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Remote Sensing offers promise for studying sea ice conditions and the processes

which change them. At present, there is too little common ground between remotely

observable data and the quantities described in sea ice models. Our interest is in
f

identifyimng measurements which can be made from satellites and which describe

properties relevant to the balances of mass, heat and momentum of the ice cover. As a

prerequisite, we wish to describe the random spatial structure of sea ice and its field of

motion, so that adequate sampling strategies can be devised.

The research performed under this grant has been focussed on the piece-like

structure of the ice pack, as described by the distribution of floe sizes. Objectives were 1)

to clarify how the several useful definitions of floe size distribution are interrelated, 2).to

consider the practicality of dif ferent measurement techniques, 3) to make measurements

of typical distributions, and 4) to investigate the effect of sample size on the sampling

error.

These objectives have been accomplished. The results are contained in a paper

daringly entitled "Sea Ice Floe Size Distribution" and attached here as Appendix I.

Summertime distributions of N(p), the number of floes per unit area with diameter no
t

smaller than p, behaves roughly as p' with a ranging from -1.7 to -2.5. The sampling 	 3

theory gives the variance of an estimate far the fraction g of a test area with diameter D

covered by floes or diameter d as g(I—g)N" i, where N;-.(D/d)2 can be thought of as the

number of independent samples in the test area,. This relationship and similar ones for

other test regions have been copnfirmed by measurements of sea ice images: I,ANDSAT

visual images, U-2  aerial photgraphs, and a mosaic of NASA aerial photographs.

The basic procedures and theoretical facts are in hand for measuring floe size

distribution. Different distributions can be defined and interrelated. Distributions have

been measured for several stages of break-up—all of which show distinct floes. The

extension to winter conditions where floes are not well defined should be pursued; a useful

approach would be a study of lead geometries. Another useful step would be the

application of these measurement techniques to many images of sea ice to observe the
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seasonal and regional variability of floe size distribution.

The sampling theory devised for floe size distribution has application to any problem

involving spatial sampling. It was applied to the sampling of ice thickness distribution, as

expounded in the paper "Ice Thickness Distribution--Theory and Measurement" attached

as Appendix E. The principle result is that for thick ice, samples further apart than about

a hundred meters are independent, while independent samples of thin ice (thinner than

one meter) must be over a kilometer apart.

The velocity field of sea ice is demonstrably the movement of rigid pieces. The

consequences of this on the spatial statistics of the field are summarized, in the paper

"Kinematics of Sea Ice" attached as Appendix III. Included is the description of a model of

the piecewise rigid body motion and its effect on the estimation of open water formation

and ridging from a "large scale" measurement of deformation. The pieces are taken to be

defined by a random set of lines (a Poisson field) with an average piece size of 16 km,

taken from synthetic aperture radar data of Hall and Rothrock (1981). The differential 	 (.

movement of the pieces is given a Gaussian distribution. Many realizations of these pieces 	 z

and their motion are simulated. For each, the total opening and closisxg at the floe

boundaries is plotted versus a "large scale" estimate of deformation made from the

velocity at three points. Each realization gives one data point. The scatter in the data

points is several hundred percent and shows how poorly a three point strain rate estimate

allows us to determine the actual small scale opening and closing.

RECOMMENDATIONS FOR FUTURE WORK

Floe size measurements should be extended into winter. The most attractive

approaches are the study of the branching geometries of leads and the identification of

pieces through their motion rather than their appearance. It would be useful, at this

stage, to measure floe size distributions from a variety of ice conditions, and to begin to

observe the spatial and temporal variability of this property of sea ice.
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Further work, currently in progress, is aimed at direct observation of local (small

scale) opening and closing from high resolution velocity field obtained from SAR imagery.

SAR, can also provide a better understanding of the statistics of the rigid body motion of

pieces: for instance, whether their rotation and translation depends on floe size.
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Sea lee Roe Size Distribution*
by

D. A. Rothrock and A. S. Thorndike
Polar Science Center

University of Washington

Abstract

Sea ice is broken into floes whose diameters range from meters to a
hundred kilometers. This fragmentation affects the resistance of the ice
cover to deformation and the melting at floe sidewalls in summer. Floes are
broken by waves and swell near the ice edge, and, throughout the pack, by
isostatic imbalances, thermal cracking, winds and currents. In winter, they
are welded together by freezing.

Floe size can be measured by several properties p- for instance, area
or mean caliper diameter. Two definitions of floe size distribution seem
particularly useful: F(p), the fraction of area covered by floes no smaller
than p; and JV(p), the number of floes er unit area no smaller than p. A
theorem from stereology states that F() can be measured by sets other
than areas, such as the fraction of a line or of a point set covered by floes no
smaller than p. If N behaves like p" for small p, where p is mean caliper
diameter, a must be greater than -2 so that the small floes occupy finite
area. If --2<a<-1, the perimeter of small floes is infinite.

Several summertime distributions have been measured. On a log-log
graph, their slopes (local values of a) range from -1.7 to -2.5. One
distribution follows a power law; the others have steeper slopes for larger
floes, and more gradual slopes for smaller floes. Another sampling strategy
is to measure the lengths of line segments on floes. The distribution of
these chord lengths is equivalent to the distribution of floe diameters.

The variance of an estimate of the fraction g of area covered by floes in
any size range is g(i-g)K-1, where K is the equivalent number of
independent samples. K can be found from the autocovariance of the
indicator function for the chosen size range. For line sampling of a narrow
range of floe diameters, K is the ratio of the sample length to the floe
diameter.

1. Introduction

The sea ice covering the Arctic Ocean is not a uniform continuous sheet life the ice

that might cover a small lake. Instead it has irregular top and bottom surfaces and is

broken into distinct pieces, called floes. In the summer these floes are-easily identified in

remote images of the ice pack such as Figure 1: they are somewhat rounded in shape and

are separated from each other by a lacey region of open water. They have diameters

• Submitted to Taurnal of Geophysical Research.
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ranging up to 100 kilometers. In the winter, floes still exist but they are less easily

identified. Then the ice pack appears to be highly fractured, but the cracks, called leads,

often cannot be resolved where the floes are actually in contact. To make matters worse,

floes are constantly being "welded" together as new ice forms in the leads that separate

them.

The division of the ice pack into floes affects its large scale geophysical properties. It

seems likely, for instance, that the way the ice pack deforms in response to forces applied

by the winds and the currents and at the coastline is controlled more by the geometry of

the pack than by the material properties of sea ice. In this paper we discuss some of the

geometric properties of the ice pack including the sizes and shapes of the ice floes, the

arrangement of floes in space, and the abundance of floes of various sizes.

Physical processes that determine the floe geometry include: failure under

horizontal forces applied by the winds and currents, failure during imstatic adjustment,

thermal cracking, flexural failure in the presence of ocean swell, melting around the

perimeter of floes, and abrasion with adjacent floes. These processes break large floes

into little ones and cause floes to decrease in size. During the freezing season these

processes are roughly balanced by the tendency of adjacent floes to be welded together.

At present it is not known which processes ara most important. Perhaps an

understanding of the geometry of floes and how the geometry changes during the annual

cycle will stimulate research on the governing physical processes. In any event, an

understanding of the geometry of the ice pack is of interest in its mn right for a number

of practical applications associated with transportation in ice-covered seas and with the

design of offshore structures intended to survive in the presence of ice.

The first section of this paper defines the floe size distribution, clarifying the notions

of "size" and "distribution". The second section describes techniques for measuring the

floe size distribution. A sampling theory in Section 3 indicates how many measurements

must be taken to resolve the floe size distribution to a specified accuracy. Some

measurements that test the sampling theory and others that illustrate floe size
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distributions of different ice covers are presented in Section 4.

Measurements are presented primarily to illustrate points of technique or approach,

and to indicate the range of distributions in different seasons. These have been made

from three sources:

1) an aerial photographic mosaic of the rc---gion of the Arctic Ice Dynamics Joint

Experiment (AIDJEX), 16 August 1975 (Hall, 1979), reproduced here as Figure 1,

2) part of a LANDSAT summer image, 165 km x 155 km, 18 August 1973 (No. E-1391-

22283),

3) four U-2 aerial photographs of areas about 30 km on a side, taken June 21, 1974

(flight No. 74-101; frames 9635, 9637, 9639, and 9641).

The only other published observations we are av are of are in Weeks et al. (1980). Those

measurements were made from airborne X-band side-looking radar data. We also mention

a project currently underway at the Scott Polar Research Institute to measure floe size

distribution near the ice edge from satellite imagery (A. Cowan, personal

cornmunication). Other work on this topic is reported by Losev (1972).

§2. Floe Size	 t

Let P(x,y,t) represent some measurable scalar property of the ice pack at the

location (x,y) and at time t. In other contexts one might take P to be the ice thickness, t

t
the surface temperature, or some other local variable. But for our purposes we will

consider P to be related to the size of the floe covering the point (x,y) at time t. If no

floe covers the point, we take P = 0. Several measures of size are of interest:

1) area: The area of the x,y plane covered by the floe in question.

2) diameter of the largest inscribed circle: This is not as useful -a measure of size

as the total area of the floe, because it is not particularly easy to measure.

3) mean caliper diameter: Imagine calipers consisting of two parallel lines. A

caliper diameter is the distance between the lines when each touches one side of

the floe without penetrating the interior. The average of these readings as the

•..,,1,^„ JS « ..^ ^- ^` - mss...	 '^ s _ a..^..,.,:,..^r+.,w^....-.:-------..-...^_.,,.-^.
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calipers are rotated through ail orientations is the mean caliper diameter.

4) perimeter: The length of the curve defining the floe boundary, assuming the

curve is smooth and its length finite. This quantity may be related to melting on

the sidewalls of floes.

We now show that these properties are highly correlated so that a measurement of

any one property gives an approximate value of any other. To study the relations between

properties we selected the AIDJEX summer mosaic and digitized the perimeters of all floes

with diameters over about one kilometer Figure 2). All of the properties defined above

were calculated for these 782 floes. The distribution of area/(mean caliper diameter)2,

for example, is shown in Figure 3. Subsamples of 45 large floes and 379 small floes have

substantially the same distribution.

Table 1 summarizes these relationships; for example, a floe with a mean caliper

diameter p has an area of 0.56 p 2 f 0.05 p2. Note how closely the relationship

Table 1. Statistics an certain ratios of floe properties

Disc	 Floes (Summer Mosaic)

Mean	 Standard	 rr/Mean
Deviation (a)

i

Area
(Mean Caliper Diameter)2

Inscribed Circle Diameter
Mean Caliper Diameter

Perimeter
Mean Caliper Diameter

Area
(Inscribed Circle Diameter)'

Perimeter
(Inscribed Circle Diameter^T

Area
(Perirneter)2

7r = 0.785	 0.66	 OX5	 0.08

1	 0.77	 0.09	 0.12

n=3.14	 3.17	 0.04	 0.01

4 = 0.785	 1.14	 0.21	 0.18

n = 3.14	 4.19	 0.54	 0.13

(47r)`i = 0.080	 0.065	 0.005

r	 f
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perimeter = 7T - mean caliper diameter

is satisfied. This expression is exact for any conv,-x shape (Miles, 1978); a small concavity

adds perimeter without altering the mean caliper diameter. The floes in this sample were

in an intermediate stage of break-up. Floe shapes at the end of the melt season and in

winter may be slightly different.

§3. Floe Size Distribution

Within some geographic region S (e.g., the Beaufort Sea) at some instant t (e.g., the

first day of August), we consider the scalar property P to be a random function of space

P (x ,y ;t ) (x .y ) ES . t E:T

The observed function can be thought of as having been drawn at random from an

ensemble consisting of all possible functions.

Any particular realization of P contains a full description of the P-geometry. In

general, this geometry is very complicated, and much of it is irrelevant since it would not

be repeated in different realizations. Our aim is to define statistical properties of the P-

geometry that are common among different realizations and therefore describe the

ensemble from which the realizations are drawn. Many more realizations of ice floe

geometry will have to be studied before this goal can be reached. The present emphasis

is to develop the general statistical concepts, not to document the fell range of possible

geometries.

We assume that the process is ergodic in whatever statistic is of interest to us. This

means that one realization over a sufficiently large region S can teach us all we could

learn by loo4ng at numerous realizations.

Fractional Area

Suppose P is a property of an ice floe, so that P is constant over any particular floe.

Then one can define the fractional area F in S covered by floes for -which the property P

is no less than io. Formally, use the Heavyside function H(q) = I. if q 2: 0, and 0 if q C 0,

T
77^
_...'
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to write

F(p,S) = , f JH[P(x,y)-pJdzdy	 {^)

S denotes both a region of the plane and its area without confusion. This definition avoids

problems with "edge effects". If a floe with .P = ,po lies partially in S. only that part of its

area within S is counted, but the value of pa pertains to the whole floe. F(p,S) is a

decreasing function of p. If p is a property that cannot be negative, then

.PlinDF(p,S) =F(0'1',S)

is the concentration of ice. F(0,S) equals unity.

Thus far, S has been token to be an area, but one might choose to sample floe sizes

by some other set of lower dimension: either a line drawn through the image, or a set of

regularly or randomly placed points. Sampling in such sub-spaces is called stereology

and has countless applications. Early papers, for instance, concern estimating corpuscles

in tissue and particulates in minerals (Wicksell, 1925; Nicholson, 1970). The subject

contains a theorem that shows how measurements from different sample spaces are

equivalent (Miles, 1978). The theorem, states that if some subset U of S is selected, and

U' C U is the subset of U for which P exceeds p, then the ratio of the measure of U' to the

measure of U is, on average, equal to F (p,S)

Eu{U} =F(p,S)

where E denotes the expected value or ensemble average operator, and 1i is the

appropriate measure (the number of points, the length of lime or the area).

Number density

A second way to describe the distribution of floe size is to find the number of floes

per unit area of a region S for which P is no less than p

x(p,S) .

Again, edge effects are best handled by counting the fraction of a floe's area contained in

S. while retaining the value P of the whole floe. H(p,S) is a decreasing function of p.
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The total number of floes in S is S •N(O,S), which may be finite or infinite.

The number of floes larger than p and the fractional area covered by floes larger

thane are related by

F(),5} = -- fa d (p-
P

where a(p) is the area of a floe with propertyp (taken, say, from Table 1), and —dN(15) is

the number of floes with g3<P<P+dp. Use of one rather than the other is a matter of

choice. The advantages of F are its bounded behavior for small P and its appearance in

the fundamental theorem of stereology.

It might seem useful to consider the total number of floes larger than some cut-off

po, N& O,S) and to define the fraction of these floes larger thanp

Q (p,po)= 
N(R), 

P^:po

Q is a cumulative probability function which increases to unity as p decreases to po. Its

usefulness is limited, because the information about how densely the floes are packed in

space has been lost, and because Q depends on po as strongly as on p. If we envision

picking; floes at random, this probability function assigns each floe equal probability,

whereas the quantity F, taken as a cumulative probability, weights each floe (and the

open water) by its area.

Power Zaw dist7ib•utions.

Consider the distribution of mean caliper diameter p. For small p, N can behave like

p", a;90 with a=0 corresponding to the case of a finite number of floes in S. For a<0, the

number of floes smaller than any finite po is infinite. Of course, the total area of such

floes must remain finite

Po	 PO

— f pa d.N = _a j pa+ldp <c-
0 

which is satisfied only for a>-2. The total perimeter of the floes is proportional to the

integral of pdN, which is finite only when a>--1. The three possible cases are:

,
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a = U,	 finite number of floes,

	

—1<a<D,	 infinite number of floes, finite perimeter,

--2<a<-1, infinite number of floes. infinite perimeter

Over the range for which the power law holds, the floe geometry has a certain self

similarity

N(e) 
Nikp) — ^(k}

That is, for small floes, floes of a fixed size ratio occur in numbers of a fixed ratio. In this

case there is no natural length scale to the geometry; provided that we choose a sub-

scene which has small scale structure and does not fall entirely on a single floe, the small

scale structure looks the same under arbitrary magnification. It is a common experience

to confuse sea ice images with quite different scales, as in Figure 4, and that's why. Self

similarity is illustrated by the Apollonian gasket in Figure 5, which is characterized by a

power law distribution NNp Ls°7.

Exponential distributions.

A construction with quite different properties is shown in Figure 8. It is called a

Poisson field, because the perpendicular distances from the (randomly oriented) lines to

an arbitrary origin are distributed as a Poisson process (Salomon, 1978). Unlike the

Apollonian gasket, it has a unite number of pieces in a finite region S. Circles inscribed in

the pieces are distributed exponentiaNy

N(p) = N(0)e'P'^'

where p is circle diameter, and A is the length scale of the pieces. The Poisson field bears

only a slight resemblance to winter ice, and none to summer ice; the infinite length of the

construction lines precludes there being many small floes in the space surrounded by a

few large floes. We do not expect to observe exponential distributions in nature.

d

f
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1
Techniques and observations.

One technique we tried involved the use of a set of discs, graduated in size from 3

mm up to 2.5 cm, corresponding to floes with diameters between about 1 and 10 km.

Beginning with the largest disc, one can identify all the floes into which the disc fits.

These floes have an inscribed circle diameter d no smaller than the disc diameter.

Working with k discs, one can establish k points (N,d) of the number distribution of

inscribed circle diameter. We used five discs. Floes more than half in the test area were

counted. The method is appealing in its simplicity and is sufficiently accurate to

distinguish the range of distributions occurring in nature.

This method was applied to the LANDSAT image and four U-2 photographs, the

distributions for two of which are shown in Figure 7. Inscribed circle diameter was

converted to mean caliper diameter p, using S = (0.77)p from Table 1.

Another technique is to digitize each floe boundary on an x,y digitizing tablet by

tracing a cursor around the boundary of each floe. Some precaution must be taken to

digitize all floes in the chosen size range and lying even partially within the test area.

Each floe is represented by the coordinates of twenty to fifty points around its boundary,

from which one can easily calculate all. floe properties.

This method allows one to treat edge effects without error. counting the (areal)

fraction of a floe within the test area while measuring the floe property of the whole floe.

The test area for the AIDM summer mosaic is the box shown in Figures 1 and 2.

Digitizing requires equipment and some set-up time — for instance, writing programs to

compute floe properties — but in an operational mode, this method is probably as quick as

using disc cutouts and provides accurate measurements of all floe properties.

The AIDJEX summer mosaic was measured in this manner. Its number distribution is

shown in Figure 7, and its fractional area distribution in Figure B.

