https://ntrs.nasa.gov/search.jsp?R=19840017154 2020-03-20T21:54:54+00:00Z

CASE File Copy N84-25222

VECTOR WIND GUST MODEL

FINAL REPORT

(For the Period February 14, 1979 - April 13, 1984)

Contract NAS8-33433

*- 78

the state of the s

in the second

April 13, 1984

VECTOR WIND GUST MODEL

FINAL REPORT

(For the Period February 14, 1979 - April 13, 1984)

Contract NAS8-33433

April 13, 1984

Prepared By

đ

Stanley I. Adelfang Computer Sciences Corporation 555 Sparkman Drive, Suite 1200 Huntsville, AL 35805

Prepared For

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812

ACKNOWLEDGEMENTS

The studies described in this final report were prepared for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center (NASA/MSFC). The principal investigator would like to express his appreciation to his colleague, Mr. O. E. Smith, of NASA/MSFC for sharing his extensive knowledge and experience in application of statistics to meteorology and aerospace engineering and Dr. J. D. Tubbs of the University of Arkansas for his collaboration in studies of the five-parameter bivariate gamma probability distribution. Computer programming support was provided by Wade Batts, Jackie Gibson, Joseph Willett, Beverly Evans, and Randy Wolff of Computer Sciences Corporation (CSC). The efficient and accurate technical typing of Mrs. Kay South of CSC is greatly appreciated.

LIST OF ILLUSTRATIONS

ana an

Figure		
1	Schematic of Filtering Process	7
2	Absolute u and Absolute v Component Perturbation at 12 km (VAFB Winter, VAFB Design January, KSC Design February)	10
3	Absolute u and Absolute v Component Perturbation at 12 km (VAFB Winter, VAFB Design February, KSC Design February)	11
4	Absolute u and Absolute v Component Perturbation at 12 km (VAFB Transition, VAFB Design November, KSC Design April)	12
5	Absolute u and Absolute v Component Perturbation at 12 km (VAFB Transition, VAFB Design October, KSC Design April)	13
6	Absolute u and Absolute v Component Perturbation at 12 km (VAFB Summer, VAFB Design July, KSC Design July)	14
7	Probability Distribution of Absolute-u Component Perturbation in the 420-2470 Wavelength Band at 12 km During Summer and Winter	15
8	Probability Distribution of Absolute-v Component Perturbation in the 420-2470 Wavelength Band at 12 km During Summer and Winter	16
9	Probability Distribution of Absolute-u Component Perturbation in the 420-2470 Wavelength Band at 12 km During Transition Season	17
10	Probability Distribution of Absolute-v Component Perturbation in the 420-2470 Wavelength Band at 12 km During Transition Season	18
'11	Schematic of Equal Area Sectors	23
12	Unrotated and Maximum Correlation, Cape Canaveral Florida, Annual	26

LIST OF ILLUSTRATIONS (Cont'd.)

13	Maximum Wind Component Absolute Correlation	
	Achieved by Rotation with Respect to the	
	Meteorological Coordinate System • • • • •	27
14	Rotation (Deg.) with Respect to the Meteorologi-	
	cal Coordinate System to Achieve Maximum Wind	
	Component Absolute Correlation for an Annual	
	Data Sample • • • • • • • • • • • • • • • • • • •	28

... j

~ ')

LIST OF TABLES

773

1

ger ser

Table	
1	Filter Weights, h _i , for Low-Pass Filters I and II
2	Discrete Gust Modulus, A, for Launch Vehicle Design Criteria 20
3	Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 420-2470 m, Non-Dimensionalized u' or L _u . 22
Al	Scale Parameter B at 12 km • • • • • • • • • • • • • • • • • •
A2	Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or L _u . , , A-2
A 3	Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v or L _v A-3
A 4	Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized u' or L _u • • • A-4
А5	Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized v ' or L _v • • • A-5
A 6	Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or L _u • • • • A-6
Α7	Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v' or L _v • • • • A-7
A 8	Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized u' or L _u • • • A-8
A9	Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized v' or L _v • • • A-9

v

LIST **OF TABLES** (Cont'd.)

Table

633

1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1

., Ĵ

Al 0	Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or L _u A-10
Al 1	Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v' or L _v • • • • A-11
Al 2	Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized u' or L, • • • • • • • • • • • • • • • • • •
Al 3	Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, $12~{\rm km}$, Wavelength Range, $420-2470~{\rm m}$ Non-dimensionalized $\left v'\right $ or L_v .
Al4	Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or L _u
A15	Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v' or L _V A-15
Al 6	Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized u' or L _u A-16
Al7	Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized v' or L _v • • • A-17
A18	Observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or L _u · · · A-18
A19	Observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v' or L _v • • • • • • • • • • • • • • • • • • •
A20	Observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wavelength Range, 420-2470 m, Non-dimensionalized u' and L, A-20

vi

Table

10000

- A22 Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized u' or Lu . . . A-22
- A23 Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized | v'| or L_v A-23
- A24 Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 420-2470 m, Non-dimensionalized u' or L₁₁ A-24
- A25 Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized | v'| or L_v . . . A-25

vii

I. INTRODUCTION

The purpose of this report is to summarize studies performed under contract NAS8-33433 during the period April 14, 1979, through April 13, 1984. These studies have been described in monthly and annual reports, in national meeting proceedings, and in the open literature. If the previously published work has not been revised, it will be abstracted in Section II of this report. Revised or expanded work or work that has not yet been published will be included in Section III. Conclusions and recommendations are given in Section IV.

A.

Abstracts of annual reports, papers published in conference proceedings, and papers published in the open literature are presented in chronological order below.

Adelfang, S.I., and Evans, B.A. (1980), "Vector Wind Profile Gust Model," Annual Report for Period 4/79 through 4/80. NASA CR-161475, Marshall Space Flight Center, Alabama.

A statistical model based on the gamma distribution is proposed for wind perturbations observed in detailed vertical wind profiles. Model parameters are estimated from Jimsphere wind profile data. Digital filtering is used for extraction of wind perturbation data in selected wavelength bands. The probability distribution of wind perturbations in four wavelength bands is derived. The analytical techniques established in this study are applicable to Space Shuttle launch analyses.

Adelfang, S.I., and Smith, O.E. (1981), "Vector Wind Profile Gust Model," Annual Report for Period 4/80 through 4/81. NASA TM-82441, Marshall Space Flight Center, Alabama.

The further development of a vector wind gust model Shuttle suitable for Space launch analysis is Emphasis is given to verification of the described. hypothesis that gust component variables are gamma distributed, gust modulus is approximately Weibull distributed, and zonal and meridional gust components A method of testing are bivariate gamma distributed. for bivariate gamma distributed variables is described, two distributions for gust modulus are proposed, the results of extensive hypothesis testing of one of the distributions are presented, and the validity of the gamma distribution for representation of gust component variables is established.

Smith, O.E., and Adelfang, S.I. (1981), "Gust Model Based on the Bivariate Gamma Probability Distribution," Jour. Spacecraft and Rockets, Vol. 18, No. 6, Nov-Dec 1981, p. 545. Paper also presented at the AIAA 19th Aerospace Sciences Meeting, St. Louis, January 1981.

