11)

FE T
el

For a smaller lattice spacing some of the non-diagonal covariances will be positive and the

variance of § will increase.

To surnmarize, we estimate the fractional area covered by ice floes of a certain range

[ R T & 5 4 A R

of sizes using equation (5). The variance of this estiruator can be found using the auto- |
covariance Ry of the indicator function in equation (6) for any sampling strategy. The

variance is inversely proportional to X, the eguivalent number of independent samples,

T T LS. O

which is given by the approximations
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area sampling: ¥ ~ area of sample / area of floes being considered
line sampling: X mlength of sample / diameter of floe
point sampling: X » number of peints separated by af. least a floe diameter

§6. Conclusions

We have devoted this preliminary discussion of the floe size distribution of sea ice to
guestions of definition and of measurement, with emphasis on the errors which arise in
estimating the distribution from a limited sample. Our preferred definition is the number
distribution ¥ {p) giving the number per unit area of floes whose mean caliper diameter
exceeds p. N(p) increases as p decreases to zero. In some of the data sets we have
examined, N behaves approximately like p* with -1.7 < o < -2.5, but we see no reason to
expect a power law or any other simple analytical form to be valid for all p. We find

changes in the distribution from year to year and from one region to another.

The theory given for the sampling errors is summarized in equations (9), {10) and
(11). The central idea is this: the error in an estimate of the abundance of floes of area o

in & sample of area 4 depends on the number of independent samples, which is roughly

4/a.

The several floe properties related to fioe size that we considered, mean caliper
diameter, perimeter, area, chord length, diameter of inscribed circle, appear to be
roughly equivalent. The choice of what property to measure may be made based on the
kind of data and measuring systems available. For manual measurements, we

recommend sampling the chord lengths along random lines.

-

The immportant geophysical problems are to relate the geometric properties of the ice
pack to its mechanical and thermal properties, and to relate changes in the geometry to
the mechanical and thermal foreing. Floe size, ice thickness, and surface roughness are

three geornetric properties which have been studied. Others of potential interest are the
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widths, lengths and branching properties of leads.
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Figure Captions L
Figure 1. Mosaic of aerial photographs of summer pack ice (Hall, 1979). The dark areas : -;
are open water between floes. The box measures 95 by 110 km.

Figure 2, Digitized floe boundaries in the summer mosaie (Figure 1).

Figure 3. The distribution of the ratios of area to sguared mean caliper diameter.

Figure 4, Views of sea ice on two different scales. The frame on the left is about 26 lam
wide, that on the right, 2.4 km, The texture on the lefi, of the high level image
is due to elouds. Melt ponds can be seen in the lower altitude photograph.

Figure 5. An Apollonian gasket (from Mandelbrot, 1977). The disc sizes are distributed
as a power law,

Figure 6. A Poisson field, illustrating a construction with an exponential distribution of
piece sizes,

Figure 7. The cunualative number distribution of mean caliper diameter N{p). For the
solid lines, mean caliper diameter was directly measured; for the dashed ' !
curves, it was calculated from measured inscribed circle diameters. i :

Figure 8, The cumulative area distribution of mean caliper diameter F{p) for the * In
sumimer mosaie. ; '

Figure 9. (above} The cumulative number distribution of mean caliper diameter N{p)

for the summer mosaic: () measured directly, and (+) calculated from

measured chord distribution (solid line below). The solid chord distribution

was smoothed from the actual observations {+).
Figure 10. The density of the ratio of chord to mean caliper diameter for the floes in the
summer mosaic and for dises {~dG /d7, where ¥ = ¢/p). ‘

Figure 11. The autocovariance of the indieator function. The solid line is the theoretical

expression (7) for rare discs. The symbols show observations from the '

digitized summer mosaic for several narrow ranges of diameters,
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Figure 1. Mosaic of aerial photographs of summer pack ice (Hall, 1979).

The dark areas are open water between floes. _The box measures
95 by 110 km.
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Figure 2. Digitized floe boundaries in the summer mosaic (Figure 1).
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i Figure 4a and 4b. Views of sea ice on two different scales. Frame 4a is
about 28 km wide.. The texture on the left is due to
clouds.
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Frame 4b is about

Melt ponds can be seen in this photograph
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Figure 5. An Apollonian gasket (from Mandelbrot, 1977). :
The disc sizes are distributed as a power law. f
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Figure 6. A Poisson field, illustrating a construction with an
exponential distribution of piece sizes.
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diameter was directly measured; for the dashed curves,
it was calculated from measured inscribed circle
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(above) The cumulative number distribution of
mean caliper diameter N(p) for the summer mosaic:
(*) measured directly, and (+) calculated from
measured chord distribution (solid line below).
The solid chord distribution was smoothed from the
actual observations (+).
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Figure 10. The density of the ratio of chord to mean caliper
diameter for the floes in the summer mosaic and for
discs (-dG/Dy, where Yy = e/p).
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ICE THICKNESS DISTRIBUTION--MEASUREMENT AND THEORY

by D. A. Rothrock

INTRODUCTION

In considering the historical literature relevant to the subject of ice
thickness distribution, I was struck by the paper by Wittmann and Schule
(1966) at the Lake Arrowhead symposium on the arctic heat budget. They
presented a synthesis of visual observations from aircraft showing ice
concentration, lead spacings, percent: coverage of several ice types, and
ridging indices in the subregions of the Arctic Ocean. Their format
emphasizes the basic elements of present thinking--first, that we want
properties averaged over space scales which include many ice features, and
second, that these average properties vary om yet longer scales over the basin
and from one season to the next, in ways of interest to the climatologist.

Wittmann and Schule showed what data were available from operational
observations just as Soviet scientists were attempting to forecast ice con~
centration (Nikiforov et al., 19673 Doronin, 1970). In the intervening
fifteen yvears, effort has been directed to defining what data we want for
climatological and forecast modeling of sea ice, and why we want them. One
data set we want is ice thickness distribution. A major reason is that it
tells ns the mass of ice in the ice eover. Other reasons are the subject of
other chapters. Suffice it to say that ice thickness and its distribution
influence components of the surface heat balance, the salt balance of the
upper ocean, light penetration and biological productivity, and trafficability
on top of, through, and beneath the ice cover. It is unfortunate that

thickness alone does not determine these phenomena; they are affected by snow

cover, temperature, ice formation history and surface relief.

Presented at the NATO Advanced Study Institute on Air-Sea-Ice Interaction,

-t =

September 27-October 10, 1981, Maratea, Italy.
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s0 that writing some flux as a function only of thickness sweeps a lot under

h the rug.

THICKNESS AND ITS DISTRIBUTION DEFINED

ﬂl%~iB-a%sU‘Typics&~o£=gaoph¥sieswtheti%lthough one can draw a slab of
ice or a cross section of a ridge schematically with several straight lines,
when one sets about measuring thickness, it is no longer such a clear-cut
notion. There are cavities in ridged jce-—some connected to the air or
water, Ponds of fresh or brackish water covered with a skim of ice can lie
in the troughs of both the upper and lower surfaces. How should a slush of
{' ice crystals be treated? We suppose that ome has satisfactory conventions
for dealing with these phenomena and that there is a top surface of the ice
{not the snow) at a height h; measured up from the sea surface, and a bottom
f surface at draft hy measured down from the sea surface., The thickness is
h = ht + hb‘
From thickness measurements which resolve ridges and leads, we want
to know average properties over regicns hundreds of kilometers in dizmeter.

For instance, to evaluate mean thickness H for a region R centered on (X,¥),

we write

’l?-k *

LI

Blx,y) = ” h(x',y")dx'dy’, (where A = ” dx'dy')

as an integral, over thickness, of the area covered by each thickness

- ” h daéh) = I h g(h) dh
all h

;
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The ice thickness distribution g(h)dh is defined as the fraction of R with :
thickness between h and h + dh. If we want, say, an average heat flux Q
and Q depends on h, we can again integrate over all thicknesses ’ j

Q= %—IJ Qlh(x',y")]ldx"dy"' = I Q(h) g(h) dn % ?
all h L

YA e o

Since many filuxes at the air-sea-ice interface are strongly related to thick-

ness, it appears that measurements of thickness distributrion would have many

applications.
Two observed distributions of draft (which is nearly the same as thick~

ness) are illustrated in Figure 1. The Beaufort Sea distribution shows 5%

e v e e L

coverage of 0O-to-1 meter ice and 40% coverage of 2-to-3 meter ice. On the

other side of the ocean, the Fram Strait ice is much heavier, with roughly

e Bt e —
-

five times as much thick ice as in the Beaufort Sea ice. The 2-to-3 meter

s TS e e g

category is comparatlvely empty with only 3.5%Z. Thug the E:am Strait ice

bﬂ \.r‘n"l'll-L D- l-a
has a greater mass, is pwebably frictionally roughizf and yet with its 10%
--—.—-—"'"_"‘—-M.‘,___._______'"_‘_

wra slé

. — e =

o

g

of O-to-l meter ice is producing ice faster than the ice in the Beaufort Sea

e S TRELPINGE R ST

. L

sample. ©od
Although the distributions in Figure 1 look strikingly different, the %
question must be answered: are these real geophysical differences or could E

these twe distributions be different =samples from the "same" ice cover? An

empirical apnswer is obtained by taking several samples from each area, and
noting whether all samples from one region are similar to each other and

different from the samples from another region.
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An analytical technique for answering questions about sampling errors
is rooted in probability theory. We adopt the notion that héf%)is a stochastic
process; the thickness h at a fixed pnsitionég)is a2 random variable. In

this framework, the thickness distribution is a probability function
b -
P = J g{h)dh = probability that a<h<b (1)
a

«0
The expected value of thickness is the mean of the distribution H = f gdh.

0
By taking the process to be nearly stationary (varying only on scales of
hundreds of kilometers) and ergodic, we can estimate statisties of the process,

such as the mean, or distribution, or spectrum, from spatial averages of data.

In addition, we can find confidence intervals for these estimates.

MEASURING THICKNESS AWD ESTIMATING ITS STATISTICS

There are two aspects to measurements of thickness statisties: measuring
thickness accurately at a point and sampling it at enough points to estimate
a statistic satisfactorily. All methods are seriously limited either by

measurement errors or sampling errors or both.

Submarine Sonar

The most satisfactory measurements of thickness distribution are obtained
from upward-looking submarine sonar. Table 1 lists several cruises from
which data have been published. The sonar does not directly measure thickness,
but the distance from the transducer mounted on the submarine to the closest
point of the bottom surface within the cone 0f the sonar beam. A pressure
sensor measures the transducer depth. The difference between these distances

is some approximation of the ice draft.
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- Table 1. Submarine sonar data.

Submarine
Beam width depth
Submarine Period Location along track uncertainty Length Reference
Nautilus, 1957-62 whole 2.0m >10%km Lyon
Skate, Sargo, Arctic {1963,1966)
Seadragon LeShack (1980)
Dreadnought March 71 86°-90°N 20° 0.3 m 1000km Williams et al.
6°-7°E (1975)
Sovereign Oct 76 80°-90°N 17¢ 0.2 m 4000km Wadhams (1981)
25°E-70°W
Gurnard Apr 76 70°-77°N 3° 0.1m 1400km Wadhams and
138°-155°W Horne (1978)

There are several sources of measurement error. First, the depth of the
transducer is not precisely known; in the more modern data the accuracy is
about 20.2 m or 0.3 m. The error is not so critical for thick ice, but it
might make an estimate of the coverage of thin ice useless. It would be useful
to know more about the properties of this error. Wadhams (1981) takes it to
be white noise with zero mean and varianmce (0.2 m)Z2.

Another error is due to the non-linear smoothing of the surface by the
sonar beam--always increasing the observed draft. The problem is akin to
surveying the ice with a leveling rod 15 m in diameter. Because no information
is sensed from some troughs, there is no way to reconstruct the actual draft,
although an approximate reconstruction can be attempted (Williams et al.,

19753 Wadh'wms, 1581). An alternative approach is to simulate numerically the
smoothing of the wide beam (17°) sonar on a profile measured with a narrower

beam. The wide beam causes the draft distribution to be shifted to the right,
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underestimating £hin ice and overestimating deep drafts and the mean draft
by about 107 (Williams et al., 1975; Rothrock and Thorndike, 1980; Wadhams,
1981).

The desired quantity is thickness, not draft. So’although isostatic

balance is achieved oaly over tens of meters, it is assumed to hold at each

point in order to convert hb(x) to h(x) by

_ water density (:)
h(x) = ice density hb(XJ 1.1 hh(x)
The error thus introduced has zero mean and is probably not important.
To estimate a statistic of thickness, we integrate over some length L

of the profile. For instance
L
H=2 | h(x)dx
L
1]

is an estimate of the true mean thickness H. If L is chosen too small, the
estimate is poor. The estimator H is a random varizble with a dis.ribution.
Its mean is H: 4t is an unbiased estimate., The important quantity is the

N A
variance of H which tells how close H is likely to be to the true mean. The

" wvariance is

L L
J h(x;)dx; ~ H é% J h{xy)dxy; - H
0

0
LL
11"2 ” E[h(xl) - I{H:h(:cg) - H]dxldxz
00

it

et i

var H = E(H -~ H)2 = E

]

e o g 0 el ol e, e AFEEL A
- et emea. PR o 4 e ne ee Rt et a1 e P

§ ek T . At R g e gl B oy m ) g e Wt e P el TR R e iy sop gL WP L £ s 4 e e R s 1 o P o P~

e S Ry

DT TR L R

et —

ke
o

N
-




4

l' i‘

: ORIGINAL PAGE f§{ ; ;l
- , OF POOR QUALITY A
]

E is the expected value operator. The integrand is ﬁﬁaﬁ the autocovariance ;

3

of &, Ch; assuming the thickness is homogeneous and isotropic, it is a fune~

tion of separation only’s = |%; - %3|. The double integral reduces to ?

~

L
=2 _5
var H = I J [1 L]Ch(s)ds
1}

by transforming to new variables s and t = x, + X, and integrating over t.

For the Gurnard profile whose autocovariance is shown in figure 2, this sampling ;

T T i

error is listed in Table 2, A typical mean thickness of 3-to~4 m can be i i

sampled by a record ten-to-twenty kilometers long with a sampling ervor of 10%Z.

[ I

Table 2. The sampling error of an estimate of mean thickness from a line
record of length L.

2 1/2

L, km (var H , T % ‘ f?
10 0.38 5
50 0.17 3

100 0.12 f
500 0.05
1000 -0.04 I &

.;3§gv«

Although no error model has been developed to treat these several measure- : '

ment errors and the sampling error as a whole, it is likely that mean thickness

estimates from 100 km sonar profiles have an uncertainty of 0.2 to 0.4 m. »

How large is the sampling error for distributions shown in Figure 2?7 In

particular, how accurate is an estimate of p, for the bin a<h<b? To answer

i
this question, we need to characterize the spatial arrangement of the regions ; {
coniributing to this bin., These regions are identified by the indicator functiom 1

{
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1, a<hx,t) <b

v(g,t) =
0, else

The regions where m = 1 are the regions we must sample to estimate p. Given
profile data (and so, ignoring the y and t dependence), our estimate of p is
the fraction of the profile intersecting these regions

L

3 =% J w(x)dx
D

The estimate is unbiased, since
~ 1
Ep = L

L
JE‘H dx
0

probability [a<h(x)<b]-

(ol I

L
de=p
0

assuming the process is spatially stationary. The remaining issue is: how

large is the variance of p? We have

var p E(§ - p)2

et

L L
E %‘- J‘ Er(xl)—p dxp T JET(XZ)—p dx?_
0 0

L

1
=TT J C“(xl,xz)dxldxz
1]
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where
C_(x1,%p) = EEr(xl) - p] ETCX;_») - p]

is the autocovariance of the indicator function. Stationarity provides that
Cq depends only on the distance between points s = ]x1 - x2], and the double

integral reduces, as before, to

L
var § = £ J[l - %]C“(s)ds (2)
0

'fge autocovariance Cw has magnitude p(l-p) at s = 0 [since En(x)7n(x) =
En(x) = pl, and is zero at s = » [since En(x)r(x+s) + p2 as s + »], If

we define the correlation coefficient

C“(S)
r(s) = __—P(l"P)
{2) becomes
var p = p(l—pﬁ@VL . (3

where
L
g=12/1-2 r(s)ds
L
0

In practice we are interested in the case where r(s) drops off in a distance

much smaller than L then
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(When L/.?,m > 5, we find ¢ within 10% of 2 <) The quantity 2 _ is the auto-
correlation length scale; it is also a measure of the characteristic length
of individual profile segments with w = 1,

The first portion of Table 3 gives values of %. computed from the Beaufort
Sea profile. Values as small as 10 m have considerable uncertainty because
the horizontal resolution of the Gurnard data is several meters., The Tesulting
sampling error for ﬁ is also shown there and in Figure 3., The length scale
for thin ice is much greater than that for thick ice, because thin ice is spread
out in leads and polynyas, whereas thick ice is clumped in ridges. In the
table, we see that the thinnest ice and the 5-to~6 meter ice are equally plenti~
ful, but that the error Uﬁ is an order of magnitude smaller for the thicker
ice bin. To get an equally good estimate of the thin ice would require a

Tecord 5600 km long {although not necessarily in a Straight line).