The mosaic and the LANDSAT image are data from the same geographic area in mid-

August, two years apart. The difference between the two distributions (in Figure 7) is

evidence of considerable interannual variability.
3

i
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Striking spatial variability is also present. The distributions denoted by U2-35 and

U2-39 in Figure 7 were observed at the same time from regions only 50 km apart.

Further, one can interpret the ice in U2 -39 as being a broken version of the ice in U2-35.

To the extent that this interpretation is valid, we see that only the large floes broke; U2-39

has fewer 10 km does but more 1 km floes.

§4. Chord length distribution

In winter, when it is difficult to identify floes and assign values of P, piece sizes can

be characterized by the distribution of chord lengths. At each point on a random line, R,

assign a chord length C(x) of the longest segment containing .T and lying on a single piece

of ice.

Either end of the chord touches a crack or lead. Trom R select a random test

segment S of length L, count the number of chords within S for which C is no less than C.

and divide by L to define the chord distribution M(c ). For a chord only partly in S, count

the fraction of its length in S, but assign a value C equal to its total length.

The chord and floe size distributions are closely related. In this instance, take the

floe property to be the mean caliper diameter p. If a rectangular area with sides a and b

is sampled by a test line S parallel to side b. we have that

rumber of chords 	 probability that chord is between c and c+dc,

	

between c and c+dc ` oilaiL 	 given that S hits a floe of diameter p

(2)

	probability that S	 number of floes with
hits a floe with diameter p	 diameter between p and p+dp

Using the definition

G(c,p) = probability j chord > c IS hits afloe with diameter 

and the densities

rra (c) = — ^ and n (p) = —
P



4	 ' .
-11-

(2) becomes

b m(c)dc = ,i do do	 €a b n(p)dpj
R

or

m(c)=-f 
dG(cc, 

pn(p)dp
R
	 (3)

For circular floes with

a
G = ^1-- cs

P

equation (3) is an Abel integral equation which can be inverted to give the diameter

distribution in terms of the chord distribution

N(p) _ -K- f (c'`p')-,d&f(c)	 (4)
n=P

Parts of this development follow Ripley (1981, §9.4).

Figure 9 shows measurements of both N(p) and M(c) from the AIDJEX summer

mosaic, and a calculation of N(p) from M(c) abservations using (4). Measurements of

G(c,p) for real summer floes are shown in Figure 10.

Sampling the floe size distribution

It may be inefficient or even impossible to determine the fractional area distribution

F by measuring the area of each floe in a region R. In this section we discuss the errors

that arise when .F is estimated using a subset U of R. A general theory is presented and

then applied to several specific sampling strategies where U is taken to be a box, a

random straight line segment, or a regular lattice of points.

Let P(x,y) be a measurable property at the point (x,y) and let P denote any

condition on P. Define the indicator function II(x,y) to be 1 if P satisfies P and zero

otherwise. For example, if P represents mean caliper diameter, and r the condition I km

< P < 3 kin, the indicator function will. take the value R = I over all floes with diameters

between one and two kilometers, and will be zero elsewhere. Use the symbol g to denote
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the fractional area of R for which P satisfies I'. With our earlier point of view that P is a

random function, we have

g = tLA ; f H(x.,y) dR = Prob (P satisfies I')
R

Here the measure of R, jCR, is included to normalize g properly. The probability of g is

assumed to be independent of x,y; any point in R has equal a priari probability of

satisfying the condition r.

Now let g be an estimate of g based on the random subset U.

9 = AFJ I ^R(x,y) dU	 (5)

We now show that the mean of g is g and show how the variance of g depends on the size

of the sample U.

The mean and variance of 9--

Since P is a random function, so is II. lI has the trivial probability density:

Prob(II=1) = g; Prob(H=O) = 1—g. Thus EII equals g. Then using (5), Eg equals g.

From (5), we have

var9 =E {9-9}2 =E Ulf II(x ,y ) dU — ^UTI(xP ,y ' ) dU
'-91

	 {6}

= I 
LFJ'9 Rn(x.y,x',y') dUdU' ,

where Rn is the autocovariance function for the indicator function. Its prope rties are

discussed in the next section. This equation describes how the variance of the estimator

depends on the sample set U and on the way the floes satisfying the condition I' are

arranged in space, as characterized byRn.

The autocovariance of the indicator function.

The indicator function II depends on the property P being studied and on the

condition I'. In another context, P might be associated with ice thickness and r with any

narrow range of thicknesses (Rothrock, in press). But here we associate P with mean

..... 
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caliper diameter and T with any narrow range of diameters. In both cases, II has certain

spatial structure that shows up in its autocovariance.

Consider the one dimensional analogy in which the line is broken into intervals of

random lengths, wk d the property P is interval length. Let r be the condition

D < P(x) <D +E. Then II(x) is a random function of x taking the value zero for most x

and the value 1 over intervals of length greater than D and less than D + E. The notable

structure of II in this case is that all of its "up" segments have length D. For small E the

up segments will be rare and the intervals between them will have random lengths. The

situation is approximately that of a single "up" segment of length D placed at random on

a line segment of length L>>D. To determine the autocovariance for this random

function, note that

Rn(a) = E[II(x+a) — D/L] • [II(x) — D/LI =EII(x+a )II(x) — Ds/L2

The expression EH(x+a )II(x) represents the probability that x+a and x both He on the

random up segment that we denote by V. We have
i
f

EII(x+a)II(x) - probability [(x +a) E V and x E VI

= probability(x E V) • probability[(x+a) E V i x E VI

This Iast probability is evaluated by considering all possible locations that allow V to cover

x, and the fraction of those that also cover x+a. Then EII(x+a)II(x) is

probability (x E V) • 
overlap of segments centered on x and on x+a

length of segment centered on x

1 — J aJ/D , JaJ<V =

=g

0	 , (aJ>D .

For large L, this is approximately Rn(a), but we adjust the amplitude so that the variance

	

Rn(0) is g(1—g), keeping Rn zero for large a. Then 	 -

	

1--1a! /D 	 !af<D
ii(a) ;:^ g (1—g)

o	 (a j >D
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In two dimensions, a similar argument can be used to find Rn(x,x') = R II(s) where s is

the distance between x and x'. Take the floes to be discs of diameter D, and again denote

one rare disc by V. For V to cover x, its center must lie within a circle of diameter D,

centered on x. We have that EII(x')I'I(x) is equal to the product of g and the fraction

overlap of circles whose centers are a distance s apart
area of circle centered on x

Which is

2rr lh( D
 } where h(x)

	

0	 jxI >1 .

Again adjusting the variance, we have

R n(s ) = g(1--g)27s l h{D) (7)

Figure (11) allows comparison of equation (7) with observed autocovariance functions for

three different narrow ranges of floe size.

i
Sampling by area

Returning now to the question of the variance of g, consider the case where the

sample set U is a box of side A. Then

A A A A

var g= A-4 ff f f RII(x,y•x'+y') dxdydx'dy'

Make the coordinate change x',y' -> s,B with s = [(x—x') 2 + (y—y')2]1/2 and a = tan z

(y'—y)/(x'—x). With s and 8 fixed, the region for integration for x and y is the overlap of

two boxes of side A whose lower left-hand corners are offset a distance s in the 8

direction:

VT 2s A—slaasal A—slednal

	

udr g= A J f 	 f Rn(s) s ds d a dx ray
S-TO

J
	 ==a	 Y=O

-42-A
A-4 (2nA 2— $As+2s 2)sRn(s)ds	 (8)

0
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To illustrate the use of this result, substitute the approximate expression (7) for

R,n(s) into (8) to obtain

N
uarg =g(1 —g)2Tr iA -4 f (27TA2—Ms+2s2)sh(D}ds

a

D -1

=g(1—g)27r ID 2A -2 f (2n—BDA'F77+2D2A`2v72)77h(77)d?1
0

For A >>D, this is roughly

varg - g (1 9)(17rD 2)A-2 	(g)

In many equations that follow, the variance of g is proportional to g (1—g):

uarg = g(1—g)K`I

For M independent point samples (Bernoulli trials with probability of success equal to g),

the constant of proportionality is simply K = M. For area sampling we have that

K aA 2/(7rD 2/4) = (box area)/(disc area) which we can think of as an equivalent number

of independent samples. If, for example, we wish to estimate g for a class of hoes that are

thought to cover about 0.10 of the area, and we want the estimate (5) to be good to ±0.02,

then var g = (0.02)2 = (0.1)(0.9)K` 1, which implies K = 225. This can be achieved by

selecting 225 point measurements separated widely enough to be independent or by

measuring densely over a box of side A = (7T/4) 1/2K1/*2D, roughly KID or 15 times the

diameter of the floes in question.

Equation (8) was tested using the digitized AIDM summer mosaic. Using the

measured autocovariance of the indicator function for a fairly narrow range of floe size,

var g in (B) was evaluated for several values of A, as shown in the right-hand column of

Table 2. An independent measure of the variance of g was obtained directly by choosing

several different test areas of side A, measuring g in each one, and noising the mean and

variance of the set of samples of g, 41hese are shown in Table 2, and confirm the

theoretical results.
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Table 2. Comparison of theory vdth measurement for variance of estimator g

sampling flues in AH)JEX summer mosiao -%dth boxes of side L

SumaRfloes: I<p<4.7km, g=0.20

Measurements from mosaic	 Theory, Eq. (5)

km	 namber of samples	 -N/v-ar9	 NFvar g

5	 25	 .22	 .19
10	 25	 .15	 .12
19	 25	 .09	 .05
32	 9	 .07	 .05
47	 4	 .05	 .04
100	 .02
200	 .01

Large flues: p> 13.5 Irm, g = 0.21

Measurements from mosaic Theory, Eq. (8)

k:m number of samples

5 25	 .36 .32
10 25	 .30 .29
19 25	 .21 .20
'32 9	 .16 .14
47 4	 .08 .10
100 .05
200 .03

`	 ^1

^I
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Sampling along a line

Let U be a random line segment of length L. At each point along the line, the floe

diameter (not the chord length) is determined and g is evaluated using equation (5).

Then the variance is

v¢rg =L'z.f J Rn(1x-z'1)^' 2L-zf(L-$)Rn(s)'ns

Using the form given above for R Tj and taking L>>D , we get the approximation

I

	

varg = g(1-g)4rr _ (1-x}h(x- }dz ^g(1--g)D	 >>D	 (1a}

Sampling on a regular lattice

When U is an MxM lattice of points with spacing A, the expression for the variance of

g becomes

	

i	

Var g ° M-4 Lr Lr NIf1'Sijk!

	

a	 _

	

-	 i=in=lE -f1=1

	

?{	 where Sip, is the distance between the i3 and W lattice points. The covariances RII(Sijkl)

jcan be thought of an an M2xM2 matrix of covariances between any pair of lattice points.

	

l	 The diagonal elements are simply g(1-g). If A is chosen large enough so that the points

	

F.. {
	 are uncorrelated, then the non-diagonal elements are zero and

var g = g (1-g )m-2 (11}

For a smaller lattice spacing some of the non-diagonal covariances will be positive and the

variance of g will increase.

To summarize, we estimate the fractional area covered by ice floes of a certain range

of sizes using equation (5). The variance of this estimator can be found using the auto-

covariance Rn of the indicator function in equation (6) for any sampling strategy. The

variance is inversely proportional to .K, the equivalent number of independent samples,

which is given by the approximations

F



ig

it

r^

^ 4^1
.I

t

^.s

^	 f

-is-

area sampling: 	 K a area of sample / area of floes being considered

line sampling:	 K Ps length of sample / diameter of floe

point sampling:	 K N ,number of paints separated by at least a floe diameter

§6. Conclusions

We have devoted this preliminary discussion of the floe size distribution of sea ice to

questions of definition and of measurement, with emphasis on the errors which arise in

estimating the distribution from a limited sample. Our preferred definition is the number

distribution N(p) giving the number per unit area of floes whose mean caliper diameter

exceeds p. N(p) increases as p decreases to zero. In some of the data sets we have

examined, N behaves approximately like p" with -1.7 < a < -2.5, but we see no reason to

expect a power law or any other simple analytical form to be valid for all p. We find

changes in the distribution from year to year and from one region to another.

The theory given for the sampling errors is summarized in equations (9). (10) and

(11). The central idea is this: the error in an estimate of the abundance of floes of area a

in a sample of area A depends on the number of independent samples, which is roughly

A /a.

The several floe properties related to floe size that we considered, mean caliper

diameter, perimeter, area, chord length, diameter of inscribed circle, appear to be

roughly equivalent. The choice of what property to measure may be made based on the

Find of data and measuring systems available. For manual measurements, we

recommend sampling the chord lengths along random lines.

The important geophysical problems are to relate the geometric properties of the ice

pack to its mechanical and thermal properties, and to relate changes in the geometry to

the mechanical and thermal forcing. Floe size, ice thickness, and surface roughness are^	 g
i

three geometric properties which have been studied. Others of potential interest are the
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widths, lengths and branching properties of leads.
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Figure Captions

Figure 1. Mosaic of aerial photographs of summer pack ice (Hall, 1979). The dark areas

are open water between floes. The box measures 95 by 110 km.

Figure 2. Digitized floe boundaries in the summer mosaic (Figure 1).

Figure 3. The distribution of the ratios of area to squared mean caliper diameter.

Figure 4. Views of sea ice on two different scales. The frame on the left is about 25 km

wide, that on the right, 2.4 krn. The texture on the left of the high level image

is due to clouds. Melt ponds can be seen in the lower altitude photograph.

Figure b. An Apollonian gasket (from Mandelbrot, 1977). The disc sizes are distributed 	 E

as a power law.

Figure S. A Poisson field, illustrating a construction with an exponential distribution of

piece sizes.

Figure 7. The cu..,clative number distribution of mean caliper diameter N(p). For the

solid lines, mean caliper diameter was directly measured; for the dashed

curves, it was calculated from measured inscribed circle diameters.

Figure S. The cumulative area distribution of mean caliper diameter F(p) for the	 i

summer mosaic.

Figure 9. (above) The cumulative number distribution of mean caliper diameter N(p)
u	 • _

for the summer mosaic: (-) measured directly, and (+) calculated from

measured chord distribution (solid line below). The solid chord distribution
{s'

was smoothed from the actual observations (•), 	 1''

Figure 10. The density of the ratio of chord to mean c 	 `g	 y	 caliper diameter for the floes in the	 1

summer mosaic and for discs (--dG/d7, where y = c/p).

Figure 11. The autocovariance of the indicator function. The solid line is the theoretical

expression (7) for rare discs. The symbols show observations from the

digitized summer mosaic for several narrow ranges of diameters.
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Figure 2.	 Digitized floe boundaries in the summer mosaic (Figure 1).
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Figure 3. The distribution of the ratios of area 	 3

to squared mean caliper diameter. 	 ,
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Figure 5. An Apollonian gasket (from Mandelbrot, 1977).
The disc sizes are distributed as a power law.

E

Figure 6. A Poisson field, illustrating a construction with an
exponential distribution of piece sizes.
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Figure 7. The cumulative number distribution of mean caliper
diameter N(p). For the solid lines, mean caliper
diameter was directly measured; for the dashed curves,
it was calculated from measured inscribed circle
diameters.
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Figure 10. The density of the ratio of chord to mean caliper
diameter for the floes :n the summer mosaic and for
discs (—d(,'/Dy, where y = c/p).
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Figure 11. The autocovariance of the indicator function. The
solid line is the theoretical expression (7) for rare
discs. The symbols show observations from the digitized
summer mosaic for several narrow ranges of diameters.
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ICE THICKNESS DISTRIBUTION--MEASUREMENT AND THEORY

by D. A. Rothrock

INTRODUCTION

In considering the historical literature relevant to the subject of ice

thickness distribution, I was struck by the paper by Wittmann and Schule

(1966) at the Lake Arrowhead symposium on the arctic heat budget. They

presented a synthesis of visual observations from aircraft showing ice

concentration, lead spacings, percent coverage of several ice types, and

ridging indices in the subregions of the Arctic Ocean. Their format

emphasizes the basic elements of present thinking--first, that we want 	
r

properties averaged over space scales which include many ice features, and

second, that these average properties vary on yet longer scales over the basin

and from one season to the next, in ways of interest to the climatologist.

Wittmann and Schule showed what data were available from operational

observations just as Soviet scientists were attempting to forecast ice con-

centration (Nikiforov et al., 1967; Doronin, 1970). In the intervening

fifteen years, effort has been directed to defining what data we want for

climatological and forecast modeling of sea ice, and why we want them. one

data set we want is ice thickness distribution. A major reason is that it

tells us the mass of ice in the ice cover. other reasons are the subject of

other chapters. Suffice it to say that ice thickness and its distribution

influence components of the surface heat balance, the salt balance of the

upper ocean, light penetration and biological productivity, and trafficability

on top of, through, and beneath the ice cover. It is unfortunate that

thickness alone does not determine these phenomena; they are affected by snow

cover, temperature, ice formation history and surface relief.

Presented at the NATO Advanced Study Institute on Air—°?—Icp Interaction,
September 27-october 10, 1981, Maratea, Italy.
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so that writing some flux as a function only of thickness sweeps a lot under

the rug.

THICKNESS AND ITS DISTRIBUTION DEFINED

j ^Ithough one can draw a slab of

ice or a cross section of a ridge schematically with several straight lines,

when one sets about measuring thickness, it is no longer such a clear—cut

notion. There are cavities in ridged ice--some connected to the air or

water. Ponds of fresh or brackish water covered with a skim of ice can lie

in the troughs of both the upper and lower surfaces. How should a slush of

ice crystals be treated? We suppose that one has satisfactory conventions

for dealing with these phenomena and that there is a top surface of the ice

(not the snow) at a height h t measured up from the sea surface, and a bottom

surface at draft hb measured down from the sea surface. The thickness is

h=lit+hb.

From thickness measurements which resolve ridges and leads, we want

to know average properties over regions hundreds of kilometers in diameter.
A

For instance, to evaluate mean thickness H for a region R centered on (x,y),

we write

H{x,Y) =	 ff h(x',y')dx'dy', (where A = ff dxfdy't)
A  

'e R	 R

as an integral, over thickness, of the area covered by each thickness
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The ice thickness distribution g(h)dh is defined as the fraction of R with

thickness between h and h + dh. if we want, say, an average heat flux Q

and Q depends on h, we can again integrate aver all thicknesses

=-!J 	 Q[h(x',Y')Idx'dy ' _	 f q(h) g(h) dhff

R 	 all h

Since many fluxes at the air-sea-ice interface are strongly related to thick-

ness, it appears that measurements of thickness distribution would have many

applications.

