https://ntrs.nasa.gov/search.jsp?R=19840017126 2020-03-20T21:56:29+00:00Z

€ **≵**

. . .

くまたいない

يرتبه

ż

1

٩

NASA Technical Memorandum NASA TM-82580	Lass states Lass
	ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-11) LAUNCH
	By D. L. Johnson, C. K. Hill, and G. W. Batts Systems Dynamics Laboratory
	May 1984
(NASA-TM-82580) A Space Shuttle (STS HC A04/AF A01	INOSPHERIC ENVIRONMENT FOR N84-25194 -11) LAUNCH (NASA) 51 p CSCL 13E Unclas G3/45 13460

NASA National Agreements of

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)

REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
NASA TM- 82580		
TITLE AND SUBTITLE		5. REPORT DATE
Atmospheric Environment fo	or Space Shuttle (STS-11) Launch	May 1984
		6. PERFORMING ORGANIZATION CODE
AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT
D. L. Johnson, C. K. Hill,	. and G. W. Batts*	
PERFORMING ORGANIZATION NAME AN	ND ADDRESS	10. WORK UNIT NO.
George C. Marshall Space I	Flight Center	11. CONTRACT OR GRANT NO.
Marshall Space Flight Cente	er, Aladama 33812	12 TYPE OF REPORT & PERIOD COVER
2 SPONSORING AGENCY NAME AND ADD	9F & S	
National Aeronautics and S	pace Administration	Technical Memorandum
Washington, D.C. 20546		14. SPONSORING AGENCY CODE
5. SUPPLEMENTARY NOTES	mine Tehenotowy Coienes and Pro-	rincoming
rreparea by Systems Dynal	mics Laboratory, science and Eng	Smeeting
*Computer Sciences Corpor	ation, Huntsville, Alabama	
6 ABSTRACT		<u> </u>
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic pa	winds aloft are included. The sea al wind profiles is given in this r arameters representative of surface	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet the SRB descent/impact occ and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36	the on rebruary 5, 1964, at a t pressure, temperature, moisture winds aloft are included. The se al wind profiles is given in this r arameters representative of surfac- ean area. Final meteorological ta ters versus altitude, for STS-11 constructed. The STS-11 ascent larshall Space Flight Center in re 68 with Johnson Space Center.	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet the SRB descent/impact occ and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36	the on rebruary 5, 1964, at pressure, temperature, moisture winds aloft are included. The se al wind profiles is given in this r arameters representative of surface ean area. Final meteorological ta ters versus altitude, for STS-11 constructed. The STS-11 ascent larshall Space Flight Center in re 68 with Johnson Space Center. 18. DISTRIBUTION S	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36	t pressure, temperature, moisture winds aloft are included. The se al wind profiles is given in this r arameters representative of surface ean area. Final meteorological ta ters versus altitude, for STS-11 constructed. The STS-11 ascent larshall Space Flight Center in re 68 with Johnson Space Center. 18. DISTRIBUTION S c Summary	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36	t pressure, temperature, moisture winds aloft are included. The set al wind profiles is given in this r arameters representative of surface ean area. Final meteorological ta ters versus altitude, for STS-11 constructed. The STS-11 ascent larshall Space Flight Center in re 58 with Johnson Space Center. 16. DISTRIBUTION S c Summary	Active of the second second second second second second second and second and second s
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36 7. KEY WORDS STS-11 Launch Atmospheric Pressure Temperature	e Summary	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36 7. KEY WORDS STS-11 Launch Atmospheric Pressure Temperature Relative Humidity	e Summary	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36 7. KEY WORDS STS-11 Launch Atmospheric Pressure Temperature Relative Humidity Winds, Winds Aloft, Clouds SRB Descent Atmospheric	e Summary	e, ground winds, visual equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
Florida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36 7. KEY WORDS STS-11 Launch Atmospheric Pressure Temperature Relative Humidity Winds, Winds Aloft, Clouds SRB Descent Atmospheric 5	e Summary	Active of the second second second second second second second and second secon
 7. KEY WORDS 7. KEY WORDS 7. KEY WORDS 7. STS-11 Launch Atmospheric Pressure 7. Temperature 7. Relative Humidity 8. SRB Descent Atmospheric S 9. SECURITY CLASSIF. (of this repat) 	Interesting of rebruary 5, 1964, at the pressure, temperature, moisture, winds aloft are included. The set of winds aloft are included. The set of wind profiles is given in this representative of surface ean area. Final meteorological takes versus altitude, for STS-11 econstructed. The STS-11 ascent larshall Space Flight Center in representation of the set of the	Active of prelaunch equence of prelaunch eport. Also presented are ce and aloft conditions in pes, which consist of wind vehicle ascent and SRB meteorological data tape sponse to Shuttle task
 Plorida. Values of ambient observations (cloud), and Jimsphere measured vertica wind and thermodynamic paramet descent/impact have been of has been constructed by M agreement No. 561-81-22-36 7. KEY WORDS STS-11 Launch Atmospheric Pressure Temperature Relative Humidity Winds, Winds Aloft, Clouds SRB Descent Atmospheric 5 9. SECURITY CLASSIF. (of this repat) Unclassified 	Interview of rebruary 5, 1564, at the pressure, temperature, moisture winds aloft are included. The set of winds aloft are included. The set of wind profiles is given in this representative of surface ean area. Final meteorological taters versus altitude, for STS-11 accent larshall Space Flight Center in reformed with Johnson Space Center. Image: set of surface early set of summary set of surface early set of summary set of surface early set of summary set of surface early set of surface early set of summary set of surface early set of surface ear	TATEMENT La Johnson La Johnson TATEMENT La Johnson La Johnson

E 18

ي

. ال

4-1-4

ب ا

.

ţ

~ ちょうちょう こうろうちゃ

ACKNOWLEDGMENTS

. deri

Pj

A have a strate of the

Sta Longe 18

The authors wish to thank the personnel at NASA Kennedy Space Center, along with those at the Cape Canaveral Air Force Station and their Pan American World Airways contractors, for the acquisition and distribution of all launch related atmospheric data received at MSFC.

Thanks are due to James Arnold and David Keller of the Atmospheric Effects Branch, MSFC, for their help in extracting atmospheric data and satellite cloud photographs that are used in this report. Also, special thanks to Bill Jeffries, Bobby Vayda, and Joe Willett of Computer Sciences Corporation for their assistance in processing all the upper air data used in producing the STS-11 final meteorological data tapes. Finally, appreciation is expressed to Rhonda Gregory and Sherry Anderson of Boeing Computer Support Services for the GRA model and ESDB computer support, respectively.

TABLE OF CONTENTS

1

1

4

t

3

		Page
Ι.	INTRODUCTION	1
п.	SOURCES OF DATA	1
ш.	GENERAL SYNOPTIC SITUATION AT LAUNCH TIME	1
IV.	SURFACE OBSERVATIONS AT LAUNCH TIME	2
v.	UPPER AIR MEASUREMENTS DURING LAUNCH	2
	 A. Wind Speed B. Wind Direction C. Prelaunch/Launch Wind Profiles D. Thermodynamic Data E. SRB Upper Air and Surface Measurements 	3 3 3 3 4
VI.	ATMOSPHERIC SUMMARY CONDITIONS FOR STS LAUNCHES	4
REFE	RENCES	45

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Surface synoptic chart 1 hr before launch of STS-11	34
2.	500 mb map 1 hr prior to launch of STS-1.	35
3.	GOES-5 infrared imagery of cloud cover at launch of STS-11 (1300 UT, February 3, 1984). 500-mb contours and wind barbs are also included for 1200 UT	36
4.	Enlarged view of GOES-5 visible imagery of cloud cover at launch of STS-11 (1300 UT, February 3, 1984). Surface parameters and wind barbs for 1300 UT are also included	37
5.	Scalar wind speed and direction at launch time of STS-11	38
6.	STS-11 prelaunch/launch Jimsphere-measured wind speeds (FPS)	39
7.	STS-11 prelaunch/launch Jimsphere-measured wind directions (degrees)	40
8.	STS-11 prelaunch/launch Jimsphere-measured in-plane component winds (FPS). Flight azimuth - 89 degrees	41
9.	STS-11 prelaunch/launch Jimsphere-measured out-of-plane component winds (FPS). Flight azimuth ~ 89 degrees	42
10.	STS-11 temperature profiles versus altitude for launch (left) and SRB descent (right)	43
11.	STS-11 scalar wind speed and direction for SRB descent	44

;

D

LIST OF TABLES

ł

-

1

ł

ŝ

Ą

Table	Title	Page
1.	Systems Used to Measure Upper Air Wind Data for STS-11 Ascent	5
2.	Surface Observations at STS-11 Launch Time	6
3.	STS-11 Pre-Launch Through Launch KSC Pad 39A Meteorological Measurements	7
4.	STS-11 Final Ascent Meteorological Data Tape Listing	9
5.	STS-11 Final SRB Descent Meteorological Data Tape	25
6.	STS-11 SRB Descent-Impact Surface Ship Observations	32
7.	Selected Atmospheric Observations for the Flight Tests of the Space Shuttle Vehicles	33

TECHNICAL MEMORANDUM

ATMOSPHERIC ENVIRONMENT FOR SPACE SHUTTLE (STS-11) LAUNCH

I. INTRODUCTION

This report presents an evaluation of the atmospheric environmental data taken during the launch of the Space Shuttle/STS-11 vehicle. This Space Shuttle vehicle was launched from Pad 39A at Kennedy Space Center (KSC), Florida, on a bearing of 89 deg east of north at 1300 UT (0800 EST) on February 3, 1984.

This report presents a summary of the atmospheric environment at launch time (L+0) of the STS-11, together with the sequence of prelaunch Jimsphere measured winds aloft profiles from L-14 hr through liftoff. The general weather situation for the launch and flight area is described, and surface and upper level wind/thermo-dynamic observations near launch time are given. Surface and upper level wind/ thermodynamic parameter estimates are also presented for the SRC descent/impact analyses.

Previous MSFC-related launch vehicle atmospheric environmental conditions have been published as Appendix A of individual MSFC Saturn Flight Evaluation Working Group reports [1]. Office memorandums have been issued for previous flights giving launch pad wind information. A report has also been published [2] which summarizes most launch atmospheric conditions observed for the past 155 MSFC/ABMA-related vehicle launches through SA-208 (Skylab 4). Reports summarizing ASTP and STS-1 through STS-9 launch conditions are presented in References 3 through 12, respectively.

II. SOURCES OF DATA

Atmospheric observational data used in this report were taken from synoptic maps made by the National Weather Service, plus all available surface observations and measurements from around the launch area. Upper air observations were taken from balloon-released instruments sent aloft from Cape Canaveral Air Force Station (CCAFS). High-altitude winds and thermodynamic data were measured by the Super-Loki rocketsondes launched from the CCAFS. Table 1 presents a listing of systems used to obtain the upper level wind profiles used in compiling the final ascent meteorological data tape. The L-0 rawinsonde and Super-Loki rocket data were used in the upper level atmospheric regions for the construction of the final SRB impact/ descent meteorological data tape. Data cutoff altitudes are also given in Table 1.

III. GENERAL SYNOPTIC SITUATION AT LAUNCH TIME

A cold front, extending out of a low pressure area over eastern Lake Superior and passing through central Tennessee, eastern Louisiana and into the Gulf of Mexico, was situated west of KSC prior to STS-11 launch. The influence of high pressure over eastern Florida was starting to weaken as this front approached. Moderate temperatures and light surface wind conditions prevailed as launchtime grew closer. Figure 1 presents the surface map conditions 1 hr before STS-11 launch. Figure 2 presents the winds aloft conditions at the 500 mb pressure level 1 hr before launch. Moderate westerly winds prevailed aloft over KSC at this pressure level.

「「「「「」」」」 「「「」」」」

2

From 1735 UT on February 2, 1984, through launch, an area of instability that produced rainshowers extended just off and parallel to the eastern coast line of Florida over the Atlantic Ocean. Between 0049 and 0422 UT on February 3, 1984, rainshower activity occurred at KSC and was reported at Shuttle runway site X68. This left most inland KSC areas slightly cooler and with greater atmospheric moisture than most coastal sites. This was evidenced throughout the later countdown period from observations taken at KSC's AF Wind Tower system sites.

At launch time, the ground fog was starting to clear as visibility improved to 4 miles. The fog was relatively shallow as rooftop visibility was 10 miles. At launch time cloudiness amounting to 3/10 of the total sky cover was mainly located to the east and south of Pad 39A as shown in Figure 3. Figure 3 presents the GOES-5 infrared southeast U.S. cloud picture taken at launch time (1300 UT). The scattered cloud conditions at L-0 consisted of 2/10 cumulus at 2500 ft, 1/10 stratocumulus at 4500 ft, and <1/10 cirrus at 25,000 ft. Figure 4 shows an up-close visible shot of the central Florida peninsula as recorded by GOES-5, taken at 1300 UT.

IV. SURFACE OBSERVATIONS AT LAUNCH TIME

Surface observations at launch time for selected KSC locations are given in Table 2. Included are pad 39A, shuttle runway, and CCAFS balloon release station observations. Neither precipitation nor lightning was observed at launch time.

Table 3 presents PAD 39A wind data along with other standard hourly meteorological measurements and sky observations for the 6-hr period prior to launch of STS-11. Values for wind speed and direction are given for the 18 m (60 ft) pad light pole level. Wind values from the 295 ft level off AF Wind Tower No. 313 were substituted for the Pad 275 ft FSS level winds, due to the FSS wind instrumentation not operating.

V. UPPER AIR MEASUREMENTS DURING LAUNCH

1

2

The FPS-16 Jimsphere (1320 UT), MSS Rawinsonde (1305 UT), Super-Loki Rocketsonde (1500 UT), and Super-Loki Robin (1734 UT) systems were used to measure the upper level wind and thermodynamic parameters for STS-11 launch. At altitudes above the rocket-measured data, the Global Reference Atmosphere (GRA) [13] parameters for February KSC conditions were used. A tabulation of the STS-11 final meteorological data for ascent is presented in Table 4 which lists the wind and thermodynamic parameters versus altitude. A brief summary of parameters is given in the following paragraphs.

A. Wind Speed

At launch time, wind speeds were calm (0 ft/sec) at 60 ft and increased to a maximum of 143 ft/sec (85 kn) blowing from 288 deg. This maximum occurred at an altitude of 38,200 ft (11,643 m). The winds decreased above this level as shown in Figure 5. The overall maximum measured speed was 280 ft/sec (166 kn) at 234,000 ft (71,323 m) altitude.