The conventional approach to gust modeling for vertically rising vehicles involves the application of a digital filter to a sample of Jimsphere wind profiles, defining the resulting residual amplitudes as gusts,

2

ž

and developing statistical summaries or power spectra of the gusts. In this paper a new approach models the largest gust amplitude and gust length using the properties of the bivariate gamma distribution. The gust amplitude and gust length are strongly dependent on the filter function. Gust amplitude increases with altitude and is larger in winter than in summer.

Smith, O.E., Adelfang, S.I., and Tubbs, J.D (1982), "A Bivariate Gamma Probability Distribution with Application to Gust Modeling," NASA TM-82483, Marshall Space Flight Center, Alabama. Elements of this report were included in a paper presented at the American Statistical Association National Annual Meeting, August 16-19, 1982, at Cincinnati, Ohio. This paper is being reviewed for publication in Communications in Statistics.

A five-parameter bivariate gamma distribution (BGD) having two shape parameters, two scale parameters, and a correlation parameter has been derived. This general BGD is expressed as a double series and as a single series of the modified Bessel function. This general BGD reduces to the known special case for equal shape parameters. The conditional distributions are of special interest. An approximating distribution for the modulus of two orthogonal independent gamma distributed variates has been derived. Practical functions for computer evaluations for the general BGD and for many special cases are presented. Problems in parameter estimation and hypotheses testing are discussed. Applications of the general BGD are to be found in reliability theory, signal noise, and meteorology. In this paper, applications to wind gust modeling for the ascent flight of the Space Shuttle are illustrated.

Adelfang, S.I., and Smith, O.E. (1983), "Information Retrieval from Wide Band Meteorological Data, An Example," Proceedings of the Ninth Conference on Aerospace and Aeronautical Meteorology, June 6–9, 1983, Omaha, Nebraska. American Meteorological Society, Boston, Massachusetts.

New concepts for analysis of wind perturbations in vertical wind profiles are applied to a sample of detailed wind profiles. Digital filters are used to extract sets of band-pass filtered profiles with essentially non-overlapping wavelengths. Probabilities are calculated over different geometric regions within the domain of bivariate gamma distributed variables; probabilities over the same regions are also calculated from

3

a

the observed distributions and a comparison is presented to illustrate the accuracy of the statistical model. These and other statistical results are calculated from samples of Jimsphere wind profiles at Cape Canaveral, Florida, for various wavelength bands, altitudes, and seasons.

J

III. NEW OR REVISED STUDIES

A. Wind Perturbation Statistics

Design and performance analyses of launch vehicles requires realistic assessment of wind profile perturbations. To satisfy this requirement, statistics of wind perturbations have been calculated for two Space Shuttle launch sites: Cape Kennedy, Florida (KSC), and Vandenberg Air Force Base, California (VAFB).

Data

1

Three data bases are available for analysis: two from VAFB and one from KSC. At KSC, during the 1960's, there was an intensive Jimsphere wind profile measurement program in connection with the Saturn/Apollo program and other NASA research and development efforts (Vaughan, 1968). A data set for design and simulation studies consisting of 150 profiles per month was selected from the large Jimsphere data base at KSC (Brown, 1978). The profiles were subjected to quality control procedures and data editing was used when obvious data errors were found: this data base is referred to as the KSC design sample.

At VAFB, the number and quality of Jimsphere profiles was not up to the KSC standard **so** that it was necessary at first to create detailed profiles by supplementing available rawinsonde data with perturbations generated by a turbulence model developed by Fichtl and Perlmutter (1976). This data base, also consisting of 150 profiles per month, is known as the VAFB design sample. Recently, as more VAFB Jimsphere profiles became available, another data base was assembled consisting of 150 edited profiles for each of three seasonal periods: winter, summer, and transition. This data base is referred to as the VAFB Jimsphere seasonal data.

All the wind profiles utilized were band-pass filtered to obtain perturbations in the 420-2470m wavelength band. This wavelength band, in combination with the wide range of launch vehicle velocities, translates into a temporal frequency range that includes vehicle control system response modes and coincident structural loading. A general description of the digital filtering technique is given by Demandel and Krivo (1971). To obtain band-pass filtered profiles in the 420-2470m wavelength range, it was necessary to execute two low-pass filters. A schematic of the filtering process is

5

illustrated in Figure 1. The filter weights are listed in Table 1.

<u>Statistics</u>

The purpose of the statistical analysis is to determine if significant differences exist in the magnitude of wind perturbations at KSC and VAFB. Since two data bases exist for VAFB, it is necessary to establish a basis for choosing one for future engineering application. Since the VAFB seasonal data is based on Jimsphere data, it is preferred at the outset with one reservation: At the present time there is insufficient Jimsphere data to assemble a monthly design sample. If the seasonal data is shown to represent the expected variability, monthly data will not be required for engineering applications.

The u and v component absolute perturbations in the 420 to 2470m wavelength band at 12 km for the various data bases are illustrated in Figures 2 through $\boldsymbol{6}$. There is a clear indication that the largest perturbations are observed in Jimsphere wind profiles during the winter and transition periods (KSC design, February and April; VAFB, winter and transition).

As illustrated in Figures 7 and 8, wind perturbation percentiles based on Jimsphere profiles at VAFB are larger in winter and smaller in summer than percentiles based on simulated detailed wind profiles (VAFB design). Thus the variation between winter and summer percentiles is much larger for distributions based on Jimsphere wind profiles. The choice of VAFB data (either simulated or Jimsphere) leads to different conclusions when comparison with KSC data is attempted. VAFB winter percentiles are much larger than KSC February design percentiles; the reverse is true if VAFB January or VAFB February design data are used. VAFB summer component percentiles agree quite well with KSC July V design percentiles; VAFB summer u component percentiles are consistently larger than KSC July design percentiles. If VAFB July design data are used, the percentiles are consistently larger for both components in comparison with KSC July design percentiles.

As illustrated in Figures 9 and 10, the choice of VAFB data for the transition period between winter and summer also affects the comparison with KSC. Distributions based on several transition months were calculated from VAFB design data. The u component distributions are in good agreement with KSC design distributions for April. In contrast, the u component distribution based on VAFB Jimsphere data during

6

ş

" | |

Figure 1. Schematic of Filtering Process

7

a

Table 1	ι.	Filter	Weights,	h _i ,	for	Low – Pa	ass	Filt	e r s	Ι	and	II
---------	----	--------	----------	------------------	-----	----------	-----	------	-------	---	-----	----

		Filter I			Filter	II
Altit	ude	h_i	Filter <u>Weight</u>	Altitude	hi	Filter Weight
1 + + + + + + + + + + + + +	25m 50m	h ₀ h _{+1,-1} h _{+2,-2}	.116360050 .112681533 .102183235 .086369542 .067415386 .047750214 .029618173 .014711243 .003949048 002560992 005565475 004229394 002423366 000884042 .000259004 .00022211 000405784 000771288 000925530	Z_0 (2) Z_0 + 250m Z_0 + 500m Z_0 + - Z_0 + - Z_0 + 1250m	h0 h+1,-1 h+2,-2 h+5,-5	0203331671 .182602840 .130080937 .068650095 0020649325 003649032

 $(1)_{Z_0} = 500, 525 \dots 19,500m$ $(2)_{Z_0} = 1750, 1775 \dots 18,250m$

a

~ 1

transition indicates larger perturbations at the extreme percentiles. The v component distributions based on VAFB design data indicate smaller perturbations in comparison with KSC design data: there is better agreement between VAFB transition and KSC design.