Two observed distributions of draft (which is nearly the same as thick-

ness) are illustrated in Figure 1. The Beaufort Sea distribution shows 5%

coverage of 0-to-1 meter ice and 40% coverage of 2-to-3 meter ice. On the

other side of the ocean, the Fram Strait ice is much heavier, with roughly

five times as much thick ice as in the Beaufort Sea ice. The 2-to-3 meter

category is comparatively empty with only 3.5%. Thi ns , the ram Strait ice

has a greater mass, is ^ ably frictionally rougher/, and yet with its 10%
X.

of 0-to-1 meter ice is producing ice faster than the ice in the Beaufort Sea

sample.

Although the distributions in Figure l look strikingly different, the

question must be answered: are these real geophysical differences or could

these two distributions be different samples from the "same" ice cover? An

empirical answer is obtained by taking several samples from each area, and

noting whether all samples from one region are similar to each other and

different from the samples from another region.

Q

140 1
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An analytical technique for answering questions about sampling errors

is rooted in probability theory. We adopt the notion that hCx-)^ ' is a stochastic

process; the thickness h at a fixed position is a random variable. In

this framework, the thickness distribution is

v

a probability function

b

p = g(h)dh = probability that a<h<b
	

(I)

a

Co
The expected value of thickness is the mean of the distribution H = J gdh.

0

By taking the process to be nearly stationary (varying only on scales of

hundreds of kilometers) and ergodic, we can estimate statistics of the process,

such as the mean, or distribution, or spectrum, from spatial averages of data.

In addition, we can find confidence intervals for these estimates.

MEASURING THICKNESS AND ESTIMATING ITS STATISTICS

There are two aspects to measurements of thickness statis.ics: measuring

thickness accurately at a point and sampling it at enough points to estimate

a statistic: satisfactorily. All methods are seriously :Limited either by

measurement errors or sampling errors or both.

Submarine Sonar

The most satisfactory measurements of thickness distribution are obtained

from upward—looking submarine sonar. Table 1 lists several cruises from

which data have been published. The sonar does not directly measure thickness,

but the distance from the transducer mounted on the submarine to the closest

point of the bottom surface within the cone of the sonar beam. A pressure

sensor measures the transducer depth. The difference between these distances

is some approximation of the ice draft.

J	 i^

^r

-&:;

y;

f 9;

ff
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Table 1.	 Submarine sonar data.
Submarine

Seam width depth
Submarine Period Location along track uncertainty Length Reference

?^^

NautiZus, 1957-62 whole 2.0 m >104km Lyon
Skate, Sargo, Arctic (1963,1966)
Seadragon LeShack (1980)

Dreadnought March 71 86°-90 °N 200 0.3 m 1000km Williams et al.
6 0-7 0E (1975)

i

Sovereign Oct 76 800-90°N 170 0.2 m 4000km Wadhams (1981)
25°E-70°W

Gurmard Apr 76 70 0-77°N 30 0.1 m 1400km Wadhams and
1380-155 0W Horne (1978)

There are several sources of measurement error. First, the depth of the
r

transducer is not precisely known; in the more modern data the accuracy is

about ±0.2 m or 0.3 m. The error is not so critical for thick ice, but it

might make an estimate of the coverage of thin ice useless. It would be useful

to know more about the properties of this error. Wadhams (1981) takes it to

1
be white noise with zero mean and variance (0.2 m) 2 .	 i

Another error is due to the non—linear smoothing of the surface by the

sonar beam--always increasing the observed draft. The problem is akin to

surveying the ice with a leveling rod 15 m in diameter. Because no information

is sensed from some troughs, there is no way to reconstruct the actual draft,

although an approximate reconstruction can be attempted (Williams et al.,

1975; Wadh^ims, 1981). An alternative approach is to simulate numerically the

smoothing of the wide beam (17°) sonar on a profile measured with a narrower

beam. The wide beam causes the draft distribution to be shifted to the right,
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underestimating thin ice and overestimating deep drafts and the mean draft

by about 10% (Williams et al., 1975; Rothrock and Thorndike, 1980; Wadhams,

1981) .

The desired quantity is thickness, not draft. So I although isostatic

balance is achieved only over tens of meters, it is assumed to hold at each

point in order to convert h b (x) to h(x) by

h(x) = water density h1.11 hb{x)
ice density

f:

r-:	 The error thus introduced has zero mean and is probably not important.

To estimate a statistic of thickness, we integrate over some length L

of the profile. For instance

Lr
H = L I h (x) dx

0

is an estimate of the true mean thickness H. If L is chosen too small, the

estimate is poor. The estimator H is a random variable with a dis'_ribution.

Its mean is H: it is an unbiased estimate. The important quantity is the

1%Avariance of H which tells how close H is likely to be to the true mean. The

variance is

L	
LF

var H= E(H - H) 2 = E	 L i h(x?)dxl - H	 J h(x2)dx2 - H
0	

0

LL	
^°

= i2	 ELh(xZ) - x] Lh(x2) - H]dxldx2
00
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E is the expected value operator. The integrand is 	 the autocovariance

of h, c h ; assuming the thickness is homogeneous and isotropic, it is a func-

tion of separation only I s = Ix I - x21. The double integral reduces to

Lr (
var H = L ] !1 	- L)Ch(s)ds

0

by transforming to new variables s and t = x ! + x2 and integrating over t.

For the Gurnard profile whose autocovariance is shown in figure 2, this sampling

error is listed in Table 2. A typical mean thickness of 3-to-4 m can be

sampled by a record ten-to-twenty kilometers long with a sampling error of 10%.

Table 2. The sampling error of an estimate of mean thickness from a line
record of length L.

L, km(var H)1/2 , m

	

10	 0.38

	

50	 0.17

	

100	 0.12

	

500	 0.05

	

1000	 -o.o4

Although no error model has been developed to treat these several measure-

ment errors and the sampling error as a whole, it is likely that mean thickness

estimates from 100 km sonar profiles have an uncertainty of 0.2 to 0.4 m.

How large is the sampling error for distributions shown in Figure 2? In

particular, how accurate is an estimate of p, for the bin a<h<b? To answer

this question, we need to characterize the spatial arrangement of the regions

contributing to this bin. These regions are identified by the indicator function

-7-
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1, a < h(x,t) < b
1T Q	

0, else

The regions where r = 1 are the regions we must sample to estimate p. Given

profile data (and so, ignoring the y , and t dependence), our estimate of p is

the fraction of the profile intersecting these regions

L

p=Z 7r(x)dx

0

The estimate is unbiased, since

Lr
Ep = L I En dx

0

L(
= probability [a<h(x) <b]• 

^ 
J dx = p

0

assuming the process is spatially stationary. The remaining issue is: how

large is the variance of p? We have

varp = E (p — p) 2

L r

	

L

[7r

	

E L f [ 
(x^)—p^dxl 

L	 (x2)
—p^dx

0	 0

LL(

C,(xl,x2)dxa,dx2

00



-9—	
OF POOP, QUALITY

l

where

jj^^	
9,i

CTr
(x l ,x2 ) = E

L
7T(xl) - P] E (x2) - PI

is the autocovariance of the indicator function. Stationarity provides that

C,r depends only on the distance between points s = 1 xl - x2 1, and the double

integral reduces, as before, to

LR

	 ll
var p L l -

J
C(s)ds	 (2)

a

-rhe autocovariance C  has magnitude p(l-p) at s = 0' [since En(x)n(x)

Er(x) = p], and is zero at s =	 [since Eir(x)r(x+s) -} p 2 as s -s m]. If	 ?

we define the correlation coefficient

C^(s)	
ti	 r

r(s) _ P(l-p)	
!

,
}
z

(2) becomes 3.

var p = p (l-pg/L	 (3)	 {s'I

where	 j

l

L
Y. 2[1- Ir(s)ds

a	
1

In practice we are interested in the case where r(s) drops off in a distance

much smaller than L; than 	 i
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C

2  r(s)ds

0

r. }

The quantity 2m is the auto-
correlation length scale; it is also a measure of the characteristic length
of individual profile segments with n = 1.

The first portion of Table 3 gives values of 2, computed from the Beaufort
Sea p

rofile. Values as small as 10 m have considerable uncertainty because
the horizontal resolution of the GurWrd data is several meters.

(When L/km > 5, we find Z within 10% of Rte.)

The resulting
sampling error for p is also shown there and in Figure 

3. The length scale

for thin ice is much greater than that for thick ice, because th.:n ice is spread

out in leads and po
lynyas, whereas thick ice is clumped in ridges. In the

table, we see that the thinnest ice and the 5-to-6 meter ice are equally plenti-

ful, but that the error 6p is an order of magnitude smaller for the thicker

ice bin. To get an equally good estimate of the thin ice would require a

record 5600 km long (although not necessarily in a straight line).

Table 3. Length
tions.

scale and sampling
The quantity c" =

error for
(var 0112

ten bins of two draft distribu-
P; op/P^ is the relativep error.

is the standard deviation of
Lln (m) Beaufort Sea L = 60 km Fram Strait	 L = 100 km

(m)

F CF a., /p
P

"p Cr eP

0
1

to
to

1
2

1300
230

.053

.089
.033 62 .103 .035 33

2 to 3 170 .42
.018
.026

20
6

.026 .0076 29
3 to 4 34 .20 .0095 5 •435 .0063 21
4 to 5 20 .087 •137 .0063 S
5 to 6 14 .051 .0034 7• 0044 4
6 to

g
1 1 .031 .0023 8

•0084
84

.0033 4
7 to 10 .021 .0019 9

.073 .002.7 4
8 to 9 12 .014 .0017 12

.073 .0026 4
9 to 10 11 .011 .0014 13

.073 .0028 4

.OS7 .0024 4

d..,j



Assumingm is not very different for another mature ice cover, the

values of Im from the Beaufort Sea profile have been used in (3) to evaluate

the sampling error for the Fram Strait distribution (in Table 3 and in Figure

'3). Within the sampling error, the percentage of thin ice (Q-to-1 meter) in

he two distributions is marginally distinguishable, but in all other bins,

the distributions are measureably different.

Heat balance estimates are sensitive to the thinnest 5 or 10 centi-

meters of	 Given the measurement errors and

sampling difficulty, present submarine sonar records cannot provide good

estimates of such narrow categories of thin ice.

Boring Holes

The most direct way to measure thickness is to bore a hole or cut a
i

core. Thickness can be measured to whatever accuracy is appropriate to the

condition of the surfaces. So there is negligible measurement error.

It can take a few minutes' work to bore a hole. A reasonable strategy..

for estimating thickness statistics might be to determine the thickness hi

by boring n holes. To be independent the samples must be roughly l km apart;

this is the spacing at which the autocorrelation function of h b (x) has its

first zero (Figure 2). How close is the estimate of mean thickness

nhi

to the true mean H? The variance of H is 	 j

r
A

var H a2h

s
r:

PV



.1

where u 2 is the variance of the thickness distribution. Table 4 shows a few

values of n required to achieve a desired sampling accuracy using the variance

02 = Cb (a) = 5.6 m2 from Figure 2. So we could sample H to ±0.5 m by coring

once, flying a kilometer away, kicking out a bag of dye to mark an unbiased

site, landing and boring at the dye mark and repeating this twenty times.

This-argument, although without the condition of spatial independence of the

thicknesses sampled, has been advanced by Untersteiner and baykut (1969),

with the result that 50 samples -are needed to establish the mean with a stan-

dard deviation of 1/3 meter.

Fable 4. The standard deviation of an estimate of mean thickness from n
independent samples.

n (var H)1/2, m

23 0.5
52 0.3

560 0.1
2240 0.05

Such requirements to obtain the average ice thickness are difficult to

meet in practice, but not outlandish. To obtain an entire thickness distri-

bution by drilling holes in the ice requires logistics bordering on the pro-

hibitive:

From n samples at positions xi , we estimate the fraction of area in the

bin a<h<b by

n
z	 P - n	 r(xi)

i=1
ORIWmAL PAGE !-9
OF POOR QUALITY

which has expected value p and variance

n n

i=1 j=l

The object is to choose the hole positions xi for the most efficient sampling.

If r is never negative, the minimum variance is obtained by taking all holes
a

so far apart that rij is zero for i J. From the submarine data we know this
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separation should be several kilometers (several times 9^) if we are sampling

the 0-to-1 teeter bin. The situation reduces then to n independent Bernoulli

trials with chance of success p; the variance is simply p(1-p)/n. Table 5

shows that to resolve the distribution into ten bins each with ten percent

of the area to an accuracy of 30 % (that is, p = 0.10 -1 0.03) would require

one hundred holes. ^rs.,s. ,̂  - }^ ^,	 - ---1-. Boring might be practical o ►. y

in applications which require a fairly coarse resolution of the distribution

with generous tolerances.

Table 5. Number of independent samples n required to estimate fraction of
area p with standard deviation a  equal to some fraction of p.

	

n for	 n for
P	 ap=0.3p	 op=0.1p

	

0.3	 26	 233

	

0.2	 44	 400

	

0.1	 100	 900

	

0.05	 211	 1900

	

0.01	 1100	 9900

Other Methods

There is a class of observing techniques that may eventually provide

measurements of ice thickness from aircraft or satellite. Some are discussed

in another chapter, but not necessarily with regard to sensing ice thickness.

All are in an early stage of development as thickness sensing instruments.

Included are radio echo sounding, visual and infrared photography, various

microwave and radar sensors, and laser altimeters. Only radio echo sounding
r

senses both the upper and lower surface. Altimeters sense the height of the
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snow surface; to estimate the ice surface ht and then multiply by

1 - ice density^ - 
1 

,0
0

water density 

to obtain thickness h introduces unsatisfactory errors. The microwave radio-

meters sense radiative properties at or near the top surface--properties only

weakly tied to ice thickness for thick ice.

Some measurements of thin ice fraction have been obtained from LANDSAT

visual images with accompanying ground truth. The area of gray ice is measured

from an image; the thickness of the gray ice is determined by coring or drilling.

This method has provided data for tests of thickness distribution theory

(Thorndike, 1980).

THICKNESS DISTRIBUTION THEORY

Having observed the thickness distribution and having at least a rough

idea of the thermal and ridging processes which determine it, the ice physi-

cist has naturally been tempted to formulate a mathematical theory to describe

the distribution and its evolution. Such a theory was introduced as part of

AIDJFX modeling work (Thorndike et al., 1975), and is gradually being intro-

duced into forecasting and climatological models (e.g., Hibler, 1980). Its

use does involve several difficulties. first, since the distribution is

difficult to observe, often no initial conditions are available, and model

results cannot be verified (or refuted). Second, largely for the same

reason, model parameters describing the ridging process are not well known,

so that the model results can only be considered rough approximations. And

third, generally one is modeling the ice cover as a function of two (horizontal)

.mot.,¢-	 .._, ..	 -,_^_.,.,.	 - ^...^	 w-,».^•^^ ^.	 .^,- -..	 . _. .....^--- .._........_.__^^.____ .. __.._

r
f

e
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space coordinates and of time, and the addition of another independent
r

variable, ice thickness, considerably enlarges the computational burden.

Being thus forewarned that the theory is no panacea, we will nonetheless

review it and see what strengths we find in it.

The equation for the time rate of change of thickness distribution

t
g(h,x,t) is

at - div ) - 2 (fg) +	 (4a)	 E
8h

The four terms on the right hand side, discussed one at a time below, repre-

sent opening and ridging, flux divergence, ablation and accretion at the upper

or lower surface, and lateral melting. The Lagrangian form is

f
- g d^v u-	 8 (fg) +	 (4b)	 s^nt	 uh

These equations are primarily statements relating geometry and kinematics. 	 s,

The real physics of the ice cover enters in the structure of ^, fs and gyp. All	 ? ,

three of these functions depend on the thickness distribution itself, makingI

i	 y

(4) a non--linear functional equation. Early work with this equation treated

only the feedback of the thickness distribution g through ridging and opening

More recent work (Maykut, in preparation; Hibler, 1980) has included the 	 1

feedback by which summer melting (0 and f) is determined by the amount of radia-

tion absorbed and hence the open water. 	 j

To consider flux divergence, we focus on an arbitrary region R and the

exchange of h-ice (ice of thickness between h and h+dh) across its boundary

curve C. The flux of h-ice across a line with normal n is n . ug dh. The
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total flux into or out of R is written first as the integral of the flux

around C

Li	 Lag dh dl

C

and then, by Gauss theorem, as

ff
div(ug dh)da

R

This tam accounts for the net loss of h-ice from R

(gdh)da
ffat
R

Since R is arbitrary, and fixed in space, the equation takes the differential form

-div (ug)
at

This flux divergence term has two parts: 	 -g div u, denoting the influx of

h-ice by convergence, and -u	 grad g denoting advection.

Thermal growth f = dh/dt carries ice to a new thickness, in just the

same way as velocity u. = dxIdt carries ice to a new position, giving a term

completely analogous to the flux divergence term

(f g) (5)
at	 Dh

D
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This is a mathematical. statement. For a more physical view of thermal growth,

it is best to turn to the cumulative distribution G(h,t). The governing

principal is that ice thinner than h at time t is thinner than h + fdt at

time t + dt giving

G(h,t) = G(h + fdt, t + dt)

Expanding the right hand side about (h,t) gives

G(h,t) = G(h,t) + ah • fdt + a- dt + 0(dt2)

or

DG	 aG
at —f ah

which is the integral forte of (5) .

Lateral molting i eats away at the edges of floes to reduce their area.

The process conserves area: an amount of open water is formed equal to the

c total ice-covered area melted so

y

= s 
l 
S(h) - k(h)

l

where s depends on the available heat (but not on h), $ is the Dirac
CO

delta function and Z(h) is positive with ` Q(h)dh = 1. The volume loss

of h--ice sht(h) is proportional to the area of floe edges which we can

take to be proportional, to hg(h); hence, Z(h 	 (h), and the integral.
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constraint determines that £(h) = g(h). The unknown s is determined by

stating that

m

Q = pL 1 h^dh

a

r where Q is the rate at which heat becomes available for lateral. melting

(per unit area of R), P is the density of ice, and L is the latent heat of

fusion. Solving for s and substituting gives

. =Q I 6 (h) _ g (h)
pLH 

	

Co

`	 where H = f hgdh.

Ridging and opening processes are embodied in the redistribution func—

tion *, on which there are two constraints. The' t-hevA-ee+ rocesses can

	

•	 only rearrange existing ice, ridging thin ice to produce thick, but cannot

alter the mean ice thickness so by assumption

Co

f

b^dh = 0

D

Furthermore, the formation of new area of open water less the loss of area

by ridgiing must exactly accommodate the area of ice imported by convergence.