Table 3. Length scale and sampling error for ten bins of two draft distribu-

Eions.‘ The quantity ga = {var §)1/2 is the standard deviation of
P; o5/D is the relative error.

Bin (m) Beaufort Sea 1 = gp km Fram Strait L = 100 kn
% P o5 aﬁlp P o5 Uﬁ/p
{m) (%) (%)
0 to 1 1300 053 -033 62 «105 .035 33
lto 2 230 089 018 20 026 0076 29
2to 3 170 42 2026 6 .036 0077 21
3t & 34 « 20 .0085 5 137 0063 5
4 to 5 20 .087 0051 6 o110 «0044 4
Sto 6 14 051 «0034 7 084 0033 4
6 to 7 11 031 0023 8 .073 0027 &
7to 8 10 .021 .0019 5] 073 .0026 4
8to 9 12 014 0017 12 073 .0028 &
9 to 10 11 011 0014 13 057 0024 4

NS g g

T L M

[




-1]~

Assuming £_ is not very different for another ﬁéture ice cover, the
values of £ _from the Beaufort Sea profile have been used in (3) to evaluate
the sampling error for the Fram Strait distribution (in Table 3 and in Figure

"3). Within the sampling error, the percentage of thin ice (0O-to-1 meter) in
he two distributions is marginallg-distinguishable, but in all other bins,

the distributions are measureably different.

Heat balance estimates are sensitive to the thinmest 5 or 10 centi-

meters of icer.eskut this—wvelwmsel. Given the measurement errors and

sampling difficulty, present submarine sonar records cannot provide good

- estimates of such narrow categories of thin ice.

Boring Holes

The most direct way to measure thickness is to bore a hole or cut a
core. Thickness can be measured to whatever accuracy is appropriate to the
condition of the surfaces. 8o there is negligible measurement error.

It can take a few minutes' work to bore a hole. A reasonable strategy
for estimating thickness statisties might be to determine the thickness hi
by boring n holes. To be independent the samples must be roughly 1 km apart;

this is the spacing at which the autocorrelation function of hb(x) has its

first zero (Figure 2). How close is the estimate of mean thickness

h

=2 ¥,
e i

Il t~1d

i=1

to the true mean H? The variance of H is

var H = 02/n
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where o? is the variance of the thickness distribution. Table 4 shows a few
values of n required to achieve a desired sampling accuracy using the variance
g2 ; Ch(o) = 5.6 w? from Figure 2. So we could sample H to #0.5 m by coring
once, flying a kilometer away, kicking out a bag of dye to mark an unbiased
site, landing and boring at the dye mark and repeating this twenty times.

This ~argument, although without the condition of spatial independence pf the
thicknesses sampled, has been advanced by Untersteiner and Maykut (1969),
with the result that 50 samples are needed to establish the mean with a stan-

dard deviation of 1/3 meter.

Table 4. The standard deviation of an estimate of mean thickness from n
independent samples.

" 1/2

n (var H , B
23 " 0.5
62 0.3
560 0.1

2240 0.05

Such requirements to obtain the average ice thickness are diffieult to
meet in practice, but not outlandish. To obtain an entire thickness distri-
bution by drilling holes in the ice requires lpgistics bordering on the pro-

hibitive:
From n samples at positions %5y W estimate the fraction of area in the

e
bin a<h<b by

-~ =.l
P n 2

nt~10

m(x.)

LT
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which has expected value p and variance

70
2028 § 1 w[laey]
i=1 j=1
The object is to choose the hole positions % for the most efficient sampling.
ke
If v is never negative, the minimum variance is obtained by taking all holes

so far apart that r,, Is zero for i1 # j. From the submarine data we know this
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separation should be several kilometers (several times £ ) if we are sampling
the O-to-1 meter bin. The situation reduces then to n independent Bernoulli
trials with chance of success p; the varlance is simply p(l-p)/n. Table 5
shows that to resolve the distribution into ten bins each with ten percent

of the area to an accuracy of 30% (that is, p = 0.10 * 0.03) would require

one hundred holes. %hisdis—getting—imprecticad., Boring might be practical Ok£7

in applications which require a falrly coarse resolution of the distribution

with generous tolerances.

Table 5. HNumber of independent samples n required to estimate fraction of
area p with standard deviation cp equal to some fraction of p.

n for n for
o_ = 0.3 g_=0.1
P p P p P
0.3 26 233
0.2 &4 400
0.1 100 900
0.05 211 1900
0.01 1100 9900

Other Methods

There is a class of observing techniques that may eventually provide
measurements of ice thickness from airecraft or satellite. Some are discussed
in another chapter, but not necessarily with regard to sensing ice thickness.
All are in an early stage of development as thickness sensing instruments.
Included are radio echo sounding, visual and infrared photography, various
microwave and radar senmsors, and laser altimeters. Only radic echo scunding

senses both the upper and lower surface, Altimeters sense the height of the

: Emnng‘n LRI T
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snow surface; to estimate the ice surface ht and then multiply by

[ 1 - ice density ]_1 E:)O : 1
water density . |

to obtain thickness h introduces unsatisfactory errcrs. The microwave radio-

meters sense radiative properties at or near the top surface—-—-properties only 3

ﬁeakly tied to ice thickness for thick ice. |
Some measurements of thin ice fraction have been obtained from LANDSAT :

visual images with accompanying ground truth. The area of gray ice is measured ;

e -

from an image; the thickness of the gray ice is determined by coring or drilling.

This method has provided data for tests of thickness distribution theory

e Mmoo

{(Thorndike, 1980).

B R I

THICKNESS DISTRIBUTION THEORY

Having observed the thickness distribution and having at least a rough

idea of the thermal and ridging processes which determine it, the ice physi-

cist has naturally been tempted to formulate a mathematical theory to describe P
the distribution and its evolution. BSuch a theory was introduced as part of
AIDJEX modeling work (Thorndike et al., 1975), and is gradually being intro- Arf
duced intc forecasting and climatological models (e.g., Hibler, 1980). 1Its |
use does involve several difficulties. First, since the distribution is

difficult to observe, often no initial conditions are available, and model
results cannot be verified {(or refuted). Second, largely for the same | l
reason, model parameters describing the ridging process are not well known,

so that the model results can only be considered rough approximations. And

third, generally one is modeling the ice cover as a function of two (horizontal)
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space coordinates and of time, and the additicn of another independent
variable, ice thickness, considerably enlarges the computational burden.
Being thus forewarned that the theory is no panacea, we will nonetheless
review it and see what strengths we find in it.

The equation for the time rate of change of thickness distribution

g(h,x,t) is

-g;% =¥ - divige) - %ﬁg) + ¢ (42)

The four terms on the right hand side, discussed one at a time below, repre-

sent opening and ridging, flux divergence, ablation and accretion at the upper

or lower surface, and lateral melting. The Lagrangian form is
2& - - LY T e .—a_
TR - div & ah(fg) + ¢ (4b)

These equations are primarily statements relating geometry and kinematics.
The real physics of the ice cover enters in the structure of ¥, £, and ¢. All
three of these functions depend on the thickness éistribution itself, making
(4) 2 non-linear functional equation. Eavly work with this equation treated
only the feedback of the thickness distribution g through ridging and opening
Y. More recent work (Maykut, in preparation; Hibler, 1980) has included the
feedback by which summer melting (¢ and f) is determined by the amount of radia-
tion absorbed and hence the open water.

To consider flux divergence, we focus on an arbitrary region R and the
exchange of h~ice (ice of thickness between h and h+dh) across its boundary

curve C. The flux of h-ice across a line with normal n is n . ug dh. The

. ‘MM«_.“‘-#‘»%‘;’Q"”,*.'-*‘
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total flux into or out of R is written first as the integral of the flux

around C

§ n ~ ug dh dl
c

and then, by Gauss' theorem, as

[J div(ug dh)da
R

This term accounts for the net loss of h-ice from R

- —aa—t ” (gdh)da
R

Since R is arbitrary, and fixed in space, the equation takes the differential form

%% = ~div(ug)
This flux divergence term has two parts: -g div u, denoting the influx of
h-ice by convergence, and -u - grad g denoting advection.

Thermal growth f = dh/dt carries ice to 2 new thickness, in just the
same way as velocity u = d§/dt carries ice tc a new position, giving 2 term
completely analogous to the flux divergence term

g ___9
ot~ " 3n 08 (5
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This is a mathematical statement. For a more physical view of thermal growth,
it is best to turn to the cumulative distribution G(h,t). The governing
principal is that ice thinner than h at time t is thinner than h + fdt at

time t 4+ dt giving
G(h,t) = G(h + £dt, t + dt)

Expanding the right hand side about (h,t) gives

G(h,t) = G(h,t) + % . fdt + %% dt + 0(dt2)

or

which is the integral form of (5).
Lateral melting ¢ eats away at the edges of floes to reduce their area.
The process conserves area: an amount of open water is formed equal to the

total ice-covered areaz melted so
s = s[ach) - zch)]

where s depends on the available heat (but not on h), 6 is the Dirac
[~-]

delta function and 2(h) is positive with j 2(h)dh = 1. The volume loss
0

of b~ice shi{h) is proportional to the area of f£loz edges which we can

take to be proportiomal to hg(h):; hence, 2(h{:§;&(h), and the integral

it it ——p
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constraint determines that 2(h) = g(h). The unknown s is determined by BN

O

stating that 5

Q=pLJh¢dh
1}

where Q is the rate at which heat becomes available for lateral melting
{per unit area of R), P is the density of ice, and L is the latent heat of

fusion. Solving for s and substituting gives

e wam e e

PR * I -
* = iE [S(h) g(h)]

. o |
¢! where H = [ hgdh. ! :
. ] ool

Ridging and opening processes are embodied im the redistribution func— | ﬁ
i T ]
; / ,

tion P, on which there are two constraints. 'Ehew Zp’rocesses can

only rearrange existing ice, ridging thin ice to produce thick, but cannot ’

P

alter the mean ice thickness, so by assumption !

/ i
i)
J hydh = 0 ;{
E/ Furthermore, the formation of new area of open water less the loss of area
N by vidging must exactly accommodate the area of ice imported by convergence.
- Hence, ignoring the thermodynamics (setting £ = ¢ = 0) and integrating (&)
- over all h gives ‘.i

por
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The definition of ¥ is hypothetical, relying on assumptions and
reasoning about idealized situations (Thorndike et al., 1975; Hibler, 1980);

there are few hard fa:ts about redistributiong

fB;;;‘waterAformation is represented by a delta function at h = Q,
and ridging by a function n(h) which is a sink of thin ice and a source of
thick iece. The degree to which each of these processes occurs in redis-—
tribution depends on strain rate invariants. We denote the sum of the

principal strain rates by EI (= div u) and the difference by £ These

IL*

- - Ll 1
can be expressed in polar form as a mndul%% le[ = (e, %+ 2)i s Which

1 T Fr1

tells the quantity of the deformation, and an angle 6 = tan !

which tells the quality of the deformation.

The combination of ridging and opening into { is assumed to be propor-—

tional to strain rate in the form

b= 18] {o, @ 8@ + o (0) um |

The coefficients o and'mr need to be observed in nature-—the idea is that
divergence (small 8) will favor opening (larger o smaller ar) and conversely
that convergence (6 getting up toward m) will favor ridging. But even in
pure shear (8 fi%;, the separation of floes in some locations and coming
together of floes elsewhere will insure that both opening and ridging occur
simultaneously.

Just how the ridging function { varies with h depends on the present
state of the thickness distribution (since we don't want to ridge ice that

isn't there), and on two parameters G* and k. G*%* is the cumulative fraction

of the thickest ice assumed to ridge. It is taken to lie in the range 0.05

to 0,15, allowing ice up to
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about one meter to ridge. The s2cond parameter k is the ratio of the thick-
ness of ridged ice to its original thickness. Of course, even the notion
that this ratio is a constant is a strong contradiction of reality. The value
originally assumed (k = 5) seems to have been too small, producing no ice
thicker than 6 m and allowing the pack to deform too easily. (Ice strength

is thought to be tied to ridging and'to increase with the size of ridges being
formed.) A value of k = 15 is better in both respects.

An alternative formulation of redistribution has been advanced in which
ridged ice is quantified not by its thickness distribution but in terms of
mean ridge height and ridge intensity (Bugden, 1979). The motivation, of
course, is that ridge statistics are readily available from aircraft wvisual
observations and laser profiles, so a model predicting them would be testable.
This approach has its drawbacks, though, and has not been hotly pursued.
Ridged ice is not the sheet threaded with long triangular rubble piles seen
in schematic diagrams. In reality old and new ridges overlap, making the
identification of a pressure ridge a matter of each observer's particular
definition. So ridge statistics are not uniquely related to areas or volumes
of ridged ice, Hence an equation involving areas of undeformed ice and
ridged statistics for deformed ice is less c¢lean than the formulation involving
only ice areas. The more desirable path is to state the theory wholly in
terms of thickness distribution and improve techniques for extracting it from
data.

The first theoretical solutions for thickness distribution were calcu-
lated for a single Lagrangian point from (4b); that is, space was not a

variable., We will examine solutions of that problem here. Deformation rate
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is a function of time, known from sets of buoy tracks, often lacking frequen-
cies greater than 1 cycle per day. Growth rate is a function of thickness
and time, known from climatology, and lateral melting is neglected. Starting
with an observed distribution as an initial condition, solutions change in
time but hover near a realistic distribution. Thus the theory is compatible
with our understanding of ice dynamics,

The theory, of course, can do more than predict the distribution. It
shows us which terms are important to the balance in various ranges of thick-
ness and just how large these terms are. Table 6 shows the annual average
of net thermal production (growth into the range less growth out), ridging
and open water gain, and import by convergence. The thinnest category is
maintained by newly formed open water growing thermally into the next cate-
gorys; some ice is ridged out of this category. TFor the rest of the thin
ice (0.1 to 1.6 m), the net thermal production is nearly balanced by ridging
loss. For equilibrium ice (1.6 to 6.4 m) both thermodynamics and ridging
provide sources. A balance is only made possible by the divergence. Thick
ice (»6.4 m) is not in balance. It is gaiuing 0.7% per year because the
ridging gain ecannot be compensated for by this divergence and the net nmelt.

Whereas ice thinner than the mean adjusts fairiy rapidly to a given
deformation and growth regime, it is probably futile to think about an equili-
brium distribution for thick ice. For one thing, the determining variables
are poorly known: the long term met divergence, the infregquent large con-
vergences capable of making very thick ice, and the melt rate and rate of
erosion for thick ice. For another, the adjustment time for thick ice is
slow: it takes thirty years for twenty-five meter ice to approach equilibrium

thickness. Only the Beaufort Sea may contain ice that old.
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Table 6. An average over one year of the terms in the thickness distribution
equation (4b). Each term is also integrated over a thickness
range. Units of terms are percent per day, of thickness distri-
bution, percent.