B. Wind Direction

At launch time, the 60-ft wind direction was calm. Light low level winds were from the southeast and shifted through the south to a westerly component above 12,000 ft (3658 m). Winds remained in the winter westerly regime throughout most of the upper troposphere, the stratosphere and lower mesosphere to 250,000 ft (76,200 m). Figure 5 shows the complete wind direction versus altitude profile. As shown in Figure 5, wind direction became quite variable at altitudes with low wind speeds.

đ

C. Prelaunch/Launch Wind Profiles

Prelaunch/launch wind profiles presented in Figures 6 through 9 were measured by the Jimsphere FPS-16 system. Data are shown for the L-13 hr, L-7.25 hr, L-3.5, and L+0 measurement periods.

The wind speed and direction profiles for the 13-hr period prior to and including L+0 are shown in Figures 6 and 7. The in-plane and out-of-plane profiles are given on Figures 8 and 9. Significant differences between the February mean values and the measured values in the 30,000 to 50,000 ft layer were found only in the L-3.5 hr data set. This is seen on Figure 9 at approximately 36,000 ft altitude where the peak left crosswind profile value increased from 25 ft per second at L-7.25 hr to 85 ft per second at L-3.5 hr due to a shift to a more northerly wind direction. However, at L-0 the left crosswind had decreased to approximately 45 ft per second. Although the value of 85 ft per second nearly equaled the February 95 percent value, there were no calculated vehicle load exceedances produced by the wind data presented in Figures 6 through 9. The prelaunch weather conditions are discussed in more detail in Section III.

D. Thermodynamic Data

The thermodynamic data taken at STS-11 launch time, consisting of atmospheric temperature, dew-point temperature, pressure, and density have been compiled as the STS-11 ascent meteorological data and are presented in Table 4. The associated thermodynamic data taken in support of the SRB descent have also been assembled as the STS-11 SRB descent/impact meteorological data and are presented in Table 5. The vertical structure of temperature for the STS-11 ascent and for the SRB descent is shown graphically versus altitude in Figure 10.

The atmospheric thermodynamic parameters of temperature, pressure, and density, measured during STS-11 launch below 130,000 ft (39,624 m) were all within 5 percent of their respective PRA-63 [14] annual values. All these parameters stayed within 18 percent of their respective PRA-63 values, at all levels of measurement.

3

1

E. SRB Upper Air and Surface Measurements

As has been mentioned in earlier paragraphs, an SRB descent meteorological data tape has also been constructed which consists of data taken from the Omegasonde-Rawinsonde system (1355 UT) aboard the USNS Redstone, which was stationed off the coast in the Atlantic Ocean. The CCAFS measured Super-Loki rocketsonde data and the GRA model data were used at altitude levels above the measured Omegasonde data. The tabular values for the SRB descent meteorological tape are presented in Table 5, with wind speed and direction profiles presented in Figure 11. Figure 10 gives the vertical temperature profile.

The surface-ship meteorological and oceanographic observations taken close to STS-11 SRB impact are presented in Table 6.

÷.,

44-

:

٤

VI. ATMOSPHERIC SUMMARY CONDITIONS FOR STS LAUNCHES

Given in Table 7 are selected atmospheric L+0 launch conditions for all the Space Shuttle launches.

SYSTEMS USED TO MEASURE UPPER AIR WIND DATA FOR STS-11 ASCENT* TABLE 1.

.

-

-

₽ 1

•

- ----

	ale: reur 1984	ruary 3,		Portion of	Data Used	
	Release	Time	Start		Э	nđ
ta (h, I	Fime (UT) r:min)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)	Altitude m (ft)	Time After L+0 (min)
sre 1	3:20	20	6 (21)	20	17,374 (57,000)	67
le1	3: 05	ß	17,678 (58,000)	23	29,870 (98,000)	35
cketsonde 1	5:00	120	61,265 (201,000)	120	30,175 (99,000)	137
cketsonde 1'	7:34	274	80,772 (265,000)	274	61,570 (202,000)	275
awinsonde* 1.	3:55	55	9 (28)	55	29,870 (98,000)	85

*The Omegasonde-Rawinsonde was released from the USNS Redstone to measure the upper atmosphere for SRB descent/impact analyses.

1

ł

1 4

> ، .

ł

1.1

:

• • • •

1

•

.

TABLE 2. SURFACE OBSERVATIONS AT STS-11 LAUNCH TIME

1

•

· · · · · ·

÷

.

P. # 1 . . .

··· 4

								Sky Cover		Wi	nd
Location ⁸	Time After L+0 (min)	Pressure (MSL) N/cm ² (psia)	Temperature °K (°F)	Dew Point °K (°F)	Relative Humidity (\$)	Visibility km (miles)	Cloud ** Amount	Cloud Type	Height of Base Meters (ft)	Speed ft/sec (kt)	Direction (deg)
NASA Space Shuttle Runway X68 ^e Winds Measured at 10.4 m (34 ft)	νο Ι	10.180 (14.765)	287.0 (57.0)	285.4 (54.0)	6	9	0 1 5	Cumulus Strato- Cumulus Cirrus	762 (2,500) 1,372 (4,500) 7,320 (25,000)	3.4 (2.0)	010
CCAFS ^c Surface Measurements	0	10.180 (14.765)	284.6 (53.0)	284.3 (52.0)	95	11 (7)		Strato- Cumulus Cirrus	823 (2,700) 7,620 (25,000)	0.0	0
Pad 39A ^d Lightpole SE 18.3 m (60.0 ft)	0	10.173* (14.755)*	287.6* (58.0)	287.0* (57.0)	*16	J	I	ł	t	(0.0)	90 Q
Pad 39A FSS (Top-SE) 83.8 m (275 ft)	0	J	1	1	1	1	I	ł	I	₽/N 8/N	N/N
*Pad 39A Camera Site	3 barome	tric pressure and	humidity instru	uments a	appeared to	be readin	ig too higi	n. Theref	fore, the F	(SC Shu	ttle

runway station pressure value interpolated to 10.173 N/cm² at 21 ft above MSL was used as the L+0 pad atmospheric pressure measurement. Temperature, dewpoint and relative humidity values selected as being representative of L+0 pad (coastal) conditions were 62°F, 54°F, and 75 percent, respectively. Inland conditions around KSC were considered too cool and moist.

**Three-tenths total sky cover at both X68 and CCAFS.

a. Altitudes of measurements are above natural grade, except where noted.

b. Approximately l min average prior to L+0.

c. Balloon release site.

d. Pad 39A thermodynamic measurements are taken at camera site No. 3, approximately 6.4 m (21 ft) above MSL.

1

1

20.00

`**,**.

f st to hotened to an

1

1

- ----

トラタキ ふ

e. Official STS-11 sky observational site.

N/A - Not Available.

STS-11 PRE-LAUNCH THROUGH LAUNCH KSC PAD 39A METEOROLOGICAL MEASUREMENTS^a TABLE 3.

ì

\$

, . .

: .

.

			Other Remarks			Patches of Ground Fog	Patches of Ground Fog	Patches of Ground Fog	Ground Fog. TCU DSNT E	Ground Fog. TCU DSNT E
ء ا			Vis. (mi)	10	10	10	~	-	*	4 *
	Condition	Total	sky Cover	3/16	3/10	0/10	0/10	NA	2/10	3/10
	Sky		Clouds	Scattered at 7,500 ft	Scattered at 4,500 ft	Clear Skys	Clear Skys	Scattered at 9,000 ft	Scattered at 2,500 ft Scattered at 4,500 ft Scattered at 25,000 ft	2/10 CU at 2,500 ft 1/10 SC at 4,500 ft 0/10 CI at 25,000 ft
	lovo	E)e	WDο	120	100	130	120	100	0	0
	5.01 1	'S S	WS Kt	2	00	œ	4	7	0	0
	lav	q	wD∘	102	116	125	135	120	0	I
ements	9751 I O	(SE)	WS Kt	12	12	œ	Ŋ	ę	0	1
Measur		0	КН (8)	91	93	63	95	96	63	75
ospheric		Dew	Point (°F)	58	26	56	58	59	57	54
ourly Atm			Temp. (°F)	61	56	58	28	60	59	62
4i			3 February 1984 Time UT	0200	0800	0060	1000	1100	1200	L+0 ^f 1300

a. Hourly observations obtained verbally from CCAFS.

b. Sky observations taken at the Shuttle runway site X68.

- Note: Relative humidity measurements very erratic and off scale throughout the countdown period. Table values given here through 1200 UT are toc high. . :
- Pad 39A 275 ft FSS wind instrumentation was taken down prior to L-6 hr, due to a range safety problem. The values presented in these columns are 5-min wind averages obtained from the 295 ft level of the AF Tower No. 313; located inland 3 miles west of Pad 39A. ų.
- e. i0 min mean about the hour from pad 39A instrumentation.
- L+0 PAD Wind and thermodynamic parameters obtained from HOSC strip charts. L+0 thermodynamic parameters have been adjusted slightly here to approximate the correct liftoff atmospheric conditions. SE Anemometers used at 60 ft level for L+0 ² wind condition (approximately 1 min average prior to L+0). Pad 39A L+0 atmospheric pressure, at 21 ft (MSL), was 10.173 N/cm². Sea level pressure was 10.180 N/cm². ŗ.

ř.

;

- -----

* Rooftop visibility = 10 miles.

TABLE 4. STS-11 FINAL ASCENT METEOROLOGICAL TAPE LISTING

:

.

DEW PJINT (DEG C)	12.2	12.5	0.1				15.1	15.5	16.0	16.4	16.3	16.2	16.2	16.1	16.0	• 1 • 1 • 1				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			14.9	1.1				13.1			12 • 3	iż.ľ	12,0	32.8	11.6		11.2	11.0	10.6						9.6
DENSITY (GRAM/M3)	.1216.04	.1212.04	.1207+04	• 1 2 0 2 + 0 +	• 2 1 9 6 + 0 4	.1156.04	.1161+04	.1176.04	+0+1111.	.1166.04	.1162.04	.1159+04	.1156+04		.1150+04			-0-1-11-					.1120+04	.1117-04	.iii++0+ [· · · · · · · · · · · · · · · · · · ·	+U+0011.	• 1 106 + 0 +	+0+2017•		.1093+04	• 1 090 • 0 •	.1066+04	.1083+04	-1060+0#	• 1 0 7 7 + 0 4	- 10 7 04	• 1071 + 6 4	• 1067+04		•1061+04	• 1058 + 04 • AFE • AF			·1045+04
PAES SURE (MILL IBARS)	•1017+04	.1014-04	•1011•04	1007+04		.9966.03	£0+1£66°	.9596.03	.9861+03	.9826+03	20+1620	• 9756+73	.9722.03	• 9687+03	• 96 53 + 0 3	.9619+03	50+5855+	50+1066+	50+1154-				• 9315+03	.9281+03	•9248+03	• 92 15 + 0 3	.91 42 4 03	.0149+03	50+911A.		50+9106 ·	.6985.03	.8953+03	. 89 20+03			• E B 24 + D 3	.0792+05	.8760+03	• A 7 28 + U 3	.8697+03				
TEMPERATURE (DEG r)	16.7	16.9	17.0	17.2		1.1	11.9.11	16.1	18.2	18.4	16.2	11.9	11.7	17.4	17.2	17.0	10.1		2 - 2 - 2 - 2 - 2	1502		14.9		4.4	14 • 1	8 ° C 1	13.6		1 ° ° 1	1.2.4	12.6	12.4	12.2	12.0	11.9	11.7	11.5	11.3	11.2	11.0	10.8	10.7			10.0
LIND DIGECTION (neg)	LCU	1 2 4	154	150	163	145	159	162	153	159	163	163	158	162	165	0.0	001				59	158	157	161	163	157	162	169	168	771	168	174	169	161	165	271	1 / 1	165	164	1/3		177	101	147	184
HIND SPEED {FT/SEC}	100	101	305	100	600 0	013	310	120	020	025	020	027	520	222	550	032	150					034	<u>537</u>	036	550	5 M C			2 C C	000		028	420 11	0.24	92C	128	024	920		126	026	120			030
ALTITJ0F {FT}	120000	001000	Cusuco	000000		000637	001000	006000	000500	0C3 E00	60110 <u>0</u>	0112J3	OCETOC	001100	001500	001600					002300	0072400	025520	003200	0027 UC	003200	632930	003500			003400	003500	003500	003730	33 730	006506	304003	001 100	004200			034530			006 900.

ORIGINAL PAGE IS OF POOR OUALITY 5

..

Statistics of

ł

A C D A C MAR Y MANY A C D T

e ș

ì

•

4

i

2 ..

																									•	×																			
DEN POINT (DEG C)		9 • 2		ð • 6		8.2		1.9	7.1	6.7	2.2			19 ° 7		•										-11-5	-12.7	-11.9	-13.4	-12.9	-12-3	-11-9	-11.3									-8.2	-8-1	-9.0	-1-9
UENSITY IGRAM/H3)	P0+2601+	•1039+04	• 1030 • 04	•] D26+D4	• 1023+04	.1020+04	.1017.04	.10104	• 1 0 1 1 • D+	.1008+04	+1045+04	.1002+04	50+ C844 *	• 9 95 # +0 3	50+2266 •	CO+ 1484 *	50+4584 •	50,9744 .		10.1014.		20400144	204040	10.001.00		.9560+03	.9531+03	• 9501+03	. 9473+03	• 9446 • U 3	.9418+03	• 9391+03	.9363+03	- 2336+03		204 7824 *					- 2090 + 03	. 9063+03	.9036+03	• 9009+03	.8983+03
PRFSSURE (MIC_TBARS)	• 8509+03	.8478+03 .8447+07	•8385+03	.8354+03	.6324+03	. R 2 9 3 + D 3	•8263+03	- 32 33 - 03	.8203+03	. B 1 73+03	• B 1 42+D3	• 61 13+03	50+5904°	• #0 5 3 + 0 3	• 80 23 + 03		• [964+03	5 D + 65 4 J •		50+1/9/°		50.7418/.		50×19//*		.767.+03	.7647+03	. 7618+03	.7590+03	.7562+03	.7534+03	.7506+03	.7478+03	14 50 + 03					501216/ ·	1251+01	50+5U22 -	×1176+07	.7149+03	.7122+03	•70 <u>95</u> +03
JEMPERATURE 10eg CJ	· · · · · · · · · · · · · · · · · · ·	3°6	0°1	0.6	8.0	8.6	8.4	8.3	8.1	9.0	1.9	6. 7	B• 1	7.7	7.6		<u>.</u>	* *	5 · · ·	2.1				0 u • • •			6•1		5.7	5.4	5.2	4 . 9	4 . 7		7 · · ·			. · ·	n • n r	2 T T	0 • 7 5 • 6			1.7	1 - 5
WIND DIPECTION (PEG)	189	193	196	101	189	186	187	184	195	199	199	192	161	205	197	1 5 T	199	199	195	2.01				916		215	227	230	222	224	726	524	215	221	1 2 2	612		522	212		417 910	612	225	215	21 ŝ
WIND SPEED	0.33	220		134	132	133	035	035	035	034	731	020	131	031	929	150	032	120	030	130	000	920	876			223	220	126	110	610	916	017	61C	016	910	610		018	310	1,0		020	020	120	124
ALTIT465 (FT)	305 JC 20C	301300		205503	005670	002 700	005400	005+300	000 400	006130	006230	0063.00	000400	006500	336533 2	306 7 30	. 006900	006900					00 + 100				00.7 00	008000	001 200	008200	009300	004900	006300	003500		006900	000000	000400	001460		006200	009600	CC 1 600	009900	006600

Ņ

9

...