In conclusion, the probability distribution of wind perturbations at VAFB is strongly dependent on the choice of data base; the choice also affects the results of comparison with KSC. The largest perturbations are found in the VAFB Jimsphere winter data. These perturbations are larger than those found in the KSC design Jimsphere data base. They are also significantly larger than perturbations in the VAFB design data base. It is recommended that for future engineering applications, the VAFB design data base be revised by substitution of VAFB seasonal data to include these large perturbations.

a

Figure 2. Absolute u and Absolute v Component Perturbation at 12 km (VAFB Winter, VAFB Design January, KSC Design February)

í

100

- ...i

Figure 3. Absolute u and Absolute v Component Perturbation at 12 km (VAFB Winter, VAFB Design February, KSC Design February)

-

Figure 4. Absolute u and Absolute v Component Perturbation at 12 km (VAFB Transition, VAFB Design November, KSC Design April)

. j

Figure 5. Absolute u and Absolute v Component Perturbation at 12 km (VAFB Transition, VAFB Design October, KSC Design April)

ł

Figure 6. Absolute u and Absolute v Component Perturbation at 12 km (VAFB Summer, VAFB Design July, KSC Design July)

ł

ŝ

...3

Figure 7. Probability Distribution of Absolute-u Component Perturbation in the 420-2470 Wavelength Band at 12 km During Summer and Winter

a

 ~ 3

1

....]

Ú

Figure 8. Probability Distribution of Absolute-v Component Perturbation in the 420-2470 Wavelength Band at 12 km During Summer and Winter

i

1

-

Figure 9. Probability Distribution of Absolute-u Component Perturbation in the 420-2470 Wavelength Band at

12 km During Transition Season

Figure 10. Probability Distribution of Absolute-v Component Perturbation in the 420-2470 Wavelength Band at 12 km During Transition Season

ł

B. Discrete Gust Criteria

The new data described in Section III.A and in previous reports abstracted in Section II can be the basis for revision of existing discrete gust criteria guidelines for use in aerospace vehicle development (NASA TM 78118). To enhance utilization, the guidelines were established by treating gusts in two idealized forms: a quasi-square wave (QSW) non-repetitive form and an approximate sinusoidal form. The **QSW** form is associated with a length range of 60 to 300m; this is equivalent to a wavelength range of 120 to 600m for a periodic perturbation. It is appropriate to use the later wavelength range for comparison with other data. The QSW form has an amplitude that is independent of wavelength and varies from 6 to 9 m/s depending on altitude. At altitudes above 1 km, the amplitude is a constant, 9 m/s. Peak-topeak amplitudes associated with the sinusoidal form are considered at best to be preliminary, but are included in this discussion for comparison with the QSW form and results of The principal deficiency of the two forms is this study. the lack of supporting statistical data that justify selection of the gust magnitudes. The results of this study will contribute to alleviation of this deficiency. In addition, there is an indication that future discrete gust criteria can include launch site and seasonal variability, if required.

Discrete gust amplitudes obtained from existing criteria and this study are summarized in Table 2. The 99 percentile values listed under IV were calculated from perturbation distributions at 12 km. Other distributions at 4, 6, 8, 10, and 14 km indicated smaller perturbation (Smith et al., 1982). The large perturbations in the vicinity of 12 km are associated with large wind shear and flow disturbances in the vicinity of the jet stream. Estimates of the 99 percentile discrete gust amplitude at KSC and VAFB (IV) vary by a factor of two for summer and winter and a factor of four for the two wavelength bands (90-420, 420-2470). The winter values for IV are in fair agreement with the sinusoidal gust model (II) and the conditional gamma distribution estimates (111).The 99 percentile of the observed distribution of the largest perturbation amplitude in the 2-15 km altitude range (V) is in most cases somewhat larger than the estimate of the 99 percentile amplitude at 12 km (IV). It should be pointed out that Agg is estimated in IV according to the assumptions that A_{99} occurs concurrently with $|u'|_{99}$ and $|v'|_{99}$ and that $|v'|_{99}$ is equivalent to $|u'|_{99}$; these assumptions lead to overestimation of Agg. The 9 m/s amplitude of the QSW gust (I) seems to be too large for wavelengths between 120 and 600 meters. If we assume that the QSW gust represents an extreme value beyond the 99 percentile, it is not supported by Jimsphere data at either KSC or VAFB.

19

3

<ri>riw</ri>
Dp sig 0
Wehicl ^p
Lavoch
for
-
4
Mowlus 4
Gust Momplus b
Discrown Gust Mondals
2 Discrute Gust Monthas A

. . .]

 \mathbb{C}^{n}

9					7	(= / m						
				VAFB		X	SC		VAFB	(Jime	spher	e)
у (ш)	н	II	KSC FEB	(Jimsphere) WINTER	FI	RB د			Win IV	V	Sum	v
120	0.6	2.7	2.0	3.2								
420	0.6	4 4	о З	48								
90-420					2	о Э	1_2	2.3	2•5	4.2	1.8	34
420-24 0 0					9_2	w 8	4 5	6_2	12 1	96	5.5	7 4
600	0 • m	8 1	9_7	11.3								
2470		13.1	13_6	15 6								
					+ (-			100000			ב ה +	- - -

Å

- LADULAT лтven, xurr square wave (USW) embedded jet model, no percentile
 values for altitude > 1 km, NASA TM-78118 -
- Sicusoival gust mowel. > 99 percective. 2-15 Mm NASA TM-78118 н н
- Conditional gamma (Smith et al., 1982), parameters calculated from band pass (90-420 m, 420-2470 m) filtered Jimsphere profiles, 99 percentile of "A" estimated at 12 km from $|u'| 99 | L_{\rm U}$ according to A99 = 1.41 $|u'| 99 | L_{\rm U}$. Note that $L_{\rm U} \simeq \lambda | 2$. • H H H
- Observed distribution of u-component perturbation at 12 km; A99 = 1.41 | u'| 99 ιv.
- Observep pistribution of partreme pertyrbation amplitump 99 percentils 2-15 km 3

C. Two Dimensional Wind Perturbation Statistics

T

The development of a computational model based on Gunst and Webster's (1973) expression for the bivariate gamma (BG) distribution (BGD) is of interest in applications to wind gust modeling for the ascent flight of the Space Shuttle. Smith et al, (1982) have derived expressions for probabilities over different geometrically shaped regions. These expressions have been used for calculation of expected probabilities and cell counts within squares and equal-area secof the domain of the bivariate gamma distributed tors variables. The parameters for the BGD are calculated from absolute gust component amplitudes, |u'| and |v'|, and associated gust lengths, L_{11} , and L_{27} , at a specified reference altitude. The goodness of fit of the model is given preliminary evaluation by comparison of the observed number of occurrences within the cells and the expected number if the variables are BG. The chi-square statistic is calculated for observed and expected cell counts > 5.