TEI.‘mS in ([('b) 0_0-1 m 0.1“1-6 I 1-6'—604 1B 6-4-25.6 m
Thermal flux _ _8 _ _
gradient ah(fg) 0.59 0.43 0.013 0.003
Open water AS 0.73
production ;
Ridging loss = C My -0.14 =0.44 0 o
Ridging gain c e 0.00 0.01 0.015 0.014
Import - gdiv u 0.00 0.00 -0.028 -0.009
Rate of change 0.00 0.00 0.000 0.002
of g
b
Thickness
distribution J gdh 2.9 2(3.0 58.9 18.1
a

The balance in Table 6 is no surprise but simply shows that the model
behaves much as the ice it was designed to mimic: open water grows to thin
. or 1L ermac e,
ice and is ridged imto thick ice which continually zblates{ The theory eluci-

dates some unforeseen details, and most importantly tells the rates of these

various transfers and shows how nearly balanced they are.
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A WORD ON NUMERICAL TECHNIQUES

One numerical procedure for solving this problem involves integrating the

functional differential equation

A -~

DG _ s D _D ]

Br = J Yéh - G div u, where —-—ﬁt Dt + £ T
0

for each time step along characteristics satisfying

A - tm,0)
and then to interpolate the new G(h + f£dt, t + dt) to some fixed h-grid
G(h, t + dt). A large area of open water freezing at the same time (late
summer appears as a2 step in G(h) or a spike in g(h). This step cannot be
resolved by any fixed grid. But to make matters worse, repeated interpola-
tion at each time step continues to smooth out the step. The numerical solu-
tion then is only a shadow of the correct solution. An alternative procedure
{Colony, personal communication) is to allow the hugrid to flopat, moving with
the characteristics. A step can be followed by two nearly identical charac-
teristics on which the values of G are quite distinct. TFigure 4 shows solu~
tions using Colony's characteristic grid, a coarse fixed grid (5 la Thorndike
et al., 1975), and 2 much denser fixed grid (153 h-values at spacings varying
from 2 to 50 cm). Table 7 shows further comparisoms. The integration starts
with all thin ice, proceeding in time steps of one day for a year; the defor-
mation rates are those computed from the AIDJEX manned camps (Colony, 1978).

The values k = 15 and G* = 0.1 were used, and A and C were those identified

with the 30° teardrop in Rothrock and Hall (1975).
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Table 7. Variables computed by different numerical procedures.

coverage = coverage by coverage

Numerical mean thermal by ice between by
procedure thickness production fce<1m 1 and2m dce > 6m
h, m fdt, m G(L), % G(2)-6(1),% 1-G(6), %

Characteristic grid 144 163 23 69 85

Dense fixed grid 144 171 34 58 95

Coarse fixed grid 176 246 45 23 96

The large step at 1.2 m is the remains of the initial thin ice. The
smaller step at 18 cm is from the freeze up several days before the integration
stops. These are clearly not going fo be captured by a coarse fixed grid. It
is more surprising that the finer fixed grid smears the large step out over
nearly one meter. Another curiosity is that evsn the coarse fixed grid repre~
sents the thick ice better than the thin ice from which it is produced. I
see two lessons here, First, special numerical care is warranted for these
discontinuous functioms. Second, some variables are robust against numerical
errors, and some are quite sensitive; it would seem prudent to know into which
class one's favorite variable falis.

G can also have steps in space. If there is ice of thickness H to the
left of an ice edge at x = X, G has a jump along the curve shown in Figure 5.
Representing this function G(h,x) accurately will require more than single
values on a fixed (h,x)~grid. &4nd as H and X change with time, the jump in

G will be lost if special care is not taken.
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TESTING THE THEOQRY

Several tests of the theory (Nye, 1975; Thorndike et al., 1975; Rothrock
and Hall, 1975; Coon et al., 1977; Thorndike, 1980) have focused primarily on
the dynamics of thin ice and open water and have compared these quantities to

satellite observations. They show that:

i) the theory adequately simulates thin ice with the chosen forms
of A, C, and s and the value G*¥ ~ 0.05 to 0.10,

ii) the considerable uncertainty in deformations estimated from the
motion of only several points can cause considerable dis-repancy
between computations and observations, in particular of summer
open water,

iii) the value k = 5 produces ridged ice that is insufficiently thick.

As another test of the theory, focussing particularly on the thick ice,
the following situation has been simulated. Ice forms in the Siberian marginal
ice zone, and drifts across the ocean. It passes the pole in roughly three-to-
five years, judging from the drift tracks of North Pole 6 and 10 and the Sedov.
Starting on September first with an initial condition of 100% open water, the
thickness distribution model just discussed (k = 15, G*¥ = 0,1, 30° teardrop,
AIDJEX manned camp deformatioms, climatological growth_rates, no lateral
melting) was integrated for several years.

Some results are compared in Table 8 with submarine data from the vicinity
of the pole. The theory ha; not produced enough thick ice. That was a short-
coming in the calculation by Thorndike et al. (1975), but there k was 3, and
no ice over 6 m was produced. Here, k is 15, and ice is produced in the whole
thick end of the distribution, up to 23 m. Furthermore, the shape of the thick
end of the distribution is similar to observations, Ice of the right thickness

is being made but in too small an amount. The more likely cause for the dis-

crepancy is in the deformations driving the ridging. They were observed in a
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ature ice cover in the Beaufort Sea, and may be quite inappropriate for voung _ :

ice in the marginal ice zone. ' !

Table 8. Comparison of theory to data in a transpolar drift.

Coverage of Coverage of Coverage of
Mean ice thinner ice between ice thicker 1 :
thickness than 2.2 m 2,2 and 5.6 m than 5.6 m T
h, m Z % A i {
! i
Theory, ; E
after 3 years, 3.0 74 12 14 Lol
October ! i
Theory, E
after 5 years, 3.5 64 16 20 : v
October ! %
Sovereign, %
sec. 17-21 b4 i3 59 33 i
October .
- %
. i
Dreadnought, oo
March 4.6 12 55 33 ‘
{

Sovereign and Dreadnought data are from Wadhams (198l). Drafts are
multiplied by 1.11 to obtain thickness.

The open water at the start of the simulation has, after five years,
grown to 1.9 m and covers 30% of the area. The Dreadnought thickness distri-

bution shows a strong peak at 2.9 meters' thickness (Williams et al., 1975,

Figure 10). The Sovereign peaks occur at slightly greater thicknesses. This
deficiency of the model could be due to poor growth rates or to an underesti~
mation of rafting and ridging of the young Siberian ice. o

The procedure of combining inputs and thickness distribution observations

from different times and places is not going to provide any further improvement
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in the theory. As the ditty has it, "the'v gone about as fer as the' kin
go." A more controlled and complete experiment is necessary, in which a
Lagrangian region is monitored repeatedly by submarine and satellite, and

the deformation history and thermal environment is documented continuously.

WHITHER THICKNESS DISTRIBUTION?

Several avenues are available for advancing our knowledge of ice thick-
ness distribution.

1) The parameters in the model are pinned down as well as available data
allow. A controlled mass balance experiment would be valuable in whiéh
the model inputs and outputs were simultaneously monitored.

2) Sampling theory can determine how large a sample is required to resolve
the differences we think we observe between two distributions. This should
be a prerequisite for a mass balance experiment.

3) Remote sensing is unlikely to resclve the thickness of thick ice, but a
program combining satellite estimates of thin ice and submarine sampling
of thick ice would be valnable. -

4) Substantial concentration of a single thickness creates numerical problems
that need more attention.

5) The ice cover moves in pieces and not as a continuum as presently assumed
in theory and in the analysis of deformation. A more direct approach to

redistribution could be developed in terms of the movement of pieces.

k

o S
w2t

b e b 4 ma e

e+ by Air e m T LT

e e b

~peasmpzanpch-
ﬂm‘ .




—28~

REFERENCES

Bugden, G. L., 1979. The deformation of pack ice by ridging. J. Geophys.
Res., 84, 1793-96.

Colony, R., 1978. Daily rate of strain of the AIDJEX manned triangle.

ATDJEX Bulletin, 39, 85-110.

Coort, M. D., R« T. Hall and R. 8. Pritchard, 1977. Predictions of arctic

ice conditions for operations. Proc. 9th Annual Offshore Technology

Conf., 4, 307-14. Offshore Technology Conference, Callas, Texas.
Doronin, Yu P., 1970. K methodike rascheta splochemnosti i dreifa 1'dov.
(On a method of calculating the compactness and drift of ice floes.)

Tr. Arkt. Anarkt. Nauch. Issled. Inst., 291, 5-17. (English transla-

tion AIDJEX Bulletin, 3, 22-39.)

Hibler, W. D., 1980. Modeling a variable thickness sea ice cover. Monthly
Wea. Rev., 108 (12), 1943-73.

LeShack, L. A,, 1980. Axctic ocean sea ice statistics derived from the upward-
looking sonar data recorded during five nuclear submarine cruises. Tech~

nical Report to the Office of Naval Research. Contract N00014-76-C-0757/

NR 307-374.

Lyon, W., 1963. The submarine and the Arctic Ocean. Polar Recoxrd, 11,
699-705.,

Lyon, W., 1966. Under surface profiles of sea ice observed by submarine.
11th Pacific Science Congress, Tokvo.

Maykut, G. A., in press. Large scale heat exchange and ice production in

the central arctic. J. Geophys. Res,

et L S R A TR - meek ome = el

it ot o8l

e

S Bt

e

Y e Ve -

B




-29-

Nikiforov, Ye. G., Z. M. Gudkevich, Yu. I. Yefimov, M. A. Romanov, 1967.
Osnovy metodiki rascheta pereraspredeleniya 1'da b arkticheskikh
moryakh b navigatsionnyy period pod vosdeystviem vetra, (Principles
of a method for computing ice redistribution in arctic seas under the

influence of wind during the navigation system.) Tr, Arkt Anarkt.

Nauch., Issled. Inst., 257, 5-25. (English translation AIDJEX Bulletin,

3, 40-64. NTIS No. PB 196063.)
Nye, J., 1975. A test of ice thickness redistribution equations by measure-

ments on ERTS pictures. AIDJEX Bulletin, 28, 141-49.

Rothrock, D. A. and R. T. Hall, 1975. Testing the redistribution of sea ice

thickness from ERTS photographs. AIDJEX Bulletin, 29, 1-19.

Rothrock, D. A. and A. S. Thorndike, 1980. Geometric properties of the

underside of sea ice. J. Geophys. Res., 85 (C7), 3955-63.

Thorndike, A. S., 1980, Tests of the ice thickness distribution theory. In

Sea Tre Processes and Models, ad. R. S. Pritchard, Univ. of Washington
Press, Seattle, Washington, 144-50.
Thorndike, A. S., D. A, Rothrock, G. A. Maykut and R. Colony, 1975. The

thickness distribution of sea ice. J. Geophvs. Res., B0 (33), 4501~13.

Untersteiner, N. and G. A. Maykut, 1969, Arctic sea ice, Naval Res, Reviews,
Ofe. of Naval Res., Wash., D.C., 12-13,
Wadhams, P., 1980. A comparison of sonar and laser profiles along corresponding

tracks in the Arctic Ocean. In Sea Ice Processes and Models, ed. R, S.

Pritchard, Univ. of Washington Press, Seattle, Washington, 283-99,
Wadhams, P., 1981. Sea ice topography of the Arctic Ocean in the region

70°W to 25°E. Phil., Trans. Roy. Soc., 302, 45-85,

Wadhams, P. and R. J. Horne, 1980. An analysis of sea ice profiles obtained

by submarine in the Beaufort Sea. J. Glaciol., 25 (93), 401-24.

[ T R R

sammn =

| Mg




L 4 &
\ i
-30-
‘,
Williams, E., C. Swithinbank and G. de Q. Robin, 1975. A submarine sonar
study of arctic pack ice. J, Glaciol., 15 (73), 349-62.

1
Wittmann, We I. and J. J. Schule, 1966. Comments on the mass budget of g :

arctic pack ice. Proc. Symp. on the Arctic Heat Budget and Atmospheric '
Circulation, R¥M-5233-NSF, ed. J. 0. Fietcher, Rand Corp., Santa Monica, ;-~ l
Calif., 215-246. : :
d
i
: i.
]
i
i
i '}
l
| |
!
: !
Y
-
: .
i 1,
i 1

g T s e e e e Bt T




. ‘:C\

3]

FIGURE CAPTIONS

Figure 1. Distributions of ice draft for two regions.

The bin size is
one meter.

The Beaufort Sea data are from Gurnard profiles (the 60 km
offshore profile of Rothrock and Thorndike, 1980), and the Fram Strait

data are from Sovereign profiles (a 97 km profile, section no. 2 in
Wadhams, 1980).

Figure 2, Autocovariance of the Beaufort offshore profile (from Rothrock
and Thorndike, 1980).

Tigure 3. The range of probable values for the distributions 1n Figure 2.

In each bin, the range § - op to D + o, has been filled in~~stippled for
the Beaufort Sea distribution and crosshatched for Fram Strait.

Figure 4, Cumulative thickness distribution computed from theory using three

numerical schemes: characteristic grid, coarse fixed grid, and fine
fixed grid.

Figure 5. A line of discontinuity in G on the (x,h) plane. Open water lies
to the right of x = X.
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Figure 1. Distributions of ice draft for two regions. The bin sizes is E
] one meter, The Beaufort Sea data are from Gurnard profiles
— (the 60 km offshore profile of Rothrock and Thorndike, 1980),
< and the ¥ram Strait data are from Sovereign profiles (a 97 km
_ profile, section no. 2 in Wadhams, 1980).

R et 6 Al o v e G A L
- ¥ TPV PPN RS S & A T L P T U e it oA ke b b0t e i MBS s ko O - -



o
"
+>

g
ORIGINAL PAGE_:S {
OF POOR QUALI :
[ T —— g | ) B T T T f‘
; ‘:'
St ol
. 1|
ar. 6 T = |
[
(4]
1] . .
L w . 7 ' |
o] . |
[+ 0. . |
g rid 44 « " - \
u "' ! | =
S % 0 10 20 30
El I+ . "
© \m
0r N :
_|!1 Y (M P e | { O | 1 T A ‘
6"~ "200 400 600 800 1000
A, LAG (m)
Figure 2. Autocovariance of the Beaufort offshore profile (from Rothrock
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Figure 3. The range of probable values for the distributions in Figure 2.
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APPENDIX III
KINEMATICS OF SEA ICE
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A. S, Thorndike

e b TR T e - By e iy e

L i e e b e 4 ake & - aeova . R g e

W

e i it m i



N\

1}

CHAPTER % KINEMATICS OF SEA ICE
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5. KINEMATICS OF SEA ICE OF POOR QUALITY o

Kinematics is that branch of physical science dealing with motion
itself and not with the causes of the motion. Attention is focused, in
this chapter, on how sea ice moves. The deeper question of why sea ice
moves as it does is addressed in the chapter on sea ice dynamics,
For some scientific and practical applications, knowledée of the.ice kine- )
matics (as opposed to the dynamics) is sufficient. As examples, consider i
gouging of the sea floor in shallow weter, the transport of natural debris X
or pollutants, the impaet loads on structures, navigebility in icy regions,
and the movement of the ice edge. Aside Trom these applications, the study

of kinematies is a basic step toward understanding the dynamies.

B J

Figure 1 illustrates the idea that the motion of sea ice is the response
of the ice pack to external forces. To understand the response of the ice
one needs to monitor both the driving forces and the motion. Sinece we will
discuss only the motion here, there will be the underlying embiguity of
whether the results inform gbout properties of the ice itself or sbout the

B T R

driving forces. We will see for example that the ice motion is nearly non-
divergent. But we should not conclude on this basis alone that the ice is

an incompressible material. The correct explanation could be that the net

- TR ST M

driving force is itself nearly non-divergent. Because of this ambiguity !
in the interpretation of kinematic data, it is useful to think of the study oo

of the kinematics as part and parcel of the broader study of sea ice dynamics.