ORIGINAL PAGE IS OF POOR QUALITY

, ,

•

P.

;

* ***

ł

.

🏜 🖗

۰.

· . ø

																			(DF	S 1(GI	N	AI	L	P	A(GE	5	19	ļ																		
DEN POINT		-8.2	-8.5	-B.9	5.6-	-9-6-	-10.0	-10.4	-10-8		-11.5	-11.8	-12.2	-12.5	-12.8	-13.1	-13.5	-13-8	1.1.) []		-15. Pd		DF·	-11.5~	9.1-		AL. 12-	-22-27-		. 1	1-62-				-24.0	-24.0	-24.0	-24.0	-24.0	-24.2	-24.3	-24.5	-24.6	-24.8	-25.0	1.62-		
DENSITY LEDAN (MI)		. 8927+03	. 6997+03	• 8868+03	. 8840+03	. 6611+03	.6782+03	• 8753 + D3	.8725+03	.8696+03	• 8668•03	.8640+03	• 8611+03	.8583+03	• 8555 • 0 3	.8528+03	• 8500 • 03	. 84 72 +03			50+04E8*		. 8336+03	- 8309+03	.8282+03		• 6226+03	+ 6201+03	• 6175+03		50+1218°	50+960 8 +			200400	. 7969+03	. 7944+03	.7919+03	• 7694+03	• 7870+03	. 7644403	.7618+03	.1793+03	• 7767+03	. 7742+03	• 7717+03	• 7691 +03	• 7666+U3 • 7641+01	C D + T + D 1 4
PRESSURE Juili Trañci		.7042+03	.7015+03	•69 79 +03	• 69 62 + <u>0</u> 3	• 69 36 + D3	.6910+03	• 6 8 8 4 + 0 3	- 68 58 + D 3	• 68 32 + 0 3	• 6 8 0 6 + 0 3	•6790+03	.6754+03	.6729+03	•6703+03	• 66 78+03	.6652+03	• 66 27 + D 3	• • • • • • 2 • 0 3	.6577+03	•6552+03	.4527+03	•6502+03	•6477+03	•64 52+03	• 6 4 2 8 • 0 3	• 6403•03	- 23 79 + 03		50+03 50-02-	• 65 (16 + US	50+2429*			6166+03	.6162+03	.6138+03	.6115+03	•6091+D3	.6068+03	°6044403	•6021+03	.5997+03	.5974+03	.5951+03	• 5928+03	2002+02	• 5882+03	
TEMPERATURE Adfort		1.2	0.1	6.	eð '	•	4 ••	द्र । •	•		0		3	5 • 1	÷.	1				-1-3	**1 •	-1.5	-1-7	H . I -	-2.0	-2.1	- 2 • 2	2011 1011 1011	10 f	1.2-	9.2-					6°E-		5 • 3 -	5* 4 -	2 * *-	6 * 7 -	-5.0	-5.2	* 5 * 3	-5.5	-5-7	5 • 5 • 6		7 • D -
WIND JIZECTION Adres	222	217	221	232	224	22.1	234	232		245	236	233	236	223	209	216	526	254	1.5	252	6 h 2	256	269	267	265	269	216	274	112		682	282		7.81	281	283	283	281	285	286	182	286	286	285	285	283	687	786	
AIND SPEED	219	073	021	020	021	120	226	120	220	023	020	026	610	610	020	/10	610	910	170	020	020	520	226	021	027	020	030	150			960	146			041	2 # 2	0.44	2 HC	040		049	050	051	049	052			046 347	
ALTIJJE Afti	201014	010100	010200	010300	010400								011200				0011500			006110	500×10	01-100		012340	012100	JI 2 5 0 J	014600		0102710			01510	013300	013400	013500	00910	013700	r13e00	013933	014000		01+200	014300	001110	014500	014603		014500	

÷

۰.

Ą

「「日はませいたいち

ŀ

D

2

			1						1																			0	R F	IG P	ЧР Ю	А 0	R	Q	PA U	G	Ŀ Lľ	R T												
	DEN POINT	10E6 C)	-25-	-25.7	9 · 52 · 9			1.02-				C+07_		1.02-							4.6)	0 0 7 -			- 42-	- 20		- 10		- 30.5	- 30 - 7	- 30. 9	-31.1	-31.3	-31.5	-31.7	-31.9	-32.2	-32.4	-32.6	- 32							-33.5	2,45-	-34.2
				50+24C1 •			7497403		7450401						-7310+03	- 7286 +03	- 7263403			710405	717140		1125+03		-7080+03	7056+0	- 7036+03	. 7014+03	. 6992+03	. 6970+03	.6948+03	• 6926+03	.6902+03	.6878+03	.6855+03	.6831+03	. 6908+03	.6784+03	.6761+03			20+0299°			. 6606+03	. 6565+03	• 6564 +03	.6543+03	16523+D3	• 6502 + 03
POLCCHOL			5814401		57 40 40 4		5724-03	.5702+03	• 56 AD+D3	. 5658+03	• 56 36 + D 3	-5614+03	.5592+03	•5570+03	.5548+03	• 5 5 2 6 + 0 3	5504+03	5483+03	-5461+03	· 54 40+03	-5419+03	.5397+03	•5376+03	.5355+03	-53 th+03	-5312+03	.5291+03	-5271+03	•5250+03	•5229+03	• 5208+03	+5188+03	-5167+03	·5147+03	-5126+03	•5106+03	• 50 R 5 + 03	2065+03			4965+03	4966+03		.4975+03	• 49 06 • 0 3	•4886+03	• 4 8 6 6 + D 3	•4847+03		5 (1 + B ∩ B + 1) 2
TENPERATUOF	IDEC CI	5.9-	-6.5	- 6 - 7	- 6 • 9	-1-1	- 7 - 3	-1.5	-1.7	-1.9	-8 • Ĩ	-8.3	-8.5	-8.7	6° 8-	-9.1	-9 • 2	+ • 6 -	-9*6	8 · 6 -	-10.0	-10.2	-10-4	-10.6	-10.8	-11.0	-11.2	-11.5	-11.7	6-11-	-12.1	-12, 3.	-12.4	- 12 - 6						-13.6	-13-7	-13.9	- 1 - 1	-14.3	-14.5	- 2 4 • 7	-15.0	-15.2	-15.4	
WIND DIRECTION	(066)	2.8.3	282	282	279	283	283	282	284	201	282	281	281	282	C 6 2	283	283	278	281	287	278	282	275	276	276	h12	276	112		217	617 617		110		610		274	273	277	283	282	231	281	282	012	281	279		285	•
AIND SPEED	(F1/SEC)	346	046	043	244	045	043	1 10	[]# 3		046	046		045	340		242	940	8770	1 40	052	250	250	056			220							151	052		053	052	015	355	02.3	055	053	052	920	055			053	I
ALTIDE			001510	002510																						662410		017710	017430	006210	01 A COD	01810	316 233	018300	31940 3	018500	019600	018700	C18900	016903	000410	017100					019706	008610	C066IC	

11

...

「「ちょう」」 ちゅうかん ちょうちょう ちょうしょう

a to total a state a to the market of the state of

1

Contract and and

ţ Į

ショー ちょう ショー ちょう ちゅうろう ないない ないない ないない

i

i ŋ

DEN POINT (DEG C) -36+1 -35+9 -30.9 -15.4 -30.5 -29.2 -39.1 -39-6 -40-2 -35-7 -32-5 -28.6 -27.9 -26.9 -12--t ı. ţ DENSITY (GRAM/M3) • 6481+03 • 6461+03 • 54*7+03 • 6422 • 03 • 6473 • 03 •6186+03 •6166+03 •6146+03 • 6125 • 03 • 6106 • 03 • 6086 • 03 • 6066 • 03 • 6047 • 03 •5970+03 •5951+03 •5932+03 •5913+03 •5874+03 •5855+03 •5835+03 • 6364 • UT • 6345 • 03 • 6326 • 03 • 6326 • 03 • 6307 • 03 6247+03 •5816+03 •5796+03 •5777+03 •5757+03 •5730+03 5969+03 · 6267+03 .6206+03 .5531+03 5894+03 5680+03 •5643+03 •5586+03 •5568+03 .5719+D3 • 5699 + D3 5661+02 5605+01 PRES SURE [MILL TRARS] .4789403 .477643 .477643 . 4731+03 . 572+03 • 4636+03 • 4610+03 • 4579+03 • 4579+03 .#561+03 .#543+03 .#574+03 .44653+03 .4453+03 .4453+03 .4433+03 .4433+03 4397+03 4379+03 -4674+03 • **13 13 + 03** .4289+03 .4271+03 .4254-03 •4219+03 •4201+03 • **4 1 15 + 0 3** •4013+03 •3996+03 . 3913+03 • 4506+03 4361+73 .4307+03 •41A+03 4047+03 • 9 4 8 8 + U 3 +236+03 -4041+03 .4064+03 +167+D3 .4149+Ü3 -4132+D3 4030+03 .3980+03 .3963+03 3946+03 TEMPERATURE LDEG C) -16.1 -16.6 -16.8 -17.1 - 18 - 1 - 18 - 4 -18.8 -19.0 -19.2 -26.5 -21.5 -23.5 -11.4 -19.4 -17.7 -20-3 -21.9 -22.7 -23.7 -24.8 -19.9 -25 -2 --22.4 -25.4 -17.9 -24.0 -24.6 -26.3 -26.5 -25.5 WIND DIGECTION (DEG) 280 280 280 288 283 287 287 285 100 289 5.3 285 288 287 285 284 2884 2884 2883 2883 2883 2.84 288 294 285 295 297 291 160 287 286 286 283 283 ATRO SPEED (FT/SEC) 0250 810 050 050 050 050 U.57 059 070 070 072 072 073 073 074 072 072 072 072 073 073 073 ALTITJOE 1FT) 021200 021300 021300 021805 021900 02200 022100 022200 02:500 021600 021700 022600 022700 022700 022900 00\$220 00\$220 023100 323233 023300 023400 023500 023600 0237<u>0</u>0 023800 023900 001 420 001 420 024200 024300 024670 024420 024920 0022030 024500

TABLE 4. (Continued)

12

ORIGINAL PAGE IS

· white + the

where we have fight a result of

(Continued)
4.
ABLE

111

DEN POINT		-13.5	-43.6		-43.9								-45.2			8 · 5 · -		-46.3	-46.5	-46.7	-40.9	-47.1	1 • K #	-47.5	-ru-	-47.9		n • a + -		-48.7	-48 a 2			9 8 9 -	- 49.6	-50.0	-50.2	-50.3	-50.5	-50.7	- 20.8	-50.6		-20.4	1.12-		-51.2	
DF NS 11Y		•5513+03	.5494+03	• 5 4 7 6 <u>+ 0 3</u>	.5458+03	. 5480+03	50+12#5• 50+12#5=		- 5386+03			• 5 3 1 5 + D 3	.5298+03	.5281+03	5 26 1 + D 5	• 5246+03	.5230+03	.5213+03	.5196+03	.5179+03	• 5162+03	.5145+03	•5128+D3	.5111+03	£0+4502.	.5078+03	5061+ <u>03</u>	.5044+03	+5027+03	• 5011+03	• 4 9 9 H + D 3	.4976+03			4905+03	e 4 6 8 8 4 D 3	.4870+03	• 4 853 + D3		• 4 81 8 + 0 3	• 4 5 0 5 + 0 5	<u>• 4 785 • 0.3</u>		. 4 754 + 03	• 4 735 + U.S		4691+03	.4676+03
PRF 5 5110F	INTI TRADEL		- 3881+73	.3864+03		• 38 32 + 03	• 38 16 • U 3 1 • C • C • C • C • C • C • C • C • C •	• 2010-00	3783403			• 37 20+03	.3704+03	36 44 + 03	1473403	-3657+03	.3641+03	.362 <u>6</u> +03	.3610+03	.3595+03	.3580+03	.3564+03	• 3549+03	.3534+03	.3519+03	.3503+03	• 34 88 + U 3	• 34 75+03	• 34 58 + 0 3	• M#### 0 %	+ 3429+03	50+51\$6°	00.444	50+0225°	3355+03	.3340+03	.3326+03	.3311+03	11+1026.	• 32 P 3 + 0 3	.3268+03	• 72 59 + 03		.1226.03	11994015		.3170+03	
T F MPF DA THOF		-26.99	-27.1	-21.3	-27.6	-27.8		-28 - 2					- 2 G - 1		- 36 1	-30.3	-30.6	-30.8	-31.1	-31.3	-31.6	-31.8	-32.1	-32.3	-32.6	-32.8	-33*0	5 * 5 M L	-33.5	-33.8		2. 47. I				- 35 - 1	-35.3	- 35 . 4	-35.6	- 35 - 8	-36-0			1 36 ° B				-38.0
MIND DIDECTION			284	285	284	784	284		2.94	(8) Fac		2 8 F	280	281		279	279	78J	219	279	278	279	219	278	276.	278	278	278	278	276	278	219		281	196	283	286	288	285	ZHB	286			288	269	K 6 3	202 800	260
01100 0010	LINU SFICU	073	074	0.75	075	J 7 8	510		110					0.02	182	2007	0.66	086	197	0.65	087	3 F. G	085	067	288 2	087	365	0 8 3	064	084	<u>0</u> .84	ar : 0 000	1 S C		7.61	089	h6D	36O	096	660	049		102	101				103
AI 7 7 105	ALIIJUL IFI	125300	025100	025230	025330 ₀	0254JJ	025530	uzseun	025790	208520	CC*<20	0260UUC	026200	024300	02 400	026500	026600	026700	026803	026900	ocołżc	001120	062720	027300	027400	327530	027600	027700	008750	004750	029000	229125 225225	023 200		028530 028530	023600	028700	008920	364 E Z G	000620	01420	029200	029500	029400	02 9 500		029900	029900

ORIGINAL PAGE IS OF POOR QUALITY 1. 20

i3

)1

,

:.