	

r	 Hence, ignoring the thermodynamics (setting f = r¢ = 0) and integrating (k)

over all h gives

M

^
f 

dh=divu
0
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The definition of ip is hypothetical, relying on assumptions and

reasoning about idealized situations (Thorndike et al., 1975; Hibler, 1980);

there are few hard facts about redistribution.,

^enpenp -water formation is represented by a delta function at h = 0,

and ridging by a function u(h) which is a sink of thin ice and a source of

thick ice. The degree to which each of these processes occurs in redis-

tribution depends on strain rate invariants. We denote the sum of the

principal strain rates by E l (^ div u) and the difference by ;11• 
These

can be expressed in polar form as a modu7,,^î 	 2 	 2 )1-2s (E^ _ ( 1 +X11 	
which

tells the quantity of the deformation, and an angle 9 = tan7l (e11 /ez),

which tells the quality of the deformation.

The combination of ridging and opening into t is assumed to be propor-

tional to strain rate in the form

^ = 1E[ 1%(0) 6(h) + ar (0) 11(h))

The coefficients a and a need to be observed in nature--the idea is that

	

o	 r

divergence (small 8) will favor opening (larger a a , smaller a r ) and conversely

that convergence (9 getting up toward 7r) will favor ridging. But even in

	

f	 ^-
pure shear (B _ .^[) the separation of floes in some locations and coming

together of floes elsewhere will insure that both opening and ridging occur

simultaneously.

Just how the ridging function j.i varies with h depends on the present

state of the thickness distribution (since we don't want to ridge ice that

isn't there), and on two parameters G* and k. G* is the cumulative fraction

of the thickest ice assumed to ridge. It is taken to lie in the range 0.05

to 0.15, allowing ice up to

FIR

4

1

^-^._. .^. ,..	 _.^^^-.-	 •....^.^. ^	 ^..» -^- ^^ _._ ^^,_... ^	
_.`...._.	 -....	 ' _	 ,tom
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about one meter to ridge. The s ,=nd parameter k is the ratio of the thick-

ness of ridged ice to its original thickness. Of course, even the notion

that this ratio is a constant is a strong contradiction of reality. The value

originally assumed (k = 5) seems to have been too small, producing no ice

thicker than 6 m and allowing the pack to deform too easily. (Ice strength

is thought to be tied to ridging and to increase with the size of ridges being

formed.) A value of k = 15 is better in both respects.

An alternative formulation of redistribution has been advanced in which

ridged ice is quantified not by its thickness distribution but in terms of

mean ridge height and ridge intensity (Bugden, 1979). The motivation, of

course, is that ridge statistics are readily available from aircraft visual

observations and laser profiles, so a model predicting them would be testable.

This approach has its drawbacks, though, and has not been hotly pursued.

Ridged ice is not the sheet threaded with long triangular rubble piles seen

in schematic diagrams. In reality old and new ridges overlap, making the

identification of a pressure ridge a matter of each observer's particular

definition. So ridge statistics are not uniquely related to areas or volumes

of ridged ice. Hence an equation involving areas of undeformed ice and

ridged statistics for deformed ice is less clean than the formulation involving

only ice areas. The more desirable path is to state the theory wholly in

terms of thickness distribution and improve techniques for extracting it from

data.

The first theoretical solutions for thickness distribution were calcu-

lated for a single Lagrangian point from (4b); that is, space was not a

variable. We will examine solutions of that problem here. Deformation rate

S



^J

i

-21-

is a function of time, known from sets of buoy tracks, often lacking frequen-

cies greater than 1 cycle per day. Growth rate is a function of thickness

and time, known from climatology, and lateral melting is neglected. Starting

with an observed distribution as an initial condition, solutions change in

time but hover near a realistic distribution. Thus the theory is compatible

with our understanding of ice dynamics.

The theory, of course, can do more than predict the distribution. It

shows us which terms are important to the balance in various ranges of thick-

ness and just how large these terms are. Table 6 shows the annual average

of net thermal production (growth into the range less growth out), ridging

and open water gain, and import by convergence. The thinnest category is

maintained by newly formed open water growing thermally into the next cate-

gory; some ice is ridged out of this category. For the rest of the thin

ice (0.1 to 1.6 m), the net thermal production is nearly balanced by ridging

loss. For equilibrium ice (1.6 to 6.4 m) both thermodynamics and ridging

provide sources. A balance is only made possible by the divergence. Thick

ice (>0 . 4 m) is not in balance. It is gaming 0.7% per year because the

ridging gain cannot be compensated for by this divergence and the net melt.

Whereas ice thinner than the mean adjusts fairly rapidly to a given

deformation and growth regime, it is probably futile to think about an equili-

brium distribution for thick ice. For one thing, the determining variables

are poorly known: the long term net divergence, the infrequent large con-

vergences capable of making very thick ice, and the melt rate and rate of

erosion for thick ice. For another, the adjustment time for thick ice is

slow: it takes thirty years for twenty-five meter ice to approach equilibrium

thickness. Only the Beaufort Sea may contain ice that old.
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Table 6.	 An average over one year of the terms in the thickness distribution
equation (4b).	 Each term is also integrated over a thickness
range.	 Units of terms are percent per day, of thickness distri-
bution, percent.

Terms in (4b)	 0-0.1 m 0.1-1.6 m	 1.6-6.4 m	 6.4-25.6 m

Thermal flux	 a (fg)	 -0.59- 0.43	 0.013	 -0.003
gradient	 ah

Open water	 A 6	 0.73
production

Ridging loss	 - C pL	
-0.14 -0.44	 0	 0

Ridging gain	 C U 	 0.00 0.01	 0.015	 0.014

Import	 - g div u	 0.00 0.00	 -0.028	 -0.009

Rate of change	 0.00 0.00	 0.000	 0.002of g

b
Thickness	

f gdh	 2.9 20.0	 58.9	 1.8.1
distribution	 J

a

The balance in Table 6 is no surprise but simply shows that the model

behaves much as the ice it was designed to mimic: 	 open water grows to thin
rr 	 e.Y, , IC"ye^:.

ice and is ridged into thick ice which continually ablates The theory eluci-

dates some unforeseen details, and most importantly tells the rates of these

various transfers and shows how nearly balanced they are.

'T
i



A WORD ON NUMERICAL TECHNT_QUES

One numerical procedure for solving this problem involves integrating the

functional differential equation

DG
Ft-

= *dh --
D

 div u, where D Dt + f ah
p	 Y	 Dt

for each time step along characteristics satisfying

Bh
at	

f(h,t)

and then to interpolate the new G(h + fdt, t + dt) to some fixed h-grid

G(h, t + dt). A large area of open water freezing at the same time (late

summer appears as a step in G(h) or a spike in g(h). This step cannot be

resolved by any fixed grid. But to make matters worse, repeated interpola-

tion at each time step continues to smooth out the step. The numerical. solu-

tion then is only a shadow of the correct solution. An alternative procedure

(Colony, personal communication) is to allow the h--grid to float, moving with

the characteristics. A step can be followed by two nearly identical charac-

teristics on which the values of G are quite distinct. Figure 4 shows solu-

tions using Colony 's characteristic grid, a coarse fixed grid (a la Thorndike

et al., 1975), and a much denser fixed grid (153 h values at spacings varying

from 2 to 50 cm). Table 7 shows further comparisons. The integration starts

with all thin ice, proceeding in time steps of one day for a year; the defor-

mation rates are those computed from the AIDJEX manned camps (Colony, 1978).

The values k = 15 and G* - 0.1 were used, and A and C were those identified

with the 30° teardrop in Rothrock and Hall (1975).

^..	 ^	
^ ,..^...^^d.v^.,.r.........•...... •--- ..... -.._ .^.^..r ^a - -^s-_=?'^* arm ^ a..^s -^ .
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Table 7. Variables computed by different numerical procedures.

coverage coverage by coverage
Numerical mean thermal by ice between by
procedure thickness production ice < I m 1 and 2 m ice > 6 m

h, m fdt, m G(l), G(2)-G(1),% I-G(6),

Characteristic grid 144 163 23 69 95

Dense fixed grid 144 171 34 58 95

Coarse fixed grid 176 246 45 23 96

The large step at 1.2 m is the remains of the initial thin ice. The

smaller step at 18 cm is from the freeze up several days before the integration

stops. These are clearly not goring to be captured by a coarse fixed grid. It

is more surprising that the finer fixed grid smears the large step out over

nearly one meter. Another curiosity is that even the coarse fixed grid repre-

sents the thick ice better"than the thin ice from which it is produced. I

see two lessons here. First, special numerical care is warranted for these

discontinuous functions. Second, some variables are robust against numerical

errors, and some are quite sensitive; it would seem prudent to know into which

class one's favorite variable falls.

G can also have steps in space. If there is ice of thickness H to the

left of an ice edge at x = X, G has a jump along the curve shown in Figure 5.

Representing this function G(h,x) accurately will require more than single

values on a fixed (h,x)-grid. And as H and X change with time, the jump in

G will be lost if special care is not taken.
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As another test of the theory, focussing particularly on the thick ice,

the following situation has been simulated. Ice forms in the Siberian marginal

ice zone, and drifts across the ocean. It passes the pole in roughly three-to-

five years, judging from the drift tracks of North Pole 6 and 10 and the Sedov.

Starting on September first with an initial condition of 100% open water, the

thickness distribution model just discussed (k = 15, G* = 0.1, 30" teardrop,

AIDJEX manned camp deformations, climatological growth rates, no lateral

melting) was integrated for several, years.

Some results are compared in Table 8 with submarine data from the vicinity

of the pole. The theory has not produced enough thick ice. That was a short-

coming in the calculation by Thorndike et al. (1975), but there k was 5, and

no ice over 6 m was produced. Here, k is 15, and ice is produced in the whole

thick end of the distribution, up to 23 m. Furthermore, the shape of the thick

end of the distribution is similar to observations. Ice of the right thickness

is being made but in too small an amount. The more likely cause for the dis-

-25-

TESTING THE THEORY

Several tests of the theory (Nye, 1975; Thorndike et al., 1975; Rothrock

and Hall, 1975; Goon et al., 1977; Thorndike, 1980) have focused primarily on

the dynamics of thin ice and open water and have compared these quantities to

satellite observations. They show that:

i) the theory adequately simulates thin ice with the chosen forms
of A, C, and uh, and the value G* n, 0.05 to 0.10,

ii) the considerable uncertainty in deformations estimated from the
motion of only several points can cause considerable dis-repancy
between computations and observations, in particular of summer
open water,

iii) the value k = 5 produces ridged ice that is insufficiently thick.

ri

I
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crepancy is in the deformations driving the ridging. They were observed in a
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ature ice cover in the Beaufort Sea, and may be quite inappropriate for young
,

	

ice in the marginal ice zone.	 J,

Table 8. Comparison of theory to data in a transpolar drift.

Coverage of	 Coverage of	 Coverage of
Mean	 ice thinner	 ice between	 ice thicker

	

thickness	 than 2.2 m	 2.2 and 5.6 m	 than 5.6 m

h, m	 %	 y	 %

Theory,
after 3 years, 3.0 74 12 14
October

Theory,
after 5 years, 3.5 64 16 20
October

Sovereign,
sec. 17-21 4.4 13 59 33
October

Dreadnought,
March 4.6 12 55 33

Sovereign and Dreadnought data are from Wadhams (1981). Drafts are
multiplied by 1.11 to obtain thickness.

i

The open water at the start of the simulation has, after five years,

grown to 1.9 m and covers 30% of the area. The Dreadnought thickness distri-

bution shows a strong peak at 2.9 meters' thickness (Williams et al., 1975,

Figure 10). The Sovereign peaks occur at slightly greater thicknesses. This

deficiency of the model could be due to poor growth rates or to an underesti-

mation of rafting and ridging of the young Siberian ice.

The procedure of combining inputs and thickness distribution observations
F

from different times and places is not going to provide any further improvement 	
1

k	 ^
1	 i

i
t



A

1	

/s
.	 ,	 r•II

--27—

r
in the theory. As the ditty has it, "the'v gone about as fer as the' kin 	 a

^I

go." A more controlled and complete experiment is necessary, in which a

Lagrangian region is monitored repeatedly by submarine and satellite, and

the deformation history and thermal environment is documented continuously.

i

WHITHER THICKNESS DISTRIBUTION?

Several avenues are available for advancing our knowledge of ice thick-	 { t
{

ness distribution.

1) The parameters in the model are pinned down as well as available data

allow. A controlled mass balance experiment would be valuable in which

the model inputs and outputs were simultaneously monitored.

2) Sampling theory can determine how large a sample is required to resolve
i

the differences we think we observe between two distributions. This should

be a prerequisite for a mass balance experiment.

s	 ^
3) Remote sensing is unlikely to resolve the thickness of thick ice, but a

program combining satellite estimates of thin ice and submarine sampling

of thick ice would be valuable.

4) Substantial concentration of a single thickness creates numerical problems

that need more attention.

5) The ice cover moves in pieces and not as a continuum as presently assumed

in theory and in the analysis of deformation. A more direct approach to

redistribution could be developed in terms of the movement of pieces.

"	 I

I
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FIGURE CAPTIONS

Figure 1. Distributions of ice draft for two regions. The bin size is
one meter. The Beaufort Sea data are from Gurnard profiles (the 60 km
offshore profile of Rothrock and Thorndike, 1980), and the Fram Strait
data are from Sovereign profiles (a 97 km profile, section no. 2 in
Wadhams, 1980).

Figure 2. Autocovariance of the Beaufort offshore profile (from Rothrock
and Thorndike, 1980).

Figure 3. The range of probable values for the distributions in Figure 2.
In each bin, the range P — up to p + a  has been filled in--stippled for
the Beaufort Sea distribution and crosshatched for Fram Strait.

Figure 4. Cumulative thickness distribution computed from theory using three
numerical schemes: characteristic grid, coarse fixed grid, and fine
fixed grid.

Figure 5. A line of discontinuity in G on the (x,h) plane. Open water lies
to the right of x = X.
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Figure 1. Distributions of ice draft for two regions. The bin size is
one meter. The Beaufort Sea data are from Gurnard profiles
(the 60 Icm offshore profile of Rothrock and Thorndike, 1980),
and the Fram Strait data are from Sovereign profiles (a 97 km
profile, section no. 2 in Wadhams, 1980).
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5.	 KINEMATICS OF SEA ICE	 OF POOR QUALITY

Kinematics is that branch of physical science dealing with motion

itself and not with the causes of the motion. Attention is focused, in

this chapter, on how sea ice moves. The deeper question of yhZ sea ice

moves as it does is addressed in the chapter on sea ice dynamics.

For some scientific and practical applications, knowledge of the ice kine-

matics (as opposed to the dynamics) is sufficient. As examples, consider

gouging of the sea floor in shallow water, the transport of natural debris

or pollutants, the impact loads on structures, navigability in icy regions,

and the movement of the ice edge. Aside from these applications, the study

of kinematics is a basic step toward understanding the dynamics.

Figure 1 illustrates the idea that the motion of sea ice is the response

of the ice pack to external forces. To understand the response of the ice

one needs to monitor both the driving forces and the motion. Since we will

discuss only the motion here, there will be the underlying ambiguity of

whether the results inform about properties of the ice itself or about the

driving forces. We will see for example that the ice motion is nearly non--

divergent. But we should not conclude on this basis alone that the ice is
F

an incompressible material. The correct explanation could be that the net

driving force is itself nearly non-divergent. Because of this ambiguity 	 o
t

in the interpretation of kinematic data, it is useful to think of the study

of the kinematics as part and parcel of the broader study of sea ice dynamics.
x

The fundamental kinematic notion is that all pieces of ice have an
'u

identity which is preserved in time. If we identify a piece of ice 	 by

making a small mark on the ice surface at position X at time o , the assumption

is that at some later time ' , the piece of ice as identified by that mark will

be at a position x . This defines the position function x(t,X) with x(o,X)
We do not mean to imply by this that ice floes retain their identity indefi-

nitely, only that it is possible to track individual points. Two points

originating on the same ice floe may very well wander apart in time, but we

assume we could keep track of them.

There are difficulties with the notion of a position function. It is

natural to consider the space domain to be the two dimensional surface of

the Arctic Ocean, say -X. At + ­0 there will generally be some points in X

which are not covered by ice, so X (t,X) is not defined for some X E-1.

{{f
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Further, ice is always being created and destroyed thermodynamically, so

the position function X R,X) is only defined for an interval of time.

Finally, the idea that the small mark retains its identity is question-

able. This is a common problem in the definition of the motion of a

turbulent fluid. After a time the marked fluid has mixed with the unmarked

and it is no longer possible to assign a position to the mark. Something

of the same sort happens with sea ice. Despite these shortcomings, the

notion of a position function is the best we have. Furthermore this notion

corresponds exactly with most of the observations we have. lie will use

the term trajectory for the function x(',x) where X is held. constant. The

initial position X serves to label ice particles and we refer to the

trajectory 9(+,x) of the particle X

5.1 Observations

The most common observations of ice motion are of trajectories of ice

particles consisting of a sequence of measurements (_- j ,t'.) , L `13 - NJ where

^Z.
L
 = -A (- L ' X ) + FL

The measurement error is represented by

In passing we mention that other kinds of measurements of ice motion

have been made.	 Hunkins (1967) and McPhee (1978) for instance inferred the

ice velocity using current meters suspended from the ice into what they

assumed to be essentially a static ocean. 	 These data were used to study

motion on the time scales of hours. 	 An attempt to study motions on much

shorter time scales-using accelerometers was made by Craig (1972).

Many techniques have been used to measure ice trajectories. 	 These i
are summarized in Table I. 	 Each technique has its good and bad features.

Over the past decade most data have been obtained by satellite positioning

which works somewhat as follows. 	 Suppose a stable frequency .p is trans-

mi.tted by a device on the ice. 	 The signal received at the rapidly moving

satellite will have a frequency Fq	 y ^t which has been shifted by the Doppler

effect:	 T 2 1 f .A^	 .	 The Doppler shift A^ is related to the rate of

change of distance between the device on the ice and the satellite: j
ff	 s measured. a	 several.-	 e received 	

^	 i
+mo ire ^	 T	 t

xsa'^	
Th	 id f ^

times.	 If the satellite coordinates are known at these times, then each

measurement produces an equation with unknowns n and 	 ;(ice .	 Generally

several measurements are made during the 10 to 20 minutes it takes for the

2
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accuracy

l03 m

30--500 m

5m

< l m

comments

weather dependent

limited range, elaborate
instrumentation, rela-
tive position only

limited to near shore

TABLE,  1

Techniques for measuring sea ice motion

technique 'basic measurement sampling
rate

Hunkins et.al , 1971 azimuth and elevation 1 per day
celestial navigation of heavenly bodies

Martin et al,.1978 Doppler shift of stable 30 per day
satellite navigation transmitted signal.