. ;-aq,w-

The fundamental kinematic notion is that all pieces of ice have an
identity which is preserved in time. If we identify & piece of ice by i
making a small mark on the ice surface ai position X et time o , the assumption ‘ - .‘x
is that at some later time % , the piece of ice as identified by that mark will
be at & position X . This defines the position function =(t ,X) with x(o,X) =X .
We do not mean to imply by this that ice floes retain their identity indefi-

nitely, only that it is possible to track individual points. Two points

originating on the seme ice floe mey very well wander apart in time, but we
assume we could keep track of them.

There are difficulities with the notion of a position function. It is
natural to consider the space domein to be the two dimensional surface of :
the Arctic Ocean, say:X:. At +=0 there will generally be some points in:zc ;
vhich are not covered by ice, so % ('l?,X) is not defined for some XG.X._ . '
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Further, ice is always being created and destroyed thermodymamically, so
“he position function x('l:,}() is only defined for an interval of time.
Finally, the idea that the small mark retains its identity is question-
able. This is a common problem in the definition of the motion of =z
turbulent fluvid., After a time the marked fluid has mixed with the unmarked
and it is no longer possible to assign = position to the merk., Something
of the same sort happens with sea ice. Despite these shortcomings, the
notion of a position function is the best we have. Furthermore this notion
corresponds exactly with most of the observations we have. We will use
the term trajectory for the function xH:,X) where )( is held constant. The
initisl position X serves to label ice particles and we refer to the
trajectory x(tX) of the particle X,

5.1 Observations

The most common observations of ice motion are of trajectories of ice

particles consisting of & sequence of measurements (zi,'b:.) , £=h N where

z = xlt,X) + &

The measurement error is represented by E; .

In passing we mention that other kinds of measurements of ice motion
have been made. Hunkins (1967) and McPhee (1978) for instance inferred the
ice veloeity using current meters suspended from the ice into what they
gssumed to be essentially a static ocean. These data were used to study
motion on the time scales of hours. An sttempt to study motions on much
shorter time scales using accelerometers was made by Craig (1972).

Many technigues have been used to measure ice trajectories. These
are summarized in Table I. Each technique has its good and bad feaetures.
Over the past decade most data have been obtained by satellite positioning
which works somevhat as follows. Suppose a stable frequency 1,f is trans-
mitted by a device on the ice. The signel recelived at the rapidly moving
satellite will have s freguency -,f which has been shifted by the Doppler
effect: 7E= 7€ +.A1E . The Doppler shift A;e is related to the rate of
change of distance between the deviee on the ice and the satellite:

Ajg ~ J':’E"" Zop ~ Zicel o The received frequency # is measured at several
times. If the satellite coordinates are known at these times, then each
megsurement produces an equation with unknowns 75 and A, - Generally

several measurements are made during the 10 to 20 minubes it tekes for the

e e e e
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technique

TABLE I

Techniques for measuring sea ice motion

Hunking et al, 1971
celestial navigation

Martin et al, 1978
satellite navigation

Thorndike, 1973
acoustic tracking

Tucker et al., 1980
Tabate et al., 1980
radar

Hall,. 1980
Landsat imegery

Hall & Rothrock, /5%
synthetic aperture
radar imagery
(SEASAT)

comments

basic measurement sampling accuracy
rate

azimuth and elevation 1l per day 103 m

of heevenly bodies

Doppler shift of stable 30 per day 30-500 m

transmitted signal

travel time from ice to up to 1 per 5 m

fixed reference on the minute

ocean floor

travel time from source on no limit <lmn

shore to target on ice

location of identifiable erratic 80 m

ice features

location of identifiable 1 per 3 days 80 m

- ice features

itk mrmm S s - m i mmemeiea e
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weather dependent

limited range, elaborate
instruomentation, rela-
tive position only

limited to near shore

weather dependent, good
space resolution,
poor time resolution

no system avallable at
present, properties of
feture systems unclear
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satellite to pass by. The several equations are solved simulianecusly far
7{ end 2% . Precise positioning requires a stable transmit frequency,
DPrecise measurement of the received frequency, and precise knowledgexof the
satellite coordinates. With care, errors can be controlled to the order of
tens of meters, as in the best uses of the Navy Navigation Satellite System. _
Satellite systems which serve primarily to relay deta from automatic é |
data platforms (or buoys) to data processing centers also determine the f !
location of the trensmitting data platform, using the same Doppler positioning ? ;
principle. The ARGOS system currently on the NOAA-B satellite can relay i *f
data from up to 30 sensors and determine platform locations to an accuracy L
of & few hundred meters gbout ten times per day. Fully eutomatic platforms
cost in the neighborhood of $6,000 with additional costs depending on the

desired sensors. A

P R

Satellite imaging systems can also be used to measure ice motions, pro-
vided that some features on the ice can be identified in a sequence of images.
Because of their all season and all weather capebility and good resolution,
imeging radar systems will probably be best. The basic angular resolution
of ‘these systems is approximetely the ratio of the wavelengith of the radar

Lm B E b g e e M ko ® T Uk

signal to the diameter of the antenna. To achieve an angular resolution of

TN
iy S

10-5 (10 meters at a range of 1,000 kilometers) with a wavelength of 25 cm

(1.2 GHz) requires an antemne 25 km in dismeter. Although such large antennas

cannot be constructed in space, it is possible to synthesize large antennas

Bt L D a—

o

by using data from several points along the satellite's orbit. The determi-
nations of the geographical position of an ice feature with the SEASAT data I
contained errors of up to 3 kilometers (see Hall and Rothrock, 1981). Unless

these errors can be reduced the date are not particuiarly valuable for
measuring the displacements over intervals of a few days or less. However,
the errors are highly correlated in space and are essentially eliminated in
estimates of the spatial varigbility of the ice motion.

The attractive feature of imaging radar systems is their potential to
sample densely in space. Hall and Rothroek's work suggests that it will be
possible to track roughly one fesbture per sguare kilometer, which will
resolve most of the spatial structure of the field of motion. Technigues
for extracting data from the images or from the raw data are still rather

primitive. No doubt setisfachbory automated techniques for identifying and

tracking Teatures will be developed when the need arises. At present there

is no imaging radar system in space. Plaenning is underwasy for a system to ; i

be in operstion perhaps by 1985.
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5.1.1. Sources of data

the ice.

The earliest ice motion data are the trajectories of ships beset in

These are followed by the trajectories of numerous Soviet and U.S.

drifting research stations, and more recently by the trajectories of auto-

matic data buoys.

Experiment Reference
T3 Hunkins et al., 1971

Beset ships and Hastings, 1971
drifting stations
before 1970

ATDJEX 1972 ATDJEX Staff, 1972
ATDJEX Thorndike and Cheung,
1975-76

1976-77 buoys Thorndike and Cheung,
1979 buoys Thorndike and Colony,
1980 buoys Thorndike and Colony,
Fram I, 1979 Hunkins =t al., 1979
LOREX T9 Popelar et al., 1981

5.2 The general circulation

1977

1977

1980

1981

The following list of data sources is by no means complete.

Description

Monthly positions May 1062-
December 1970

A chart showing most prior
trajectories, one point per
month; ineludes: Fram, Jeanette,
Maud, Sadko, Sedov, Tegetthoff,
British Trans-arectic Exp.,
Alpha, Arlis I, Arlis IT,
Charlie, North Pole 1-20, T-3.

100 km triasngle, Beaufort Sea,
March and April 1972,

Manned camp positions and
velocities tebulated at 6 hr
intervals, daily buoy positions.

Tabulated daily positions of
Beaufort Sezs buoys.

Tabulated daily positions,

25 buoys, analyses of surface
pressure plotied daily.

As above.

March-May 1979; 84°N, 9°W

Three stations, 100 km spacing
April, May 1979; 88°-90°N.

The main features of the long term circulation, Figure 2, are the clock-

wise circulation in the Beaufort Sea——and the motion of ice from the Siberian

coasts across the North Pole and through the Greenland-Spitsbergen passage.

Time honored nomenclature for these features are the Beaufort Gyre and the

Transpolar Drift Stream.

Some handy nvmbers for these long term features are:

center of Beaufort Gyre: B80°N, 155°W, half way between Pt. Barrow,

Alaska and the North Pole

et e S E s w8 haw el B D b WAt s -

i
,._;
1
¢
1
1
[
H
]
r

MR e
e

e e e

S b o eies A




e s A T R e

N S

P —

CRIGINAL PAGE I3
’ QF POOR QUALITY

time o make 1 circuit: § years

time to traverse Transpolar Drift Stream: 3 years

ares fiux through Greenland-Spitsbergen Passege:

300 km?/day or gbout 20% of the ares of the basin per year.
This pattern of motion exists only as =n average over several years.

On shorter time scales there are departures from the long term pattern. Con-
sider for example the trajectories plotted in figure 3 for the year 1979 and
Pigure 4 for 1980. The trajectories are characteristically meandering and
convoluted showing that on monthly time sceles the ice motion differs markedly

from the long term mean. On shorier time scales, not resolved in these figures,

the motion is even more irregular. Notice the major anomaly which occurred in
the summer of 1980 when the motion of several buoys for several months was in
the opposite sense from the long term mean. These departures of the actual
motion from the long term pattern in most ceses represent the response of the
ice to the passage of atmospheric systems.

If we ignore the forces and examine only the ice motion, the departures
from the mean circulation appear aperiodic and chaotic. The departures can
be thought of as random but they are not without struectuwre. Our objective

now is to clarify this structure.

5.3 Iee velocity

The ice velocity field can be defined by the relationship

W) = Y ke, X) - z8X) .
e A

t-»o

Here the particle label X plays no role.

This definition is meaningful only if the limit exists. From a practical
point of view it is useful only if the limit exists and is approached when
the interval R decreases to the time interval 7 between observations.

In figure 5 several sets of observations of ice motion are plottied,
showing the variation of one coordinate of position versus time. Successive
data sets divide the sampling interval ¥ by 15 and improve space resolution
by the same factor, giving a sequence of closer and closer perspectives on
the motion. By constructing veloeity estimates, uk(’c) = [-x({-i-h't,)() -;:({.,X)J/k'z:
for k decreasing to 1, one can examine the limiting process. In the first
twe figures of the sequence, W) continunes to change apprecisbly for small k.
In the last two figures, U-k['U at most times t becomes almost independent
of k for small k , implying that on these time scales s T £ 15 minutes,

the ice indeed possesses a2 velocity.
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Convergence of [« (t+1X) - = ('{:,KJJ /o to a definite 1imi%t implies that
the increment zft+7,X) = #(X) {5 proportional to T for small T .
For random processes, a useful condition for convergence is mean squared
convergence in which the variasnce of the increment becomes proportional
to T*® for small T . This can be readily tested for ice trajectories by
plotting E.(X{{rT,X) -2, %) versus % on a log-log plot, as is done in
:f'igureé . The process is differentisble if the graph has slope of 2 for
small T .

From a practical point of view the process ceases to be differentiable
at measurement intervals 7 for which the slope of the graph departs sppre-—
ciably from 2. .The evidence in figures 5 and 4 implies that the ice does
have a velocity and that it can be resolved with a sampling interval of
about three hoﬁrs.

Time averaged velocities can be defined without reference to the limit-
ing process. ‘Let Ua('b:T; 7‘) be the time averaged velocity at + .

t72
L u.(S,?‘-)lJS .
T

wlt, Tx) = -JT[PC(‘E‘;R:.’X) ) ZH-%—’K)_] )
1-T

This guantity u('t:’:?’-) and its properties depend on the duration T of the
time averaging. For example., the variance of U.H-;-l:%} will in generzl

be less than the variance of u.(Jc.;u) because the 7 average has suppressed
contributions to the variance on shorter time scales. Also, from a dynamical
point of view, the equations which lL('lZ,_Ea‘a) satisfies should involve 7 as
a parameter., Different physical processes may he responsible for determining

u.(.'h,T,' z) for different values of 7.

Typical ice velocities range from O to 20 om sec™!. An extreme velocity
of 140 cm sec™ has been observed. Two histogrems of ice speed are shown in
figure 7 , one corresponding to a full year of observations, the other
restricted to summer observations. The winter data contained several periods
of essentially zero motion. During the summer the ice was never observed to
stop.

In the following pages particular importance is sttached to the time
and space variability of the ice motion. We will often refer to the variance
of velocity, F{ {u.-&'.)z-i(\’—V)z) = 70*2. This quantity has been evaluated from many
observations; it varies appreciably with season and with location. Tabled]

gives estimates of the velocity variance for esch of the buoys shown in figure 3.

I
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Buoy ID

1901
1902
1903
1905
1906
1907
1908
1909
1911
1913
191k
1915
1916
1918
1917
1920
1923
1924
1925
1926
1927

¥y

od BE

TABLE II ]
Varience of Veloeity ‘f-‘{
1979 data, 1 point per day ?
A
velocity variance number of data points
59 cm? sec 2 342 ;
48 295 1
50 ’ 28k |
210 231 ¥
81 299 !
37 229 y
17k . 61 v
38 267 3
19 . 62 .
8k 31k ¥
83 282 i
172 31 3
57 172 g;
35 283 ¥
29 219 ¥
5k 293
63 302 }*
167 T2 4;7 ‘:‘j
67 280 .}
168 o9 |
62 (median) 311 |
|
{
L
]
!p
T lerh-endiotmes R DR b T::,;J
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* 5.3.1 Veloeity time series OF POOR QUALITY ‘ P
{ The ice velocitlies deduced from trajectories should be interpreted ; é
from the Lagrangian point of view since the measurements sre made following o
the material particle. If many trajectories are measured simuwltaneocusly j %

it is possible to o¢btain by interpolation wvelocity time series at fixed ' "
Eulerian points. Although the Lagrangian description is more directly
measurable, it has the drawback of sampling both the time and spdee varia-
tions in velocity. The differences between the Legrangian and Eulerian ‘
- points of view is not of great practicael importance in the motion of sea ;.
g ice., This is because most of the variability in the ice motion is driven
by the wind, and the space patterns in the wind field move across the basin

so much faster than the ice moves, that all points, Lagrangian or Bulerian,
experience essentially identical stochastic forcing.

it

P e THE et e )

Consequently, Lagrangian
and Eulerian time series of sea ice wvelocities look just zbout the same.
A typiecal veloeity time series, taken from an ice station trajectory,

say, will have a mean veloclity usually less than 3 cm sea~!
a trend.

, and it may show
{
When these effects are removed from the time series what remains :

are the fluctuations with time scales longer than the sampling interval

P S

2l and shorter than the length of record 7 . The ATIDJEX position data for ‘
:’j instance, serve to resolve fluctuations on time scales from a few hours

":] up to & few months, ( % 1 hour, 7# 1 year). Over this range of time

} scales the ice velocity has a power spectral density as sketched in figure$8 .

The power spectral density is plotted for positive and negative frequen-

'E cies corresnonding to counter-clockwise snd clockwise rotations of the

veloeity veector. At the end of this section an algorithm is given for cal-

culating the spectra of vector time series.

Ve interpret the velocity
vector time series u(f, x)

as a complex time series with the Fourier

—ryg T TaiTin

decompozition

1

wit,z) = / o (e) e&-we_/m .

-

The power spectral density is the real funetion S(m’) = o) cf' () » defined
in the frequency range - il"'c <t < 1!7: .

The integral of the spectral density over this frequency range is the

variance %?‘ » and the integral over any frequency band is the part ’

-~




of the total variance contributed by fluctuations with frequencies in thai
band. A usefnl way to summarize the information contained in the spectrum
is to state the fraction of the total variance coming from frequencies
greater than & certain value,

Table TIT Fraction of total variance exceeding ceritain freguencies

frequency: 1 cycle per month 2 L 15 30 60
period: 1 month 2 weeks 1l week 2 days 1 day 12 hours
58% 45% 34% 12% T% 3%

The eguation of motion for sea ice balances the ice acceleration against
alr stress, water stress, pressure gradient forees due to the sloping sea
surface, and internal ice stress gradients. While it is not the purpose
here to examine the ice dynamics, it is useful to relate features of the
ice velocity spectrum to these driving forces. In the central basin about
T5% of the variance of the ice velocity can be explained by the local geo-
strophic wind (Thorndike and Colony, 1982). 1In fact, the ice veloeity [.uctua~
tions ere roughly proportional to the local wind fluctuations. This implies
that the spectra of the ice veloeity and of the wind should have anproximately
the same shapes (see figire 7).