 $\langle \gamma \rangle$

3

		ł		•			1		;			,						1		1	0)R)F	iG F	31 2	۹ <i>۲</i> 00	R	. F	₽₽ JL	AG JA	iε \L	ן דו	9 Y																
DEN POINT	1026 ()		-50.9	-50.6	-20-	-50.2		5.64-	-#0."	1.94-	-49.Ž	-49.2	- 49-3	7 · 67 -	4 - 64 -	5 - 6 - 1 5 - 6 - 1	9.61-	-49.7	- 64-				9.06-	-20-2						922-				-53.6	-53.9	-54.1		S + 45 -				-55+3	- 22 - 2	-55+7		2.06-	9.95-	
DENSITY			• • • • • • • • • • • • • • • • • • • •	• • 614 • 03	• 4599+03	.4583+03 .4568+03		.4538+03	4523+03	.4508+03	• 4 4 9 3 4 0 3	.4479+03	NO+ #9## •	• # # 20 + 0 3	. 4435+03			• 4393+03		- 204 -0.5				• 4 306 + 03	• 4 2 9 2 + U 3									4145+03	.130+03	.4115+03					• 4040+03	• • 022 • 03		.3996+03	50+1965 •		• 3937+03	
PRESSURE		112401	3114+03	- 0 + 0 0 + 0 - 1	• 3087+03	.3073+03 .3059+03	InkAD T	• 3032+03	. 30 19+03	.3006+03	• 2992+03	.2919+03	.2965+03	.2952+03	.2939+03	.2926+03	2912403	•2899+03	-2886+03	.28/3+05	-2660+03	- 2848+US	50+55 B2+	• 2822+03	•2809+03		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			50+9+12*	50+1555 10+1555		2696403	.2684+03	.2671+03	.2659+03	.2647+03	• 5 6 35 + 0 3	• 2 6 7 3 • U 3	50+0197*	• 2598+03	.2586+03	• 25 74 + 03	.2563+03	-2551+03	50+65 GZ+	50+5152*	
TEMPERATURE				-39.1	- 39 - 3	0.92- 0.02-			-40 • č	0*07-	- 4 1 • 2	-41.5		-42.1	-42.3	-42.6	6 * 7 ti -	-43.2	13 ° 17 # 1											0.01	1 • 0 • 1 • •			-47.6	-47,6	0.841	N * 87-				1.64.		10 • 0 • 1		-50.0	Z*nc=		
NCITOJATO UNIN	202	080	164	162	08ċ	299			203	285	287	287	289	286	287	287	982	286	286		283	582		284	5 G G			(8) 101	6.97	282				283	293	283	286	264	286	182	287		285	284	283		283	
CITATION SPEED	11 17 SE C 1		106	107	108	107		109	107	110	112	110	111	111	112		111	116	115		116	117	277		115		118	071	119	121	1 2 1	121	124	121	122	123	123	121	123	120	121	125	122	231	124		120	
ALTITUDE			030200	030300		030500 04060-		01000	006020	031030	03110C	071200	031300	021433	031530	031600	U317U2	031900	031900	U5203U			932300 52255	264250	032506	032600	0000220		026400		001450 306440			033500	033600	033700	03380C	006820	034600		034200	034300	304420	034500	034600	034700	034900	

1

ŝ

'4 1

. .

.

3. 1. 1

į

erste Arste Bres Allevander and

1

÷

in the first of the second sec

*

;

Į,

ŧ

, , , • •

																									Ó Q	F	iG F) 	\ <i>‡</i>)0	R	. Ç	P/ Ql	۹۲ مر	έΕ L]	e Y														
DEV. POINT	(DEG C)	8-96-	-57.0		10-	-21-6						D*A S-	2.46-		- 20-	-29.8	-60.0	-60.2	-60.4	-60.6	-60.8	-61.0	-61.1	-61.3	-61.5	-61.6	-61.8	-62.0	-62.2	-62.3	-62.5	- 6666-	66661	- 6666-	. 2999	- 4666-	-9999.	-6666-	-6666-	- 6666-	* 6666-	- 6666-	- 2999.	- 6666 -	-666-	-6666-	• 6666 -	-6666-	- 6899.	- 6666 -
DENSITY	LGRAM/H3)	5255	- 3906 -		• 5 860 + N 3	• 5 866 • 0 3		100401			+ 5 /82 +03		• • • • • • • •	50+65/5°	50+62/ 5+	.3710+03	• 3696 + 03	. 3682+03	• 3667+03	.3653+03	.3639+03	.3625+03	.3611+03	.3597+03	*3583+03	. 3569+03	• 3555+03	.3541+03	.3528+03	.3514+03	.3500+03	. 3487+03	.3473+03	.3459+03	. 3445+03	• 3432+03	-2918+03	• 3405 +03	• 3391+03	.3378+03	• 3 36 4 + 0 3	+3352+03	•3390+03	.3328+03	• 3316+03	• 3304 + 03	•3293+03	.3281+03	• 3269+03	• 3257 + 03
PRC S SURE	(MILL IBARS)	201022	-2492+03	-2450+03	50+69+7*	5 5 5 7 4 0 3					504587*	50+81 57*	60+/952•	50+9552+	• 23 45 • U3	-2353+03	•2322+D3	•2312+03	•2301+03	.7290+03	.2279+03	.2268+03	.2257+03	.2247+03	•22 36 • 03	.2225+03	.2215+03	•2204•03	-7194-03	.21 P3+03	12173-03	-2162+03	+2152+03	.2142+03	-2132+03	-2121+03	10+1112-	-2101+03	• 20 0 T + 03	.20A1+03	.2071+03	,2061+03	-2051-03	-2041+03	•2031+03	•2021+03	-2012+03	*20U2+03	*1992+D3	.1942+03
TEMPERATURE		150-18	-51.0	-51. 	C • T C •		- 5 3							1.50-	9.0.4	-24.0	-54.2	104.45		-54.9	-55.0	-55.2	-55.4	-55.6	1.55.8 1.5	-55.9	-56.]	-56.3	-56.5	-56.7	-56.9	-51.1	-57.3	-57.4	-57.6	-57.8	-58.0	-58.2	-58.3	-58.5	-58.1	-59.J	-59.2	-59.5	-59.8	-+6.0	-60.3	- 60 . 6		-61.1
WIND DIPECTION	(DEC)		284			205					(8) Isc		6 07		1 82	287	287	182	287	287	288	786	788	287	287	289	287	287	285	266	284	28.7	288	288	289	287	288	298	787	288	289	786	286	293	289	28.P	288	289	287	287
UINC UPSED			121	123	221	67 I	121	101		2 - C		121		0 1 14 (121	125	126	1 25	127	125	128	132	136	138	141	138	0 n 1	139	140	141	141	545	139	139	137	127	135	133	134	131	126	126	170	116	118	117	115	114	112
JULIIUDE	(F1) -15,000							035,775	035,800	010.010			0362UL			036500	035630	0135100	036800	036900	037000	037100	037200	03730 ₅	037406	037500	03762 ₀	CC1150	C37E00	0097900	036000	035100	D38203	C3830 _C	038400	036500	03860C	338730	038800	D3890D	039000	039100	0239230	039300	039400	039506	03960C	039760	039822 CC3620	039900

15

-

1

3.

· · · ((in + · · ·

4.11

いるのであるという

- * 21.11

1.

DEN POINT	(DEG C)	- 6666 -	- 6666-		- 6666-	- 6666-		-6666-	-6666-		-6666-	-666-	-6665-	-6665-		• • • • • • • •	• 6666-	- 6666-	- 444-	- 6666-		- 4666-			• 6666 -	- 6666-	-6666-	-666-	-9999.	-6666-		-666-	- 6666-	- 6	-9777		0000-			- 6666-	-666-	• • • • • • • • • • • • • • • • • • • •	- 6666-	* 6666 -	- 6666-		* 6 4 6 4
DENSITY	(GRAM/M3)	• 3246+0.	• 3230+03	• 3215+03	• 3 2 00 + 0 3		.3154+03	.3139+03	.3124+03	.3110+03	• 3095+03	• 3078+03	• 3061 +03	.3045+03	. 3028+03	* 5012+03	• 2 995 +03	- 2979405	50+5962.	-2947403	50+1542*	50+5162*	- 2 4 0 4 0 5	2040020 2040402-	-2855+03 -2840+03	.2625+03	.2011+03	.2796+03	.2761+03	.2747+03	.2754+03	.2740+03	-2726+03	50+21/2+	-2629+03		2458403		2633+03	-2621+03	.2609+03	.2598+03	.2586+03	.2574+03	• 2563+03	. 2551 +03	.2540+03
PRE S SURE	(MILLIBARS)	•1973+03	.1963+03	•1954+03	50+##61+		.1916+03	.1906+03	.1697+03	1888+03	-1678+03	•1869+03	.1860+03	.1851+03	. 1842+03	• 18 33 • 03		• 1815+05	5D+/+91.	• 1 7 98 + 0 3	• 1 64 • 0 5	• 17A0+U3	•1772+05	10+5521*	•1738+03	.1729+03	.1721+03	.1712+03	-1704-03	.1696+03	• 1688 • 73	- 1680+03	• 16 71 • 03		•1655403				1616+03	.1608+03	.1600+03	.1592+03	.1585+03	.1577+03	.15 69 03	•1562+03	.1554+03
TEMPERATURE	INEG C)	-61.4	-61.4	-61.5	-61.5			-61.6	-61.6	-61.7	-61.7	-61.6	-61.5	-61.3	- 2• ř	-61.1	-61.0		1.00-	-60.6	C•Do-			C. Ud-	-60.0	-59.9	- 59 .9	-59.8	-59.7	-59.7	-59 -6	-59.5		0 • Aa	-59.5		17 M 1 - 1 1 - 1	5 M (5 M (1 at - 01 - 11		-59.5	-59.6	-59.6	-59.7	8° 55 -	-59.9	-55-9
WIND DIRECTION	(DE G)	287	286	296	285	285	283 283	282	279	274	273	270	271	271	270	512	213	212		270		267		513	212	274	275	274	273	273	215	213	265	A 97	E12		116	276	275	217	717	276	278	278	575	277	277
WIND SPEED	(FT/SEC)	111	110		167	101	104	103	102	_ 66C	160	101	095	396	0.01	0.40	356	160	840		TOT	102			66C	650	099	260	101	101	162	105	105		109	0 T T				109	109	107	105	105	101	1999	092
ALTIJDE	1 F T)	302040	040105	040200				DV070C	040500	006040	00140	041100	041270	041333	041400	041530	011100	00/1m0		CC61m0		001240			002630	042700	042900	342900	000240	0012100	043200	043300	043400		243603					044200	D 4430C	044430	0.4 4 5 0 0	0144500			006640

2.

.

.

в.

-

TABLE 4. (Continued)

N n ne

.

16

ORIGINAL PAGE IS OF POOR QUALITY , ⇒al M

). #

-

うっましたよう、いたいにいいています。 そのいろはない かんできょう かんかかない ちょうかん 御堂堂 ゆうし いっしょうちょう いい あせまます 神経ない ちょうい まいません

and the second of the second s

* * * *

and the second of the second o

٠

.

.....

ċ

٦.

4

;	ł		ı				1		!				I						ł		í		0	F	F	20	Q	R	ç	ູ່ບ	Ą	LI	T	Y			ł			,		ł					i	
DEN.POINT (DEG C)	- 6889-	- 6666-	• 6666-	-6666-	•6666-	- 6666-	-2929-	-6666-	-666-	- 6666-	-6666-	- 6666-	-9999.	- 6666 -	•6666-	- 6666-	* 6665-	- 6666-	-9999.	- 6666-	- 6666-	- 6666-	. 6666-	- 6666-	-9999-	- 6666-		- 6666 -	• • • • • • • • • • • • • • • • • • • •	- 6665 -	-9999.	- 6666 -	-6686-	* 6666-			- 5555-			- 0000 -		- 6666-	-9999.	- 6666-	• 6666-	- 6666-	- 6666-	• • • • • • • •
DENSITY (GRAM/H3)	×2528+03	.2516+03	• 2505+03	• 2493+03	•2481+D3	.2470+03	•2958+03	.2447+03	• 2435+03	.2424+03	.2413+03	.2402+03	•2391+03	•2380+03	.2370+03	.2359+03	•2348+03	-2338+03	.2327+03	.2317+03	.2307+03	.2297+03	•2288+D3	.2278+03	•2269+03	.2259+03	.2250+03	-2241+03	• 2231+03	•2222+D3	1211403	.2204+05	•2199+03	-2185+03			20474124			2111.03	2010-2010-	.2093+03	.2084+03	.2075+03	.2066+03	.2057+03	×2048+03	.2039+03
PRESSURE	1597+03	.1539+03	•1532+03	.1524+03	.1517+03	.1510+03	*1502+03	.1495+03		.1481+03	.1473+03	.1466+03	.1459+03	.1452+03	• 1 4 4 5 + 0 3	•1438+D3	•1#31±03	*] # 2# + 83	20.21.1.	.1410+03	.1403+03	.1397+03	•1390+03	•1393•03	L0+475L.	•1369+03	+1363+03	<pre>.1356+03</pre>	• 1 3 4 9 + 0 3	*1343+03	1336+03	+1330+93	•1323+03	•1317+03			1201477		1272+01	10+9961	10+0521-	.1253+03	.1247+03	.1241+03	.12 75 + 03	•1228+03	.1222+03	.1216+03
TEMPERATURE (Deg Ci	-60.0	-60.0	-60.1	-60.1	-60+2	-60.2	-60.2	-63.3	-60.3	-60.4	- 60 . 4	-60.5	-60.6	-60.6	- ę0 • 7	-60.8	-60.9	-61.0	-61.0	-61.1	-61.2	-61.4	-61.5	-61.7	-61.8	-62 .0	-62.2	-62.3	-62 .5	-62.6	-62.48	-62.5	-63.1	-63-2								-64.6	-64 .7	-64.8	-65.0	-65.1		-65.4
LIND DIRECTION (Deg)	275	274	215	273	274	215	273	213	269	269	269	270	272.	112	272	271	271	270	269	268	26A	267	267	264	263	263	262	263	262	261	262	292	52	260	202 C3C	2012 31 E	345	 26 th	254	264	264	267	268	219	272	275	273	272
WIND SPEED	D90	0.89	388	0.4.8	085	081	019	JBO	0 6 2	J & Z	083	0.64	2,40	190	190	190	019	077	076	J74	0 <u>7</u> 3	075	077	111	2112	077	378	6/ D	080			082							190	040	610	07R	078	078	110	375		073
ALTITJDE (FT)	000540.	04510C	345200	045303	045400		045600	042700	04540	006340	345 635	046130	J46290	346 300	04040	046500	019500	067 240	146907		047090	047100	062240	00 2 7 40	004240	047530	047630	04710	000/10	C C 6 Z h C	Dission		046200				018700	004940	0.000	019100	001010	049300	00 1 6 10	049500	04960C	049700	004610	006660

ADIANA

17

•

V

<u>ो</u> ज

1

- 44

, 4° - 14

÷

:

Ъ. 4

<u>`</u>.

