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TECHNICAL MEMORANDUM

INVESTIGATION OF THERMOSPHERIC WINDS RELATIVE TO SPACE
STATION ORBITAL ALTITUDES

. INTRODUCTION

Thermospheric winds related to the Space Station orbital altitudes is one of the potential environ-
mental disturbances which should be assessed relative to design requests is addressed in this report.

. Although the orbital altitudes are not yet precisely defined due to the evolutionary configuration of the
Space Station, the lower and upper limits of the orbital altitudes will be based on the constraints set by
the drag and orbital decay of the Space Station and the payload delivery criteria of the Shuttle. With

. these constraints, the lower and upper limits of the orbital altitudes of the Space Station may be between
250 n.mi = 460 km and 300 n.mi = 555 km. Szirmay and Blair (1983) indicate the Space Station will
experience environmentai disturbances from the atmosphere, gravity gradient, the magnetic field and solar
radiation. It will also experience torques due to boost from lower altitudes to higher altitudes. In addi-
tion, the on orbit aerodynamic torque varies with the ambient atmospheric density and density depends
not only on altitude but solar activity, Turner and Vaughan (1983).
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The neutral atmosphere is discussed in Scction IL. The discussion of the Space Station’s equation
of motion and the summary of the data on the thermospheric winds at orbital altitudes are presented in
Sections III and IV. Section V gives the recommmendations of magnitudes and directions of thermospheric
winds at orbital altitudes.
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Il. THE NEUTRAL ATMOSPHERE

The thermosphere is that region above the mesopause extending from about 80 km to about
600 km. Information about thermospheric winds are derived from (1) satellite drag data, Smith and West
(1982); (2) Millstone Hill incoherent scatter radar measurements of the ionospheric parameters, Babcock
and Evens (1979), Roble, et al. (1977, 1974), Evans (1978); (3) Fabry-Perot Interferometer (FPI), Hays,
et al. (1979), Hernandez and Roble (1977), Killeen, et al. (1982), Rees, et al. (1982), Hernandez, et al.
(1979), Jacka, et al. (1978), Cocks and Jacka (1978), and Bates, et al. (1978); (4) Sounding rockets,
Lloyds, et al. (1971); Ground-based optical Doppler technique, Smith, et al. (1980), and Hernandez and

. Roble (1977); (5) DEB-Winds and Temperature Spectrometer (WATS), Spencer, et al. (1982), and (6)

Atmospheric Explorer C data of ion temperature and drift velocities, St. Maurice, et al. (1982).
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- Based on these measurements, models of the thermospheric winds, such as Three Dimensional
Circulation Model, Dickinson, Ridley and Roble (1981), NCAR’s Thermospheric General Circulation
Model (TGCM), Roble, et al. (1982); 0GO-6 Empirical Thermospheric Model, Antoniadis, (1976); Mass
Spectrometer and Incoherent Scatter (MSIS) model, Babcock, Jr., et al. (1979); Global Thermosplheric
Model of Winds and Temperature, Neal (1975); Full Non-linear Treatment of the Global Thermospheric
Wind System, Plum (1974); Winds Generated by Absorption Extreme Ultraviolet Radiation (EUV),
Strauss, et al. (1975); Global Thermospheric Dynamic Calculations, Hernandez and Roble (1979); Model
Computations from Incoherent Radar Scatter Data, Bates (1977); and Model lon Drag Effects on
Thermosphere, Rishbeth (1978), were developed and the distribution of winds as a function of time,
altitude, and latitude were calculated.
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In particular, Dickinson (1981) has indicated that the dominant drive of the atmospheric processes
in the thermosphere is solar radiation at wavelengths less than 0.10 um (the extreme ultraviolet or EUV).
This radiation dissociates molecules into atoms and ions and induces their decomposition into lighter
species. It also deposits considerable heat into neutral species. Dickinson, in his Thermospheric General
Circulation Model (TGCM), has good agreement between his mode: and actual data. According to
Dickinson, et al. (1981), the difference between the dynamics structure of the upper and Jower atmosphere
is mainly due to the difference of solar heating in optically thick and optical thin regions. Smith (1982)
reported some heating results from waves in the lower atmosphere. Heated air rises and flows towurds
cooler regions where it descends, just as in the troposphere. Above 300 km viscosity tends to make the
motion uniform i.e., slablike. Collisions with ions tend to reduce the velocity difference between ions
and neutrals, the effect is strongest in the sunlight ionosphere where the ion density is highest. The ions
are tied to the geomagnetic field or drift where there are electric fields, as in the polar region. In geo-
magnetically quiet times, the flow is away from the sunlit region.