The water stress deopends on the difference in veloeity between the ice
and the upper ocean. If the ocean is at rest the water stress is simply a
drag opposing the ice velocity and %ts only effect is to reduce the ice’
response near the inertial frequency. If the ocean is in motion, the ice
will be carried slong with it, and should acquire spectral traits similar
to those of the ocean. Unfortunately the spectral signature of motion in
the Arctic Ocean is not known. The long term cireulation of the upper
ocean sppears to be similar to that of the ice, with & clockwise circula-
tion in the Beaufort Sea and a transpolar current flowing from Siberia
through the Greenland-Spitsbergen passage. It probably is not productive
to ask whether the ice drives the long term ocean circulation or vice versa
because, in the long term, the ice should be thought of as part of the upper
ocean. In any case the long term ocean behavior does not affect the spectrum

we are considering since we have subtracted out the long term mean velocity.
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Fluctustions in ocean currents on shoriter time scales have been observed
but it is not yet possible to say how great their effect on the ice'velocity
may be. Some evidence for these variable currents is listed here.

1. DMonthly variations are apparent iﬁ the ecurrents deduced from wind and
ice motion observations by Thorndike and Colony, 1982.

2. BSubsurface eddies. Manley's (1981) study of subsurface eddies during
ATDJEX described numerous features with velocity of about 50 cm sec—l, a
lengih scale of 10 kilometers, and a depth of 50-200 meters. He found no

expression of these structures in the ice motion.

3. Inertial osecilletions. The balance hetween ‘the ice acceleration and

the Coriolis force leads to osecillatory ice motion with a period which decreases

from 12.77 hours at TO°N to 12 hours at QDbN. Tnertisl motioms are always

clockwise--hence the negative value for the fregquency--in the Northern Hemis-

phere because the Coriolis force always accelerates the velocity to the right.

Inertial motions insea ice were first described by Hunkins (1967) and have
received subsequent study by McPhee (1979) and Colony =nd Thorndike (1980)}.
The amplitudes can reach 0.20 m see™! during summer when the ice pack is
comparatively loose., Their effect on the summer ice veloeity spectrum is
striking (see figured).

k, Tides. Tidal currents inm the central basin are small because of the
great depth. Theoretical estimates are in the range of 1-2 cm sec”™!. Over
the shallow continental shelves the amplitudes are prediected to be at least
an order of magnitude greater (Kowalik and Untersteiner, 1978 ). These
theoretical estimates are for the lunar semi-diurnal. tide. Evidence from
tide gauges around the basin summarized by Sverdrup (1926) implies that the
lunar semi-diurnal (period 12.47 hr) and the solar semi~diurnal (12 hr) tides
ere the dominant tidal constituent: in the Arctic Ocesn.

The prediction of s large amplitude of the tidal current over the shelf
is confirmed by Sverdrup's observations from the Maud; Nansen may
also have observed tidal motion in the icé pack surrounding the Fram. Because
the tidal and inertial periods are so close it may be difficult to diagnose
observed motions correetly. Nevertheless there are several differences
between the {wo kinds of motions which cen sometimes be used to distinguish
them. TFirst the tidal vector trazes oub an ellipse dr—ing one period. An
ellipse can be viewed as the sum of a clockwise circle and counter-clockwise
cirele. Thus, unless the tidel ellipse should heppen to be exactly a

clockwise cirecle, it should have some expression on the cownter-clockwise
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side of the spectrum. Inertiasl moticn is strictly clockwise. BSecond, at
a fixed point, tidal motions should have & fixed phase. Inertial motion
on the other bhand, acquires a new phase every time the ice receives a
sudden impulse of momentum. Third, the phase of tidal motion should vary
smoothly and slowly in space. Inertiel moticns at different points may
have no fixed phase relstionships.

The motion described by Sverdrup can hardly be mistaken for inertial
motion. The smooth variations in phase as the Maud moved from Wrangel Island to
the New Siberian Islands, and the clearly elliptical eycle described by the
measured velocity vector are not compatible with inertial motions.

Most ice trajectories which have been suslyzed in the western literature
have been over the deep basin where the tidal motion is smell. Careful obser-
vations and analysis would be required to detect a tidai component of order

1 cm sec™?

sinece it would be mixed with an inertial component which is often
much larger and with a rich spectrum of other types of motions.

The Soviet litereture contains many references to tidal motion in sea
ice. Doronin and Kheisin (1977) and Zubov (1943) =ach devote several pages
to the subject.

A conseaquence of the tidal motion is the associated eyele of con-
vergence and divergence caused by the difference in phase of the tidal
cycle at different points. Periodic opening and closing of the ice in the
shallow seas has an effect on the heat exchange between the atmosphere and
the ocean and on the rate of ice produetion., The theoretical caleulations
of Kowalik and Untersteiner indicate maximum divergence rates in the shallow
seas exceeding 10~®sec™! which is enough to produce one percent opening
during the tidal c¢ycle. Their theoretical estimates of the divergence rate
associated with tides over the deep ocean are three orders of megnitude smaller.

Caleulation of cross power spectral density for two two-dimensionsal vector
time series.

Given: +two dizcrete complex time series Ui, V, , i=/,...,# with sampling
interval 7 .

Step 1. Select M, the number of lags; = good rule is M< N/3.

Step 2, Remove"' the mean and .trend from each time series,

Step 3. Compute cross covarlances

Z +£ V 1 = D, [, TN M ,
7 = B
1 N’
10
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Step k. Define spectral window

W p (1 egy) AT

Step 5. Calculate spectrum S and frequeney co

M - 7Rk FT/N
S = T 25 wp T3
k -R:-M
k: —M‘. ',M .
- K
“t ZMT

5.3.2 Velocity correlations in time.

An slternative characterization of a random funetion is its autocorre-
lation function. The discussion in the previous section of the power spectral
density of the time fumction wlt) at a fixed or moving point could have been

given in terms of the asutocorrelation function

. &
R - wte) W) ey -
- E owlt) u®(t) ¥
The two functions SO@ and R(1) are Fourier transforms o} each other and

therefore contain eqguivalent information. Which deseription is thesmore useful

depends on the applicetion. The spectrum is useful for distinguishing physical

processes with distinet characteristiec frequencies; for example separating

the free inertial oscillations from the wind forced motion. On the other

hand the autocorrelation function is more useful for questions related to

prediction or experiment design. For example the question: "How well can

tomorrow's ice velocity be prediected on the basis of today's veloeity," has

an answer involving the autocorrelation function K(7) evaluated at 7 =1 day.
The autocorrelation function is complex. Its real part contains informa-

tion about the lagged correlations of the A component of veloeity with itself

11
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and theig component with itself. The imaginary part has information ahout
the lagged correlations hetween the X =mnd 3 veloceity components. If the
velocity of a plece of iee undergoing an inertial oseillation has a positive
A component at a certain time, i1t will have a negative a component three
hours later., The imaginary part of the correlation should have negative
peaks at 3 hours, 15 hours, etc.

The auntocorrelation function for the veloecity time series at the AIDJIEX
ice station Caribou is shown in figure / . The antocorrelation Fumection
estimated by the 1979 buoy data for the central basin is shown in figure 4.
The real part of the correlation falls o about 0.7 after one day, 0.4 after
two days, and decreases slowly at longer lags. The large correlation at lag
one day indieates that persistence (the forecast strategy which predicts
that the future will be the same as the present) will have some Success for
one day foreecasts.

As expected the autocorrelation from Caribou has negative peeks in the
imaginary part at 3 hours, 15 hours, ete. GCeperally though the imaginary
part is small. If the inertial motions are not of interest in a particular
application, the imaginary part of the autocorrelation function can safely

be ignored. This is equivalent to treating the two velocity components as
independent time series.

5.3.2.1 Application of the time autocorrelstion function.

It is desired to estimate the ice veloecity W ot time + given observa~

tions z':} at times -l:} ) jﬂa-wN . BSuppose the observations hsve zero

mean random eYrors e‘:}o—.‘ ‘EJ —u('n.LJ) which have coveriance

& + = 0'2 3 »
The delta function expresses the independence of errors at different times.
Finally suppose the errors are independent of the asctuel velocities. Choose

. -\ . . . .
an estimator W which is & linear sum of the observaetions.

It is desired to find the complex constants ©4 which give the best estimate
o~ ety Y= E T n ¥ . s e s . s
. in the sense that %)= (U-"U-XK"'-") is minimized. This is

accomplished by differentiating F with respect to the resal and imaginary
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parts of each G% snd equating to zero., The result is the system of

complex equations for the unknowns =, "> %w*

X
*
2 #Ezgt = (Ezu ) ORIGINAL PAGE (9
J OF POOR QUALITY
A further reduction is achieved by noting that

*
E;_z;i_*—; = Eu.l-'u; + vzga.ﬂ D-“J E Eju- = Euiu.* .
Use of the matrix notation Z- {s.*j] , A {ﬂ‘jg ., M= {_Eu.u.x + } Dm(; P= EUu

gives the compact expressions
T
{‘\_ = A f nmJ (/)
MFA =P

which involve the autocorrelation function R, and the measurement error

variance ©°%¢ . The estimation error is

aT %
F=g* @M P, 2

With these two expressions we can answer & number of practical problems.
1. What sampling rate is reguired to insure good interpolation to the

mid point between two observations? PFor given sampling interval © and measure-
ment error variance o% ,» We write eq. 1 as

2 2 *
%z.ur ,?R('r.) o, ag('r )
ol T
# —
RE-) girez /2 -?R( 2
The solutions for the G(é » which in this case are complex conjugates for
reasons of symmetry, and for / are sketched in figure /5. The solution

technique extends trivially to interpolation involving more points.

The optimal choiece of the weightS «, and %; is not =,~ X2 =Vo . This

lipear interpolation between the two data points is the most natural scheme,
and it is gquite good for small T , and small 0‘1/%.“'- , but it is not the
optimal interpolation. Especially at large T , a smaller error variance

is achieved by giving less weight t0 the observations. For very large T
the optimal estimate is simply =0 , (#=%,20) since, in this case the

two observations are so removed in time as o have no correlation with

the desired veloecity.
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The measurement error o affecis 04‘3 end F slightly. The dependence
of T on the sampling interval ¥ is quite strong. It appears that if
one needs to know each velocity component to % 3 cm sec , F =F& v&° =
18 cm ses:c"l , & sampling interval of sbout six hours is reguired even with

perfect measurements.

2. What errors are expected in forecasts based only on the present velocity?
Here we obtain x
R(t)

“—‘/ 2 a.z/%z
&)

*
_ _ RimRiD
S

The forecast error is plotted for two values of initial error in figure 1l.
The prediction error grows with time, aspproaching the velocity variance
3_1 for large 7 . From the sketch we see that an optimal 3 hour forecast
captures about T75% of the velocity veriesnce, an optimal one day forecast
captures ahout 35% of the variance.
The velocity was assumed to heve zero meen in this analysis and) in
constructing the auntocorrelation function (figures //,/E)) the long term mean
was first removed from the data. In an actual application to & region where
the mean is known the best forecast would be

?L""T‘- +¢((z_a) »

Note that the best forecast is not simple persistence (={=1). For long
(=0}

forecasts, the best estimate is the mean, as equation 3 correctly indicates.

5.3.2.1 Acceleration

The time autocorrelation function for veloeity, figures 11 and 12, behaves

like /- 'l‘/c for small T . It follows from this that the variance of the inere-

- ment in veloeity uﬁ:m)-u(%) is proportional to ° (not ‘139' ). This implies

that the velocity is not time differentisble in the mean square sense, Attempts

‘to measure accelerations precisely by sampling over shorter and shorter time
intervals may merely result in larger and larger estimetes of ccceleration. OF
course, time averaged accelerations exist snd have finite varisnce.

2
e [LInen ) = A (1-27)

&
whieh for small / is 2}’“/07— with o= /0%,

1k,
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|
It is frequently claimed that the inertiasl forees due to acceleration ]
of the ice are small compared t0 other forces acting on the ice. To support "l
this claim a typical average acceleration (i is compared for instance, to a %
' typicel value of the Coriolis acceleration fop = 1875e + 10 e s . :
Using the above estimate for ¢; , and taking -%—‘i” 160 ed” seE* , we Tind
U < Foa_ provided T p 2% 0> sec . Thus, roughly a half hour time
average is required to bring the acceleration down to the level of other
terms in the momentum balance.

5.3.3 Velocity correlstions in spece Co

Iy earlier sections the emphasis has heen on the structure of the complex
function W of the real argument t , at a fixed or moving point. In this

section, the emphasis is on W as a funection of position for fixed time.

L B LA

Certain resulits are more easily expressed if W and X are regarded as two

et = s oo s

dimensional vectors rather than as complex numbers, The awbocorrelation :

AL e BA T, h e oS

function |

1]

. Fugulm)  Eula)viz) B

¢ Rlz,z): Euln)slz) - |
Eu(z)vix) E viz)vi#)

is a 2 x 2 matrix involving possibly four different functions, whereas the

time awtocorrelation function involves just two.

e et e — T T

%
|
The structure of the spatial autocorrelation metrix for sea ice veloci- Lz% .

Y

ties reveals some of the properties of the veloeity field., To establish

the basic ideas we first determine the structure of the sutocorrelation matrix

N
—— e

for a homogeneous, isotropic, two dimensional velocity field, borrowing from |
Kolmogroff's (1941} classic discussion of three dimensional turbulence. Co

A random field is said to be homogeneous if its statistical properties ;

are invariant under a translation of coordinates, and isotropic if they are
invariant under rotations and reflections of coordinates. In particular the i

autocorrelation matrix for a homegeneous isctrople field must saitisfy
R.(?:.,.’fz) = R[?"‘-}'E,Ez-!*?_u) for any & , and

gzﬁ(x.,z,) Eulz,)u(n) = EMg(Mf,)[Mg(Mgz)]T .!

for any orthonormal matrix M. Multipliecation by an orthonormal metrix

3. D
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accomplishes an arbitrary rotation or reflection of ecoordinates. Note
that the change of coordinates is applied-to both the position and ti1e
veloelty vector.. These definitions meke precise the notions that the
statisties do not depend on position or direction. By choosing the trans-
lation vector & or the rotation and reflection matrix M suitably, we can
see how these definitions of homogeneity and isotropy constrain the form of
the sutocorrelation matrix.

First, Ef %, %z ) depends only on ‘the vector difference 2’,_—?5; . To

see this, take o = -iﬁ; o« Note that this does not imply that ?E depends only

-~

on the distance ﬂ?}; - &l
M=-I ana

Second, R is symmetrie. This requires using a=-% ,

Ll

0. = %, o TO obtain this seguence of equalities:

Eu_(vi‘)v('iz) = EUJEJ V(’iz-'a-f,) = EK‘K(“B)/I/"V(.E, "’i‘{z.)) = !a(ﬁ’;) V(Ei) -

Third, [u(t’,o) v(x,e) =0 ., Hére use the reflection invariance in the
definition of isotropy by taking

v (l3)

which changes the sign of the é‘ axis. Then

[uro,u) vize) = . .[.M_(D)-o)[—lo‘(%,-o)] = ~Luloovixos)
which is only true when £iuce,0)vfRe) =0.

Consequently the autocorrelation function evaluated at z,5(89) , A~ (r, °)
has the form

E uloe)uinio) o G“ ("') o

R(m"”*(‘r’w) ) 'é'é 2 = B6)
o Ev(o,8) v{t30) P 3_1_(1')

involving only two function of distance. BJI ('r) is the correlation between
the components of velocity parallel to the line joining two points separated
by & digtance T. G_L( +) is the correlation between the components of
veloeity perpendicular to that line.