.

.

	1	1	ł		,		1		,			1						ł				Q)F	F	ж РС)()(R	. (7/ 21	q(JA	۶Ę ۱L	: 1 T	З Y			1					1		1				1	
DEN POINT (DEG C)	- 6666-	- 6666-	-666-	- 6666-	-9999 • 0 6 6 é		- 6666-	-6666-	-6666-	• 6666-	- 6666-	-6666-	. 6666-	• 6666-	- 6666-	. 6666-	- 6666-	-666-	- 6666-	• 6666	-6666-		• • • • • • •	-666-	* 6 6 6 -		-6666-	- 4444-		-666-	- 4444-	-6666-	- 4666-				- 6666-	-6666-	- 6666 -	- 6666-	- 6666-	-6666-	-6666-	-6666-		-6666-	- 6666-	• * * * * *
DENSITY (GRAM/M3)	.2030+03	.2022+03	• 2013+03	.2004+03	• 1995 + 03 5 882 - 0 t		• 1969+03	.1960+03	• 1951+03	-1943+03	• 1 934 +03	• 1926 +03	ED+2161*	£0+606T •	• 1 900 + 0 3	- 1892 + 03	• 1 663 • 03	• 1675+03	.1867+03	• 1 85 9 + 0 3	• 1 #50 + 03	50+2461.		• 1 826 + 03	• 1 8 1 7 + D 3	• 1 809+03	-1401+03	50+241 ·	-145+03	•1777+03	- 1764-03	• 1 76 1 + 0 3				1 720+03	.1712+03	• 1 704 +03	• 1696+03	-1687+03	• 1679 • 03	.1670+03	• 1661+03	• 1653+03	. 1644+03	• 1635 +03	• 1 627 + 03	*1619+US
PRESSURE (MILLIBARS)	.1210+03	.1204.03	20+96 tt.	•1192+03	• 1 1 86 + 0 3 • 1 • 20 4 0 3	1175+03	• 11 69+03	.1163+03	.1157+03	.1151+03	.ii46+NJ	.11+0+03	• 1 1 34+03	• 11 ZE+03	.1123+03	• 1113+03	·1112+03	•1106+03	• 1 1 0 1 + 0 3	• 1095+03			• 1 0 / • • 0 5	.1073+03	.1066+03	.1062+03	.1057+03	50+25DT*		• 10+1+03	• 10 36 + 03		50+52 0 7			1005+03	- 99 96 + 02	20+2+65"	.9895+D2		+9795+D2		•9696+02	-9647+02	-9598+02	-9549+02	•9501+02	.9453+02
JENPERATURE Ireg C)	-65+5	-65.6	-65 - 7	-65.9	-66.0	-66.2	-56.5	5	-66.6	-66.7	-66 .8	-66+9	-67.1	-67.2	-67 . 3	-67.4	-67.5	-67.1	- 01 - B	-61.9	- 68 . 0		- 06 - J	-68.4	-63 -5	- 68 - 6	-68-7		-69 -0	-69 • 1	- 69 - 5	-69-3	1991 1997			2 89-	-69 - 7	-69.8	-69 .9	-69 * 6	- 69 -	-69.9	-69-8	-69 .8	-69 -8	-69-0	-69-7	-69.1
WIND DIGECTION . Pega	C15	268	268	267	266 265	255	264	264	263	263	264	261	264	292	264	-16.4	264	262	263	265		265	002	265	265	265	265		26.4	265	267	265	265	297 271			263	264	266	267	26 8	211	269	26.9	269	267	26.9	212
WIND SPEED (FT/SEC)	072	170	D10	071	070	110	012	1- <u>3</u>	016	078	Up l	0e1	081		045	086	0 4 6	998		140	065		185	083	06.0	2025	<u> </u>	1950 1950	016 011	0.15		0 e 5	1965 000					.40	0.85	088	0.90	040	160	0 E B	180	063	240	
ALTITJOE (FT)	J50100	350100	022050	950300	0010000	05050	n50733	05080 _C	0209020	051000	001130	351220	021300	021400	051500	051600	001130	021900	00100	00226	052100	51224E	005 240	022430	052500	05260 <u>C</u>	027220 222	0528UU	052900	023000	001550	053202	053300 053200	DEFECU	00.5.00	001150	C53800	053900	024000	024103	054200	054300	024400	05450C	024600	024 200	054400	306 450

18

D

,

~

, भ्रम 1

Street to a set

•;

こうしょう ちょう しっていい ちょうしん 一般の いたのでのないのないであるからちちち ちょうない ゆうたまます

· ·

ł

3

OPICINAL

• • •

:;

POINT		2222	9999.	900.			2222		9999	. 6666				9999.	. 6666	9999.	9999		2222		. 6664		- 6666	9999.			PC	0	1L R	~ ~					9999.		. 6666			9999.		9999			
DEV.			1		1	Ĩ		Ì	•	1	•	•		•		•	1			ĩ	ī	Ĩ	ī		1		Ĩ	· T	1	•		Ī		1	Ī	Ī	1	1	1				1	,	Ì
DENSITY	1 6 4 4 4 7 4 5 1		.1594+03	.1505+03	-1577+03	.1568+03	•1560+03	.1552+03	•15g4+03	.1536+03	1528+03	.1520+03	.1512+03	.1505+03	•1497+03	.1490+03	• 1462+03	50+5/41+	1100101	1451+03	.1374+03	•1298+03	.1217.03	• 11+6+03	• 1097+03	- 1045+U3	.9455+02	• 8985+02	• 8530+92	20+t508*	• 7661+02	.7284+02	20+2640+	+ 00U7+U2	.6008+02	.5690+02	.5393+02	.5131+02	.4878+02	• 4630+02	70+6044	• • 20 • • 02	-3840+02		744 9403
PRESSURE	IMJLL (BARS) Bede and	2016710	510+02	.9263+02	.9216+02	-9169+02	•9123+DZ	.9076+02	-90 30 + 02	.8985+02	•8939+02	-8894+D2	-8549+02	.8804+02	.8760+02	.8715+02		20+1298.			.6076+02	.7682+02	20+6057.	.6958+02		-6508+UZ	.5720+02	.5446+02	<u>•5187+02</u>	.4941+02		- 44 86 + 02 + 3 75 + 03			.3700+02	.3527+02	.3363+02	.3207+92	.3059+02	.2918-02	20.5412.	.2657+02	2010 2010 2010		5 1 C 8 2 7 5
TEMPERATURE	1766 C) 6 -		-69-6	-69 • 6	-69 - 2	-69 -5	-69 •5	-69	2 · 6 · 1 ·	-69 . 3	-69 - 3	-69 . 3	-69.3	-69 . 3	-69 . 3	-69.3	1 6 0 1				-68.3	-66.9	-64.0	-61.7	-62.7			-62.0	-61.3	-60.5	-59.1	-58.6			-56.6	-57.2	-55.9	ង ហេ ហ	-54 -7		-53•1	0, 181			0.43-
WIND DIRECTION	11667	574	274	271	269	267	265	263	263	761	262	265	261	265	267	268	269			271	274	272	268	264	252		220	235	261	310	337	159 149			516	062	053	150	950		306	515 			112
LIND SPEED	17 1 25 C 1	016	***	170	071	072 0	073	074	075	076	61 C	61C	180	Je 3	081	376	012	190	290		055	146		023	010	210 310	015	210	010	700	010	017			012	110	010	906	164	200	SDD	006	008	>	UC.
ALTIJDE	001335		055230	055300	004550	055500	05550L	025700	0558JC	355930	026030	056100	055202	055300	056400	056533	C566JO		026900 356900	00120	058633	000650	05 3000	06100C	052000 542500		055000	066030	<u>357030</u>	058600	00440	010010	000110		001410	C 7 5 0 0 0	076COC	CC011C	078000	019000		000150	003500		000000

19

Ż

,

þ

ł

2

																									0)R F	ig P	IN 0(OF	L ?	P Q	A U/	gi Al	: .11	1 9 7												
DEN POINT	. 6666-	- 6666-		- 6666-	-666-	****	- 6666-	- 6666-	- 6666-	- 6666-			- 6666-											- 6666-	- 6666-	- 6666-	. 6666-	-666-			- 4444-			- 6666-	-2729.	- 6666-		- 6666-						- 4444-	-000-		- 6666-
DENS 11Y	.3202+02	1044+02	2463+02	2743+02	.2604+62	.2475.02	.2359+02	-2250+02	.2145+02	2041+02	- 1943+02	20+2581*	.1770+02	20+2491.	201121	20.2551	1471-UC			- 1 7 7 4 A 7 7	1140+02	1102+02	1048+02	10+1146.	.9542+01	.9162+01	. 0.000+01	. 8152+01		10.1/1.		TD-1211 *		6040401	10+2132-01	.5461+01	.5214+01	.5003+01					LU+BC4C.	[D+85/5"			
PRESSURE	204+02	1011.07		1740+02	.1661+02	.1546+02	.1515+02	-147+02	.1382+02	•1323402 ····	.1267+02	-1213+02	.1161+02	20+2111	20+4901.	20+6101.							10.11	.68 31 + 01	.6543+01	.6267+01	.6002+01	-5748+01	10+0125*	• 52 69+01	.5045+01		10+5294.		4074+01	.3909+01	.3752+01	.3602+01	10+15+2*	10+0255.	• 31 89 + 01		~2945+D]	• 28 32•01			
TEMPERATURE					-50.9	5.64-	. 6.	1.94-	- 46 . 7	-47.3		D•Sh-	- + + - 6			# * # # ·							- 36 - 0	-34.6		- 34 .8	-35.5	-36.2	- 36 - 8	- 36.9	9 - 9 - 9	- 36 • 9	- 35 • 7		- 75.5	-23.0	-22.5	-22-	-21.3	-19.0	-16.6		-12.6	-10.6			
VIND PIGECTION	204			278	274	213	26.8	261	152	238	232	227	226	231	234	246	225	10.						30.4		294	283	274	268	268	271	263	246	515	116	232	232	1 62	252	257	262	26 Ŋ	257	252			252
LIND SPEED	111/5653				120	325	026	520	024	520	037	050	365	067	065	090	040	191	6V.0	210		210		650	AC3	045	042	040	210.	036	2 3 3	028	027			050	052	055	064	076	10	796	089	080	260	160	201
ALTIJOE			02000			000260	00200	09400	00200	000 4 60	097000	008000	000640	100000	000101	102000	103090		10200	10600C						113030	114630	115000	116000	117000		000411	120000	121006		124 030	125600	126030	12709	060621	129000	130000	131000	132000	1 3 3 0 0 0	1 34 CJO	136700

の法法理によ ÷

1

ł

D

.

•

•

1 4

1 .

----.

1. 12 million 4. C. 1 ٠

ľ,

ł

.

;

ţ

-

.

.....

~ #-0

الم العبير المس

) - a

٠

٠,

· · •

																															C)F	F	20	0	R	Q	U	Al	_1"	N	,								
DEN POINT	(DEG C)	- 666-	-6666-	-666.	* 6 6 6 -			- 4 4 4 4 -						- 666-				66661		- 6666-	- 6666 -	-9999.	- 6666-	• 6666-	- 6666 -	- 666.	- 666-							-6666-	- 6666-	- 6666-	-111.	-6666-			• 6C : 6-	- 47.44-	- 6446 -	-6666-				. 6666-	-000-	
DENSITY	(GRAM/M3)	.3072+01	.2960+01	-2652+01	.2737+01	.2603+01	10+/5+2*	10+9552+	.2231+01		-2053+01	1979+01	10+6161.	.1852+01	.1792+01	10+521.	.1679+01	• 1625+01	.1572+01	.1520+01	.1470+01	1921-01	1374+01	• 1328+01	.1283+01	.1240+01	.1298+01	1157+01	10+2111.	. 1062+01	1023401	00+2984 •					. 7802+00	.7459+00	. 7135+00	.6847+00	. 6585+00	.6339+00	00+6609.	. 5 866 + 00	00+0295*	- 54 93 +00	• 5 3 2 1 + 0 0	00.44004		
PRE S SURE	(MILL TBARS)	.2333+01	.2245+01	•\$159+01	-2011+01	10+8661*	10+4241-	10+5581.	.1786+01	1722+01	.1666+01	.1601+01	.1544+01	. 1481.01	.1435+01	.1303+01	.1333+01	-1284+01	.1237+01	10+24(1.	1140.01	.1105+01	.1064+01	1025+01	.9862+00	00+16+6*	00+116.			.41 35+00	.7829+00	• 75 34 + 00				.6212+00	.5978+00	.5754+00	-5540+00	•5335+00	00+0ï ï S*	.4958+00	<u>•4756+00</u>	.4591+00	1422+00	.4258+00	00+660**	• 5940+00 *****	10,17,16.	UD+1545 *
TEMPERATURE	(PEG C)	9 8	0. 6-	· · · · · · · · · · · · · · · · · · ·		-5 - 7	₽ (1	3.2	5.7		3.6	9 • 0	0.6	6.9	5.7		3.3	2.2	1.0		-1.2	-2.3				-6.5	-1.5	9° 9	[• 8 -		- 6 - 5	.	0 • ~ I	→ P • • •			- 9 -	4 . 2 1	-2.7	-1.7	* • 1 -	-1.2	6	^ - 1	-1.5	-3.1			10 C	E. 71
NIND DIRECTION	(DES)	253	256	259	261	261	25.9	258	258	260	260	259	257	255	251	247	239	232	227	226	227	229	232	236	C N 2	244	253	255	25.3	250	253	229	265	274	2 - 1 2 - 1	261	258	255	252	254	256	263	263	265	267	615	212	212		265
AINO SPEED		109	111	114	119	121	126	131	135	136	138	136	136	136	136	136		148	155	160	162	162	031	150	155	153	150	145	150	158	167	170	168	176			200	2n9	211	201	203	051	100	172	167	143	162	163	165	165
ALT T. JDF	[[]]	137305	135000	139030	10030	CC0141	000211	143035	144000	1 4 5 0 0 0	146030	000701	148035	149000	150000	151000	152032	153026	154600	155030	156000	000151	158033	159000	15000	161000	152079	163.000	164000	155020	156600	157020	000951	169000			173000	174630	175030	176030	177006	17600	179000	19000	000161	192030	153000		195000	136700