An example of the statistics calculated for VAFB-summer at 12 km for variables $|\mathbf{u}'|$ and $\mathbf{L}_{\mathbf{u}}$ is given in Table 3. An extensive set of tables for two wavelength bands (90-420 and 420-2470 m), in the same format, is given in Appendix A for February, April, and July at KSC and winter, transition, and summer at VAFB.

Five statistical summaries for each pair of non-dimensional variables are included in each table. The values given across the top and along the left margin are for the nondimensional variables. These scales can be dimensionalized by dividing them by the appropriate-value of B obtained from Table Al in Appendix A. For example, as indicated in the uppermost matrix in Table 3, 3 and 4 along the top margin divided by B_{Lu} (5.0005 x 10⁻³ 1/m) yields values of 600 m and 800 m, respectively, for L_u and, similarly, 1 and 2 along the side margin divided by $B \mid u' \mid (1.7866 \text{ s/m})$ yields .56 m/s and 1.12 m/s; thus the entry 9 in the table at the intersection of left margin value 2 and top margin 4 indicates that there are 9 occurrences of **u** between .56 and 1.12~m/s for \textbf{L}_u between 600 and 800 meters. The expected count, obtained from the bivariate gamma distribution, given in the second matrix yields 9.54 for the same 1x1 cell. The four numbers listed at the top of the expected cell count table are the BGD parameters ρ , γ_1 , γ_2 , and η . It is indicated that the calculated value of chi-square is based on only **8** of the possible 100 cells: this unacceptable application of chi-square can be overcome by increasing the sample

21

a'r

Table 3. Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jhsphere, 12 km, Wavelength Range, 420-2470 m, Non-dimensionalized u' or Lu

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

...

Samp	ole S	ize	.	150						BI	.u 1	L	1								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
B u' * u'	1 2 3 4 5 6 7 8 9 10	4 0 0 0 0 0 0 0 0 0 0 0 0	8 11 1 0 0 0 0 0 0	1 9 2 1 2 1 0 0 0	19992140000	107 541 1000	0 6 3 2 1 0 0 0	0 1 2 1 1 0 0 0 0	1 1 2 1 0 0 1 0 0	00200000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00010000000	000000000000000000000000000000000000000	0000010000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000
	12 13 14 15 16 17 18 19 20	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000006000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000	000000000000000000000000000000000000000

Expected Cell Count

ł

3

Ĭ

ρ≖	.3578	Υl	= 2.64	448	١	2 = 3.8	826	ŋ =	.4335	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00 1	0 00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	.93 1 37 71 27 .09 .03 .01 00	4 39 7 66 1 4 85 2 21 86 30 10 03	5.34 108 8.41 4 54 2.05 82 31 11 04	3 95 9 54 8 47 5 28 2.72 1 24 52 20 07	2 29 6 30 6 41 4 53 2 62 1 33 61 26	1 15 3 54 4 05 3 20 2 05 1 14 58 27 12	53 1 79 2.27 1.97 1 38 84 46 23	23 84 16 1 10 84 55 33 18 09	. 10 37 56 57 47 33 21 12 07	.04 .16 .25 .28 .24 .18 .12 .08 .04
10.00	. ŏŏ _	.00 HI-SOUARE-	01 6.41015	03 CELLS	04 USED'	05 811.E .CE	05 LL COUNTS	04 GREATER	03 THAN OR	02 EOUAL TO 5)

Expected Cumulative Probability

1

.

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9 00	1000
1.00	.00622	.03552	.07113	.09746	.11271	,12040	12393	12547	. 1261 1	12637
2.00	.01532	.09567	. 20512	. 29503	. 35228	. 38358	39907	4062	. 40934	41067
3.00	.02009	.13276	. 29827	.44467	.54462	. 60292	63352	64841	. 65526	65827
4.00	.02191	. 14934	.34510	.52673	.65686	,73646	. 78019	.80242	.81307	8 1795
5.00	.02250	. 15565	. 36506	. 56484	.71243	. 80569	. 85866	88649	. 90027	90677
6.00	.02268	. 15782	. 37273	.58077	.73724	.83813	89672	92824	.94423	95196
7.00	.02273	15852	. 37547	. 58696	,74752	. 85226	91394	,94764	.96502	97359
8.00	.02274	. 15873	. 37640	.58924	.75155	.85809	.92132	95620	.97440	98348
9.00	.02275	. 15879	. 37670	. 59003	. 75305	. 86039	,92436	95983	.97847	98784
10.00	02275	. 15881	. 37679	. 59030	.75360	.86126	92556	96132	. 98018	.98970

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	Size: 10 D	egrees			Sample	Size:	150			
OBSERVED EXPECTED	t 0 . 18233 CHI-SOUARE-	2 0 2.27353 2.74946	3 8 7.98986 CELLS USED=	4 13 16.80820 7(1.E.,CELL EXP	5 31 26.3 COUNTS GR ECTED DIS	3 8406 3 EATER THAN TRIBUTION	6 38 33.12780 N OR EQUAL	7 31 33.13936 TO 5)	8 25 23,46334	9 5 6.65151
ANGLE CUMULATIVE SECTOR PRO	PROBABILITY SABILITY	10. .00122 .00122	20 .01637 .01516	30. .06964 .05327	40. .18169 .11205	50. .35745 .17576	60. . 5783 1 . 22085	70. . 79923 . 22093	80. .95566 .15642	90. 1.00000 .04434

size, This could easily be achieved at KSC by grouping monthly data to obtain a seasonal sample that would be at least three times the size for a single month. VAFB data have already been grouped to obtain seasonal samples of 150; therefore, use of chi-square for VAFB seasonal data awaits the results of the measurement program that has been developed to support future Shuttle launches.

The third matrix contains the expected cumulative probability distribution calculated by accumulation of expected cell counts in the second table divided by the total sample count of 150; note that the expected probability associated with the 10x10 square is 98.970 percent.

The fourth matrix lists the observed and expected (BG) counts from a sample of 150 that occur in 10 degree equal-area sectors in the |u'|, L_u domain illustrated schematically in Figure 11.

The last matrix lists the sector probability and cumulative probability for the expected (BG) distribution.