Thorndike, 1973 travel time from ice to up to 1 per
acoustic tracking fixed reference on the minute

ocean floor

Tucker et al., 1980 travel time from source on 	 no limit
Tabata et al., 1980 shore to target on ice
radar

Hal.l,.198o	 location of identifiable	 erratic	 80 m	 weather dependent, good
Landsat imagery 	 ice features	 space resolution,

poor time resolution

Hall & Rothrock,13V 	 location of identifiable	 1 per 3 days	 80 m	 no system available at
synthetic aperture	 ice features	 present, properties of
radar imagery	 future systems unclear
(SEASAT)
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satellite to pass by. The several equations are solved simultaneously for

fio and iica	Precise positioning requires a stable transmit frequency,

precise measurement of the received frequency, and precise knowledge:of the

satellite coordinates. With care, errors can be controlled to the order of

tens of meters, as in the best uses of the Navy Navigation Satellite System.

Satellite systems which serve primarily to relay data from automatic

data platforms (or buoys) to data processing centers also determine the
location of the transmitting data platform, using the same Doppler positioning
principle. The ARGOS system currently on the NOAA-B satellite can relay

data from up to 30 sensors and determine platform locations to an accuracy

of a few hundred meters about ten times per day. Fully automatic platforms

cost in the neighborhood of $6,000 with additional costs depending on the

desired sensors.

Satellite imaging systems can also be used to measure ice motions, pro-

vided that some features on the ice can be identified in a sequence of images.

Because of their all season and all weather capability and good resolution,

imaging radar systems will probably be best. The basic angular resolution

of these systems is approximately the ratio of the wavelength of the radar

signal to the diameter of the antenna. To achieve an angular resolution of

10- 5 (10 meters at a range of 1,000 kilometers) with a wavelength of 25 cm
(1.2 GHz)requires an antenna ?,5 km in diameter. Although such large antennas

cannot be constructed in space, it is possible to synthesize large antennas

by using data from several points along the satellite's orbit. The determi-

nations of the geographical position of an ice feature with the SPASAT data

contained errors of up to 3 kilometers (see Hall and Rothrock, 1981). Unless

these errors can be reduced the data are not particularly valuable for
measuring the displacements over intervals of a few days or less. However,
the errors are highly correlated in space and are essentially eliminated in
estimates of the spatial variability of the ice motion.

The attractive feature of imaging radar systems is their potential to

sample densely in space. Hall and Rothrock's work suggests that it will be

possible to track roughly one feature per square kilometer, which will
resolve most of the spatial structure of the field of motion. Techniques

for extracting data from the images or from the raw data are still rather

primitive. No doubt satisfactory automated techniques for identifying and

tracking features will be developed when the need arises. At present there

is no imaging radar system in space. Planning is underway for a system to

be in operation perhaps by 1985.

3



AIDJEX Staff, 1972

Thorndike and Cheung, 1977

Thorndike and Cheung, 1977

100 km triangle, Beaufort Sea,
March and April 1972.

Manned camp positions and
velocities tabulated at 6 hr
intervals, daily buoy positions.

Tabulated daily positions of
Beaufort Sea buoys.

1979 buoys Thorndike and Colony, 1980 Tabulated daily positions,
25 buoys, analyses of surface
pressure plotted daily.

Thorndike and Colony, 1981 As above.

Hunkins et al., 1979	 March May 1979; 840N, 9°W

Popelar et al., 1981	 Three stations, 100 km spacing
April, May 1979; 880-900N.

AIDJ'EX 1972

AIDJ EX
1975-76

1976--77 buoys

1980 buoys

Pram I, 1979

LOREX 79
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5.1.1. Sources of data

The earliest ice motion data are the trajectories of ships beset in

the ice. These are followed by the trajectories of numerous Soviet and U.S.

drifting research stations, and more recently by the trajectories of auto--

mati.c data buoys. The following list of data sources is by no means complete.

Experiment

T-3

Beset ships and
drifting stations
before 1970

Reference	 Description

Hunkins et al., 1971	 Monthly positions May 1962-
December 1970

Hastings, 1971	 A chart showing most prior
trajectories, one point per
month; includes : Fram, Jeanette,
Maud, Sadko, Sedov, Tegetthoff,
British Trans-arctic Exp.,
Alpha, Arlis I, Arlis II,
Charlie, North Pole 1-20, T-3.

5.2 The general circulation
The main features of the long term circulation, Figure 2, are the clock-

wise circulation in the Beaufort Sea.--and the motion of ice from the Siberian

coasts across the North Pole and through the Greenland-Spitsbergen passage.

Time honored nomenclature for these features are the Beaufort Gyre and the

Transpolar Drift Stream. Some handy numbers for these long term features are:

center of Beaufort Gyre: 800N, 1550W, half way between Pt. Barrow,
Alaska and the North Pole

4 A
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time to make 1 circuit: 5 years

time to traverse Transpolar Drift Stream: 3 years

area flux through Greenland-Spitsbergen Passage:
300 km2/day or about 200 of the area of the basin per year.

This pattern of motion exists only as an average over several years.

On shorter time scales there are departures from the long term pattern. Con-

sider for example the trajectories plotted in figure 3 for the year 1979 rvid

figure 4 for 1980. The trajectories are characteristically meandering and

convoluted showing that on monthly time scales the ice motion differs markedly

from the long term mean. On shorter time scales, not resolved in these figures,

the motion is even more irregular. Notice the major anomaly which occurred in

the summer of 1980 when the motion of several buoys for several months was in

the opposite sense from the long term mean. These departures of the actual

motion from the long term pattern in most cases represent the response of the

ice to the passage of atmospheric systems.

If we ignore the forces and examine only the ice motion, the departures

from the mean circulation appear aperiodic and chaotic. The departures can

be thought of as random but they are not without structure. Our objective

now is to clarify this structure.

5.3 Ice velocity

The ice velocity field can be defined by the relationship

Here the particle label Xplays no role.

This definition is meaningful only if the limit exists. From a practical

point of view it is useful only if the Limit exists and is approached when

the interval 9 decreases to the time interval r between observations.
In figure 5 several sets of observations of ice motion are plotted,

showing the variation of one coordinate of position versus tame. Successive

data sets divide the sampling interval 2' by 15 and improve space resolution

by the same factor, giving a sequence of closer and closer perspectives on

the motion. By constructing velocity estimates, uy^() = [^(^+k^,x} -x(^.XJ)^ z

for k decreasing to 1, one can examine the limiting process. In the first

two figures of the sequence, uk continues to change appreciably for small k

In the last two figures, Mk(+)	 at most times i becomes almost independent

of k for small k , implying that on these time scales, 'C C 15 minutes,

the ice indeed possesses a velocity.
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Convergence of Dx (4+x,X) - x (+, X )l A	 to a definite lim' t :implies that
the increment ;r0 + t,X) - vc (+, A)	 iS proportional to T for small 'r .

For random processes, a useful condition for convergence is mean squared

convergence in which the variance of the increment becomes proportional

to ` 2" for small T . This can be readily tested for ice trajectories by
z

plotting E(k+,•%X) -x	 versus z on a log-log plot, as is done in

figure 6. The process is differentiable if the graph has slope of 2 for

small 't .
From a practical point of view the process ceases to be differentiable

at measurement intervals T for which the slope of the graph departs appre-

ciably From 2. The evidence in figures 5 and 6 implies that the ice does

have a velocity and that it can be resolved with a sampling interval of

about three hours.

Time averaged velocities can be defined without reference to the limit-

ing process. Let ILR,T x1	 be the time averaged velocity at .
tJ/2

w(5,z) ds
ILk	

X(^_72	 T f
4-TI2

This quantity u(^,TA) and its properties depend on the duration T of the
time averaging. For example, the variance of u(4,,Tx) 	 will in general

be less than the variance of L.(t,X) because the 7- average has suppressed

contributions to the variance on shorter time scales. Also, from a dynamical

point of view, the equations which et. (-^,T,x) satisfies should involve T as
a parameter. Different physical processes may be responsible for determining

tL(-^, -1, x)	 for different values of T.

Typical ice velocities range from 0 to 20 cm see 1 . An extreme velocity

of 140 cm see-' has been observed. Two histograms of ice speed are shown in

figure 7 , one corresponding to a full year of observations, the other

restricted to sinter observations. The winter data contained several beriods

of essentially zero motion. During the summer the ice was never observed to

stop.

In the following pages particular importance is attached to the time

and space variability of the ice motion. We will often refer to the variance

of velocity, ((e; -u^1^(Y-V^^1=$^ This quantity has been evaluated from many
observations; it varies appreciably with season and with location. Table3T

gives estimates of the velocity variance for each of the buoys shown in figure ,3.

6
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TABLE 11

Variance of Velocity

., 1979 data,	 1 point per day

Buoy ID velocity variance number of data points

190A 59 cm2 seC-2 342

1902 48 295

1903 50 284

1905 210 231

1go6 81 299
t.	 1907 37 229

1908 174 61

1909 38 267

1911 19 62

1913 84 314

`	 1914 83 282
d

1.915 172 31
1916 57 172

1918 35 283
1917 29 219

1920 54 293
1923 63 302

192+ 167 72

1925 67 280

1926 168 59
1927 62 (median) 311•

x

I
f

I
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The ice velocities deduced from trajectories should be interpreted

from the Lagrangian point of view since the measurements axe made following

the material particle. If many trajectories are measured simultaneously

it is possible to obtain by interpolation velocity time series at fixed

Eulerian points. Although the Lagrangian description is more directly

measurable, it has the drawback of sampling both the time and space varia-

tions in velocity. The differences between the Lagrangian and Eulerian

points of view is not of great practical importance in the motion of sea

ice. This is because most of the variability in the ice motion is driven

by the wind, and the space patterns in the wind field move across the basin

so much faster than the ice moves, that all points, Lagrangian or Eulerian,

experience essentially identical stochastic forcing. Consequently, Lagrangian

and Eulerian time series of sea ice velocities look just about the same.

A typical velocity time series, taken from an ice station trajectory,

say, -vill have a mean velocity usually less than 3 em sec-1 , and it may show

a trend. When these effects are removed from the time series what remains

are the fluctuations with time scales ,longer than the sampling interval

and shorter than the length of record. T . The AIDJEX position data for

instance, serve to resolve fluctuations on time scales from a few hours

up to a few months, ( Z;* i. hour, TO! 1 year). Over this range of time
scales the ice velocity has a power spectral density as sketched in figure S .

The power spectral density is plotted for positive and negative frequen-

cies corresponding to counter-clockwise anq clockwise rotations of the

velocity vector. At the end of this section an algorithm is given for cal-

culating the spectra of vector time series. We interpret the velocity

vector time series 	 x}	 as a complex time series with the Fourier

decomposition

Z.4 I
LL ^, x^ - 

fo
cz (w) e dc4 .

The power spectral density s the real function Sit-) = 0.C(a) 0.(LO) , defined
in the frequency range - I < w L

The integral of the spectral density over this frequency range is the

variance 	 and the integral over any frequency band is the part

is
q'
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Iof the total variance contributed by fluctuations with frequencies in that

band. A useful way to summarize the information contained in the spectrum

is to state the fraction of the total variance coming from frequencies

greater than a certain value.

Table III Fraction of total variance exceedin!certain frequencies

frequency: 1 cycle per month 	 2	 4	 15	 30	 6o

period:	 1 month	 2 weeks 1 week 2 days 1 day l2 hours_

58%	 45%	 341	 12 %	 7%	 3%

The equation of motion for sea ice balances the ice acceleration against

air stress, water stress, pressure gradient forces due to the sloping sea

surface, and internal ice stress gradients. While it is not the purpose

here to examine the ice dynamics, it is useful to relate features of the

ice velocity spectrum to these driving forces. In the central basin about

75% of the variance of the ice velocity can be explained by the local geo-

strophic wind (Thorndike and Colony, 1982). In fact, the ice velocity f:_uctua-

tions are roughly proportional to the local wind fluctuations. This implies

that the spectra of the ice velocity and of the wind should have approximately

the same shapes (see figure 7).

The water stress dLpends on the difference in velocity between the ice

and the upper ocean. If the ocean is at rest the water stress is simply a

drag opposing the ice velocity and its only effect is to reduce the ice'

response near the inertial frequency. If the ocean is in motion, the ice

will be carried along with it, and should acquire spectral traits similar

to those of the ocean. Unfortunately the spectral signature of motion in

the Arctic Ocean is not known. The long term circulation of the upper

ocean appears to be similar to that of the ice, with a clockwise circula-

tion in the Beaufort Sea and a transpolar current flowing from Siberia

through the Greenland-Spitsbergen passage. It probably is not productive

to ask whether the ice drives the long term ocean circulation or vice versa

because, in the long term, the ice should be thought of as part of the upper

ocean. In any case the long term ocean behavior does not affect the spectrum

we are considering since we have subtracted out the long term mean velocity.
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Fluctuations in ocean currents on shorter time scales have been observed

but it is not yet possible to say how great their effect on the ice velocity

may be. Some evidence for these variable currents is listed here.

1. Monthly variations are apparent in the currents deduced from wind and

ice motion observations by Thorndike and Colony, 1984.
2. Subsurface eddies. Manley's (1981) study of subsurface eddies during
AIDJEX described numerous features with velocity of about 50 cm sec- I , a

length scale of 10 kilometers, and a depth of 50-200 meters. He found no

expression of these structures in the ice motion.

3. Inertial oscillations. The balance between the ice acceleration and

the Coriolis force leads to oscillatory ice motion with a period which decreases

from 12.77 hours at 70°N to 12 hours at 900N. Inertial motions are always

clockwise--hence the negative value for the frequency--in the Northern Hemis-

phere because the Coriolis force always accelerates the velocity to the right.

Inertial. motions in sea ice were first described by Hunkins (1967) and have

received subsequent study by McPhee (1979) and Colony and Thorndike (1980).
The amplitudes can reach 0.20 m see- ' during summer when the ice pack is

comparatively loose. Their effect on the summer ice velocity spectrum is

striking (see figure XI).

4, fides. Tidal currents in the central basin are small because of the
great depth. Theoretical estimates are in the range of 1-2 cm sec-'. Over

the shallow continental shelves the amplitudes are predicted to be at least

an order of magnitude greater (Kowalik and Uatersteiner, 1978). These
theoretical estimates are for the lunar semi-diurnal tide. Evidence from

tide gauges around the basin summarized by Sverdrup (1926) impliesthat the
lunar semi-diurnal (period 12.47 hr) and the solar semi-diurnal (12 hr) tides

are the dominant tidal constituento in the Arctic Ocean.

The prediction of a large amplitude of the tidal current over the shelf

is confirmed by Sverdrup's observations from theMaud; Nansen 	 may

also have observed tidal motion in the ice pack surrounding the Fram. Because

the tidal and inertial periods are so close it may be difficult to diagnose

observed motions correctly. Nevertheless there are several differences

between the two kinds of motions 1ihich can sometimes be used to distinguish

them. First the tidal vector traces out an ellipse during  one period. An.

ellipse can be viewed as the sum of a clockwise circle and counter-clockwise

circle. Thus, unless the tidal ellipse should happen to be exactly a

clockwise circle, it should have some expression on the counter-clockwise

9
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side of the spectrum. inertial motion is strictly clockwise. Second, at

a fixed point, tidal motions should have a fixed phase. Inertial motion

on the other hand, acquires a new phase every time the ice receives a

sudden impulse of momentum. Third, the phase of tidal motion should vary

smoothly and slowly in space. Inertial motions at different point, may

have no fixed phase relationships.

The motion described by Sverdrup can hardly be mistaken for inertial

motion. The smooth variations in phase as the Maud moved from Wrangel Island to

the New Siberian Islands, and the clearly elliptical cycle described by the

measured velocity vector are not compatible with inertial motions.

Most ice trajectories which have been analyzed in the western literature

have been over the deep basin where the tidal motion is small. Careful obser-

vations and analysis would be required to detect a tida! component of order
1 cm sec" ; since it would be mixed with an inertial component which is often
much larger and with a rich spectrum of other types of motions.

".

	

	 The Soviet literature contains many references to tidal motion in sea

ice. Doronin and Kheisin (1977) and Zubov (1943) each devote several pages

to the subject.

A consequence of the tidal motion is the associated cycle of con-

vergence and divergence caused by the difference in phase of the tidal
cycle at different points. periodic opening and closing of the ice in the
shallow seas has an effect on the heat exchange between the atmos phere and
the ocean and on the rate of ice production. The theoretical calculations

of Kowalik and Untersteiner indicate maximum divergence rates in the shallow

seas exceeding 10' 6 sec-1 which is enough to produce one percent opening
during the tidal cycle. Their theoretical estimates of the divergence rate

associated with tides over the deep ocean are three orders of magnitude smaller.

Calculation of cross power spectral density for two two-dimensional vector
time series.

Given: two di • crete complex time series ^;, V;, , r.- /,•..,w with sampling
interval T .	 '

Step 1. Select M , the ,number of lags; a good rule is m <
Step 2. Remove the mean and.trend from each time series.

Step 3. Compute cross covariances J

nr_R

N [l ^ of+kv-	 ,,	 1
ii 10
s
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Step 4. Define spectral, window

,Q	 Mti L,-)
	

(= -M, •••,M.

^I

Step 5. Calculate spectrum S and frequency w

Sk -	 ,Z w^	 e

w ak	 2 M't

5.3. 2 'Velocity correlations in time.

An alternative characterization of a random function is its autocorre-

lation function. The discussion in the previous section of the power spectral

density of the time function wa) at a fixed or moving point could have been

given in terms of the autocorrelation function

The two functions SW and R('L) 	 are Fourier transforms of each other and

therefore contain equivalent information. Which description is the.-:More useful

depends on the application. The spectrum; is useful for distinguishing physical

processes with distinct characteristic frequencies; for example separating

the free inertial oscillations from the wind forced motion. On the other

hand the autocorrelation function is more useful for questions related to

prediction or experiment design. For example the question: "How well can

tomorrows ice velocity be vredicted on the basis of today's velocity," has

an answer involving the autocorrelation function k(T) evaluated at z = 1 day.