ORIGINAL PAGE 19

٠

21

Ŀ

•

۰ •

. ,

- - - - 人をおうたいっていうないないないない

21

40. au

-

)R)F	210 F	90 21	1 A 0	R	PQ		GE Al	E .11	19 M	 7														
DEV POINT	-9999-	- 666-			- 6666 -	• • • • • •	- 6 / 6 -	* 66661		* 6666-		. 4616-	- 6666-		- 6666-		-9999	• * * * *		- 4446-				- 666-	* 6666-			• • • • • • • • •	- 4444-	- 6666-			- 6666-	- 6664 -	· • • • • • • • • • • • • • • • • • • •	- 6666-	- 6666-	* * * * *	-6666-			- 6666-	- 4446-	• 4 4 4 -	-9999 .
DENSITY		.4527+00	• 4 380+00 • 4 3 40 + 00		.3957+00	. 3825+00	. 3697+00	. 3574+00	1453+00	. 3324 +00		.2969+00	.2809+00	-2667+00	• 2571+00	• 2 • 2 8 + 0 0	100+102-	00+4112.	. 2086 + 00	• 2023 • 00			1732+00	• 1664 +00	.1602+00			00+6241 *	• • • • • • • •	• 1315+00	133240		.1118+00	.1062+00	- 1041+00	. 9964 -01	10-12-01	10-1968*	.8510-01	. 8013-01	. 7542-01	10-6604	+ 6680 + U 1	10-30/0.	.5671-01
PRESSURE	14400	.3379+00	.3249+00	00+0005*	• 2882+00	.2768+00	.2658+00	.2552+00	24 # 4 ± 00	•24×0+00	•225.+00	-2105+00	.1992+00	.1886+00	.1755+00		00+6651-	nn+61 c1+	• 14 32 + 00				.1152+00	.1103+00	.1055+00	.1009+00		10-0224*	[n-0194°			.1000-01	.6650-01	.6310-01	.5980-01	•56A0-D1		10-0915.	.4910-01	.4670-01	[0-07:27.	• 4 2 30 - 01		. 584U+U1	. 35 00-01
TEMPERATURE	-11.5	-13.1		-16.0		-21.1	-22.7	- 24 - 4	-26.1	-26.8	-26.6	-26.2	-26.1	- 26 -8	-31.3	9 • 0 • •		2.16						-12.2		-45.3	15 0 0 10 1 5 0 0 1		2 • 6 • -	-50.2			-65.9	-69.9	-73.0	-74 .6	- 74 - 2	1 • 21 -	-72.2	-70.1	-69 . 1	-65.6	-63.0	-6U•4 -68.7	-58.2
WINC DIRECTION	251 251	252	249		251	253	253	252	257	246	241	237	236	234	234	236	2 5 5		246				263	266	268	270	212	212	212	212	112	269	269	269	269	270	271	212	212	273	274	275	512	215 215	276
WIND SPEED	11156	<u>155</u>	157	160	163	167	168	172	172	172	179	190	206	229	260	263	266	8 07	270		2.75 2.75		276	276	275	273	271	268	263	260	50.7	 54 G	256	260	261	265	268	2 7 0	271	275	275	276	81.7	190 200	280
ALTITUDE	187300	196000	00061	191000	19200	000261	194000	195000	196,000	000141	198000	199000	200000	201000	660202	203000			206000				211000	00212	C00112	214000	215000	216000 212000		219000		222000	223000	224 000	22500 ₀	226000	227000	000 822	229030	230000	231000	232000	255003	276.000 276.000	236000

.

,

ŝ

and the second se

D

• • •

TABLE 4. (Continued)

. . .

																												3	0	F	P	00	OF	ב זיי	QI			י וד	J Y										
DEV POINT	1056 C)	- 4446-	-6666-		• • • • • •		• 6666-	- 444-	• 4444-	- 666-	- 6666-		• • • • • •	-999.	- 666-	- 666-	- 1111 -	-666-	- 666-	- 666-	- 1 1 1 1 .	-999.	- 6666-	-1992.	• 6664-	-1111-	- 6666-	- 6666-	- 4444 -		- 4444 -					. 6666-	- 1999 -	* 6666-	- 666-	- 6666-		• • • • • •	-1111-		• • • • • • • • • • • • • • • • • • • •				-979.
DENSITY	(67 4 M / M3)	10-1000	.5145-01	10-204 · · · ·	10-1491.	10-1611		10-2114.			.3616-01	.3450-01	. 3315-01	.3156-01	.3012-01	.2892-01	.2740-01	.2639-01	-2497-01	.2368-01	.2249-01	.2148-01	.2046-01	.1952-01	. 1 854 - 01	-1783-01	10-101.	• 1 62 5 - 0 1	.1545-01		10-1101.		10-24/1-			.1090-01	.1043-D1	. 9987-02	. 9560-02	.9150-02	. 0 759-02			- 7682 - UZ	20-08/0*	.5820-02		- 1400-01	-2950-02
PRESSURE	AMILL IBARS)	10-0460			10-00420	-2770-01		10-0167.		-2280-01	-2180-01	.2070-01	.1980-01	.1680-01	.1790-01	-1710-01	.1620-01	-1550-01	- 14 70 - 01	10-00+1.	•1330-01	.1270-01	.1210-01	1150-01	10-0601 -	•10*0-01	- 99 00 - 02	-9400-02	.6900-02	• • • • • • • • • • • • • • • • • • • •		20 22 2	20-66 1/ •		. 45 TA-02	.6258-02	.5990-02	.5734-02	•5488-02	.5253-02	.5028-02		-109-			20-0220	20-0310		1620-02
TEMPERATURE	(DEG C)	- 16						C* Da-	2.10-	-62.5	-63.2	-61+2	-65 • 1	-65.6	-66.2	-67.2	-67.2	-68.2	-68 . 1	-67.2	-67.2	-67.2	-67.2	-67.9		-69.9	-70 - 4	-71.07	-72.5	-73+2-					- 75 -	-75.6	-76.0	-76.3	-76.7	-77.0	-17.4		1.1.				2 8 7 8 -		-82.22
WIND DIRECTION	(066)	017	276			574		1/7	012	268	267	265	263	261	25 8	256	524	251	540	242	244	242	C # 2	238	236	235	233	232	231	230	622 672		226	225	77	222	219	216	213	802	201	161			661	660		י א 1 א 2 כ	
WIND SPIED	(F1/SEC) 280		278		2 I 3	11.2	37C	475	502	260	256	251	248	244	241	236	233	229	228	b 22	221	219	216	214	212	211	508	206	504	200	181	<u> </u>	201	1 7 7	125	113	101	089	576	066	055		239	225	620	023			046
ALTITJOE	(F1) 21715									245030	2 4 6 000	000142	248030	000462	250000	221000	660252	25300	254 U00	000552	256000	257000	CC0852	259000	250030	261000	25200 <u>C</u>	000252	000 6 5 2	255000				270400	000175	212030	273000	274000	275000	276003	277000		219000	200052		200000		295000	298000

TABLE 4. (Concluded)

15

3

۰ :

÷

ł

ł,

b

ann - the interesting the factor

N

																																(DF	. 1	20
DEN POINT	(DEG C)	-9999.	• • • • • •	- 6666-	- 666-			- 6666-	- 6666-	* 6666-	- 666-	- 6666-	-9995	-9999.	* 6666-	- 6666-	-6666-	- 6666-	-666-	-9999.	• 4665-	- 6664-	-6666-	- 6666-	• 6666-	-9999.	- 6666-	• 6666-	- 6666-	- 6666-	. 6666-	-9999.	- 6464-	• 6666-	- 6666-
CENS17Y	(CHAN/HU)	-2590-02	.2110-02	.1780-02	.1510-02	.1280-02	-1090-02	.9280-03	.7690-03	.6720-03	.5720-03	.4860-03	.4140-03	. 3520-03	- 3000-03	.2550-03	.2180-03	.1660-03	.1600-03	.1370-03	.1170-03	• 1000-03	. 8 700-04	. 7570-04	. 6560-04	.5720-01	+0-044.	#0-04F#"	.3830-04	.3390-04	. 3000-04	.2670-09	.2360-04	.2130-04	40-0161
PRESSURE	(MILL IBARS)	.1380-02	.1180-02	-1010-02	.0570-03	.7350-03	•6330-03	.5450-03	.4700-03	. 40 50 - 0 3	.34.80-03	. 30 10-03	.2610-03	.2260-03	.1950-03	.1690-03	.1470-03	.1290-03	.1130-03	40-0066.	.8680-04	• 76 00-04	.6820-04	.6110-04	.5470-04	-9900-04	+3-0-04	.3950-04	.36.00-04	-3296-04	.3010-04	-2770-04	.2550-04	.2360-04	+0-0612*
TEMPERATURE	(DEG C)	-81.1	-19.9	-78.7	-77.5	-76.1	-74-3	-72.4	-70.6	-68.5	-66.9	-64.0	-61.1	-58.1	-55.2	-52.2	-48.2	-43.2	-30.1	-33.1	-28.0	-22.9	-15.7	-8-5	-].2	6.0	13.3	21.3	30.3	39.7	49.2	59.1	69 . 1	79.4	8.68
WIND DIRECTION	1926)	036	222	335	281	269	269	268	267	263	233	234	22D	206	194	185	166	146	135	129	126	117	112	116	122	127	133	118	122	126	130	134	138] 4 2	146
WIND SPEED	IF T/SEC)	033	021	012	021	030	028	025	020	013	003	200	203	100	005	007	001	900	012	610	027	033	036	0#0	045	020	057	047	046	046	240	047	640	050	052
ALTITJDE	(FT)	301300	000402	307030	310000	313000	316030	319000	322000	325030	329000	331000	334030	337030	340000	343000	346030	349000	352030	355000	358000	351000	364030	357000	370030	373030	376020	379000	192000	395,000	398 FDD	391000	394000	397030	1 00000

. . مىلە

ORIGINAL PAGE IS OF POOR QUALITY

-

×τ.

3 ·

. ·

s 5

こう、こうちゃんなないのであるのであるので、 こうしょう こうしょう ちょうしょう ちょうしょう ちょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

the second with the second

¥,

. *

A second se

÷ : ł 1

5 · 2 6 grow

İ

いた

.

STS-11 FINAL SRB DESCENT METEOROLOGICAL DATA TAPE TABLE 5.

•

•

.....

•

•

۲

																										(Of Df	710 	GII PC	N/ DO	AL R	, F Ç	PA V	G Al	E	79 M	1											
DEN POINT	(DEG C)	14.4	16.2	15.3	9.3	2°8	6 °]	6.9	5.7	÷ 2 · · · · · · · · · · · · ·	n :			-12.0		-15.8	-21.8	-27.1	-29.2	- 30.5	-32.3	-33.9	-36.0	-37.6	- 39.6	-+1.7	-41.7	- 39 - 3	5.45.			-50 - 3	-51.9	-54.9	-55 •2	-58.5	-60.3	-62.0		-6666-		- 444.	• • • • • • • • • • • • • • • • • • •		-9999-	0000	-0000-	-6666-
DENSITY	(GRAM/H3)	.1197.04	.1166+04	.1138.04	.1110+04	• 1075+ 04	• 10 39 • 04	·1011.	•9851+O3		50+4526.	[0+co/8°		10+1400		.7622+03	7354+05	.7119+03	•6912+33	•6692•03	•6479+03	.6284+03	• 6 D ⁹ 5 + 03	. 5869+03	.5692+03	.5537+03	• 5 3 5 3 • 0 3	.5173+03	• 49911+05	• 4821+US	10 10 1010		.4182+03	4060+03	.3865+03	.3775+03	. 3634+03	50 42 675 *	• 5 5 / 1 + 0 5		• 5122• US	• 29464 US	511 + 1 87 7 • TU + 7 + 7 C		• 2536+03		50+6162+ 10+8122-	.2121+03
PRESSURE	(MILLIBARS)	·1017-04	• 9843+03	.9499+13	.9164+03	- BB38+U3	. 8523+03	- + 517+03	. 7920+13	• 1031+03		50+6/0/°	602 64 03 403 64 03			5845+03	.5622+03	.5407+63	•5198•U3	.4995+43	50+66/n*	4 PD3 + N3	. 4425+13	.4247+03		• 3908+U3	.3746.03	• 3589+03	• 34 38 + 13	21632403		-2017-02 -2883+03	. 2757+03	.2035+03	.2516+43	• 2403+03	•2293+U3	-2187+63	50+580°°	1996+43	.1891.05				• 1 5 7 9 + 0 3			-1283+03
TEMPERATURE		21-1	18.9	15.6	13.1	12.1	11.5	8.6	5 • 2	0.4							- 7 . U	г.н.	-11.3	-13.2	-15.2	-17.7	-20.3	-21.1	-23.8	-27.3	-29.4	-31.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-10.1			1 • 1 • 1	-47.5		1.0.1	100 100 1		500-1 1	1.29-	1.14.			2 - 5 - 5 - 1 		- 00 	-62.4
4140 DIRECTION	(nec)	11	121	705	127	. 133	147	f^1	201		197	200			280		5.6.2	162	291	297	a = 1	n12	101	247	252	275	616	79.4	687	2 A 2	206	235	747	1 U S	307	406	104			152	142							780
WIND SPEED	(F1/SEC)	542	010	123	030	042	376	115	016	2 L L		620		410	120	135	144	U46	051	956	J5.8 .	919	056	055	052	058	068	0 76		000		0.1	11. 4	125	150	166	146	115	103	101	106	666	120	0.00	0.0		1 8 0 1 8 0 1 9 0	004
ALTITURE	(F1)	8 2 GC G ()	orgion	06-200	003300	1.0.3 4 0 6	10500	100913	000100								C62 410	ut 61 10 .	DI LIPIT.	000-16	0,20102	C2012N	000220	023000	000420	025000	026007	92 JUU9				LOUZEN	033003	000440	135300	036700	060750	010010							0000-10			047000

10. 000

A 450

25

C

,

4 1 2

į

1 : +

i i

したの言

1º

i 5

. •

•

· · · ·

2

• • • • • • • •

÷

. . .

.