More generally if X, and X, are arbitrery points with ris (z,-?f;)z*'fa,- 3;)2,
ass B= (%-#4)/r and s.JM.Bz(az-g;)/-r , then

16
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b ~5tan B

5'(3)’ A(uHJ S AL e A e )
Then R(@:'{’_{z)’ '%‘zE,léfﬁv)%T(}fz) = é—zE :Ii A ( U-Uft)) A Blr) A or

l?('?c. % ) . o8 Gu(‘i") + sudD G_L[T) 28 sinb (Gll[-r) - @L("')) ;

“)

B au-B ( gy () - B_LC'Y')) sint8 ) () + cos®d B

which is the general form for the autccorrelation matrix for s homogeneous,
isotropic two dimensional velocity fielw. It involves two funciions, 731}

and ,B.l., which we will estimate below from observations. Further it involves

‘the separation + and the orientation f of the two points f_’. and # at
which the autocorrelation is being evalusted. It may seem strange that £
enters the statistics for an isotropic field. The condition of isobropy
does pot imply that [ ulooyl”, 0) equals £ wls,0) w(s¥+) however. A
rotation of coordinates affects both the veloeity and the position vectors.
A valid statement is Lupo)u(ne) = Fv,0)v(o,T) See figure 15.

There is another constraint on the spatial correlation function. ILet
w, = (ue, Vi) be the veloecities at any set of poimts X; ,id,--;N and let
3 mi be arbitrary real numbers. Then the linear sum

S= % ¥ UL TV
iz

has a veriance which can De expressed in terms of R . The added constraint
is that var (g)>o for all choices of #«;, ¥, a~d ;. This requires that
the matrix consisting of the correlationsof the velocity component at any
set of points {xﬁmust be positive definite (all positive eigenvalues), and
is equivalent to the condition that the two dimensional spatial power spectrum
of velocity be positive for all pairs of wave mumbers ('n;r,‘ﬂg) .

Contradictions can arise if correlation functions are used which do not
satisfy this constraint. For example, suppose we wish to consider a velocity
field for which By(o)= 1, By(k) = 07 omd Gy(zL) s 0-5 . The
attempt to evaluate the variance of §= wioy) — 23 wlle)+0./u(2l,,) in terms
of these correlations produces & negative result. Since variance is intrinsi-
cally positive, we must conclude that no veloeity field could have the presumed

correlations.
1T
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As an e ample of en aunalytical form for R which satisfies the positive 'J
definite constraint and bears some resemblance to reality, define j’ '1

e

()" ey - ()
G- < - (-4 €T 4 o

This exsmple was constructed by taking a stream function :E with the posi-
tive definite correlation function f+): & A . The corresponding power
spectrum is the Hankel transform of g . This is JAzenm‘AW v(h‘;’: '“; hﬂ;) ;
which is always positive. Now define velocity components w« = —?E/aa .

~ - - | R(+) - _
v P8/ x and deduce BH[‘T’) T 5 and %(f)_ _,EI?__(:_') .

5.3.3.1 Fstimates of the aunitocorreiation funetions.

it PR e s T

. -

In order to estimate the autocorrelation matrix, simmltaneous veloeity i
observations are required at pairs of points separated by distances ranging 'i ‘W
from roughly 1 to .‘!.03 kilometers. We present data from the 1972 buoy pro-
gram and from ATDJEX which define the functions B and B; only for
distances exceeding 100 kilometers. The 1979 data were Tirst ipterpolated

to give velocity estimates at a uniform grid in space end time.

ot e o e tmoadm

bk - wlgpty) . axmayTov ke, ateldy Gt iyt bl

The mean velocity over all points ¢.j.k was removed. Then for lags .Q,'w:,'vr
the lagged correlations were found using

NX -J. N L h" -N -- .g.;'i
= L T -8
R,l,w_,m. TONNg N Z i § Bieg, jrwn ke Lijk 1

= J-’f k=t !

¥

e — e o e

X

For these calewlations M= T, l\g, = L, and N, = 200. The results are sketched ! i
in figure /6 for the lags £ =1, vue, 7, = # = 0, and £=n=o0, "

9 = lyaee, 4. The results show that [ we,0)u {1 0) and Evro,n) v(o,r)
are similar functions of + , end that [ v(e,0)u(m0), E ulo,0)v(o,r)
Eufu,n)v{f,o) h ond Ewn,b) w(o,r) are all smell. :These observations
are roughly consistent with the zssumption that the field is homogeneous

——

and isotropie. We will proceed then on the assumption, supported by these
data, that the ice has a homogeneous, isotropic velocity field with the
functions B” and @.L empirically determined from figure /4 .

o

Correlations for the AIDJEX data were constructed by choosing two of
the ice camps, resolving their velocities into components parallel and perpen—

diculer to the line joining the camps, and correlating these components.

18
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These correlations are also plotted in fignre 14.

5.3.3.2 Applications of the space correlation.

The spatial autocorrelation :E‘unctioz; is the basis for sound experiment
design and data processing. Tor instance, suppose observations of veloeity u:
are made at [V points Z; with independent zero mean errors having vari-
ance ¢% . Bstimates of velocity are to be made at a.rb:itrary poi'nts X using
‘these observations. What is the maximum estimation error? We use the tools

developed earlier. To estimate the W component of velocity at A

s We use
the observations W, -4y and construct the matrices
. ot
Ru.u.’ +o* R“lvs : Ru,ltg LA B Rl-t’ Vs / ! RLLLL;
Rv,u.' Ryv, + 73 Ry /9 Ru v, ;
L R R T T TP 4 ] -
Ruz“‘g RM.,_V, . Ru.u-z !
" 1 / G‘N £ 79 ulU
Buvy
R‘VN W, ; - - - R"n"w o o
where Ru;V* E wizi}vlz;) ete. as given by Bq. £ . The esti-

mation error variance is given by Eq. 2 . Figure// shows how the maximm ;

estimation error depends on the separation between measurement stations and !

on the measurement accuracy. The curve labelled 0‘%f=0 refers to the idealized
condition in which the measurement errors are zero. Thus it represents the i

interpolation error which is due to the intrinsic spatial varigbility of the :
velocity field. :

The standard deviation of the ice veloceity itself is about 3»' 10 cm sec-l.
A reasongble observational goal is to keep the interpolation errors below 2 or
3 cm sec—, « This can be achieved if the raw measurements of velocity are
good to about 3 cm sec ! and the grid spacing is about 400 Im. At larger
grid spacings the interpolsation accuracy deteriorates rapidly.

5.4 Deformation

The differences in velocity from place to place are respousible for the
characteristic morphology of the ice. When the velocity difference between
neighboring pieces of ice is such that they tend to move apart, a lead forms
and widens exposing the ocesnn surface to the atmosphere. During the winter,

ice growth is rapid over open leads. If the motion changes--perhaps because

19
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of a change in the winds--go that these pieces of ice move toward each other,
the open lead will close, and any new ice which formed there will néed to
rearrange itself to occupy & smaller area., Typical mechanisms for this
rearrangement are raftine where one part of the new ilce sheéet overrides the
other, and ridging where the ice is crushed into pieces which pile into
ridges rising a meter or two above and sometimes many meters below the sur-
rounding ice. Ridging end rafting are not restricted to-thinice. If the
closing motion continues, the original pleces of jce come in contact and
one may override the other or, by grinding together, pieces may break off
and pile up and down to form a ridge. The essential ideas here are that
the ice accommodates divergent motion by increasing the area of open water
rather than by stretching and thinning., It accommodates convergent motion
by reducing the area of open water and by ridging and rafting. These processes
link the morphology of the ice, characterized by such features as floes,
ridges, and leads, to the spatial differences in the ice veloeity. By
studying the spatial variationz in velocity we may be able to understand
better why the ice pack has the form it does.

There is a second reason for studying the deformation of sea ice. As
the ice pack deforms, stresses develop within it which tend to oppose the
deformation. These stresses figure inito the local halance of forces and
therefore affect the motion of the ice. To be more precise, the balance
of forces eguation conﬁains terms of the form FBUHJ/Bﬂb where @j
is the stress tensor. The stresses may in turn be related to the ice motion

by & constitubive law

stress = F (deformation).

One of the motivations for ATDJEX was to investigate the function F from
a theoreticul point of view end by using observations of the deformation and
indirect estimates of the stress (see Rothrock et al., 1980).

The concepts which have been applied to the study of the spatial varie-
tions in ice veloecity are those appropriate to the analysis of the deformation
of & continuum. The fundamenial concepts are the partial derivatiwes of
w(#4,t)  and v(#.§,t with respect to # and 4 . The line of thought is
that a description of the large scale deformation in terms of large scale
average derivatives should give some idea of how much opening and closing

is going on on smaller scales and some idez of the state of stress. For
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example under a purely divergent motion only leads are formed. During a
purely convergent motion no leads are formed. On a small scale, shearing
along a crack is of no morphologieal consequence. But large scale shearing
is often expressed lccally by opening at some cracks and closing at others.,
Mathematical formilation of these ideas requires two steps. Required
first is sn eppropriate quantitative description of the large scale defor-
mation in terms of observable parameters. The second requirements is for
a functional reletionship giving the opening, closing, or state of stress
in terms of the observable paramecters. ]
Current practice is to describe the motion in terms of the large scele
strain rate invariants, which themselves are constructed from the large scale
veloeity derivatives. The first invariant

o= 222
T 7 ax 24

guantifies the large scale divergence and convergence, and the second invariant

p LG G )"

—olmalvh'}-iy e rote= & ch:am?zj . A wehd  allernathve pair °'¥’ invertawts s

(]El , g)’ where

A
€] = [Es +E5°]

expresses the total rate of deformetion and
E
- -1 I
0 L 0$ B 7

indicates whether the motion is predominently divergence 6~0 , shear &~72
or convergence B~z .

In the theory presented by Thorndike et =l., 1975, opening and closing
are assumed to be known functions of & and proportional to JE].

A
C

The functions o and &

total opening = IFl . (8)

ll

total closing = |E] &tr 6) -

¢ Which giv_e the total opening and closing in
terms of the strein rate invariants may have 2 form somewhat as sketched in

figure 18. Some constraints on the shapes of these funcbions have been

deduced by Nye, 1975 and by Rothrock and Hall, 1975. From pe’ e of Landsat

images of the ice these investigators were sble to measure the strain invariants
and the total opening and closing.

o1 C -~

. M;—i*-‘—wﬂyy—"”“‘ ::—3-

et A e e —
g et o ranen ——
e it} B e B I e e w i £ 1 bR

. h e TR

S U U S

TR B




e r———————— s e S e

ORIGINAL PAGE 1§
OF POOR QUALITY

fhe*functional relationships for A and C in terms of J&] and 6
can only be regarded as approximate since they do not take into aceount the
setual geometry of the floes in the region being considered. Different
regions with different geometries will respond differently to similar large
scale strain rates.

In practicel applications of these ideas the procedure has been to
take measured velocities at several points in a region of interest-—perhaps
the three corners of a 100 km triangle. Veloeity derivatives are estimated
from the measured veloecities. The estimated velocity derivatives are com-

bined to form the strain rate invariants |E] and 8 , and these are used

to find the rates of opening and closing A and C , and the state of stress O .

In the following sections we reexamine some of these ider.s, particularly
the notion of wvelocity derivatives, the influence of the ice pack geometry
on opening and closing, and the difficulties in basing inferences gbout

these quantities on small numbers of measurements.
g

5.4.1 Velocity derivatives

8ince the ice pack is made up of discrete pieces moving relative to each
other, the variations in velocity have two types:

1) for any X, and X, on the same rigid piece, the linear relation

posta ~Slwes Hap- % must hold, where e
w(x)- 4l ) = (-2

Sty e @
is a constant related to the rate of rotation of the rigid piece.
2) for X, and % on separate pieces,
E} (“z) _ Ll..(?(;) is arbitrary.

If we select a random point (rx.;) on &n ice floe, the partisl derivative
of velocity,

BU () = fin ) ulipt)
X = ) £

is well defined because for small enough f 5 (g, 5>’ and (m% 4 J almost
glways lie on the same floe and the linearity of the first type of motion
mentioned dbove implies the existence of the limit. Thus the partial deriva-

tive exists, but it describes only the rigid body rotation of a floe. It
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says nothing sbout the relative motion between floes which is after all the

motlon causing the opening and closing and the exchange of momentum between
floes. )

To include the effect of veloclty differences between floes we cannot
let ﬂ become arbitrarily small., Consider the veloeity increment
wzh,ed) - ulxyt) where (#4) is fixed and R begins at 100 km
and decreases to the smellest value B, such that (x+h, ¥) and (x,3) lie
on seperate floes. This increment eaptures the variaticn in veloeity from
floe to floe and has nothing to say sbout the rigid rotation of the floe
(#Y) lies on. The veloecity increment will generally decrease as 5
approaches ﬁo s and we can examine the characteristic rate of decrease by
evaluating the variance £ ( ulx+h,o k) - ut-x,y.{-))z . If this quantity
is proportional to 9,2 for smalli H » the velocity &t least has a derivative
in the mean sguare sense.

The best data available for examining the varisnce of velocity increments
for a range of spacings were extracted from SEASAT synthetic aperture imaging
radar by Hall and Rothrock, 198l. By comparing two images separated by
three days, they were sble to measure the displacement of enough ice festbures
to resolve considerable spatial detail in one dimension of the ice motion.

After interpolating to evenly spaced points A| ‘their data have the form

{Mlﬂ';) ,V{'X;_)] P51, N, Ax=2 hm.

For f= 1, .eey the f-increments were defined as

1;(;,&) = ufp,p) - ulx:)
T (8,8) = viagg) - viA) .
The wariance of the increments was estimaited from the {I.‘_fﬂﬁ)..j-yw;i)}, 1 =), N-|
with the results plotted in figure 1}. The linearity of the log-log plot
for small [, supports a power law relationship with wvar (I(B)) =c¢ B™ with
o in e meshber heed 4 L2 B 47 . It appears
then that the increments do not decrease as fast as ﬁ z , and therefore
the velocity does not have a derivative in the mean square sense.
The statement just made for the variance of increments can be reeast in

terms of the sutocorrelation function. It implies that for small +

Bylr) . B¥)  ~ -
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| thus helping to define the shape of G“ and B__L gt Y o, At xr=0 8?1
end ) have the value unity, are continuous, have a continuous First

¥ derivative of zero, but fall to have a second derivative.

5.4.2 Veloecity differences 4

The definition of the derivative as a linit could bhe discarded in favor ;

of & velocity difference over a finite distance, |
Ll'?‘,[. (p(,ta,ﬁ) = —;-- ]:LL(‘?(+L-, '?:'E) - W ('X, ?.\.}:)]

and similar definitions for u?"L y V0 o g Myl -

There is no question sbout the existence of these differences. Defi-
nitions for strain rate invariants follow naturally by assoclating wg
4 with PW/2% ete. in the earlier definitions. When L is chosen to be of
order 100 km, these definitions can be used to describe the large scale
deformation.

There are several problems with this approach. First, the L-differences
carry no information sbout smaller scales. Second, no basis has been given
for choosing a particular value for [, . Third, measurements of velocity are

- rarely availzble at uniformly spaced points. Still most analyses of sea ice
strain have been done with a length scale impliecitly fixed by the scale of
the observations. To interpret these analyses we must determine the role
played by L . -

Consider the covariances between the various L—difi‘erences. These

follow from the covariance structure of the veloeity itseli. For example

E .L{g']_("a O,t) qull_(f: °J'*-‘) = .ti' E (LL(L,O,"’:) —LL(D,D,‘&))(UL(T'*'L,U,'E)-k(r,n;t'))

; =—% [B" (4‘4-].) -2 B”(T) + (3 (T—L)J . (5)

To interpret this equation, suppose the L—difference Uy | 1s measured

at two points separated by a distance t* along the X axis. The right hand
side of equation & approximates the second derivetive of Bu st r .
For small r , 13'1 is conceve down so the two L—differenées are positively

correlated. At some wvalus of T Bﬂ (1’) has an inflection point. Over

l such a distance the L =differences become uncorrelsted; at longer distances

the L -differences are negatively correlated. This example has been worked
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for the Ux,]. component at points separated along the X -axis, but the

same procedure can be used to correlate any two first velocity differences
gt any two points.

It is apparent from this and figure /6 that quantities related
to the /_ —differences are highly correlated in space only over distances
of less than about 400 km. Furthermore this statement is not sensitive to
the choice of ,!_ , Since the expression J  will change sign at approximately
the same 7, independent of L . The correlation length scale for veloeity
by comparison is roughly twice as large (see fignre 1{).