Figure 11. Schematic of Equal Area Sectors

23

D. Wind Component Correlation Statistics and Coordinate System Rotation

The existence of zero correlation, ρ , between wind components would greatly simplify the theoretical treatment of winds aloft statistics. When winds are defined in the standard meteorological coordinate system, the correlations are generally quite small: for example, during February at Cape Canaveral, P is less than .43 at all altitudes (z) below 70 km, is less than .29 for z < 19 km, and is less than .17 for z between 1 and 6 km.* It is generally known that, when the wind components are expressed in a coordinate system that is rotated by an angle θ with respect to the meteorological coordinate system, the correlation between the rotated wind components is periodic: i.e.,

$$\rho(\theta) = \rho(e + \pi) \tag{1}$$

Absolute extreme values are equivalent and the maximum and minimum values are separated by a rotation angle increment of $\pi/2$ (90 deg.). If the wind components are expressed in the meteorological coordinate system, then the rotation angle, θ_0 , required to produce zero correlation is

$$\theta_{0} = \frac{1}{2} \operatorname{ARC} \operatorname{TAN} \left(\frac{2\rho \, \sigma_{\overline{\mathbf{x}}} \, \sigma_{\overline{\mathbf{y}}}}{\sigma_{\overline{\mathbf{y}}}^{2} - \sigma_{\overline{\mathbf{x}}}^{2}} \right)$$
(2)

The minimum rotation angle θ_{M} required to obtain the maximum correlation is dependent on the sign of ρ and θ_{0} ;

If	ρ < Ο	and	θ <mark>0</mark> < Ο	$\theta_{M} = \theta_{0} - \pi/4$
		and	θ 0 > 0	$\theta_{M} = \theta_{0} + \pi/4$
If	ρ > Ο	and	θ <mark>0 < 0</mark>	$\theta_{M} = \theta_{0} + \pi/4$
		and	θ ₀ > 0	$\theta_{M} = \theta_{0} - \pi/4$

1

*Range reference atmosphere, 0-70 km, Cape Canaveral, FL, Document 361-83, RCC, White Sands Missile Range.

The rotation angle θ_{MA} required to obtain the maximum absolute correlation is:

If
$$\theta_0 < 0$$
 $\theta_{MA} = \theta_0 + \pi/4$
 $\theta_0 > 0$ $\theta_{MA} = \theta_0 - \pi/4$ (3)

The rotated correlation coefficient is given by

$${}^{\rho}_{\theta} = \frac{\rho \sigma_{\overline{x}} \sigma_{\overline{y}} [\sin^2 \theta - \cos^2 \theta] + \cos \theta \sin \theta (\sigma_{\overline{y}}^2 - \sigma_{\overline{x}}^2)}{\sigma_{\overline{x}\theta} \sigma_{\overline{y}\theta}}$$
(4)

where $\overline{\sigma_{\mathbf{x}\theta}}$ and $\overline{\sigma_{\mathbf{y}\theta}}$ are the rotated variances

$$\sigma_{\overline{\mathbf{x}}\theta} 2 = \sigma_{\overline{\mathbf{x}}}^2 \operatorname{sin}^2 \theta + \sigma_{\overline{\mathbf{y}}}^2 \operatorname{cos}^2 \theta + 2\rho \sigma_{\overline{\mathbf{x}}} \sigma_{\overline{\mathbf{y}}}^2 \operatorname{cos}^2 \theta \operatorname{sin}^{\theta}$$
(5)

$$\sigma_{\overline{\mathbf{y}}\theta}^{2} = \sigma_{\overline{\mathbf{y}}}^{2} \operatorname{SIN}^{2}\theta + \sigma_{\overline{\mathbf{x}}}^{2} \operatorname{COS}^{2}\theta - 2\rho \sigma_{\overline{\mathbf{x}}} \sigma_{\overline{\mathbf{y}}}^{2} \operatorname{COS}\theta \operatorname{SIN}\theta$$
(6)

Substitution of θ_M or θ_{MA} into Equation 4 yields the maximum correlation, ρ_M . Figure 12 illustrates unrotated and maximum absolute correlation between 0-70 km at Cape Canaveral, Florida, for an annual data sample. The unrotated values are small (<.4) and unsteady. The maximum values increase rapidly in the first 20 km; the relatively constant and large value of ρ_M between 20 and 60 km is also observed at other locations (Figure 13). Plots of θ_{MA} as a function of altitude are illustrated in Figure 14. At altitudes above 20 km, θ_{MA} is nearly constant, **5** degrees. At altitudes above 20 km, the choice of orientation of the coordinate system in meteorology which describes the wind vector in terms of zonal and meridional components is near the orientation required for zero correlation.

The results summarized herein support the conclusion that significant correlation between wind components exists when winds are analyzed in non-meteorological coordinate systems. This concept has application in the engineering analysis of the impact of wind perturbations on aerospace vehicles.

ł

Figure 12. Unrotated and Maximum Correlation, Cape Canaveral, Florida, Annual

1

. 1

Figure 13. Maximum Wind Component Absolute Correlation Achieved by Rotation with Respect to the Meteorological Coordinate System

Figure 14. Rotation (Deg.) with Respect to the Meteorological Coordinate System to Achieve Maximum Wind Component Absolute Correlation **for** an Annual Data Sample

IV. CONCLUSIONS AND RECOMMENDATIONS

This work has produced a unique analysis of detailed wind profiles. The results have indicated significant variability of wind perturbation statistics with location, altitude, season, and wavelength range. The results provide the basis for the establishment of improved discrete gust design criteria guidelines for ascending launch vehicles. New analytical techniques and methods for evaluation of bivariate gamma probability distributions were used in the development of a vector wind gust model. These techniques may have broader application in other engineering and scientific studies.

Some aspects of the vector wind gust model present computational difficulties that may not be advantageous to future users. In its present state of development, the model does not require any simplifying assumptions. It would be useful to investigate whether simplification of the model is possible without a significant **loss** of accuracy. This would be accomplished by examination of sample estimates of model parameters to establish the validity of assumptions such as zero correlation or equivalence of scale or shape parameters.

It may be desirable for practical applications to use alternative models for description of gust statistics. For example, the Wiebull distribution has been shown to provide a good fit to observed distributions of gust modulus. Use of a gust model based solely on gust modulus would represent an oversimplification of the nature of wind perturbations and their effect on ascending launch vehicles. Model simplification should not eliminate a description of the joint relationship between wind gust components. This joint relationship is an important consideration in selection of realistic inputs for simulation studies of vehicle control system response and resultant vehicle structural loading.

29

V. REFERENCES

- Brown, S.C. (1978): 150 per Month Jhsphere Wind Speed Profiles for Aerospace Vehicle Design Capability Studies, KSC, Florida. NASA/MSFC-ES81, Marshall Space Flight Center.
- DeMandel, R.E., and Krivo, S.J. (1971): Selecting Digital Filters for Application to Detailed Wind Profiles. NASA CR-61325, Marshall Space Flight Center.
- Fichtl, G.H., and Perlmutter, M. (1976): Stochastic Simulation of Verticaly Nonhomogeneous Gusts. AIAA Paper 76-389.
- Gunst, R.F., and Webster, J.J. (1973): Density Functions of the Bivariate Chi-square Distribution. J. of Statistical Computations and Simulations, 2, pp. 275-288.
- Kaufman, J. W. (Editor) (1977): Terrestrial Environment (Climatic) Criteria Guidelines for Use in Aerospace Vehicle Development, 1977 Revision. NASA TM-78118, Marshall Space Flight Center.