2

			,																							0	F	P	0	01	2	Q	U	AL	.11	γ														
DEN POINT	IDEG CI	-6666-	-6666-	• 6667-	-6666-	• 6666-	-6666-	-9999.	- 6666-	-6666-	- 6666-	-666-	-6666-	-6666-	-6666-	•6666-	-6666-	• 6666-	-9999.	• 6666-	-6666-	• 6666-	-9999.	• 6666-	-000.	. 6666-	-6666-	6666-	-6666-	• 5 5 5 5	* 6 6 6 -		• • • • • • • • • • • • • • • • • • • •			6665-	-6666-	-6666-	-6666-	-6666-	• 6666-	-000-	-6666-	• 6 6 6 5-	• 6 6 6 -	-6666-	•6666-	-6666-	-666e	* 6 6 6
DENSI TY	(GRAN/M3)	.2029+03	1919.03	. 1852+03	.1769+03	• 168 3+ 03	.1594.03	• 1524+03	.1456+03	. 1 30 3+ 03	• 1297+03	• 1227+ 03	.1166+03	• 1 105 + 93	.1047+03	• 1000+ 03	•9513+D2	•8990+02	.8545+02	.8194+02	.7787+02	.7366+02	.6974+02	• 6 6 5 1 + 02	•6328+02	•6015+02	.5726+02	• 5455+02	.5201+02	20+2964	• 4 7 3 5 + 02	20+405+			• 5760 UK	1555+02	.3383+02	. 3223+02	• 3070+02	.2932+02	.2791+02	.2658+02	.2542+02	• 2425+02	•2311+02	.2202+02	20+1 905 •	• 1995+ 02	.1894+02	• 1 F 00+ 02
PRESSURE	IM ILL IBARS	.1221+03	.1162+63	.1106+03	•1053•03	.1001+C3	20+1235.	.9064+62	.8622+02	-8201+02	.7804+02	- 74 30+02	.7075+02	•6738+U2	·6419+U2	.6115+02	• 5826+02	\$552+U2	.5292+02	.5044.02	501+02°	.4583+02		.4169+U2	.3977+02	.3794+02	.3620+02	.3455+02	.3297+02	•3146+U2	• 3003•u2	.2866+02	2 7 36 + D 2	20.1102.	211-22.12	2221+12	.2168+02	.2071+02	.1978-02	.1689+62	.1854+02	•1774+L2	.1697+62	.1574-6-2	-120 2 +C	-1437+62	.1366•U7	• 1 3G3+U2	-1240+52	50+1911.
TEMPERATURE	(DEG C)	-6 J - 4	-64.2	-65.0	-65.9	-65.9	-65.0	-65.9	-66.9	-66.6	-63.5	-62.2	-61.8	-60.8	-59.6	-90.2	-59.8	-58.0	-57.4	-58.7	-58.1	-56.4	154.8	-54.8	-54.2	-53.4	-52.9	-25 + 2	-52.3	-52+3	-52.1	-51.7	-21.1				6 • 6 # -	-49.3	-48.7	-48.7	0.84-	202 4-	5 1 5 1	-47.0	-46.6	-45.8	ア・ジオー	- 45 ° C	1.54-	-44 .6
WIND PIGECTION	1969	185	219	112	25.3	201	266	213	249	267	5 50	103	215	212	253	237	199	326	337	906	J.2A	045	1H 3	191	Dia	n 3 A	020	670	U 22	012	155	140	335				61.1	134	671	210	359	141	111	293	287	261	151	745	241	726
WIND SPFED	IFT/SEC)	7 40	0.41	tác	[] a 5	291	0.72	366	057	046	119	0.35	010	124	017	<u>0</u> 12	306		010	0U6	110	013	011	011	011	210	210	010	010	60(1	008	012	120	023		111	009	<u> </u>	014	020	420	025	524	120	033	047	056	063	567	D65
AL 11 LOE	(F1)	05-10-00	021202	052000	053070	154700	L5:000	05600	021000	05930	059040	060000	061130	062000	063000	064000	116500J	C660JD	06.02.90	06900r	06900	000020	000121)	006720	U73000	a74007	015000	016000	011000	ດບຸລາຍ ເ	030670	090700	UA107(I)	082000			046000	C 8 7 5 0C	048000	084000	00000	001000	00220	093000	004000	<u>095000</u>	ີດອຸດທາກ	000260	1)00.800	000660

ORIGINAL PAGE IS

ŀ

3

n of statem

Land of a wind (a 2 2 -

.

į

2

3

1

																										0)F	F	20	0	R	r Q	U	al Al	: .I7	Y												,	
DEU BOTHT	DEG CI	-6666-	-6066-	*6666-	-6666-	• 6666-	- 6666-	-6666-	-6666-		-9999-	- 4444-	-4444-	-4444-		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	-0000	-0000-	-0000	-0100	6666-	-0000-	-6666-	-6666-	-6666-	-6666-	•6666-	. 6664-	-6666-	-6666-		-0000-	-9999.	-6666-	- 6666-	• 6666-	- 6666-	-6666-	-6666-	-6666-	• 6 6 6 -	•6666-	-9999-	0000		-6666-)
DENCT TV	LERAM/M31	.1711.02	. 1626+02	.1552+02	.1491+02	• 1+25+02	.1358+02	.1291.02	.1224+02	.1160-02	1102+02	20.48401.	13+1166.	-954Z+UI	10+2916.	•660.0	10.2588.	10.5118.		10 10 1 1 1 1	10 41 21 2 4	10+001 7	10 + 0 H 0 Y *	.5732+01	.5461+01	.5214+01	• 500 3 • 01	.4783+01	. + 551+01	. 4 33 4 + 01	.4129+01	. 3938+01	10+86/5•	10+3284	.3309+01	.3188+01	.3072+01	.2960+01	.2852+01	.2737+01	.2603.01	.2457+01	.2336+01	10+1522.	• 2 1 3 8 • 0 1	10.000		1853+01	***
	THE SOURE	1124+02	.1070+02	.1019+02	10+0+16.	.9309+41	.8899+01		.8136+01	.7784+01	.7451+01	10+511.	.6831.01	10+5+59.	.6267+01	• • • • • • • • • • •		10+1055	10+6925*	10.000	10.000.	10.0204.	10,10,50,4,	4074451	10+606	.3752+01	.3602+01	.3457+01	10+022.	.3189+01	10+4905.	.2945+01	.2852+01	10+12/2*		.2426+01	.2333+01	.2245+01	.2159+01	.2017+01	1998+01	1924-01	.1453+01	· 1 786 • UI	11722+01	10.000.0	104979-		
	I DEG CI		-43.8	** **-	-45.5	145.6	0 * * * 1	-43.7	-41.7	-39.5	-37.6	-36.0	-34.6		8° 5 1	-35+5	-36+2		-36.9	6+0;+	- 20 - C	0 11			-23.8	-22.5	-22.4	-21.3	0.4[=	-16.8	-14.6	-12.6	-10.6	1 8 -		- 5 -	-8.6	D • 6 -	-9.5	9-8-	-5.7	÷••	3.2	5.7	7.4	2	0 . x a	2. 2 2. 2	C • D
		241	233	246	255	192	265	510	115	285	1 A C	361	3 0 4	502	11 C C		2.74	269	268	172		245	110	116	535 535	232	142	252	252	26N	267	757	252	2.5 2.5		252	25.8	756	259	261	261	75A	259	258	263	26 <u>0</u>		101	
	VIND SPEED	1222	<u>165</u>	263	040	J47	070	072	U72	276	370	065	059	052	145	1342	040	242	038	153	078	120	C 5 5	640 640	020	052	0.5	044	076	180	0.8.7	() P 4	089	[792 202		106	109	111	114	119	さいま	128	151	1 1 5	176	1 18	5 T T	1 10	0(1
-				102000	066501	1-45.0	1012401	10 60.00	107200	10°500	100661	110-00	600111	112900	11 5070	OCUNIT	115440	116003	10111	119002	000611	064021	303121		100421	000521	126030	127000	128070	129000	1 12000	131000	132070	133700	135060	136000	1370.00	130-00	139750	140400	141000	142900	14 3000	0005441	1 # 5 700	146700	14 7000	1+0UUL	147000

27

ĺ

	INTOL NOT			• • • • • • • • • • • • • • • • • • • •	0000	-9999-	-6666-	-6666-	-6666-	-6666-	-6666-	-9999.		-0000-	-0000-	-6666-	- 6666-	-6666-	-6666-	-6666-	-6666-	-6666-	-9999.	•6666-	. 6666-	• 666-	-6666-	-0000-			-0000	0000-	-6666-	-9999.	. 6666-	-6666-	•6666-			-9999.	-6666-	-9999.	-9999.	-6666-	• 6666-	- 6666-	-6666-	-6666-
DENCI TX		1792+01	1716401	10+0291	1625401	.1572.01	.1520+01	.1470+01	.1421-01	•1374+01	•1328•01	10 - 1 2 8 2 1 -		1157+01	.1112-01	.1062+01	+ 102 3+ 01	.9862+00	-9513+00	.9168+00	• 6 8 4 1 + 00	• 6 5 2 4 + 00	• 8 1 6 6 • 00	.7802+00	•7459+00	-7135+00	Dn +/ + 20+	00 + 5 9 5 9 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		- 5866+ DD	- 5670+00	5493+00	,5321+00	• 5156+ 00	• 4993+ 00	.4832+00			- 4234+00	. 4095+00	. 3957+ 00	.3825+00	• 3697+00	+3574+00	• 3453+00	• 3 32 4+ 00	• 3143+00	.2969+00
2011 S S 1105	INTE TAADED	1435+01	101211	11533+01	1284+01	.1237-61	1192+11.	.1140+01	.1105+01	.1064+01	10+5201.	0401.100		.8768+00	.8454+00	.8135+60	.7829+00	.7534+00	•7250+00	.6976+UN	•6712+60	.6457+00	•6212+00	-5978+00	00++5/5.	-5540+00		00+25104	4766+00	4591+00	.4422+00	4258+00	. 4099+00	.3946+00	.3797+00	• 3653+00			.3122+00	.3000+00	.2662+00	.2768-UD	.2658+UO	• 2552+ 60	.2449+00	•2350+00	• 2224+00	.Z105+UD
15 MPC 8 A 11125		2 • 5	3	1 • • •	2.2	1.0	1	-1.2	-2.3		5 U 5 U 1			-3.5	-8.3	-6.4		- 7.0	-7.6	-8.1		N • 6 •	- 8 • 1	0 4 0 - 1	÷ • 7	-2.1		-1-2	6 • •	- J 		-3-1	14 - 15		- 8 - 2	× × •		- 14 - 7	-16.3	-18.0	-17.4	-21.1	-22.7	5.52-	-26.1	-26.8		2.02*
WIND DIGFLION	(DEG)	251	247	2.39	232	727	226	122	229	262	600 V	244	- 5 u	255	250	259	2 · 2 · 2 ·	259	266	214		265	201	10.00 10.00 10.00	- <u> </u>	101 101 101	25A	261	263	265	267	270	272		1975	502	242	949	248	249	751	25 M	202	າມ (ທີ່ 12 f				10 3
WIND SPEED	(F1/SLC)	116	136	191	348		140	162	162			121	150	145	150	20 III	167	170	168		113	1 / I		200		202		J 61	100	172	167	163	162		5 J I	151	155	157	158	160	163	167		261		1 70		2 - 4
AL TI TUPE	({])	150000	151700	152900	15 3000	Juuts I	15551		1500/ ST		160000	161000	162000	163060	164000	165000	166700	16/000	00:991	1070051		172000		174000	1 74,000	176000	17700	178790	179000	180000	141000	142000	183000		186000	187000	1 4,000	169030	190070	1910-01 0-0191	1 • 2000	1 4 5010		100041	107010		0007.61	

١.

TABLE 5. (Continued)

۰۰.

4

M

stan in s

.

28

ORIGINAL PAGE IS OF POOR QUALITY

,

1

1 2. C. L. Rachertan ł

4

Ward of a second of

2

1

1111

ļ

1.1

ŝ

ţ

(Continued)
5.
TABLE

4

į

Þ.

						ł		ł				ļ		!		,		ł		1		ſ		}	0	F	P	0	0	R	۲ Q	γA	A	E Ll'	n N	2	į	1					1						ł	
DEN POINT	DEG C)	- 6666-	-6666-	- 6666-	-6665-	-6666-	-6665-	-6666-	- 6666-	-6666-	- 6666-	-6666-	-6666-	-6666-	• 6 6 6 6 -	-6666-	• 6 6 6 6 -	• 6666-	• 6666-	-6666-	-6666-	-6666-	-6666-	-6666-	-6666-	-6666-	• 6666-	•6666-	• 6666-	-6666-	-6666-	• 6666-	-6666-	• * * * *		-6666-	-6666-	• 6 5 6 6-	-6666-	-6666-	• 6666-	• 6666-	-6666-	• 6666-	. 6666-	- 6666-	• 6 6 6 -	-6666-	- 444-	****
DENSI 1Y	(GRAN/M3)	.2809+00	.266/+00	.2571+00	• 2428 • 00	.2301•00	.2179+00	.2086+00	.2023+00	. 1956+00	.1885+00	.1808+00	.1732+00	. 1664+00	.1602+DC	.1543+00	.1483+00	.1429 . 00	.1370+00	.1315+00	.1266+00	. 1225+00	.1189.00	.1156+00	.1118+00	.1062+00	.1041.00	.9964-01	.9473-01	.8967-01	•8510-01	.0013-01	.7542-01	10-4607		.5974-01	.5671-01	.5387-01	10-S#15.	.4903-01	.4694-01	10-1611.	. 4319-01	.4112-01	. 3944-01	. 3771-01	. 3616-01	.3450-01	10-615	10-9615.
PRESSURE	(HILLIBARS)	.1992+00	. 1866+00	.1785+60	.1689•68	.1599+00	.1513+00	.1432+60	1372+00	.1314+00	.1258+00	•1204•60	.1152+60	00.5011.	.1055+00	.1009+00	.9650-01	.9220-01	.2810-01	-R-20-01	.8040-01	.7680-01	.7330-01	.7000-01	.6650-01	.4310-01	.5980-01	.5680-01	.5410-01	.5160-01	10-0164.	.4670-01	10-0444.			1670-01	3500-01	. 14.0-01	.3190-01	.3440-01	.2900-ul	.2770-01	-2640-01	.2510-01	.2490-01	10-0622.	10-0612-	.2070-01	1960-01	.1880-01
TEMPERATURE	1066 ()		-25.8	-31.3	-30.8	-31.1	-31.2	-34.1	-36.9	-39.1	-40.7	-41.2	-41.4	- 4 2 . 2	-43.8	-45.3	-46.5	-48.3	2.64-	-50.2	-51.9	-54.7	-58.5	-62.1	-65.9	-69,9	-73.0	- 74.6	- 74 . 2	-72.1	- 72.2	-74.1	-68.1	-65.6	2.04		-58.2	-51.2	-51.2	-51.2	-51.9	-58.4	-60.0	-63.5	2-19-	-62.5	-+3.2	-64.2	-65.1	-65.6
ND CIGFUION	10461	236	234	234	236	239	243	245	250	254	257	260	261	265	268	210	212	212	212	212	27]	271	270	269	269	269	269	210	271		272	112	274	215		···· //2 ····	2.76	916	216	215	275	944	274	271	27g	269	792	265	263	194
UTJAS GNIF	(FT/SEC)	206	229	260	263	266	268	270	271	273	275	276	276	276	275	273	271	268	263	24.0	256	255	255	255	256	260	201	265	21.8	2,70	271	275	275	276	513		25.1	283	278	276	275	271	612	266	263	263	256	251	248	244
A1 717:105	111		201000		20.3020	0004-2	205010	206000	20103	206903	26.90.00	21.15	211000	212002	21 3900	214000	215-10	216/107	211030	000612	219000	220000	221000	222010	22300	12409r	25000	126040	227150	100622	224000	230000	2 51000	232030			236030	231000	238070	239300	240030	600142	242730	24 3300	244770	245730	246300	247030	0000%2	249100