: Anomolous strong winds are associated with geomagnetic storms. Increases in winds as well as

g atmospheric density are noted in the upper aimosphere during geomagnetic storms. As reported by ‘

Spencer, et al. (1982), the Dynamics Explorer 2 made possible for the first time, global in situ measure-

- ments of upper thermosphere neutral particle winds. Zonal and vertical wind components and the kinetic

temperature are being measured by the Wind and Temperature Spectrometer (WATS), Spencer, et al.

(1982), while the Fabry-Perot Interferometer, Hays, et al. (1981), provides the meridional component.

By appropriately combining these wind components, a measure of the vector wind along the spacecraft

orbit was obtained and presented by Killeen, et al. (1981). The altitude range of these wind data extends

; from perigee (~ 300 km) to about 750 km. Spencer, et al. (1982), illustrates the zonal data in the south

polar region of the global flow system. The peak velocity exceeds 1 km/sec in the polar region while at d

: mid to low latitudes, the zonal and vertical components are seen to be negligibly small. 2
:
{

-

E Smith and West (1982) indicated that near the auroral oval a horizontal wind speed on the order
) of 1.5 km/sec was observed to occur at approximately 150 km altitude simultaneously with a large
increase in the ambient density during a very large magnetic storm. Theoretical calculations suggest the
possibility of associated vertical wind speeds on the order of 50 to 75 m/sec. Measurements as shown in .

Figure 1 have been made on quiet, light, moderate and extreme geomagnetic storms by Babcock (1979), h
Roble, et al. (1982), Killeen, et al. (1982), Smith, et al. (1980), Hernandez and Roble (1977), Kelley,
et al. (1976). !S

Figure 1 is a summary of the investigation of measured thermospheric winds and model thermo- {
spheric winds where for quiet days, the approximate velocities are from 40 to 200 m/sec. These were
observed by Roble, et al. (1978), Spencer, et al. (1982), Hays, et al. (1979), Hernandez and Roble i
(1977), Lloyd, et al. (1971), Rees, et al. (1982), Jacka, et al. (1978), Cocks, et al. (1978), Roble, et al.
(1977), and Kelley, et al. (1976), Bittencourt and Tensley (1977), Emery, (1978), Piereira, (1980), and
Sawaki (1981). For geomagnetic storms, the approximate categories are quiet days, minimum (light),
moderate (average), and very high activity (extreme) ranging from 40 to 200 m/sec, 200 to 400 m/sec,
400 to 650 m/sec, and 650 m/sec and above, respectively. Section IV presents in detail a summary of
data on the thermospheric winds at the planned orbital altitudes for the Space Station.
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It is generally observed that the extreme wind velocities (> 400 m/sec) are associated with 3
magnetic substorm phenomena at high magnetic latitudes. It is rare that winds > 400 m/sec are observed
equatorward of a magnetic latitude of ~ 50 deg. The extreme winds are believed to be produced by
electric fields created during the magnetic substorm process.
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111 D'ISCUSSION OF EQUATION OF MOTION AND THE ATTITUDE CONTROL
PROVIDED BY THE FORCING FUNCTION, T,

The orbital aerodynamics environment and the characteristics of the control systems for the
initial station and operation are influenced by wind flow characteristics. The NASA Task Force’s initial
space station baseline configuration is illustrated in Figure 2. Some of NASA’s questions being addressed
in solving the space station’s equation of motion (E. Mettler, 1983) are as follows:

1) Varying orbital mass properties and migrating center of mass (c.m.) location due to station
buildup and Shuttle docking.

2) Time-varying dynamic disturbances, such as torques and center of gravity, vary with operations
control modes/crew activities, linear accelerations/vibrations. The winds would be another time-varying
disturbance.

3) Flexible structures, such as solar arrays, raditators, berthing truss, remote manipulator system
(RMS) and track-servicing lines, and payload interfaces.