į

- Smith, O.E., Adelfang, S.I., and Tubbs, J.D. (1982): A Bivariate Gamma Probability Distribution with Application to Gust Modeling. NASA TM-82483, Marshall Space Flight Center.
- Vaughan, W.W. (1968): New Wind Monitoring System Protects R and D Launches. Astronautics and Aeronautics, Vol. 6, No. 12, pp 41-43.

30

AP PEND IX

.

ż

000

1

.

Table Al. Scale Parameter B at 12 km

1	
	к.

		(s/	'm)	(1/	'm)
KSC		u'	v	Lu	L _v
FEB	I II	4.3472 1.0520	3.3213 1.2828	2.592 E-2 5.012 E-3	2.567 E-2 5.307 E-3
APRIL	I 1.1	$6.0048 \\ 1.6187$	3.8315 1.3598	2.988 E-2 4.138 E-3	2.213 E-2 4.357 E-3
JULY	I II	7.9454 2.3754	$10.0275 \\ 1.8363$	3.207 E-2 3.977 E-3	3.057 E-2 4.933 E-3
VAFB Jimsphere	<u>e</u>				
Winter	I II	3.2484 0.9712	$2.4363 \\ 0.9403$	3.520 E-2 5.624 E-3	3.050 E-2 6.046 E-3
Transition	I II	$4.5208 \\ 1.1307$	4.0500 1. 1761	4.180 E-2 5.756 E-3	2.496 E-2 4.459 E-3
Summer	I II	6.2414 1.7866	6.1112 2.0673	3.837 E-2 5.001 E-3	2.486 E-2 5.280 E-3
Ι 90 < λ	< 420)			

II 420 < λ < 2470

in the second

'magel

г. К.

· a

A-1

Table A2. Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere. 12 km, Wavelength Range, 90-420 m Non-dimensionalized | u' | or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

10.00

ł

	Sample Size = 150 $B_{Lu} \stackrel{*}{=} L_U$																					
			1	S	3	14	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
B պո	* u'	234567890111115111120	6 9 0 1 0 0 0 0 0 0 0 0 0 0		403011001000000000000000000000000000000	2963302000000000700	073300000000000000000000000000000000000	0#24 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 I I I 000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	001000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 00000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Expected Cell Count

ρ=	.3528	Y:	1 = 2.2	586		$Y_2 = 2.7$	000	n :	. 391	4
	1.00	2.00	3.00	4.00	5.00	5.00	7.00	8.00 9	9.00 1	0.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00	5.37 6.10 2.92 1.09 .36 .11 .03	10.54 14.76 8.71 3.94 1.56 .19	7.47 12.65 9.07 4.88 2.25 .94 .36	3.78 7.61 6.44 4.0: 2.11 .99	1.64 3.82 3.73 2.64 1.54 .81 .39	.65 1.72 1.90 1.50 .98 .56 .29	.24 .72 .89 .77 .55 .34 .19	.09 .29 .39 .37 .29 .19 .19	.03 .11 .16 .17 .14 .10 .07	.01 .04 .06 .07 .05 .05 .03
9.00 10.00	.00 .00 .00	.02 .01 1-SQUARE=	.15 .05 .02 25.00741	.18 .07 .03 CELLS	.17 .07 .03 USED*	.06 .03 8(1.E.,CEL	.05 .02 L COUNTS	.03 .02 GREATER	.02 .01 THAN OF	.01 .01 EOUAL TO 5)

Expected Cumulative Probability

1

	1.00	5.00	3.00	4.00	5.00	6.00	7.00	9.00	9.00	10.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00 9.00	.03503 .07647 .09596 .10326 .10568 .10568 .10643 .10655 .10671 .10672	.10676 .24591 .32339 .35696 .35696 .37426 .37576 .37576 .37624 .37639	15656 .37997 .51800 .51800 .6189 .62657 .62795 .62795	.18178 .45593 .63689 .72972 .77156 .78892 .79572 .79572 .79926 .79918	. 19270 . 49235 . 69819 . 80859 . 80859 . 80859 . 80556 . 89294 . 89564 . 89664	19704 53817 72669 .84710 .93234 .94367 .94367 .94831 .95015	.19867 .51460 .73902 .86460 .92701 .95582 .96845 .97377 .97594	.19926 .51710 .74410 .87215 .93647 .96658 .97999 .98574 .98814	.19947 .51804 .74612 .97527 .94053 .97131 .98515 .99117 .99371	.19954 .51838 .74689 .87653 .94740 .97332 .98740 .99356 .99618

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	Size: 10 I	Degrees			Samp	le Size:	150			
OBSERVED EXPECTED	I 0 1 . 33667 CHI - Square +	2 5.97547 5.08574	3 4.43951 CELLS USED=	4 27.438 7(1.ECEL E	5 202 ÊŠ.4 L COUNTS GE XPECTED DIS	16312 Z	6 8.38213 Or Equal	7 26.08565 TO 51	e 18.59702	9 6.2894 1
ANGLE CUMULATIVE SECTOR PROF	PROBABILITY BABILITY	.00891 .00891	.05541 .04650	.15168	.29456 .14288	.47098	.65019 .18921	.83410 .17390	. 95808	1.08800 .04192

Table A3. Observed and Expected (Gamma) Cell Counts. KSC February, Jimsphere, 12 km, Wavelength Range, 90-420 m Mon-dimensionalized | v'| or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

	Samp	le Si	ze	*	150						B	Lv	• I	N								
			Ι	2	3	4	5	6	7	8	9	IO	11	12	13	I4	15	16	17	18	19	20
B v] *	v '	123456789011234567890 11234567890	1 1 0 0 0 0 0 0 0 0 0 0	10000000000000000000000000000000000000	0a125011000000000000000	14a43I30000000000100	I5822300000000000000000000000000000000000	2 23111000000000000000000000000000000000	0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00200000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00003000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000
Expected	C e 1 1	Cour	nt																			
	P = .	2401			γl	2	2.48	388			^Y 2	4	2.8	753			η	= ,	258	1		
		1.00	2	.00	3	.00	4	.00	5	5.00	(6.00		7.00	I	B.00		9.00	1	0.00		
	1.00 2.00 3.00 4.00 5.00 6.00	3.17 5.10 3.26 I. 58 .67	1 13 9 5 2 I	.37 .10 .32 .00 .33 .00	5 11 9 5 2	.99 .83 .41 .59 .86 .34	3 7 6 4 2 1	.46 .55 .64 .32 .41 .22		.69 .05 3.91 2.76 .65 .90		.75 .96 2.05 1.57 1.01		31 88 89. 1.00 19. 19. 19. 19.	ł	.10 .38 .46 .40 .29		.05 .16 .P0 .19 .14		.02		