The autocorrelation function is complex. Its real part contains informa-

tion about the lagged correlations of the x component of velocity with itself

G
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f
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and the 8 component with itself. The imaginary part has information about
the lagged correlations between the x and 8 velocity components. If the
velocity of a piece of ice undergoing an inertial oscillation has a positive

x component at a certain time, it will have a negative a component three
hours later. The imaginary part of the correlation should have negative

peaks at 3 hours, 15 hours, etc.

The autocorrelation function for the velocity time series at the AIDJEX

ice station Caribou is shown in figure !1 . The autocorrelation function

estimated by the 1979 buoy data for the central basin is shown in figure IZ .

The real part of the correlation falls to about 0.7 after one day, o.4 after

two days, and decreases slowly at longer lags. The large correlation at lag

one day indicates that persistence (the forecast strategy which predicts

that the future will be the same as the present) will have some success for

one day forecasts.

As expected the autocorrelation from Caribou has negative peaks in the

imaginary part at 3 hours, 15 hours, etc. Generally though the imaginary

part is small. If the inertial motions are not of interest in a particular

application, the imaginary part of the autocorrelation function can safely

be ignored. This is equivalent to treating the two velocity components as

independent time series.

.3.2.1 Apiolication of the time autocorrelation function.

It is desired to estimate the ice velocity u. at time -6 given observa-

tions 9. at times ^^ , 1,•••^!V	 Suppose the observations have zero
mean random errors E^ 4j - idi) which have covariance

&d. Eh^ -- a-2 9^k .

The delta function expresses the independence of errors at different times.

Finally suppose the errors are independent of the actual velocities. Choose

an estimator	 which is a linear sum of the observations.

It is desired to find the complex constants cl, which give the best estimate

L. in the sense that ggjj- ^ C40	 ^U--L-}(U.-LL7	 is minimized. This is
accomplished by differentiating /C- with respect to the real and imaginary

12
i



•	 parts of each o<* and equating to zero. The result is the system of

complex equations for the unknowns	 °CN

Z 
:4 . E .2 -:^' * = ( F Z R #.	

OF POOR QUALITY

A further reduction is achieved by noting that

Use of the matrix notation ZZ = [zj3 A	 M' ^ ,	 ',^-^	 -^' ^'_^	 c`	 " l ^'`^.^

gives the compact expressions

M*A =P

which involve the autocorrelation function s and the measurement error

variance t-2 . The estimation error is

z _ ^ rM- 1 T of, .
	 I1

With these two expressions we can answer a number of practical problems.

1. What sampling rate is required to insure good interpolation to the

mid point between two observations? For given sampling interval T and measure-

ment error variance a" ?, , we write eq. 1 as

Y	 l z

The solutions for the c; 	 which in this case are complex conjugates for

reasons of symmetry, and for F are sketched in figure l3. The solution

technique extends trivially to interpolation involving more points.

The optimal choice of the weights a, and a7 is not c4,_ °tz = h . This

linear interpolation between the two data points is the most natural scheme,

and it is quite good for small 11  , and small C.2 f92 , but it is not the
optimal interpolation. Especially at large T , a smaller error variance

is achieved by giving less weight to the observations. For very large Z

the optimal estimate is simply U_=fl , (' A ,' °(z"o) since, in this case the
two observations are so removed in time as to have no correlation with

the desired velocity.

13
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The measurement error o' affects ad	 and F slightly.	 The depenxaence
of F on the sampling interval T	 is quite strong.	 It appears that'if s^

one needs to know each velocity component to ± 3 cm sec
- '	

, F =	 eu	
EVZ

18 cm sec- ^, a sampling interval of about six hours is .required even with
perfect measurements.

2.	 What errors are expected in forecasts based only on the present velocity?
I

Here we obtain

a	 f#	 _

/31 i

The forecast error is plotted for two values of initial error in figure 14.

The prediction error grows with time, approaching the velocity variance

for large Z'.	 From the sketch we see that an optimal 3 hour forecast

captures about 75% of the velocity variance, an optimal one day forecast 3

captures ah,.)ut 35% of the variance.

The velocity was assumed to have zero mean in this analysis and^in 3,

constructing the autocorrelation function (figures//,^2)^ the long term mean 1

was first removed from the data.	 In an actual application to a region where
l

the mean is known the best forecast would be

n	 + o[

Note that the best forecast is not simple persistence ( oC = 1).	 For long r	 ^

forecasts, the 'best estimate is the mean 	 as equation	 correctly indicates.

5.3.2.1 Acceleration

The time autocorrelation function for velocity, figures 11 and 12, behaves

like I- 1440 for small T .	 It follows from this that the variance of the incre-
i

went in velocity wR+,t)-IWL-) is proportional to 'C	 (not S2. ).	 This implies
that the velocity is not time differentiable in the mean square sense.	 Attempts

to measure accelerations precisely by sampling over shorter and shorter time

intervals may merely result in larger and larger estimates of acceleration.	 Of

course, time averaged accelerations exist and have finite variance.

z	 1 1

a	 7

which for small T is .^ z! ^ T with c % /©4M. j

14. "^
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It is frequently claimed that the inertial, forces due to acceleration

of the ice are small compared to other forces acting on the ice. To support

this claim a typical average acceleration Qa..is compared for instance, to a

typical value of the Coriolis acceleration T CrK N O yse°^ ' 1c) C.

Using the above estimate forp_ , and taking ,4g = 1^ d ^ sec	 , we find•
p^< ;qL	 provided T^ 2x103 sec	 . Thus, roughly a hall' hour time
average is required to bring the acceleration down to the level of other

terms in the momentum balance.

5.3.3 Velocity correlations in space

In earlier sections the emphasis has been on the structure of the complex

function EA, of the real argument i , at a fixed or moving point. In this

section, the emphasis is on u. as a function of position for fixed time.

Certain results are more easily expressed if Lt. and X are regarded as two

dimensional vectors rather than as complex numbers. The autocorrelation

function

LR1`Xr) LJ X0 	a(-r,) V (10

is a 2 x 2 matrix involving possibly four different functions, whereas the

time autocorrelation function involves just two.

The structure of the spatial autocorrelation matrix for sea ice veloci-

ties reveals some of the properties of the velocity field. To establish

the basic ideas we first determine the structure of the autocorrelation matrix

for a homogeneous, isotropic, two dimensional velocity field, borrowing from

Kolmogroff's (19+1) classic discussion of three dimensional turbulence.

A random field is said to be homogeneous if its statistical properties

are invariant under a translation of coordinates, and isotrcpa^c if they are

invariant under rotations and reflections of coordinates. In particular the

autocorrelation matrix for a homegeneous isotropic field must satisfy

x, , xz J	 r^ (x, +CL , x a + 0.	 for any , and

rrw

for any orthonormal matrix M . Multiplication by an orthonormal matrix

15. ^r
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accomplishes an arbitrary rotation or reflection of coordinates. Note

that the change of coordinates is applied •to both the position and the

velocity vector:.. These definitions make precise the notions that the

statistics do not depend on position or direction. By choosing the trans-

lation vector 0. or the rotation and reflection matrix M suitably, we canN

see how these definitions of homogeneity and isotropy constrain the form of

the autocorrelation matrix.

First, R(x, j x=1 depends only on the vector difference xy-x, . To
see this, take Q -x, . Note that this does not imply that R depends onlyN
on the distance

	

r	 +.

Second, lQ is symmetric. This requires using a= -^ , 1`9 -^ and
D^	

xz s to obtain this sequence of equalities:N N

E Lt (o) V(-X -x,)	 L ( o (- 2)X V (x ^ - ^i)^ = L" (4 (X ^^r'^!^

Third, C u. (o, V(x, o) = o . Hire use the reflection invariance in the

definition of isotropy by taking

M -	 I a

D

which changes the sign of the Y axis. Then

	

C Gcf o, n^ v(,^', o) _	 .^ fti (o^ --o^ ^° Y ^ ,^'^ -0)1 s - ,E' Lt(b^ a) Y(x o,

which is only true when E Loco, o) v[r'^, n) = O

Consequently the autocorrelation function evaluated at x, _ (^, ^) z = ("^-, 01
has the form

u{o, o) W r, 0)	 o	 QI (r)	 o
!	 ^ l	 TBcr)

involving only two function of distance. ^11^-r, is the correlation between

the components of velocity parallel to the line joining two points separated

by a distance 'r.  Qy(-r) is the correlation between the components of

velocity perpendicular to that line.

More generally if ^', and xz are arbitrary points with t2 =
 

(7$
-74)z +

aos f3 = (&-x)f r and siM8 = (^Z-^,)/ r , then

16
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rw$	 ^r^.8

ttwtk x ( LLy	 11	 r	 su.^	 caa 0

Then	 R y x x=J	 _ ^uf^^ u- {^:} = z F ^1 ^.t{'^) ^1^ u lx^^)

T

 A b H ;^' or
r r	 N ^'	 N	 ^' yy

(

	 / =	
2tl Q,^ {^') + s+ x̂$ f l̂^,-}	 ee a sL►, $ (aq[ r) - a -^)	

W

c<:s q s w. 0 ( 1311 (^") ~ Q^ [^-})	 aik 8 el l tr) + aviLB	 r)

which is the general form for the aut*,orrelation matrix for a homogeneous,

isotropic two dimensional velocity fiefs. It involves two functions ,, f31}
and 'B1 ^p which we will estimate below from observations. Further it involves
the separation -1- and the orientation 8 of the two points A and 0, at

	

w	 r

which the autocorrelation is being evaluated. It may seem strange that B

enters the statistics for an isotropic field. The condition of isotropy

does not imply that Li( o,^)4c (r a}	 equals fidb a)	 however. A
rotation of coordinates affects both the velocity and the position vectors.

A valid statement is L_uto,a)Wr n) = Ey(o, o) V(o, 1-)	 See figure 15.
There is another constraint on the spatial correlation function. Let

u4 T (u",yO	 be the- velocities at any set of points %L , Lzl,•-;N and let

;PL,j^	 be arbitrary real numbers. Then the linear sum

tv
S —	 b°L LLi i- ^L vi

has a variance which can be expressed in terms of	 The added constraint
is that Var (s),^o for all choices of XL ; eL, mJ 4Z( . This requires that
the matrix consisting of the correlation5of the velocity component at any

set of points Nimust be positive definite (all positive eigenvalues), and

is equivalent to the condition that the two dimensional spatial power spectrum

of velocity be positive for all pairs of Crave numbers

Contradictions can arise if correlation functions are used which do not

satisfy this constraint. For example, suppose we wish to consider a velocity

field for which 131! (a) = i, 13 11 (L) = o-9 ari 4 Gil ( 2 L ) z o.5 	. The
attempt to evaluate the variance of s = U-NA) -- 45 of l., o) + 0. Yu (240) in terms

of these correlations produces a negative result. Since variance is intrinsi-

cally positive, we must conclude that no velocity field could have the presumed

correlations.

a

i

t

R	 ^

IL
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As an a .ample of an analytical form for R which satisfies the positive

definite constraint and bears some resemblance to reality, define

This example was constructed by taking a stream function I with the posi--
7 Z

tine definite correlation function(r)_ e T A	 The corresponding power

spectrum is the Hankel transform of e	 . This is ^A a	 9^w	 ^c	 ,

which is always positive. Now define velocity components Lt 

V = 'DV-0 %	 and deduce ,7 ^' f r} - - af^xr)	 and (^(^-) _ - "^12(^ )
--ar

5.3-3.1  Estimates of the autocorrelation functions.

In order to estimate the autocorrelation matrix, simultaneous velocity

observations are required at pairs of points separated by distances ranging

from roughly 1 to 10 kilometers. We present data from the .1979 buoy pro-

gram and from ASDJEK which define the .functions 811 and 13y only for

distances exceeding 100 kilometers. The 1979 data were first interpolated

to give velocity estimates at a uniform grid in space and time.

u	
= u x.	 t	 ax =	 = yaokm , dt =/r4y , ^=^...NA, J _l..;^v^ , h , N .

The mean velocity over all points 	 t,j,k was removed. Then for lags

the lagged correlations were found. using

Nr --.I, r N - ^
' 	 2— 	

T

c= I	 j = r	 k=1

For these calculations Alx= 7, M _ 4, and IV^ = 200. The results are sketched

in figure /^ for the lags 1 =1 , ..., 7, W = 11 = 0, and ^ = n = 0,

v = 1,..., 4. The results show that F Luo,o)u,Ctt a}	 and F v(o,o) Y{ O, r)

are similar functions of i- , and that F v (o, o) u( r, d) ,	 u{a, n} v{ o, r)
F UL N, o)v(-r, o) , ate.) FV(o,c) tL(o,-r)	 are all small. .These observations
are roughly consistent with the assumption that the field is homogeneous

and isotropic. We will proceed then on the assumption, supported by these

data, that the ice has a homogeneous, isotropic velocity field with the

functions 
1311 

and OL empirically determined from figure 16 .

Correlations for the ATDJEX data were constructed by choosing two of

the ice camps, resolving their velocities into components parallel and perpen-

dicular to the line joining the camps, and correlating these. components.

2^ tl

i

1	 ^'
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These correlations are also plotted in figure J1.

5.3.3.2 Applications of the space correlation. 	 ^^

fflI

'	 4I1

The spatial autocorrelation function is the basis for sound experiment

design and data processing. Far instance, suppose observations of velocity uL

are made at N points 54 	 with independent zero mean errors having vari-
ance a" z . Estimates of velocity are to be made at arbitrary points X using

these observations. What is the maximum estimation error? We use the tools

developed earlier. To estimate the LL component of velocity at A , we use

the observations „ Lt and construct the matrices

R u u, .r T	 R u,Y,	 R 	 k, vN	
°`+	

R w u,

	

Rv,v, + Q'= 	 R v, V1 	 ^!	 R u v,
.t

•	 E

•	 ^	 N

+ Q•=	 Ty	 ^ k YN

{^y Lt !	_	 RvNVN	 / I	
t

where RLL^ Vi	 etc. as given by Eq.	 The esti-

mation error variance is given by Eq. 2 	 Figure !7 shows how the maximum

estimation error depends on the separation between measurement stations and

on the measurement accuracy. The curve labelled	 refers to the idealized	 e

condition in which the measurement errors are zero. Thus it represents the
AJ

interpolation error which is due to the intrinsic spatial variability of the

velocity field.	 i

The standard deviation of the ice velocity itself is about 4 — 10 cm sec-/.

A reasonable observational goal is to keep the interpolation errors below 2 or

3 cm sec-^. This can be achieved if the raw measurements of velocity are

good to about 3 cm sec -/ and the grid spacing is about 400 km. At ,larger

grid spacings the interpolation accuracy deteriorates rapidly.

5.4 Deformation

The differences in velocity from place to place are responsible for the

characteristic morphology of the ice. When the velocity difference between

neighboring pieces of ice is such that they tend to move apart, a lead forms

and widens exposing the ocePxi surface to the atmosphere. During the winter,

ice growth is rapid over open leads. If the motion changes--perhaps because

19

il')-,



URICINAL PAC-5
OF POOR QUALITY

of a change in the winds--so that these pieces of ice move toward each other,

the open lead will close, and any new ice which formed there will need to

rearrange itself to occupy a smaller area. Typical mechanisms for this
	 n

is
rearrangement are raftinu, where one part of the new ice sheet overrides the

other, and ridging where the ice is crushed into pieces which pile into

ridges rising a meter or two above and sometimes many meters below the sur-

rounding :ice. Ridging and rafting are not restricted to-thin ice. If the

closing motion continues, the original pieces of ice come in contact and

one may override the other or, by grinding together, pieces may break off

and pile up and down to form a ridge. The essent-..al ideas here are that

the ice accommodates divergent motion by increasing the area of open water

rather than by stretching and thinning. It accommodates convergent motion

by reducing the area of open water and by ridging and rafting. These processes

link the morphology of the ice, characterized by such features as floes,

ridges, and leads, to the spatial differences in the ice velocity. By

studying the spatial variations in velocity we may be able to understand

better why the ice pack has the form it does.

There is a second reason for studying the deformation of sea ice. As

the ice pack deforms, stresses develop within it which tend to oppose the

deformation. These stresses figure into the local balance of forces and

therefore affect the motion of the ice. To be more precise, the balance

of forces equation contains terms of the Form ^cai^ ^a^^ 	 where ^r4J

is the stress tensor. The stresses may in turn be related to the ice motion

by a constitutive law

stress =	 (deformation).

One of the motivations for AIDJEX was to investigate the function F from	 l^

a theoretical point of view and by using observations of the deformation and

indirect estimates of the stress (see Rothrock et al., 19$0).

The concepts which have been applied to the study of the spatial varia-

tions in ice velocity are those appropriate to the analysis of the deformation

of a continuum. The fundamental concepts are the partial derivatives of

+^.['Xi	 and	 with respect to X and	 The line of thought is	 1

that a description of the large scale deformation in terms of large scale

average derivatives should give some idea of how much opening and closing

is going on on smaller scales and some idea of the state of stress. For

20
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example under a purely divergent motion only leads are formed. During a

purely convergent motion no leads are formed. On a small scale, shearing

along a crack is of no morphological consequence. But large scale shearing

is often expressed locally by opening at some cracks and closing at others.

Mathematical formulation of these ideas requires two steps. Required

first is an appropriate quantitative description of the large scale defor-

mation in terms of observable parameters. The second requirements is for

a functional relationship giving the opening, closing, or state of stress

in terms of the observable parameters.

Current practice is to describe the motion in terms of the large scale

strain rate invariants, which themselves are constructed from the large scale

velocity derivatives. The first invariant

'8u 2—V

quantifies the large scale divergence and convergence, and the second invariant

= ^ (	 2. +	 -Lv ) 
x ^

gtia 	 iu f	 , }^	 s1,ra^+	 A	 a1krvtaWW- pkir	 wVZ	 is

;.	 }F } ? g ),where

expresses the total rate of deformation and

indicates whether the motion is predominantly divergence 	 0 , shear	 a/2

or convergence & 7 .
In the theory presented by Thorndike et al., 1975, opening and closing

are assumed to be known functions of P and proportional to )9].

A = total opening = 1 r- ] '^- (6)	 ,

C = total closing = } E) °fir W

23

images of the ice these investigators were able to measure the strain invariants

and the total opening and closing.