4) Inaccuracies in structural damping,

5) Dynamically ““dirty” environment (jitter, attitude motion) for users where aerodynamic dis-
turbances should be minimized,

The core station rigid-body controller is provided by the attitude control (T,). The basic equa-
tion of motion and the forcing function T is

Mx + Dx + Kx =

CCHOOO

ORIGINAL PAGE 1§
where OF POOR QUALITY

T2 = -KT (KR ).(4 + KP X4)

and

x4 =0y
where

M = mass
4
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X = acceleration of displacement
D = damping coefficient
x = velocity of displacement
K = spring rate

X = displacement
Ty = control parameter (forcing function)
Kt = control system constant (torquer gain)
KR = contro] system constant (rate gain)
Kp = control system constant (position gain)
Ref. = reference attitude

X4 = measured displacement

I = moment of inertia

S = Laplace transform

6, = peak attitude error.

Figure 3 is the control block diagram.

Some of the space station design obsiacles being studied arc (Nicaise, 1983):

1) Despin of radiators for earth-fixed mpdes.

2) Control moment gyros (CMGs) are located on central body which is independent of radiator
or solar array orientation.

3) Solar arrays rotate individually as opposed to a single unit,
4) Solar arrays may be repositioned from early to final configuration.

Solar array positioning mday be effected by thermospheric winds because of large center of
pressure (cp) to center of gravity (cg) offset on the early missions. The on orbit wind environment
affects the wind varying dynamic disturbances of torque and drag and is presented in Section V. Section
V also gives the recommendations of the wind magnitudes and directions of thermospheric winds at

orbital altitudes.

TR e e st i MRS 7



iy P, A D v g i i o o b e - e i b pm—

e = a= - B T e .\.l?.\.

SR S R B T T S FRPEHE Y RS SRR S St e a6 T TR ¢ T el e e, bR

LY an gt Mg ket g

. "wreIgdelp Y50[q [0JuU0) °f aundg =
, Uyly +siuty+,81 434
Lydy A7
» -Jl- NOIS3AQ WILSAS HOd4 33103738 IV Uy mdy "Ly
83
23
-8
£5
o
o w - Hy
(e o]
s z Y, y
- — - st AIOOII 1 d -
Zg t Nm i ﬁ A A X 4 434
JONvEHNLSIQ
o
M
= [) * » ]
d



O SRR PO

s o e B a W BBl e

IV. SUMMARY OF DATA ON THE THERMOSPHERIC WINDS AT ORBITAL
ALTITUDES OF THE SPACE STATION

Information on the thermospheric winds at the orbital altitudes is given in MSFC’s Space and
Planetary Criteria Guidelines for Use in Space Vehicle Development, 1982 Revision (Volume 1) by Smith
and West (1983). The report indicates the predicted meridional winds become large at night approxi-
mately 225 m/sec above 300 km at 0200 local time (LT) and then decrease to about 100 m/sec above
300 km at 1400 LT because of the increase in ion drag. Wind speeds at 300 km altitude and 40-deg
latitude, average 59, 20 and 5 m/sec equatorward at summer solstice, equinox and winter solstice at
higher altitudes, the increase in ion drag gives lower wind speeds.

King-Hele and Walker (1982), from their orbit satellite analysis of the upper atmosphere zonal
winds from 85 satellite values, illustrate their results in Figure 4. The average values in Figure 4 arc
rather widely spread as would be expected from the wide spectrum of conditions taken together as the
average. As the authors indicate, the curve drawn through them seems to provide a reasonable mean,
this is called the average/average curve, that is averaged in local time (LT), and averaged in season.

The curve is made to decrease to near 1.0 revolutions per day (rev/day) at 120 km and is
arbitrarily assumed to hav. zero slope at 700 km.

All the evening points in Figure 4 are denoted by upward-pointing triangles, moming values by
downward-pointing triangles and average values by circles, All the “evening” points i Figure 4 are above
the average/average curve, and all the “morning” curves are drawn as parallel as possible to the average/

average curve and the authors assume that the distinction ceases to operate at heights below about 120
km, so that the curve merges there,

King-Hzle, et al., (1983) defines three regimes of local time — morning, evening, and average.
“Mormning” applies when the local time at perigee, and in the region near perigee where the drag is
important, is predominantly (> 75 percent) between local times of 06 and 12 hr. *“Evening” applies
when the local time is predominantly between 18 and 24 hr. “Average” covers all the remaining

situations, namely:
1) Local time predominantly O to 6 hr;

2) Local time predominantly 12 to 18 hr;

3) Local time covering several 6 hr intervals (often 24 hr cycles) and not appreciably biased;

4) Near-circular orbits with eccentricity usually less than 0.006.