6.00 .26 I.00 1.34 I.22 .90 .56 .37 .17 .10 .03 7.00 .10 .40 .59 .57 .45 .31 .19 .11 .05 .03 8.00 .03 .16 .25 .26 .21 .15 .10 .06 .03 .02 9.00 .01 .06 .10 .11 .10 .07 .05 .03 .02 .01 10.00 .02 .04 .05 .04 .03 .02 .02 .01 10.00 .02 .04 .05 .04 .03 .02 .02 .01 .01 CHI-SQUARE= 4.81902 CELLS USED= 6 (I.E. .CELL COUNTS GREATER THAN OR EQUAL TO 5)

Expected Cumulative Probability

3

1

1

	1.00	2.00	3.00	4.00	5.00	5.00	7.00	8.00	9.00	10.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00	.0211 .05514 .07689 .08740 .09184 .09357 .09421 .09444 .09452	.07025 .19163 .27554 .31936 .33932 .34769 .35101 .35227 .35274	.11015 .31042 .45702 .53809 .57712 .59440 .60163 .60454 .60567	.13319 .38378 .57464 .68452 .73960 .76499 .77605 .78067 .78067	-14447 42206 53896 76725 .83339 .86476 .87882 .88487 .88487	.14947 .44012 .67071 .80944 .88229 .91753 .93365 .94073 .94073	.15155 .44809 .68535 .82953 .90610 .94361 .96101 .96376 .97211	.15238 .45144 .69178 .83862 .91713 .95589 .97402 .98217 .98217	.15270 .45280 .69449 .84259 .92205 .96145 .97998 .98837 .98837	.15282 .45334 .69560 .84426 .92418 .96390 .98264 .98264 .99115
10.00	.09455	. 35291	.60609	.78327	.8884 I	94499	97352	.98726	.99364	.99653

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ize: 10 E	Degrees			Sample S	ize: 150			
erfereb	I 9,98453 CHI~SQUARE=	2 9.17625 4.86688	3 16.69538 CELLS USED-	4 27.39 7(I.ECE	5 586 25.86638 LL COUNTS GREATER EXPECTED DISTRIBU	6 26.77957 THAN OR EQUAL I ION	7 24.35603 TO 5)	e 17.20690	9 3.46855
ANGLE CUMULATIVE P SECTOR PROBA	PROBABILITY ABILITY	10. . 01 32 3 . 01 32 3	.07441 .06117	.18564 .11124	. 33495 .50 14931.17	0 7 39 .6859 244 .17853	70 .84830 .16237	80. .96354 .11525	90. 1.00000 .03646

Table 24. Observed and Expected (Gamma) Cell Counts, KSC February, Jimsphere, 12 km. Wavelength Range, 420-2470 m Non-dimensionalized $\|u'\|$ or L_{id}

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

. . 4

.

	sample	e Si	ze	3	150						B	Lu	* L	u								
			1	5	3	4	5	6	7	8	9	10	43	12	13	14	15	16	17	18	19	50
ט']	* u'	I2343570901231367820	100000000000000000000000000000000000000		50 43100000000000000000000000000000000000	232 33 2 0100000000000000000000000000000000000	3302 3110000000000000	042400a00000000000000000000000000000000	07a1 2 Incoccccccccccccc	002110000000000000000000000000000000000		001000000000000000000000000000000000000	000100000000000000000000000000000000000	001000000000000000000000000000000000000	0=0000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Expected Cell Count

в

ρ = .2990	γ	1 = 2	.3407		$\gamma_2 = 4$.1985	η	= .4	004	
1.00	8.00	3.00	4.00	5.00	8.00	7.00	8.00	9.00	10.00	
1.00 .70 2.00 .81 3.00 .39 5.00 .11 5.00 .04 6.00 .01 7.00 .00 9.00 .00 10.00 .00 CH	4.47 5.93 3.24 1.35 .50 .17 .05 .02 .00 .00 1-SQUARE	6.87 10.49 6.63 3.19 1.33 .19 .05 .05 .05 .01 7.619	5.13 10.62 7.65 4.15 1.93 .82 .32 .12 .02 53 CELLS	4.20 8.08 6.52 3.93 2.02 .94 .16 .05 .02	2.45 5.17 4.60 3.04 1.71 .86 .40 .18 .07 .03	1.29 2.86 2.05 1.25 .68 .34 .16 .07 .05	.63 1.62 1.25 .82 .47 .25 .47 .13 .03 .03	29 .76 .95 .71 .95 .05 .02	.13 .36 .43 .37 .29 .19 .11 .03 .02 .02	10 5)

Expected Cumulative Probability

1

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00 2.00 3.00 4.00 5.00 5.00 7.09 0.00 9.00	.00+67 .01005 .01259 .01349 .01378 .01387 .01387 .01399 .01390	.03445 .07938 .10350 .11345 .11705 .11825 .11825 .11875 .11879	.08025 .19506 .26341 .29459 .30705 .31162 .31321 .31374 .31391	.12123 .30684 .42620 .48504 .51038 .52041 .52416 .52549 .52595	.14922 .30872 .55153 .63654 .67536 .69165 .69609 .70052 .70141	.16554 .43950 .63299 .73829 .78859 .81054 .81965 .82326 .82464	.17412 .46771 .68026 .79925 .85777 .88433 .89570 .90037 .900222	.17831 .48221 .70555 .83289 .89685 .92656 .93963 .94514 .94738	.18027 .48925 .71828 .85032 .91755 .94929 .96350 .96962 .97216	.10114 .49252 .72440 .05093 .92800 .96094 .97587 .98239 .98515
10.00	.01390	.11879	. 31 396	.52610	.70172	.82515	.90293.	.9+827	.97320	.98629

Observed and Expected (Gamma) Counts within Equal Area Sectors

.

'Sector	Size: 10 I	Degrees			Sample	Size: 150			
OBSERVED EXPECTED	I 0 .0916% CHI-SQUARE=	E 0 1.22706 6.66716 C	3 I V.87272 ELLS USED •	4 11.44843 611.5CELL CO EXPEN	5 19 20.3035 OUNTS GREAT CTED DISTRU	8 32 5 29.63358 Er than or Equal But Ion	7 36 35.90748 . TO 53	8 42 32.96873	9 7 1 3.55881
ANOLE CUMULATIVE SECTOR PRO	PROBABILITY	10. .00054 .00054	20. .00872 .00818	30. .04121 .03240	40. 11753 . 07632 .	50. 60. 25289 .45045 13536 .19756	70. .68983 .23938	80. .90961 .21978	90. 1.00000 .090 39

Table AS. Observed and Expected (Gamma) Cell Counts, KSC February. Jhsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized |v'| or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

1.1

	Sampl	e Si	ize	Ħ	150)					B	Lv	* 1	vv									
			I	2	3	.4	5	6	7	Е	9	10	Ħ	12	13	14	15	IS	17	18	19	50	
B v'	* v'	-2535557890-25335566.2990	300000000000000000000000000000000000000	\$ 2200000000000000000000000000000000000	200000000000000000000000000000000000000	533544000000000000000000000000000000000	02000000000000000000000000000000000000	0-1231250000000000000000000000000000000000	0233320100000000000000	035¥1I0I0000000000000000000000000000000000	0 *** 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00120000000000000000000000000000000000	00-000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000030000000000000000000000000000000000	000000000000000000000000000000000000000	