The ice velocities are well correlated at distances of up to 1000 km, -
as evidenced by the patterns in the long term ice motion {figures 2-4) and
in shorter term motions (see Thorndike and Colony, 1980 for instanece). It
mey seem surplising not to find similar patterns in the strain fields. The
reason why such patterns are not found is that the swrain field bhas, by
equation 5, and figure 16, & correlstion length scale of only a few hundred
kilometers., Measurement arrsys like the 1979 and 1980 buoy arrsys with
a buoy spacing of roughly 500 kilometers are ‘too coarse to resolve patterns
in the strain field.

For the example just worked we can find the variance of the | -difference
by setting v =° -

The symmetric matrix of covariancesbetween pairs of | -differences at the same

point i%
A, L Vg, 1 U, L Vs L
u | F-80] 7 7] 6,(2)- Bzl & [pala-280)] R
Vi L &l.g [; - B, (L)J o .%_:[H_B-(EL)— 26 (Lg]

g L _@% D__ B_‘L(Uj i[” J‘L) (J_L]

Vel _7?; [)._ B.L{ L%]
where B = ';-’z(B;;*'QL) .

This matrix can be evaluated at L, = 200 km for example by reading points

from the plotted functions @) and Bl in figure 14.
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The covarisnce matrix for the i ~G@ifferences illustrates several properties
of' the way the ice deforms. Notice that the variances of the parallel dif-
ferences lUy) and Va,l_ are smaller than the perpendicular differences uy,. and
Ve, ). - The parallel differences relate to the linear stretching snd
contracting of the ice pack. The perpendicular differences relate to shear
and rotation. Apparently the second type of motion is greater, but recall
the word of caution given earlier that the interpretation of this kinematie
evidence is ambiguous. We cannot say whether the observed motion reflects
some property of the ice pack or some characteristic of the driving forces.

With the ) -differences one could define | —strains in a natural way.

The statisties in Table IV of the | -strains follow from the sbove matrix.
These values predict, on the basis of the spatial correlations sbove, that
the large scale divergence will typically be smalier than the vortieity amd

shear, a prediction verified by many different sets of observations.

_ TABTE IV
Typical strein rates as a function of gauge length L .
L- stram Viur Lt rshram  in T"r“""} re’ J&y -fw- varisis
l_ ) M.ang ,q_z= lutMM?SP-E.L

)_.. took. 20 e}, ‘oo kh go0C k:u

: 2.2 L6
J.w:rj'e“c,c— quL+V:¥’ L % [‘i 4 B”[L) - 8“({2' L) + Bl(ﬁLj .6 22
w.rﬂn‘c;}] Wy~ Vi %[‘H 1) 6, (L) BJ_(&LJ N3 3] 32 2.2
Shesr Uy %) Afﬁ[q- y,(1)+ 6, (L) -B_LGEL)J 5y 3o 24 /8

2.0
“hLthL _%}[é-y(_;j_(L)—B”(EL)J,BJ_(&L)J 3y 3] 23
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5.}4,3 Deformation measurements

Several studies have been made over the past decade or s0 using obser-~
vationgof veloecity at an arrsy of stations, with the objective of monitoring the
large scale deformation of the region covered by the array. While it is never
stated just this way, the implicit definition of large scale deformetion appears

to involve spatially averaged derivatives over the region,

= L j2u
R E L
R

where A is the area of the region R sampled by the srray. Similar expressions
define the other large scale average velocity gradients. Application of the

Green~Gauss theorem implies

%‘5— = ;'\— éug}-zﬂ (6)

where # 1is the outward normal to the perimeter L or R , ana Z =2 unit vector
in the X direction.

Note the difference between the ! ~difference and the large scale
average derivative. The former can be measured exactly as ulxel,y) - u{®y)
the latter requires measurements at every point around a closed curve. In the
next section we will discuss how many measurements are reguired to achieve s
desired accuracy in the large scale ‘deformations. But first we reviev some of
the results of the studies just alluded to.

In these studies the deformation estimates were made by finding the
linearly varying velocity field which most closely fit the observed velocities

at an array of points within K.
ll('f)""‘ L, + M Z’S

where the matrix ™M contains the four large scale average veloelty partial deriva-
tives. ™M and U, are determined using a least sguares fit of the observed
velocities W and positions % .+ The strein rate invariants were then computed
from the elements in [ .

The values, given in Table V, confirm some of the resulis deduced above
from the observed spatisl correlation functions. Foxr exsmple the stendard
deviations of vortiecity emd shear are generally larger than the standard
deviation of divergence. Note also that the mean divergence is small com-

pared to the mean vorticity and shear.
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TABLE V

Statistics of Sea Ice Deformation.

All deformations are expressed in per cent per day. (1%/& = 1,16%1077 g~1)

. ‘_ Length scale  BSeascon Divergence Shear Vorticity, Strain Experiment

) diameter . - ~ . — magnitude
E : (km) “mean st.dev. mean st.dev. mean st.dev. mean
[ 20 spring — 0.65 R 0.86 — 1.1 _— ATDIEX 1972
' T .
o 100 spring —_— 0.43 - 0.54 - 0.61 -— ATDIEE 1972
v 200 winter 0.07 1.0 1.6 1.6 ~0.52 2.0 2.1 1975 AIDJEX
.-& : manned array
ib ' summer -0.03 1.6 3.5 2.2 — _— —_—
$ [ 800 winter 0.02 0.56 1.0 0.86 - - 1.3 1975 AIDJIEX
:.—1; buoy array
t _ summer 0.16 1.0 1.6 0.86 _— — 2,2
{q 800 winter 0.07 0.58 0.77 0.54 —— _— 1.1 1962-64 T3,
pf NpP-10,
" summer 0.06  0.80 1.0 0.68 - e 1.5 Arlis I
[f 1000 winter 0.02 0.k5 0.95 0.82 -0.78 1.5 1.1 1979 buoys o
;_. o
L summer -0.11 0.76 1.5 0.95 1.9 3
a o 6
. 8=
Sources: Hibler, et al., 19Th; Colony and Thorndike, 1981; Maykut, 1952. o R
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The distribution of the invariant @ is plotted in figure 26 . HNote
that nearly always /’{; <B< "W/ «» In this renge, the two principal values
of the strain rate tensor have opposite signs. The figure indicates that
it 1s almost always the case that when the ice pack is extending in one
direction, it is contracting in the perpendicular direction. Hibler et al.,
1974 also comments on this for strain measurements on a 20 kilometer secale.

It is also evident from Teble .V that the summer values are usually
somewhat greater than the winter-spring values. Presumebly the ice pack
is wesker and offers less resistance to deformation in the summer. (The
alternative hypothesis, that the driving forces are larger in the summer,
is not true.)

The mean guantities in Teble V = produce large strains over the course
of n year. The year long deformations at the ATDJEX arrsys sre shown in
figure 2] . The region experienced a net elockwise rotation of sbout 35°.
The principal deformation involved a stretching of about 90% in the east-west
direction and a contraction of about 40% in the north-south direction. The
net divergence was not significantly different from zero. The two nested
arrays e@erienced similar deformations.

Deformation estimates at a number of points in the central basin for
the years 1979 and 1980 are presented in figure 22. The strain ellipses
typically show large sheer and small divergence. The only pattern evident
in the figure is the similar aligrment of the major principal axis of shear
for the five points clt;sest to the pole. Perhaps we should not expect to
see any patterns in the deformation displayed on this scale. Reesll that
the spatigl correlation Tunetion for L-differences of daily wvelocities
has a length scele of only sbout 400 kilometers. The deformations at points
sepm-ate'd by greater distances should evolve more or less independently.
Ccm;eivably there may be some underlying spatizl pattern to the deformation
rate which is small on a daily basis but which accumulates to a large spa-
tially organized strain over the course of a year. The strain ellipses
for 1979 and 1980 do not support this idea. On the other hand the long
term average vorticity is clockwise throughout the central basin. Tt amounts

to about L0° per year.

5.4.4 Interpretation of deformation measurements

A number of authors have confronted the difficulties o: deseribing the
deformation of this discontinumm. Nye (1973) for instance, puts forward a
definition of "strain on a length scalel, ." By first smoothing the velocity

Tield using a kernel of length sca.leL s he obkeins a new velocity field
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which is differentisble and for which the usual notions of deformation based
on pertial derivatives are valid. Papers by Hibler et al., 197! and Thorndike
and Colony, 1977 take a similar point of view by attempting to partition the
ice deformation into two parts. The first part is assumed to be associated
with the spatial varistion of the atmospheric and oceanic foreing fields and
3 Xm,

and to be differentisble. The second pert is associsted with the irregular,
discrete geometry of the ice pack. It has length scales less than 10 km and

with the geometry of the basin, to have s characteristic length of 10

is characterized by discontinuous variations in velocity. In these papers,
the Iirst kind of variation is referred 4o as the large scale, wderlying,
continuwm, or linear part of the veloeity field, while the second is referred
to as the small scale, loeal, perturbation, fluetuating, or non-linesr part.
Velocity variations of the first type are regarded as signasl and those of the
second type as noise. This nomenclature reflects the hope that any physical
process of interest can be parameterized in terms of the large scale signal,
with small scale noise only meking it difficult to measure the signal well.
This convention cbscures the true nature of the veloeity field which
is thet it has veriations on all length seales, with a smooth decrease in
amplitude for decreasing length scales., There is no clear division between
large and small scale. Furthermore there is no clear reason to associzte
large scale with siggal and small scale with noise. For studies involving
the actual opening and closing of leads, the small scale phenomens may indeed
be the signal. TFurther we must be prepared for the possibility that the small
scale phenomens cannot be paraméterized in terms of the large scale motion.
Perhaps a better conceptual model of the spatial structure of the ice
velocity is a system which accepts a smooth input snd produces a discontinuous
output. (A.simple example of such & system is the greatest integer function:

[#x] = greatest integer less than or equal to # .)

The shift in emphasis from the earlier model is this, The earlier model
viewed the velocity as the sum of separate contributions one smooth, one
discontinucus. The alternative views the velocity as & discontinuous response
to a smooth input. This point of view may lead more naturally to phenome-
nological descriptions of the properties of the ice pack, through a comparison
of the input and output fields. To my knowledge this has not been attemphed
becanse data with adequate spatial resolution of the velocity field are still

%00 scarce. Such & study would not explain why the veloeity field had

ecertain properties. That explanation must be based tn rather deeper umderstanding

of the geometry of the ice pack and the foreces which act between floes than we
have at present. BStill it would be useful to compare some of the properties
of the ice velocity with properties of the external driving forces, i.e., the

geostrophic wind and the ocean currents.
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5.4,5 . Errors in estimating the large scale deformation

The large scale deformation estimates of the previous section are
subject to sampling veristions since they depend on the particular array
of measurements points. There have been several sthtempts to guantify the
sampling errors. Hibler et al., 197L4; Nye, 1975; and Thorndike and Colony,
197T examined the deparbures of the measured velocities from the best it
linear relationships. These departures, called residuals, homogeneity
variations, or nonlinear flucituations,, represent the variability of the
actuael veloeity field on scales smaller than the diameter of the region of
interest.

From observations over & 20 Im scale taken during the spring of 1972,
Hibler et al. found root-mean-sguare velocity residuals of 0.06 em sec_l,
compared to typical linear changes in wvelocity (LJB“/%W ) over 20 lm of
0.14 cm sec—l. Thorndike and Colony used observations from a 100 Im scale
taken during the spring of 1975 and found rms residuals of 0.1 cm sec_l and
typical linear changes over 100 Im of 1.1 cm sec-l. Thelr summer wvalues were
somewhat larger: 1.1 cm sec™’ and 1.8 cm sec © for the monlinear and linear
contributions. These residuals can be regerded as errors with respect to the
large scale average derivatives for the region. When the npumber of observa-
tions is small, the estimated large scale deformations are strongly contaminated
by these errors.

Using what we know sbout the correlation functions for veloelty, we can
profitably address the sampling guestion from a different angle. Teking the
line integral definition for the large scale velocity derivatives, we ask:
how many points around the perimeber of the region must be sampled to resolve
the integral to some desired accuracy? Intuition suggests that the measure-
ments should be spaced closely enough to permit good interpolation but not
so closely as to be highly redundant. A correlation between velocities at
neighboring measurement points of 0.5 might be a fair guess; this would
indicate a spacing of sbout 400 km.

To get = better sanswver, we estimate the line integral in equation 6

ground a circular region of radius * as

M
171" ™ &’—_ ‘= P
Dy = o) woeE T, B= GrOR L eben M.
. il
Then as the mumber of measurements M increases, ]),, &pproaches'Bm/%¢ -

Since ]%4 is a linear combination of veloeity components, we can find its
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variance in terms of the variances and covariances of the velocity components ok
at all M points, and these can be evaluated in terms of the correlation |
functions BR and By . Letg. be the vector involving =sll 2M veloeity u?
components, A be the vector of coefficients, and £ be E'l_)'«.\g « 'Then : 1

DM =A"'LL and £ DE;: A"R. A . 'This calenlation has been done for '3.2
- ™~ .~ Land .
M=¢o which was large enough to resolve W /px . The dependence of |

(E Da"b)'}" on the radius 4 is shown in figure 23a.

This curve depends on Bl} and BJ_ which for this purpose were taken to be
(1~r/e) exf-(r‘/l-.)" with 0. = 2000 km, b = 1300 km for 8 and & = 900 km, P
L = 1000 km for 8 1. + These functions incorporate the features of the ot
observed correlations in figure 16. 'The leading factor ( j=r/o ) mekes
the assumed functions vary linearly near # =6 . The bhehavior of the !
correlation functions near 4 =06 1is related to the variance of increments _—

by

vor { w{r+a) - u.('t‘)) = 2o (1- B"(A))

o 2%,_ A/Q. for small A

which is a rough spproximation to figure 19 where the variance of inerements :
is seen %o be proportional to Al's . The results in figure 23 are guite &
sensitive to the behavior of the correlation functions. They should not E
be taken too seriously until more is known sbout By and 8) near A=0 .
With some cawuwtion.then we interpret figure 23a as follows. Typical

values for the large scale average derivatives are 1% per day decreasing

somewhat with the size of the region over which the average is taken. The ;ﬁ

derivatives "eu./"aa and "ivhx are generally larger than 15

o VWP and v/ '33 as a conseguence of 8_]_ falling off more F
t

rapidly than Bll .
The variance of the error in estimeting mz using only M points,

E ( DN - D‘O)L can be calculated in the same manner simply by redefining
‘the coefficients in the vector é . 'These results are presented as a
fraction of the signal variance E(Dé:) in figure 23b. When M is 3, ‘
as was the case for AIDJEX 1972, the 1975-76 manned AIDJEX array, and
" LOREX T9, the ratio of estimation error varisnce to signal variance was
about 0.7. ' .

With six messurements around the circumference of the region, the

average derivations are resolved falrly well, and only small improvemend

is reslized by adding more measurements. The results are insensitive to P
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the size of the region. The broad curves in figure 23b contain results
for discs ranging in radius from 100 to 500 km.

In this section we have asked how many measurement stations are needed
to provide good estimates of the large scale average velocity derivatives.
This is a different issue than how densely must one sample in space to
resclve the spetial pabterns in the deformation. Observations from a
500 km grid can be expected to give fairly good estimates of the average
deformation, but will not resolve the spatisl pettern very well.

5.4.6 'The relationship between measured large scale deformation and
total opening and closing

Suppose a regilon of interest is intersected by a mmber of cracks, each
of vhich is opening or closing at some rate. If the rates wers known, the
total rates of opening and closing for the reglon could be found. In practice
we are not able to measure the motion at each erack, but only the motion of a
few points in the region. How are we to use these few measurements to esti-
mate the opening and closing?