Unfortunately, the satellites do not place themselves neatly into required categories, and it was
sometimes difficult to choose the correct regime. So the authors have done their best to assign each
value of A (revolutions per day) to th= correct category of local time.

Simularly the authors define three seasonal categories — summer, winter and average. “Summer”
applies when the local seasonal situation of perigee is predominantly within 1.5 months of the summer

solstice. “Winter” applies similarly for the winter solstice. ‘‘Average™ covers the remaining situations,
namely:

v
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1) Date predominantly between 6 February and 6 May; OF POOR QUALITY

2) Date predominantly between 6 August and 6 November;

3) Values for equinox would appear in the “average™ category, but the term “average” is
preferable as so many results are obtained from analysis of orbits of several years.

The dynamical behavior of the upper atmosphere is presented by King-Hele, et al. (1983) in
Figure 5 and should be of value as a guide to the general behavior of the upper atmosphere.

As the authors indicate, several of the curves in Figure 5 are tentative but the pattern that emerges
is consistent. The curves for morning and evening represent the average conditions between 06 and 12
hr, or between 18 and 24 hr, and not the extremes; similarly for summer 2 .4 winter. The average LT
average season curve and the thermospheric wind at the lower limit of 460 xm is about 40 m/sec (east
to west wind) and at the upper limit of 555 km, the velocity is approximately 75 m/sec (east to west
wind). It is important again to point out these orbital altitudes and velocities are of a value as a guide to
the general dynamical behavior of the thermospheric winds in the upper atmosphere.

V. RECOMMENDATIONS OF MAGNITUDE AND DIRECTION OF THERMOSPHERIC
WINDS AT ORBITAL ALTITUDES

King-Hele, et al,, defined the three seasonal categories of thermospheric winds, summer, winter
and average. As pointed out in hus report, the pattern from satellite data is tentative but the pattern that
emerges is consistant, according to King-Hele.

The wind direction and magnitude recommended at the lower altitude of 460 km for the space
station is presented in Figure 5 and from Table 1.

TABLE 1. WIND DIRECTION AND MAGNITUDE OF THERMOSPHERIC
WINDS AT 460 km

Time Magnitude (m/sec) Direction
Evening Winter 115 West to East
Evening Average Season 40 West 10 East
Average Local Time 40 East to West
(average season)
Mornirg Average Scason 80 East to West

The drag and torque are proportional to the square of the orbital velocity of the space station
and the thermospheric wind. The orbital velocity (V) of the space station is approximately 7000 m/sec

and the peak velocity of the thermospheric wind (V) is 115 m/sec. This is approximately a 3.2 percent
change in the orbital velocity, assuming a tail wind.

An extrerae wind of 900 m/sec during extreme solar activity may occur at high latitudes, Killeen, et
al. (1984). This high drift could last for approximately 1/2 day. It is unlikely to have this type of event occur
more than once a year.
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As has been pointed out, it has been generally observed that the extreme wind velocities (> 400
m/sec) are associated with magnetic substorms phenomena at high magnetic latitudes. It is rare that
winds > 400 m/sec are observed equatorward of a magnetic latitude of ~ 50 deg. This is approximately
a 10.5 percent change in the orbital velocity assuming a tail wind.

The wind magnitudes and directions recommended at the upper orbital altitude of 555 km for the
space station as presented in Figure S is listed in Table 2,

TABLE 2. WIND DIRECTION AND MAGNITUDE OF THERMOSPHERIC WINDS AT 555 km

Time Magnitude (m/sec) Direction
Evening Winter S0 West to East
Evening Average Season 20 East to West
Average Local Time 70 East to West
(Average Season)
Morning Average Season 100 East to West

At the upper altitude of 555 km, an east to west wind of 100 m/sec is the largest wind magnitude
in Table 2. An east to west component is approximately a 2.9 percent change in the orbital velocity.
assuming a head wind.

Using King-Hele’s Figure 5, a typical shear at 460 km, a A change in wind velocity of 10 m/sec
occurs between a scale of distance of 10 km,

An extreme wind of 900 m/sec wind during extreme solar activity may occur at high latitudes,
Killeen, et al. (1984). This high drift could last for approximately 1/2 day. It is unlikely to have this type
of event occur more than once a year.
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