ODION

2**9**

0

ी इ

The second part of the second s

. 1

			•					,						;												0	R F	IG P	0	ia O	R	ļ	₽A)U	G	E]													
DEN POINT	(DE6 C)	-6666-	-6666-	-6666-	-6666-	•6666-	-6666-	-6666-	* 6 6 6 6 -	-6666-	• 6666-	-6666-	-6666-	-6666-	-6666-	•6666-	-6666-	°6666-	-6666-	-6666-	-6666-	• 6666-	- 6666-	. 6666-	-6666-	-6666-	-6665-	-6666-	. 6666-	• 6 6 6 6 -	• 6666-	-6666-	-6666-	• 6 6 6 -	-9999.		-0000-	-6666-	• 6666-	. 6666-	- 6666-	-6666-	- 3666-	-6666-	-6666-	-6666-	-6666-	- 6666	-6666-	-6666-
DENSITY	(GRAM/H3)	.3012-01	.2092-01	.2740-01	.2634-01	.2497-01	.2368-01	.2249-01	.2148-01	.2046-91	.1952-01	.1054-01	.1793-01	.1701-01	.1625-01	.1545-01	.1481-01	10-11+1-	.1357-01	10-9621.	.1243-01	.1190-01	.1139-01	.1090-01	.1043-01	-9987-02	· 9 560-02	• • • • • • • • • • • • • • • • • • • •	- 8 1 5 4 - DZ	20-4050		.7682-02	.6780-02	-5620-02	- 5000-02	110000	20 - D 20 - O 20	.2490-02	.2110-02	.1780-02	.1510-02	.1280-02	.1095-02	.9280-03	.7890-03	.6720-03	.5720-03	.4860-03	.4140-03	.3520-03
PRESSURE	(MILLIBARS)	10-0621.	.1710-01	.1620-01	.1550-01	.1470-01	.1400-01	1330-01	.1270-01	10-0121.	.1150-01	.1090-01	.10+0-01	-9900-02	.9400-02	.8900-02	.8500-02	.8136-62	.7788-02	. 1455-02	.7135-02	-6530-02	.6538-02	-6258-02	.5990-02	.5734-02	· 5466-02	20-525.	20-8205*	20-1184.	.4607-02		. 3770-02	.3220-02	-2750-02	20-002		1 1 60 + 0 2	.1169-02	-1010-02	. 4570-03	.7350-03	.6330-03	.5450-03	. * 700-63	.4050-03	.3480-03	.3010-63	.2610-03	*?260+D3
TEMPERATURE	(DEG C)	-66.2	-67.2	-67.2	-63.2	168.1	-67.2	-67.2	-67.2	-61.2	-67.9	-68.4	-69.9	-70.4	-71.7	-72.5	-73.2	-73.5	-73.9	-14.2	- 74 . 0	- 34 • 9	- 75 - 3	-15.6	- 76 . 0	-76,3	- 76 - 7	0.11-	5 • 1 - 1	[•11-	-78.1	-78.4	+ - 79.4	-80.3	-81.2			-81-1	- 79 . 9	-18.1	-11-5	-76.1	- 74 - 3	# 15 m	-70.6	-68.6	-46.9	-64 .U		-53°.
WIND DIRECTION	(DFC)	259	256	254	251	249	247	244	242	243	239		235	233	232	231	230	2 69	7 29	227	2.25	225	223	222	219	216	213	2 08	INZ	191	111	159	135	660	069			114	022	335	281	269	269	269	267	263	533	234	5-1	21.6
ULND SPEED	(FT/SEC)	241	236	233	229	228	224	221	219	216	214	212	211	209	206	204	2ú0	107	175	162	150	. 137	175	113	111	089	017	0066	6 c Ü	040	039	035	025	023	030	260		033	120	612	120	030	028	025	020	013	<u>003</u>	002	073	10 P
AL 11 TUDE	[[]]	25000	251000	252090	253000	254000	255700	256790	257000	256000	259200	242000	261370	262007	263030	264070	245030	266030	267930	268300	269200	27000	271000	272000	27,5000	274000	275000	0000012	277000	278000	279000	000082	283000	256000	289000		20400-	301020	30400	30 70 40	310000	31 3000	316070	000618	322000	3250 ₀₀	326000	331000	334000	337000

a state and a state of the second state of the

いちちょう いちょうちょう ちょうかい ちょうちょう ちょうちょう

.....

ţ

DEN POINT (DEG C) -9999.	-6666-	-6666-	-6666-	-6666-	-666-	-9999.	-6666-	-6666-	-0000-	-9999.	-0000-	-6666-	-6666-	-6666-	-6666-	-9999.	-6666-	-6666-	-6666-	-6666-	
DENSITY (GRAM/M3) ,3000-03	.2550-03	.2180-03	1860-03	1600-03	1370-03	.1170-03	1000-03	- a 7 00- 04	757 4-01				- 150-Da	10-02-04	3390-04	1000-04	.2670-04	2380-04	2130-04	1010-04	
PRESSURE (MILLIBARS) 1950-03	1690-03	10-02 **					7600-04												2 2 4 0 - 014		
TEMPERATURE (Dec C) 222			2.04		1.00	1 - 00 - 1		A • 77 -		0 • 2	- 1 - 2	6 U	15.3	21.3			2.4.6	1.42	9.2.4		0.40
WIND DIRECTION	141	6 4 1	165	5 = 1	135	1 29	126	107	112	116	122	127	133	118	122	126	13n	1 34	138	142	146
WIND SPEED IFT/SECD	155	100	364	9UG.	210	019	027	033	0 16	0+0	145	150	057	147	046	046	0.17	2 4 2	949	150	052 °
AL 717U94 1571	340070	101545	345035	349900	352300	355709	354000	341007	344730	36 (000)	120000	373000	3760:00	379005	192703	195739	394 7 03	191 100	344790	39700N	00000

TABLE 5. (Concluded)

original page is of poor quality • •

۰.

ヒ

Q.

STS-11 SRB DESCENT-IMPACT SURFACE SHIP OBSERVATIONS TABLE 6. **۲.**

•

: U.S.N.	Chin Rodetone					
	annisnavi dinis					
ion: 29 ^c Lat 78° Lor	itude Igitude					
Februa	ry 3, 1984					
1306 UT	24					
ce Observat	ion :					
Air Temp ^o F	Wet-Bulb oF	Dew Point ^o F	Pressure (MSL	qm (Wind Direction	Wind Speed Kt.
70.2	62.5	58.0	1018.0		100°	27
Observation :						
Clouds		Total S Cove	sky Tota rr Opaque	l Sky	Visibility (miles)	
1/10 Cumulu 4/10 Stratoc 1/10 Altocir	is at 2000 ft. umulus at 4000 rus at 10000 ft.	ft. 6/1(0 6/10	_	œ	
Observation :						
Sea Conditic Sea Moderat 1/10 Breakin 1/10 Foam Surface Sea	m: e - Code 4 ng Waves Water Temp. =	₩ ₽ 22.2°C (72°F)	ind Waves: req. Ht. ec. m. 4 2	Swell Dir. f Swell	Conditions: rom Which is coming 40°	Freq. Ht. Sec. m. 4 2

ORIGINAL PAGE IS OF POOR QUALITY 4

+ ,-

ŝ

あっちゃうろう いちなみ 一き いちょう あっちょうろう

P

THE FLIGHT TESTS OF THE SELECTED ATMOSPHERIC OBSERVATIONS FOR SPACE SHUTTLE VEHICLES TABLE 7.

......

~

٦,

ŗ

ł,

. 1

ŧ

;

;

delay due to adverse weather conditions. change observed at Pad just prior to L+0. Onsei of 17 min countdown Launch Comments of Meteorological Significance Count Down and Wind directional sea breeze ë Dir. (deg) 250 286 250 349 288 329 336 277 278 252 Inflight Conditions z Max. Wind Below 60,000 Speed (ft/sec) 119 146 155 117 143 158 76 30 8 33 44,300 40,600 38,200 36,300 45,000 47,900 46,100 45,900 45,100 47,100 Alt. Dir. (deg) 350^e 50^e 145^e 10.38 1418 345 355 269 268 125 10^e 183 o V N 83 63 55 Wind^b Speed (ft/sec) 10.3^e Surface Observations 22.0 35.0 16.4 8.8 14.0 11.8 15.2 27.0 27.0 7.0^e 8.0^e 5.8⁶ 98.4 12.7 5. 9^e 19.1 32.0 0.0 N 0.0 Rel. Hum. (8) 70 89 55 8 83 35 82 61 2 97 Thermodynamic^a Temp. (°C) 29 22 23 25 17 21 23 24 24 24 10.234^d Press: N/cm² 10.173 10.166 10.227 10.200 10.146 10.111 10.160 10.183 10.153 Launch Pad 39A 39A **39A 39A** 39A **39A** 39A 39A **39A 39A** Time (EST) Nearest Minute 1100^f 0733^f 0232^f 0100 1010 1100 0719 1330 1100 0800 Vehicle Data 11/12/81 11/11/82 11/28/83 Launch Date 6/27/82 8/30/83 4/12/81 3/22/82 6/18/83 4/4/83 2/3/84 (41-B) Challenger Challenger Challenger Challenger STS-1 Columbia STS-2 Columbia STS-3 Columbia STS-4 Columbia STS-9 (SL-1) Columbia Vehicle No. Columbia **STS-11** STS-7 STS-3 STS-5 STS-6 Seq. No. -~ 3 -5 ø 1 80 S 2

Pad 39A thermodynamic measurements taken at approximately 1.2 m (4 ft) above natural grade at camera site No. 1 min average prior to L+0 of 60 ft PLP (listed first) and 275 ft FSS winds measured above natural grade. Pressure measurement applicable to 21 ft above MSL unless otherwise indicated. Pressure measurement applicable to 14 ft above MSL.

\$

10 sec average prior to L+0.

Eastern Daylight Time.

30 sec average prior to L+0. ន់ ភំ ប់ ភូ ខំ ភូ ឆំ

ORIGINAL PAGE 19 POOR QUALITY OF

* * **

33

· Ĺ

Surface Synoptic Map at 1200 UT February 3, 1984 - Isobaric, Frontal, and Precipitation Patterns are Shown in Standard Symbolic Form.

Figure 1. Surface synoptic chart 1 hr before launch of STS-11.

ORIGINAL PAGE IS OF POOR QUALITY

500 Millibar Height Contours at 1200 UT February 3, 1984 Continuous Lines Indicate Height Contours In Feet Above Sea Level. Dashed Lines are Isotherms In Degrees Centigrade. Arrows Show Wind Direction and Speed at the 500 MB Level.

Figure 2. 500 mb map 1 hr prior to launch of STS-11.

()

19

Figure 4. Enlarged view of GOES-5 visible imagery of cloud cover at launch of STS-11 (1300 UT, February 3, 1984). Surface temperatures and wind barbs for 1300 UT are also included.

(•)'

ORIGINAL PASE 19 OF POOR QUALITY ころ、ころうちのないのないないないないないで、このでいいないないない

1. 1. S. S. S.

î

ì

5

Figure 5. Scalar wind speed and direction at launch time of STS-11.

ORIGINAL PAGE IS OF POOR QUALITY

ي ا

ċ

٩.

,

39

i

ORIGINAL PACE THE OF POOR QUILLET

STS-11 prelaunch/launch Jimsphere-measured wind directions (degrees). 7. Figure

*. -7.

~ *

いいのかのためのないのであっていいい

ちょうがい 日本 日本 日本 日本 一下 しょうしょう

Ŷ.

ORIGINAL PAGE OF POOR QUALITY

ł

З

ORIGINAL FAGE IS

いたいない いたち 大学 こうちょう シントレー しょうかん 大学ななな かんちょう

1 2 M

り

Figure 10. STS-11 temperature profiles versus altitude for launch (left) and SRB descent (right).

-L ·

モ

,

Figure 11. STS-11 scalar wind speed and direction for SRB descent.

44

F

ALT

ORIGINAL TRAVE TH OF POOR QUALITY

й 4 і

T A CAL

'n,

÷.

REFERENCES

- 1. Saturn Flight Evaluation Working Group: Saturn Launch Vehicle Flight Evaluation Report — Appendix A — Atmosphere (A separate report is prepared for each Saturn vehicle launch operation). George C. Marshall Space Flight Center, Alabama.
- 2. Johnson, D. L.: Summary of Atmospheric Data Observations for 155 Flights of MSFC/ABMA Related Aerospace Vehicles. NASA TM X-64796, December 5, 1973.
- 3. Johnson, D. L.: Atmospheric Environment for ASTP (SA-210) Launch. NASA TM X-64990. February 1976.
- 4. Johnson, D. L., Jasper, G., and Brown, S. C.: Atmospheric Environment for Space Shuttle (STS-1) Launch. NASA TM 82436, July 1981.
- 5. Johnson, D. L. and Brown, S. C.: Atmospheric Environment for Space Shuttle (STS-2) Launch. NASA TM 82463, December 1981.

~~~!!!

1

- 6. Johnson, D. L., Brown, S. C., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-3) Launch. NASA TM 82480, April 1982.
- 7. Johnson, D. L., Hill, C. K., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-4) Launch. NASA TM 82498, July 1982.
- 8. Johnson, D. L., Hill, C. K., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-5) Launch. NASA TM 82515, March 1983.
- 9. Johnson, D. L., Hill, C. K., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-6) Launch. NASA TM 82529, May 1983.
- 10. Johnson, D. L., Hill, C. K., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-7) Launch. NASA TM 82542, July 1983.
- 11. Johnson, D. L., Hill, C. K., Turner, R. E., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-8) Launch. NASA TM 82560, October 1983.
- 12. Johnson, D. L., Hill, C. K., and Batts, G. W.: Atmospheric Environment for Space Shuttle (STS-9) Launch. NASA TM 82572, January 1984.
- 13. Justus, C. G., et al.: The NASA/MSFC Global Reference Atmosphere Model Mod 3 (with Spherical Harmonic Wind Model). NASA CR-3256, March 1980.
- 14. Smith, O. E. and Weidner, D. K.: A Reference Atmosphere for Patrick AFB, Florida, Annual (1963 Revision). NASA TM X-53139, September 23, 1964.

45

「おう」の時日をすみ

a lida kuditu dari a

ł