In an analogous situation in one dimension, we have k cracks each with
opening or closing rate u; i=l,-«,k . We can imagine the velocity W to
be a random function of X having random discontinuities at random points
and being constant between the points. Suppose we have meagsured only the

motion at the end points of the region, an interval of length L . Then

A = +n+c\.l b}oemhj = % Aol (u,’_,o) )
L=

E (7)
C_ = bl C].osu.nj = Z Arain (u.;,,n)

=t

¥

e
[L = Mf\' grcmﬁj arﬂ]bm;j = A +C - Z u; ;

and the problem is to estimate A and (0 given u . At first sight the
situation seems hopeless. L clearly contains information about the net open-
ing or eclosing but not gbout the total opening and closing. However, knowledge
about the rar_ldom variebles k’) W, Uz sUp can be used to make probabalistic
statements aboutb 'bhe opening and closing. Suppose for instanee Kk has the
Poisson distribution with parameter A . This means that AL is the average
number of eracks in an interval of length L. ., Then the probability of B

finding k cracks in a random interval of length ) is

 plkak) - Ut/ k)
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If )lL = 0.1, for instance, the probability of 3et‘bing k= 0 is 0.9051,
prob (R=1) = 0,0905, and prob(k>1) = 0.00k5. Therefore, with high probability,
there is either no crack or just one in the interval and the observed value
of the veloecity difference L would itself indicate the total opening and
total closing. Of course for larger AL it becomes more likely that several
cracks inbterseet the test interval, in which case the observed W cannot
separate the opening from the eclosing.

A similar approach for the two dimensional problem is to imagine the ice
pack to be crisscrossed by a family of random cracks, defined by the random !

straight lines
2eosB o+ y snd = T

where each 8; has the upiform distribution on (o,2y) and the normal distances

4 inaie ..

7, from the origin to each line form a sequence of Poisson points. Imagine

ot e

that associated with each crack is a veloeity discontinuity U, having

<

the Gaussian distribution. This deseribes a random vector field having

structure akin to the velocity field of sea ice. The observations of Hell

and Rothrock can be used to estimate the parameters in the Poisson and

Ganssian distributions. These random fields have the following properties.
They consist ‘of'discrete rigid floes. The floes have a distribution of =zizes f *
determined by the Poisson field of lines. The Poisson lines are isotropic
and homogeneous. The velocity difference between any two points is the '
vector sum of the velocity discontinuities encountered getting from one point N
to the other, ,

At each crack the opening or closing is determined by the projection

-

of the velocity difference vector onto the normal to the crack. E ¥

l

opening = max (o, Wy coa By, +vy b By )

|t}

elosing = min ( 0, U;ceaB; +Viam B )

Thus it is & simple matter to evaluate the total opening and closing for any

realizetion of the random field.

Of course one can also imagine measuring the velocity at e few points

and constructing the /-strain rate invariants from the observed velocities.
In this way one can test for a reletionship between the L—S‘train rate
invariants caleulated from a few sampled veloecities and the total opening

and total closing found by tallying up the activity at every crack.
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In an zttempt to carry out this program, parameter values were teken
o be A =n.0531m—1, A =0, 0-% = 1 (arbitrary units)a. An L =100 km
trisngle was used to simulate the sampling procedure used during AIDJEX.

A large number of random fields were generated.

Each reelization of the random field is defined by the sequences of
random numbers k) 9,_‘, u; ,v , 1y for v=s e k . Here the HL- are 4drawn
independently from the uniform distribution on (b: 27 ) « The values for

1:. form a Poisson process with parameter A . This is achieved by drawing
the increments A=1{y ~ T, independently from the exponential distribution
with density Aé‘m . The process is terminated as soon as T exceeds
100 kilometers since none of the subseguént.lines would intersect the 100
kilometer region. Finally the W; and V; were drawn independently from
the normal distribution with zero mean and mmit variance.

For each field the velocity was measured at the three specified points
and the | -strain rate invariant s JE] and B were evaluated. Also for
each field the total opening and cleosing were evaluated using eq. 7.

These were normalized by |E) and displayed versus 0O in figure 2Y. TFor each
realization of this random field two points are plot*bed,( g, AJIEl ) and
(BJ C/iEl ) . From the plot it is clear that there are not unique values

of A/IE) and C.ﬁEl corresponding to a given 8 . Instead there is a
distribution of values for A/|E| (and for %s) ), and this distribution
changes with b . The distributions sketched in figure 25 , 8re broad in the
sense that probable departuresz from the mean are at least as large as the mean.

The interpretation of this exercise is that the total opening and closing
are only weekly determined by the | -strain rate invarients based on three
measurements 100 kilometers apart. Had the relationship been & S‘Erong one
the distributions in figure 25 would have been narrower, or to say it differ-
ently, the points in figure 2 would have clustered more closely around
curves like those in figure /¥ . It may still be useful to imagine these
smooth curves but only with the recognition that the actuasl opening and

closing scatter widely about the imagined curve:

+ random error

'%? = e( )

¢ + random error
Ye) = e(8)

where the random terms and the G-dependent terms make roughly egual contri-

butions to the total opening and closing.
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Some of the scatter in these figures arises from having used only
three points to estimate the deformation invarients. With more than three
points, the errors in the invariants could be reduced, somewhat as shown
in figure 23. But even if the invariants are determined without error,
scatter will remain in figures 24 and 25. This is because many different
fields of motion with different tota2l opening and closing could have exactly
the seme large scale average deformation.

The total opening and closing are an essential part of the theory of
the ice thickness distribution. The sbove results suggest that it may not
be satisfactory to represent the total opening and closing as functions
of the large scale average velocity derivatives. VWhen meny velocity measure-
ments are availeble in a reglon, it is possible to estimate more of the
spatial structure than simply the average velocity derivative. An attempt
to estimate the variablility of wveloeity within the region may help to
reduce the scatter which is anticipsted on the basis of figure 24, Or
perhaps it will be enough to sssume that the variability is constant in
time. One might then drive the thickness distribution calculations with
opening and closing time series which have the right statistieal properties
even if they may have large errors on 2 day to day basis. The statistical
properties can be inferred from figure 24. OFf course this figure is the
conseguence of a perticular conceptual model motivated by a limited data
set~-the SEASAT SAR data from early October 1978. More data need to be
collected and studied before these ideas can be extended to other times and

places with confidence.

5.4.7 The relationship between kinematics end stress

Kinematic data can be used for studying the relationship between
stress and strain for sea ice. Suppose Tor instance that the state of stress
tensor U suitably averaged over some region, is related to kinemetic quan-

tities € and the ice geometry s by some expression of the form
¢= F(&s) .

Although ¢ camnot be measured directly, its divergence Y-T can be inferred
indirectly from the observed momentum balance when all the other terms in
that balance are known. If a particular funetion /£ is hypothesiged, it

can be tested by evaluating both sides of the equation Ui¢ =V F(€,5) |

the left hand side as a residual from ‘the momentum balence and the right

hand side in terms of observed kinematic and ice geometry quentities. This
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was one of the objectives of AIDJEX (Maykut et al., 1972). In practice
the test is diffienlt to make sinece neither V-0 nor V-F can be deterw
mened very accurately from observations. See Rothrock et al., 1980.

Under special circumstances, meaningful tests may be possible, however,
When the ice deformation is strongly divergent, ice floes tend to move apart.
With no floe-to-floe contacts there can be no V-0 forces. The left hand
side should differ from zero only by measurement error, These errors are
probebly small enough to permit a useful test.

Another speecial situwation of interest is when the ice is being forced
up ageinst the coasts by the wind. As the ice moves toward the coast it
converges, becomes stronger, and eventually becomes strong enough to resist
further deformation. IFf the on shore winds persist, a zone of motionless
ice can widen to several hundred kilometers (Pritchard, 1977). In this situa-
tion, intuition suggests that the V+§ vector should point off shore and
should inecrease in time until it balances the on shore wind stress. With
simnltaneous ice trajectories at 100, 200, 300 and 400 km from the coast,
it should be possible to observe the amoumt of convergence required to pro-
duce the required resistance to the wind.

At greater distances from the coasts, there is evidence that the ice
stresses embodied in V'@ are usually small. ILittle suecess is anticipated
in trying to observe them. Any stress-strain law which provides adequate
resistance to deformation near the shore is probably adequate for full basin
dynamic modeling. The observations may never be adeguate to discriminate

very selectively between candidate stress-strain laws.

5.5 Discussion

I have tried in this paper to bring together some of what is known
ebout the motion of sea ice. The emphasis has been on the departures of
the true motion from the long term mean circulation. This is a compari-
tively new topic, the investigation of whieh has only recently been made
possible, mainly by the developments of satellite positioning techniques.
Perha?s because of its newness, the field lacks a clear agenda of guestions
to be answered. Instead we are still trying to characterize the motion, to
determine the magnitude of the motion on different scales and to identify
motions which have some intrinsic interest or are related to other phenomena
of interest.

The time and space correlations have been used extensively here for

several reasons. First they give a compact deseription of the motion. In
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principle, the correlation function involves one time and two space variables;
but in practice a great deel of information can be extracted from three
functions, each of a single varigble: R(’C), 6“ ('r) and Q_L(T') . Second, these
three functions are accessible to observation. Third, properties of many
kinemetic quantities can be deduced from these functions, as illustrated
in the text. Pourth, these functions form the rigorous basis for answering
questions relasted to interpoletion, prediction, and experiment design.

Many of the resulis presented here are baséd on sample gutocorrelation
functions deduced from limited data. The data available for estimsting
correlations at small space legs {less than 100 km) are meagre indeed.

More work slong the lines of Hall and Rothrock would help to resolve this
part of the correlation func™ion. The behavior of the correlation functions
B“( ) on d G__L('f‘) in the limit of small + is an important property of
the motion related to the granular nature of the ice pack.

As mentioned in the text,care must be exercised in choosing correlation
functions or contradictions (negetive variances) can oeccur. In fact this
has happened in some of the calewlations done using the correlations tabulated
in Tableﬂ with linear interpolation to intermediate distances. This means
thet the piecewise linear function defined in the teble is not positive
definite. A useful objective would be to find & positive definite analytical
form which approximates the observed correlations including the behavior
as T approaches zero.

The Poisson—Gausst model, presented as a way to study the relationships
between the local opening and closing and the large scale deformation, has
suggested that the relationship mey be weak. Observations ageinst which

to test this suggestion are sorely needed.

Table VI. Spatial correlation functions for sea ice velocity.

Distance (km) B“ G..L
0 1.00 1.00
100 .98 .95
200 .91 .8L
hoo .68 .51
800 .37 .06
1200 .19 -.09
1600 .10 -.10
2000 .01 -.06
2400 .00 .00
38
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Figure 2. The general circulastion of ice in the Arctic Ocean (from Doronin / o
. and Kheisin). oA

Figure 3. Buoy trajectories in 1979. The numbers indicate the months in which i
each buoy was deployed and feiled. Trajectories ending in an arrow : ‘il
continued to operate in 1980. Plotted points correspond to the beginning ]
of each month. \

)

>R

Figure 4. Trajectories for drifting buoys during a) 1980, and b) 1081.

Fipure 5. (a) Latitude of ice station Cariboun, versus time, 2 Sept~16 Nov 1975.
NavSat date, sampling interval, 2.5 days.
(b) Latitude of ice station Big Bear, versus time, 2-5 Sept 1975.
NavSat data, sampling interval, 1 hours. i
(e) Arbitrary y~coordinate of Big Bear, versus time, 2~3 Sept 1975.
Aecoustic tracking data., sampling interval 15 minutes. ]
(d) Arbitrary x-coordinate of Big Beer, versus time, 2 Sept 1975.
Acoustic tracking data, sampling interval one minute. !
Only in (d) is the measurement error visible (%3 m).

Figure 6. {(a) The variance of the increments x('ﬁ+'b)- x#®%)  ana 5-('{:""-‘-) - ﬁ'f-'b) for
ice station Caribou 1975-T6. A =and a; are arbitrary Cartesian
coordinates.

(b) As in (2) using precise acoustie tracking at ice station Big Bear,
an 8-day period, late summer 1976.

B e

Figure 7. Veloecity histograms (from Thorndike and Colony, _1980). |

et e e e e

Figure 8. The power spectral density of the velocity of ice station Caribou 1975-76. T
The wnits of spectral density are velocity""/frequency, em? see~!., The P
total velocity variance for these data is 145 om? sec—2.

L
gt

Figure 9. The power spectral densities of the geostrophic wind and the ice velocity,

from drifting buoy 1901 during 1979. The units of spectral density are
cm 2 sec—!, The variance of the wind is 53 m 2sec™2, The variance of
the ice is 59 cm 2sec-2,

R T e R TR =

Y oo

-
]
'
Figure 10.. The power spectral density of the velocity of ice station Big Bear Y ALY
during summer 1975. The variance is 173 cm2 sec—2, Units of spectral I
density are m* s~'. (Linear frequency scale, from Colony end Thorndike, 1980). il
]

Pigure 11. The complex time correlation function for ice station Caribou, 1975-T6.
The velocity variance is 145 cm 2 sec=2,

Figore 12, The time correlation function for the W and V components of velocity :
from 28 grid points in the central part of the Arctic Basin, from drifting
buoy data collected during 1979. The cross correlation between w and

v is negligible. Variance of W= 23 em? sec—?; varisnce of V = 22 cm? sec—2.

Fignre 13. (a) The real end imaginary parts of the weight ot to be used for inter—
polating to the mid point of a time interval of duration ¥ . The ratio i
of the measurement error to the standard deviation of veloeity is o/
(v) The variance of the interpolation error expressed as a fraction of

the variance of the ice velocity. Data from figure 11 were used here.
Logarithmic time scale.
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{a) The weight « for prediction over ‘time .
(b) The prediction error variance versus prediction time., See Figure 13
also.

A schematic representation of the X and ¢ components of velocity at

the points (o,0 ), (75}, (o,r). Isotropy implies Fnc = EL«F,

Fbd = Eae , and FEee = E.lf- , but does not imply equality between
Eoc and Eae or E LP and E ba .

Observed correlations between veloecity components as functions of distance.

The variance of the interpolation error as a function of the grid spacing,
|, and the measurement error, o?2.

The strain rate invariant 9 indicates whether the motion is dominated
by divergence, shear, or convergence. The total opening and closing
are sometimes treated as functions of 2.

The variance of velocity increments versus intervel length, from SeaSat
synthetic aperture radar data, 3-5 October 1978, Beaufort Sea.

Histograms of the strain rate invariant # . Solid line is for drifting
buoy data from 1979, grid spacing about 500 km (Colony and Thorndike, 1981).

Dots are for AIDJEX manned camp date, spacing 100 km (Nye, 1976). By widh: 20%

Strain ellivses for the AIDJEX buoy array, 800 km diameter (a); and for
the AIDJEX manned camp array, 200 km diameter (b). The ellipses show

the deformation of a eireular region on 1 May 1975, to the date indicated.
The principel axes of the ellipse are the principal strains. The angle
from the horizontal broken line to the major axis is the prinecipal
direction. The rigid body rotation is indicated by the are from [J] to #.
Data from the Beaufort Sea, roughly a 500 km radius ebout Th"l\'!' 145°W.
(From Thorndike and Colony, 1980.)

Strain ellipses from 1979 (solid line) and 1980 (broken line) drifting
buoy data, showing the year long deformation of an initial circle
(drawn over Greenland).

(2) The standard deviations of the large seale average velocity deriva-
tives, as & function of radius of the averaging region. (q. 50 prnF Sef )
(b) The retio of the varisnce of the error in estimating average
velocity derivatives to the variance in the derivatives thewselves,
as a function of the number of measurements. The dependence on the
radius of the averaging region is indicated by the shaded width of
the curves.

These curves are semsitive to the assumed correlation functions,
as discussed in the text.

Tl_ae total opening and elosing versus £ . 103 realizations of the random
field with Poisson parameter Al, = 8. The velocity discontinuities
were drawn independently from the unit normal distribution.

Distributions of the total opening for several ranges of 4., Data taken
from figure 2b.
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ORIGINAL PAGE 8
OF POOR QUALITY

180

60

40

80 100 {20 |

8 (degrees)

60

40

20

it

m

T 2 TN TP

X oo e Ko WO & ZASEX 20

PRRVE ST )

B T



30

20

10

ORIGINAL PAGE 18
OF POOR QUALITY
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