The functions 01, and 9. which give the total opening and closing in

terms of the strain rate invariants may have a form somewhat as sketched in

figure 18. Some constraints on the shapes of these functions have been

deduced by Nye, 1975 and by Rothrock and Hall, 1975. From pa`.-~^ of Landsat
i
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q1e- 'functional relationships for .A and C in terms of IF) and
can only be regarded as approximate since they do not take into account the

actual geometry of the floes in the region being considered. Different

regions with different geometries will respond differently to similes large

scale strain rates.

In practical applications of these ideas the procedure has been to

take measured velocities at several points in a region of interest---perhaps

the three corners of a 100 km triangle. Velocity derivatives are estimated

from the measured velocities. The estimated velocity derivatives are com-

bined to form the strain rate invariants )F) and 6 , and these are used

to find the rates of opening and closing A and C , and the state of stress (r.

In the following sections we reexamine some of these ide r,s, particularly

the notion of velocity derivatives, the influence of the ice pack geometry

on opening and closing, and the difficulties in basing inferences about

these quantities on small numbers of measurements.

5.4.1 Velocity derivatives

Since the ice pack is made up of discrete pieces moving relative to each

other, the variations in velocity have two types:

1) for any x, and x= on the same rigid piece, the linear relation

coo ca	 -s EM. ^	
1x a 

_ ^ 	 must hold, where co

u f x=) u f^,)

is a constant related to the rate of rotation of the rigid piece.

2) for x, and xx an separate pieces,
N

u t 9t= ) - t-^-C x ^ ^

	
is arbitrary.

If we select a random point (%,^) on an ice floe, the partial derivative
of velocity,

-a x	 g,^p

is well defined because for small enough 9 , (xq) , and (xf, J almost
always lie on the same floe and the linearity of the first type of motion

mentioned above implies the existence of the limit. Thus the partial deriva-

Live exists, but it describes only the rigid body rotation of a floe. It
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'	 says nothing about the relative motion between floes which is after all the

motion causing the opening and closing and the exchange of momentum between

floes.

To include the effect of velocity differences between floes we cannot

let n become arbitrarily small. Consider the velocity increment

Ut'X+A +) - 	 where (%q) is fixed and	 begins at 100 km

and decreases to the smallest value 9, such that	 and (9, a) lie

on separate floes. This increment captures the variation in velocity from

floe to floe and has nothing to say about the rigid rotation of the floe

(A, )	 lies on. The velocity increment will generally decrease as ^
approaches Ha , and we can examine the characteristic rate of decrease by

2
evaluating the variance	 E u[x+^,^,^ - -4L^, ^^ ^^ . If this quantity

is proportional to 92 for small ^, , the velocity at least has a derivative

in the mean square sense.

The best data available for examining the variance of velocity increments

for a range of spacings were extracted from SEASAT synthetic aperture imaging

radar by Hall and Rothrock, 1981. By comparing two Luages separated by

three days, they were able to measure the displacement of enough ice features

to resolve considerable spatial detail in one dimension of the ice motion.

After interpolating to evenly spaced points x4 their data have the form

tW'XL) , v(x` ) I	 L = ), • •, nv ,	 dx = 2 kM .

For	 4 = 1, ..., the 9-increments were defined-as

z^^,^1 = ^ lx^^^^ u fx^)

The variance of the increments was estimated from the ,^f^,^),1y1^,^) i = ),• N-^;

with the results plotted in figure 19. The linearity of the log-log plot

for small ^ supports a power law relationship with var (3:	 = C ^,°` with

of ix 4 nel5u" k'd I d^j	 It appears

then that the increments do not decrease as fast as ^^ 	 and therefore

the velocity does not have a derivative in the mean square sense.

The statement Just made for the variance of increments can be recast in

terms of the autocorrelation function. It implies that for small r

23
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thus helping to define the shape of (311 and IBS., at	 =a . At r :a , 131
and 51 have the value unity, are continuous, have a continuous first

derivative of zero, but fail to have a second derivative.

1i V

i

5.4.2 Velocity differences

The definition of the derivative as a limit could be discarded in favor

of a velocity difference over a finite distance,

^ L

and similar definitions for v- ,.L , '/X L , """	 V`b,I-

There is no question about the existence of these differences. Defi-

nitions for strain rate invariants follow naturally by associating

with '6VV^ DX etc. in the earlier definitions. When L. is chosen to be of
order 100 km, these definitions can be used to describe the large scale

deformation.

There are several problems with this approach. First, the L -differences

carry no information about smaller scales. Second, no basis has been given

for choosing a particular value for L . Third, measurements of velocity are

rarely available at uniformly spaced points. Still most analyses of sea ice

strain have been done with a length scale implicitly fired by the scale of

the observations. To interpret these analyses we must determine the role

played by L, .
Consider the covariances between the various L,-differences. These

follow from the covariance structure of the velocity itself. For example

^^ X11 ^'r^ll — 2 811(1) + 13 11 (r" L)	 ^ 1

To interpret this equation, suppose the L -difference U% L is measured

at two points separated by a distance t- along the X axis. The right hand

side of equation V approximates the second derivative of 13 4 at r

For small 'r , 131 is concave down so the two 1„-differences are positively

correlated. At some valus of I- , Bfi (r) has an inflection point. Over

such a distance the L -differences become uncorrelated; at longer distances

14

__	 v_	 jr

the j„ -differences are negatively correlated. This example has been worked 	 1.!

2.
^f
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for the U x,L component at points separated along the /—axis, but the

same procedure can be used to correlate any two first velocity differences

at any two points.

It is apparent from this and figure )6	 that quantities related

to the k —differences are highly correlated in space only over distances

of less than about 400 km. Furthermore this statement is not sensitive to

the choice of I , since the expression ,^ will change sign at approximately
the same 7r , independent of L,	 The correlation length scale for velocity

by comparison- is roughly twice as large (see figure 16).

The ice velocities are well correlated at distances of up to 1000 tz, -

as evidenced by the patterns in the long term ice motion (figures 2-4) and

in shorter term motions (see Thorndike and Colony, 1980 for instance). It

may seem surpising not to find similar patterns in the strain fields. The

reason why such patterns are not found is that the strain field has, by

equation 5, and figure 16, a correlation length scale of only a few hundred

kilometers. Measurement arrays like the 1979 and 1980 buoy arrays with

a buoy spacing of roughly 500 kilometers are -boo coarse to resolve patterns

in the strain field.

For the example just worked we can find the variance of the L —difference

by setting

x, ^

The symmetric matrix of coveriances between pairs of L —differences at the same

point i!^

3

f

r,

6lz.L

c3E,W]

Vp

ui,L

zx[1311(ZL) _ y'rzL

1.

Lt.%L

+:({L) -28 Wj

9Lo—)j

0

,/,c, L
0

^B„1) - 91 (V2L j
VX,LI	

9 [j_ 
OLI J

W^Cvt G = z QR + '8Q . 
This matrix can be evaluated at ^, _ 400 km for example by reading points

from the plotted functions Q^ and Qj_ in figure 11.

1
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Lk K, L	 y , L 	 .I-	 vx,L

fix, ^ ^^xlp^sei	 -d.BxlD^st"cL 	l,^^lblYstUZ	 c	 ',

	

:L	 3.gx10 rtc	 J,^'XlDsr^3	
z^ JO u.+:rec z

	

^	 6,^Kfgy1	 -D.QXIb rrc^	 it

The covariance matrix for the L -differences illustrates several properties

of the way the ice deforms.	 Notice that the variances of the parallel dif 1

ferences UXL and V ,L are smaller than the perpendicular differences	 u^,k	 and
The parallel differences relate to the linear stretching and

contracting of the ice pack. 	 The perpendicular differences relate to shear

and rotation.	 Apparently the second type of motion is greater, but recall F

the word of caution given earlier that the interpretation of this kinematic
r

evidence is ambiguous. 	 We cannot say whether the observed motion reflects

some property of the ice pack or some ehaxacteristic of the driving forces.

With the L -differences one could define L -strains in a natural way.

The statistics in Table IV of .the L -strains follow from the above matrix.
i

These values predict, on the basis of the spatial correlations above, that

the large scale divergence will typically be smaller than the vorticity and F

shear, a prediction verified by many different sets of observations.

TABU IV
E	

t

Typical strain rates as a function of gauge length L
,
k

yarlakf
L S+ral y!	 VA.rikPLUL-	 ^-g}rain	 ii,	 reree 

2J_ 
its dew+?kS+V& Ste.-

^,	 1nok	 zA C%, 100	 gca	 w,

z	
1	

:!

ritYC^ t.%Ce	 ^! $V	 1r2L i-[3	 01

1 	 L +^ (^i1	 (SxL^	 .	 3	 31	
2.2	

fVarTPC!}Y	 u^L- V^,1"1'!^l	 ^^{	 1^ 	 1 J

f

s}^^ yr	 LL%.L . Vj.L	 611(^iL —Q1(42z^	 3. 1 	 3.6

't^,Ltv,^L	 z -^ejL) r1311 (jL) + e (r7 L)j	 3.9	 .E	 Z.	 Z	 j

i

F
s
#	 1

s

i
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5.4.3 deformation measurements

Several studies have been made over the past decade or so using obser--

vation5of velocity at an array of stations, with the objective of monitoring the 	 r

large scale deformation of the region covered by the array. t,7hile it is never

stated just this way, the implicit definition of large scale deformation appears

to involve spatially averaged derivatives over the region)

_WX	 A	 ^x

where A is the area of the region K sampled by the array. Similar expressions

define the other large scale average velocity gradients. Application of the 	 i

Green--Gaust theorem implies	 ^ F

A
C

where -n is the outward normal to the perimeter C of	 and i a unit vectorN
in the	 direction.

Note the difference between the L -difference and the large scale

average derivative. The former can be measured exactly as u(xfl,) - (^,} ;
the latter requires measurements at every point around a closed curve. In the

next section we will discuss how many measurements are required to achieve a

desired accuracy in the large scale deformations. But first we review some of

the results of the studies just alluded to.

In these studies the deformation estimates were made by finding the

linearly varying velocity field which most closely fit the observed velocities

at an array of points within K.

u^ = I.^p + 1^'I 7tN

where the matrix M contains the four large scale average velocity partial deriva-

tives.M and ka	 are determined using a least squares fit of the observed

velocities Lk and positions x	 The strain rate invariants were en computed.,..	 t	 thp	 N	 p	 1

from the elements in

The values, given in Table V, confirm some of the results deduced above

from the observed spatial correlation functions. For example the standard

deviations of vorticity and shear are generally larger than the standard

deviation of divergence. Note also that the mean divergence is small com-

pared to the mean vorticity and shear.

27
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TABLE V

Statistics of Sea Tee Deformation.

All deformations are expressed in per cent per day. (1%/d = 1.16x1Q 7 S- 1)

Length scale Season Divergence Shear Voxticity. Strain Experiment
diameter magnitude
(kin) mean st.dev. mean st.dev.- mean st.dev. mean

'20 spring --- 0.65 -- 0.86 -- 1.1 -- ATDJI X 1972

100 spring -- o.43 -- 0.54 -- 0.61 -- AMEX 1972

200 winter 0.07 1.0 1.6 1.6 -0.52 2.0 2.1 1975 AIDJ'EX
manned array

summer -0.03 1.6 3.5 2.2 -- -- --

800 winter 0.02 0.56 1.0 0.86 -- -- 1.3 1975 AIDJ'EX
buoy array

summer 0.16 1.0 1.6 0.86 ---- -- 2.2

Boo winter 0.07 0.58 0.77 0.54 ..- -- 1.1 1962-64 T3,

NP-10,

summer 0.06 0. 80 1.0 0.68 -- -- 1.5 Arlis 11

1000 winter 0.02 0.45 0.95 0.82 -0.78 1.5 1.1 1979 buoys

summer -0.11 0.76 1.5 0.95 1.9 "

"U fig

O
Sources: Hibler, et al., 1974; Colony and Thorndike, 1981; Maykut, 1982.
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The distribution of the invariant 9 is plotted in figure,2G . Note
that nearly always ^ < 9< 1% . In this range, the two principal values

of the strain rate tensor have opposite signs. The figure indicates that

it is almost always the case that when the ice pack is extending in one

direction, it is contracting in the perpendicular direction. Hibler et al.,

1974 also comments on this for strain measurements on a 20 kilometer scale.

It is also evident from Table .V that the summer values are usually

somewhat greater than the winter-spring values. Presumably the ice pack

is weaker and offers less resistance to deformation in the summer. (The

alternative hypothesis, that the driving forces are larger in the summer,

is not true.)

The mean quantities in Table V ' produce large strains over the course

of a year. The year long deformations at the AIDJEX arrays are shown in

figure 21 . The region experienced a net clockwise rotation of about 350.

The principal deformation involved a stretching of about 90% in the east west

direction and a contraction of about 40% in the north-south direction. The

net divergence was not significantly different from zero. The two nested

arrays experienced similar deformations.

Deformation estimates at a number of points in the central basin for

the years l9'j9 and 1980 are presented in figure 22. The strain ellipses

typically show large shear and small divergence. The only pattern evident

in the figure is the similar alignment of the major principal axis of shear

for the five points closest to the pole. Perhaps we should not expect to

see any patterns in the deformation displayed on this scale. Recall that

the spatial correlation function for L --differences of daily velocities

has a length scale of only about 400 kilometers. The deformations at points

separated by greater distances should evolve more or less independently.

Conceivably there may be some -underlying spatial pattern to the deformation

rate which is small on a daily basis but which accumulates to a large spa-

tially organized strain over the course of a year. The strain ellipses

for 1979 and 1980 do not support this idea. On the other hand the long

term average vorticity is clockwise throughout the central basin. It amounts

to about 40° per year.

5.4.4 Interpretation of deformation measurements
r

{ A number of authors have confronted the difficulties o y describing the

#	 deformation of this discontinuum. Nye (1973) for instance, puts forward a

a	 definition of "strain on a length scale., ." By first smoothing the velocity:f	
{

e oggfield using a kernel of length scale L s hbta ns a e:uw velocity fieldJ	 IS	 ^

29
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`	 to
• which is differentiable and for which the usual notions of deformation based

on partial derivatives are valid. Papers by $ibler et al., 1974 and Thorndike
and Colony, 1977 take a similar point of view by attempting to partition the
ice deformation into two parts. The first part is assumed to be associated

,?ri.'ah the spatial variation of the atmospheric and oceanic forcing fields and

with -the geometry of the basin, to have a characteristic length of 10 3 km,

and to be differentiable. The second part is associated with the irregular,

discrete geometry of the ice pack. It has length scales less than 10 km and

is characterized by discontinuous variations in velocity. In these papers,
the first kind of variation is referred to as the large scale, underlying,

continuiza, or linear part of the velocity field, while the second is referred
to as the small scale, local, perturbation, fluctuating, or non-linear part.

Velocity variations of the first type are regarded as signal and those of the

second type as noise. This nomenclature reflects the hope that any physical

process of interest can be parameterized in terms of the large scale signal,

with small scale noise only making it difficult to measure the signal well.

This convention obscures the true nature of the velocity field which

is that it has variations on all length scales, with a smooth decrease in

amplitude for decreasing length scales. There is no clear division between

large and small scale. Furthermore there is no clear reason to associate

large scale with signal and small scale with noise. For studies involving

the actual opening and closing of leads, the small scale phenomena may indeed

be the signal. Further we must be prepared for the possibility that the small

scale phenomena cannot be parameterized in terms of the large scale motion.

Perhaps a better conceptual model of the spatial structure of the ice

velocity is a system which accepts a smooth input and produces a discontinuous

output. ( A simple example of such a system is the greatest integer function:

LXJ = greatest integer less than or equal to X .)
The shift in emphasis from the earlier model is this. The earlier model

viewed the velocity as the sum of separate contributions, one smooth, one
discontinuous. The alternative views the velocity as a discontinuous response
to a smooth input. This point of view may lead more naturally to phenome-

nological descriptions of the properties of the ice pack, through a comparison

of the input and output fields. To my knowledge this has not been attempted,

because data with adequate spatial resolution of the velocity field are still

too scarce. Such a study would not e).Tlain why the velocity field had

certain properties. That explanation must be. based on rather deeper understanding

of the geometry of the ice pack and the forces which act between floes than we

have at present. Still it would be useful to compare some of the properties 	 s

r	of the ice velocity with properties of the external driving forces, i.e., the 	 L

geostrophic wind and the ocean currents.
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5.4.5 . Errors in estimating the large scale deformation

The ,large scale deformation estimates of the previous section are

subject to sampling variations since they depend on the paxticular array

of measurements points. There have been several attempts to quantify the

sampling errors. Hibler et al., 1974; Nye, 1975; and Thorndike and Colony,

1977 examined the departures of the measured velocities from the best fit

linear relationships. These departures, called residuals, homogeneity

variations, or nonlinear fluctuations,. represent the variability of the

actual velocity field on scales smaller than the diameter of the region of

interest.

From observations over a 20 km scale taken during the spring of 1972,

Hibler et al. found root-mean-square velocity residuals of 0.06 cm sec-1,

compared to typical linear changes in velocity ( L2" x )	 over 20 km of

0.14 cm sec 1 . Thorndike and Colony used observations from a 100 km scale

taken during the spring of 1975 and found rms residuals of 0.4 cm sec 1 and

typical linear changes over 100 km of 1.1 cm sec 1 . Their summer values were

somewhat larger: 1.1 cm sec 1 and 1.8 cm sec 1 for the nonlinear and linear

contributions. These residuals can be regarded as errors with respect to the

large scale average derivatives for the region. When the number of observa-

tions is small, the estimated large scale deformations axe strongly contaminated

by these errors.

Using what we know about the correlation functions for velocity, we can

profitably address the sampling question from a different angle. Taking the

line integral: definition for the large scale velocity derivatives, we ask:

how many points around the perimeter of the region must be sampled to resolve

the integral to some desired accuracy? Intuition suggests that the measure-

ments should be spaced closely enough to permit good interpolation but not

so closely as to be highly redundant. A correlation between velocities at

neighboring measurement points of 0.5 might be a fair guess; this would

indicate a spacing of about 400 km.

To get a better answer, we estimate the line integral in equation 6

around a circular region of radius r as

M	 1 ,r	 M

Then as the number of measurements M increases, 'D M approaches _b02e

Since Im is a linear combination of velocity components, we can find its

31	 ^f
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variance in terms of the variances and covariances of the velocity components

at all M points, and these can be evaluated in terms of the correlation
functions $ and Ql . Let U. be the vector involving all 2M velocity
components, A be the vector of coefficients, and k be 1=U-0 . Then

^M A' u, and ^ ^ : A A	 This calculation has been done for
M= 60 which was large enough to resolve -a u. 7r . The dependence ofi
(V

^1^ on the radius r is shown in figure 23a.

This curve depends on QII and gy which for this purpose were taken to be
(I-' r/z-) ^ac^^ ^'^ ^^	 with d.	 2000 km, 6 = 1300 km for 0II and d	 900 km,
L = 1000 km for ^^,. These functions incorporate the features of the

observed correlations in figure 16. The leading factor (1--r/a.) makes

the assumed functions vary linearly near or D 	 The behavior of the

correlation functions near 'r=d is related to the variance of increments

by

Vm r	 u (r+ d) - u. r))	
9-	 S	

I " I II °^^ t

for small

which is a rough approximation to figure 19 where the variance of increments

is seen to be proportional to dl '3 	The results in figure 23 are quite
sensitive to the behavior of the correlation functions. 	 They should not

be taken too seriously until more is known about B11	 and	 B	 near b 0
With some caution.then we interpret figure 23a as follows. 	 Typical

values for the large scale average derivatives are l% per day decreasing i

.	 somewhat with the size of the region over which the average is taken. 	 The I'.

derivatives	 -bu./a y	 and 'av /GD x	 are generally larger than ±	 ;
-0WA& X	 and	 -ay /-63	as a consequence of	 BL	 falling off more
rapidly than	 {3 11 y

j	 The variance of the error in estimating 	 usingusing only M points,

t D M - I)jo)	 can be calculated in the same manner simply by redefining
the coefficients in the vector A	 These results are presented as a

fraction of the signal variance 	 E (Dj )	 in figure 23b.	 When M is 3,
as was the case for AIDJEX 1972, the 1975 -76 manned AIDJEX array, and

LOM 79, the ratio of estimation error variance to signal variance was l^

about 0.7. 1

'	 With six measurements around the circumference of the region, the j

average derivations are resolved fairly well., and only small improvement
1

is realized by adding more measurements. 	 The results are insensitive to

N
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the size of the region. The broad curves in figure 23b contain results

for discs ranging in radius from 100 to 500 km.

In this section we have asked how many measurement stations are needed

to provide good estimates of the large scale average velocity derivatives.

This is a different issue than how densely must one sample in space to

resolve the spatial patterns in the deformation. Observations from a

500 km grid can be expected to give fairly good estimates of the average

deformation, but will not resolve the spatial pattern very well.

5.4.6 The relationship between measured large scale deformation and
total o ening and closing

Suppose a region of interest is intersected by a number of cracks, each

of which is opening or closing at some rate. If the rates were known, the

total rates of opening and closing for the region could be found. In practice

we are not able to measure the motion at each crack, but only the motion of a

few points in the region. How are we to use these few measurements to esti-

mate the opening . mid closing?

In an analogous situation in one dimension, we have k cracks each with

opening or closing rate LA 4 &= I, • . ., k . lie can imagine the velocity U, to

be a random function of x having random discontinuities at random points
and being constant between the points. .Suppose ' pie have measured only the

motion at the end .-points of the region, an interval of length L . Then

A- 4-44 6 tVLlilqq —	 'YK+►^f ^u^ a^	 1
1	 e.-1

J	 i-1

UL	

J^ +
	

k

U	
n	 nnd} o,Ptnl ardvsi,S — A	 u^ 7

Ii	 /

and the problem is to estimate A and C given U . At first sight the
situation seems hopeless. I clearly contains information about the net open-

ing or closing but not about the -dotal opening and closing. However, knowledge

about the random vari ables k.0- J.P vw ^^^. can be.used to . make probabalistic
statements about the opening and closing. Suppose for instance: k has the

Poisson distribution with parameter A . This means that AL is the average
number of cracks in an interval of length L . Then the probability of

finding k. cracks in a random interval of length L, is

33
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if AL = 0.1, for instance, the probability of a etting k= 0 is 0.9051,

frob (k F ) = 0.0905, and ^rc^O (k y1 = 0.00 +5. Therefore, with high probability,

there is either no crack or just one in the interval and the observed value

of the velocity difference U, would itself indicate the total opening and

total closing. Of course for larger AL it becomes more likely that several

cracks intersect the test interval, in which case the observed LL cannot

separate the opening from the closing.

A similar approach for the two dimensional problem is to imagine the ice

pack to be crisscrossed by a family of random cracks, defined by the random

straight lines

where each SL has the uniform distribution on (b, 2,7) and the normal distances

Y from the origin to each line form a sequence of Poisson points. Imagine

that associated with each crack is a velocity discontinuity ILL having

the Gaussian distribution. This describes a random vector field having

structure akin to the velocity field of sea ice. The observations of Hall

and Rothrock can be used to estimate the parameters in the Poisson and

Gaussian distributions. These random fields have the following properties.

They consist of discrete rigid floes. The floes have a distribution of sizes

determined by the Poisson field of lines. The Poisson lines are isotropic

and homogeneous. The velocity difference between any two points is the

vector sum of the velocity discontinuities encountered getting from one point

to the other.

At each crack the opening or closing is determined by the projection	 i

of the velocity difference vector onto the normal to the crack.

opening = max ( 0 )	 LLL Cod BL + V is 9 L

closing = min ( a,	 Lt, a" G ^ k VE .a L , ^^ }

Thus it is a simple matter to evaluate the total opening and closing for any

realization of the random field.

Of course one can also imagine measuring the velocity at a few points

and constructing the L -strain rate invariants from the observed velocities.

In this way one can test for a relationship between the L -strain rate

invariants calculated from a few sampled velocities and the total opening

and total closing found by tallying up the activity at every crack.
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In an attempt to carry out this program, parameter values were taken

to be	 D$km 1, A -"= 0 5 a` Z = 1 (arbitrary units). An L = 100 km
triangle was used to simulate the sampling procedure used during AIDdEX.

A large number of random fields were generated.

Each realization of the random field is defined by the sequences of

random numbers Icy 9^ , uL , VE -rE for a : 1, ;	 Here the PE are drawn
independently from the uniform distribution on ( 6, 2 T)	 . The values for

i'L form a Poisson process with parameter ^ . This is achieved by drawing

the increments.4 = 'Qt j - Tj	 independently from the exponential distribution

with density Ae'^p 	. The process is terminated as soon as I 	 exceeds

100 kilometers since none of the sub -sequent'Aines would intersect the 100

kilometer region. Finally the Ut and VE were drawn independently from

the normal distribution with zero mean and unit variance.

For each field the velocity was measured at the three specified points

and the L--strain rate invariank s JEJ and B were evaluated.. Also for

each field the total opening and closing were evaluated using eq. 7.

These were normalized by !Fl and displayed versus b in figure 2y. For each
realization of this random field two points are plotted, 8, AIM)	 and

6, C /)FI)	 . From the plot it is clear that there are not unique values

of All 	 and C/EI	 corresponding to a given 6 . Instead there is a
distribution of values for AljEj (and for YF) ), and this distribution
changes with 0 . The distribution; sketched in figure 25; are broad in the

sense that probable departures from the mean are at least as large as the mean.

The interpretation of this exercise is that the total opening and closing

are only weakly determined by the L -strain rate invariants based on three

measurements 100 kilometers apart. Had the relationship been a strong one

the distributions in figure 25 would have been narrower, or to say it differ-

ently, the points in figure 2y would have clustered more closely around

curves like those in figure /$ . It may still be useful to imagine these

smooth curves but only with the recognition that the actual opening and

closing scatter widely about the imagined curve:

_ - at c ( (8)	 + random error

C 
	 r 19)	

+ random error

where the random terms and the 6- dependent terms make roughly equal contri-

butions to the total opening and closing.
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Some of the scatter in these figures arises from having used only

three points to estimate the deformation invariants. With more than three

points, the errors in the invariants could be reduced, somewhat as shown

in figure 23. But even if the invariants are determined without error,

scatter will remain in figures 24 and 25. This is because many different

fields of motion with different total opening and closing could have exactly

the same large scale average deformation.

The total opening and closing are an essential part of the theory of

the ice thickness distribution. The above results suggest that it may not

be satisfactory to represent the total, opening and closing as functions

of the large scale average velocity derivatives. When many velocity measure-

ments are available in a region, it is possible to estimate more of the

spatial structure than simply the average velocity derivative. An attempt

to estimate the variability of velocity within the region may help to	
I

reduce the scatter which is anticipated on the basis of figure 24. Or	 i
f

perhaps it will be enough to assume that the variability is constant in 	 r

time. One might then drive the thickness distribution calculations with

opening and closing time series which have the right statistical properties

even if they may have large errors on a day to day basis. The statistical

properties can be inferred from figure 24. Of course this figure is the

consequence of a particular conceptual model motivated by a limited data

set--the SEASAT SAR data from early October 1978. More data need to be

collected and studied before these ideas can be extended to other times and

places with confidence.

5.4.7 The relationship between kinematics and stress

Kinematic data can be used for studying the relationship between

stress and strain for sea ice. Suppose for instance that the state of stress

tensor Cr suitably averaged over some region, is related to kinematic quan-

tities Band the ice geometry s by some expression of the form

G = F(E,S) -

Although a- cannot be measured directly, its divergence V- T can be inferred

indirectly from the observed momentum balance when all the other terms in

that balance are known. if a particular function F is hypothesized, it
i.

can be tested by evaluating both sides of the equation tx T = 7• F(e, $) 	!',

the left hand side as a residual from the momentum balance and the right

hand side in terms of observed kinematic and ice geometry quantities. This 	 ^I
r'
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was one of the objectives of AIDJX (Maykut et al., 1972). In practice
the test is difficult to make since neither D •1' nor V-F	 can be deter-

mened very accurately from observations. See Rothrock et al., 1980.

Under special circumstances, meaningful tests may be possible, however.

When the ice deformation is strongly divergent, ice floes tend to move apart.

With no floe-to-floe contacts there can be no 7-0' forces. The left hand

side should differ from zero only by measurement error. These errors are

probably small enough to permit a useful test.

Another special situation of interest is when the ice is being forced

up against the coasts by the wind. As the ice moves toward the coast it

converges, becomes stronger, and eventually becomes strong enough to resist

further deformation. If the on shore winds persist, a zone of motionless

ice can widen to several hundred kilometers (Pritchard, 1977). In this situa-
tion, intuition suggests that the 7•T vector should point off shore and

should increase in time until it balances the on shore wind stress. With

simultaneous ice trajectories at 100, 200, 300 and 400 km from the coast,

it should be possible to observe the amount of convergence required to pro-

duce the required resistance to the wind.

At greater distances from the coasts, there is evidence that the ice

stresses embodied in d' 4T	 are usually small. Little success is anticipated

in trying to observe them. Any stress-strain law which provides adequate

resistance to deformation near the shore is probably adequate for full basin

dynamic modeling. The observations may never be adequate to discriminate

very selectively between candidate stress-strain laws.

5.5 Discussion

I have tried in this paper to bring together some of what is known

about the motion of sea ice. The emphasis has been on the departures of

the true motion from the long term mean circulation. This is a compari-

tively new topic, the investigation of which has only recently been made

possible mainly by the developments of satellite positioning techniques.

Perhaps because of its newness, the field lacks a clear agenda of questions

to be answered. Instead we are still trying to characterize the motion, to

determine the magnitude of the motion on different scales and to identify

motions which have some intrinsic interest or are related to other phenomena

of interest.

The time and space correlations have been used extensively here for

several reasons. First they give a compact description of the motion. In

f

a
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principle, the correlation function involves one time and two space variables,

but in practice a great deal of information can be extracted from three

functions, each of a single variable: 1^V t. /, 13 jr) and ^^Cr) . Second, these
three functions are accessible to observation. Third, properties of many

kinematic quantities can be deduced from these functions, as illustrated

in the text. Fourth, these functions form the rigorous basis for answering

questions related to interpolation, prediction, and experiment design.

Many of the results presented here are based on sample autocorrelation

functions deduced from limited data. The data available for estimating

correlations at small space lags (less than 100 km) are meagre indeed.

More work along the lines of Hall and Hothrock would help to resolve this

part of the correlation func tion. The behavior of the correlation functions

13
4 (r) &.,A QL(r) in the limit of small 

r is an important property of
the motion related to the granular nature of the ice pack.

As mentioned in the text care must be exercised in choosing correlation

functions or contradictions (negative variances) can occur. In fact this

has happened in some of the calculations done using the correlations tabulated

in fable vY with linear interpolation to intermediate distances. This means

that the piecewise linear function defined in the table is not positive

definite. A useful objective would be to rind a positive definite analytical

form which approximates the observed correlations including the behavior

as I- approaches zero.

The Poisson-Gauss model, presented as a way to study the relationships

between the local opening and closing and the large scale deformation, has

suggested that the relationship may be weak. Observations against which

to test this suggestion are sorely needed.

Table VI. Spatial correlation functions for sea ice velocity.

Distance	 (km)
1311

01

0 1.00 1.00

100 .98 .95

200 .91 •84

400 .68 .51

800 .37 .o6

1200 .19 --.09

1600 .10 --.10

2000 .01 —.06

2400 .00 .00
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Figure 2. The general circulation of ice in the Arctic Ocean (from Doronin
and Kheisi.n). ^Jl

Figure 3. Buoy trajectories in 1979.	 The numbers indicate the months in which
each buoy was deployed and failed. 	 Trajectories ending in an arrow l
continued to operate in 1980.	 Plotted points correspond to the beginning 41

of each month.
`'^

Figure 4. Trajectories for drifting buoys during a) 1980, and b) 1981.
r

Figure 5. (a) Latitude of ice station Caribou, versus time, 2 Sept-16 Nov 1975•
NavSat date, sampling interval, 2.5 days.
(b) Latitude of ice station Big Bear, versus time,. 2-5 Sept-1975•
NavSat data, sampling interval, 4 hours.
(c) Arbitrary y-coordinate of Big Bear, versus time, 2-3 Sept 1975• J
Acoustic tracking data, sampling interval 15 minutes.
(d) Arbitrary x-coordinate of Big Beer, versus time, 2 Sept 1975.
Acoustic tracking data, sampling interval one minute.

Only in (d) is the measurement error visible (±3 m).

Figure 6. (a) The variance of the increments X(++T.) - XW 	 and	 for i
ice station Caribou 1975-76. PC	 and	 are arbitrary Cartesian
coordinates.
(b) As in (a) using precise acoustic tracking at ice station Big Bear,
an 8-day period, late summer 1976.

Figure 7. Velocity histograms (from Thorndike and Colony, 1980).
t

gurFigure 8. The power spectral density of the velocity of ice station Caribou 1975-76.
The units of spectral density are velocity 	 frequency, cm	 see- '.	 The
total, velocity variance for these data is 145 cm z see-9.

p	 'i

Figure 9. The power spectral densities of the geostrophic wind and the ice velocity, k
from drifting buoy 1901 during 1979. 	 The units of spectral density are
cm z sec- 1 .	 The variance mf the wind is 53 m z sec'- 2 .	 The variance of
the ice is 59 cm ?sec-2.

Figure 10.. The power spectral density of the velocity of ice station Big Bear
during summer 1975. The variance is 173 cm z sec-2. Units of spectral
density are ml'- s-t . (Linear frequency scale, from Colony and Thorndike, 1980).

Figure 11. The complex time correlation function for ice station Caribou, 1975-76.
The velocity variance is 145 cm 2 see-2.

Figure 12. The time correlation function for the u and W components of velocity
from 28 grid points in the central part of the Arctic Basin, from drifting
buoy data collected during 1979. The cross correlation between LL and
v is negligible. Variance of k = 23 cm 2 see-2 ; variance of v = 22 cm z sec-z.

Figure 13. (a) The real and imaginary parts of the weight oc to be used for inter-
polating to the mid point of a time interval of duration x . The ratio
of the measurement error to the standard deviation of velocity is o-4-
(b) The variance of the interpolation error expressed as a fraction of
the variance of the ice velocity. Data from figure 11 were used here.
Logarithmic time scale.
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Figure 14. (a) The weight at for prediction over time -r.

	

(b) The prediction error variance versus prediction tame. See Figure 13	 !'^
also.

Figure 15. A schematic representation of the X and	 components of velocity at
the points (o, a ) , ( r, o } , ( c,r). Isotropy implies Eme = 1^^,

*
6 a z EcLe	 , and Fee = F J f , but does not imply equality between
G R C	 -and me	 Or E- LP and E r a n

Figure 16. Observed correlations between velocity components as functions of distance.

Figure 17. The variance of the interpolation error as a function of the grid spacing,

L 1> and the measurement error, c- 2 .

Figure 18. The strain rate invariant ® indicates whether the motion is dominated
by divergence, shear, or convergence. The total opening and closing
are sometimes treated as functions of 0.

Figure 19. The variance of velocity increments versus interval length, from SeaSat
synthetic aperture radar data, 3--5 October 1978, Beaufort Sea.

Figure 20. Histograms of the strain rate invariant d . Solid line is for drifting
buoy data from 1979, grid spacing about 500 km (Colony and Thorndike, 19$1).
Dots are for AIDJEX manned came data, spacing 100 km (Nye, 1976) . ,Vin wiA& . 2e

Figure 21. Strain ellipses for the AIDJEX buoy array, 800 km diameter (a); and for
the AIDJEX manned camp array, 200 km diameter (b)• The ellipses show
the deformation of a circular region on 1 May 1975, to the date indicated.
The principal axes of the ellipse are the principal strains. The angle
from the horizontal broken line to the major axis is the principal
direction. The rigid body rotation is indicated by the are from q to
Data from the Beaufort Sea, roughly a 500 km radius about 740N, 145°W.
(From Thorndike and Colony, 1980.)

Figure 22. Strain ellipses from 1979 (solid line) and 1980 (broken line) drifting
buoy data, showing the year long deformation of an initial circle
(drawn over Greenland).

Figure 23. (a) The standard deviations of the large scale average velocity deriva-
tives, as a function of radius of the averaging region. ( q. I = ^d e^vwR sac.L
(b) The ratio of the variance of the error in estimating average
velocity derivatives to the variance in the derivatives -1namrtIves.,
as a function of the number of measurements. The dependence on the
radius of the averaging region is indicated by the shaded width of
the curves.

These curves are sensitive to the assumed correlation functions,
as discussed in the text.

Figure 24. The total opening and closing versus 6 . 10 3 realizations of the random
field with Poisson parameter Ott,, = 8. The velocity discontinuities
were drawn independently from the unit normal distribution.

Figure 25. Distributions of the total opening for several ranges of	 Data taken
from figure 24.
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