Expected Cell'Count

ρ =	,3064	۲ ₁	= 3.1	1086		$\gamma_2 = 4.$.6700	n :	= •3	707	
	1.00	2.00	3.00	4.00	5.00	G.00	7.00	8.00	9.00	10.00	
1.00	. 14	1.21 3.33 2.83	2.21 6.82 6.57	2.20 7.54 8.15	I. 60 6.06 7,28	90. 50.4 95.2	.53 2.35 3.35	85. 52.1 52.1	.12 .62 1.03	.05 .29 .52	
5.00 6.00 7.00	.05 .02 .01	.75 .31 .12	2.19 1.00 .*a	3.35	3.60 I.97 .99	3.10 1.83 .99	2.29 1.45 .83	1.51 1.02 .62	.92 .00 .92	.39 .27	
0.00 9.00 10.00	.00 .00 .00 CH	.04 .01 .00 11-SQUARE=	.17 .06 .02 6.6686	.33 .13 .03 N CELLS	24, 05, 09, USED=	.98 .23 .10 511.E0	.22 .10 ELL COUN	. 30 . 18 .09 TS GREATER	.14 .07 1 THAN	.09 .05 OR LQUAL	10 51

Expected Cumulative Probability

1

	1.00	5.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00	.0009+	.001109	.02371	.03835	.04905	.05555	.05906	.06081	.06162	.06199
8.00	.00375	.03347	.09.564	10403	.20:264	1542,08	.21515	.27224	157751	.27:134
3.00	.00499	.05411	119911	.27751	. 37684	44541	.48693	.50985	.52166	. 20742
.00	.00587	.06574	.19782	. 35577	. 49335	.59214	.65440	.69012	.70920	.71885
5.00	.00623	.07111	.21779	. 39804	.55960	.67905	.75658	.80238	.82757	.84056
6.00	.00636	.07330	.22657	.41814	.59283	.72451	.81173	.86435	.89392	.90963
7.00	.00541	.07412	esors.	. 42691	.60813	.74633	.83909	.89585	92924	.9+571
.00	.00642	.07442	.23169	. 43051	.61474	.75617	.85184	.91091	94495	.96353
9.00	.006+3	.07452	.23220	.43191	.61746	.76039	.85750	91778	.95273	.97194
10.00	.00643	.07455	. 23230	. 43244	.61053	.76213	.85991	.92079	.95622	.97577

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ze: 10 D	egrees			Sample	Size:	150			
OBSERVED EXPECTED	I 0 .09091 CHI-SQUARE=	P 0 1 .69468 4.35571	3 5 7.18130 CELLS USED+	4 16.604 6(1.E.,CEL	5 26 197 27.3850 L COUNTS GREAT EXPECTED DISTRI	E 30 4 25.13 Er than or Bution	3728 EWU 10	7 39 34.63200) 5)	8 26 22.43088	9 2 4.84333
M E Cumulative P Sector Proba	ROBABILITY BILITY	IO. .00061 .00061	20. .01190 .01130	30. .05978 .04788	CO. .17048 . .11070 .	SO. 35304 18257	60. 59729 23425	70. .81917 .23098	80. .96771 .14954	.00 00000.1 95520.

Table A6. Observed and Expected (Gamma) Cell Counts, KSC April, Jimephere, 12 km, Wayelength Range, 90-420 m Non-dimensionalized | u'| or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

1

< P

Expected Cell Count

	ρ = .3985		Υl	= 2.38	65	Ϋ́2	= 3.5184		η = .	4839		
		1.00	2.00	3.00	4.00	5.00	6.90 7	.90	e.nj	2.00	17.00	
÷	1.00	2.14	7.45	7.35	4.65	2.40	1.09	.46	.19	.07	.73	
	2.00	2.32	13.29	12.74	9.76	585	3.02 1	. 42	+62	. 26	.11	
	3.00	.98	558	8.69	8.06	5.66	3.34 1	.75	. 94	.38	.17	
	4.00	. 31	2.25	4.30	4.75	3.87	2.59 1	. 52	. 91	.40	.18	
	5.00	.09		1.79	2.31	2.16	1.63 1	. 36	.62	. 3.3	.17	
	6.00	.02	.24	. 66	. 99	1.05	.8.9	.64	.41	.24	.13	
	7.00	.01	.07	.23	. 39	. 47	.44	. 35	. 74	- 15	. 6.9	
	8.00	.00	.02	.07	.14	.19	.20	.17	.13	.09	.05	
	9.00	.00	.01	.02	.05	- 17	-C5	. 76	. 0.6	. 95	. 03	
	10.00	.00	.00	. 71	. 02	.03	-03	. 0.3	. 23	. 02	.02	
			CHI-SQUARE =	2.40191	CELLS	USED=	A IT.E.,CELL	COUNTS	GREATER	THAN O	REQUAL	10.5)

Expected Cumulative Probability

1

	1.00	2.00	3.00	4.00	5.00	6.00	7.03	8.00	9.ro	1".00
1.00	.01424	.06389	.11289	.14399	.15997	.16726	.17036	.17162	.17211	.17231
2.00	.02972	.14794	.28190	.37810	.41307	.46051	.47375	.47845	.48068	.49157
3.00	.03625	.19167	.38358	.53352	.62623	.67595	.70018	.71122	.71599	.71799
4.00	. 63833	.23873	.42933	.61091	.72940	.79640	.8 10 76	.84716	.85458	.8579C
5.00	.43891	-21448	.447.01	.64402	.77691	.85480	.89624	.91676	.92639	.97671
6.00	.03906	.21624	.45320	.65684	.79676	.88059	.97631	.94956	.96077	.96594
7.00	.03910	.21675	.45522	.66146	.80449	.89123	.93926	.96412	.97634	.99209
8.00	.03910	.21688	.45584	.66303	.80733	.89539	.94456	.97028	.98308	.99919
9.00	.03911	.21692	.45602	.66354	.80833	.89695	.94664	.97279	.9859 0	.99222
10.00	.03911	.21693	.456.08	.66370	.80866	. 99750	.94742	.97377	.94704	.99347

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Size:	10 Degrees			Sample	Size: 1	50			
OBSERVED 0 EXPECTED 2 CHI	2 1 3200 2.4532 -Suuaqe= 3.75328		19 16.7181 5(I.F.,CEL	23 6 25.9 L COUNTS GP XPECTEP DIS	3 7458 3 EATER THAN TPIBUTION	5 2.45585 Or Ecual	7 39 32,55269 TO 51	<mark>د</mark> 21 23.81299	9 1 7.68131
ANGLE CUMULATIVE PROBA	10. BILITY .JC155	20. •017°C	30.	4(1. .18348	<u>50</u>	<u>60.</u> .57392	.79004	80. .94679	90. 1.00000

Table A7. Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphare, 12 km, Wavelength Range, 90-420 m Non-dimensionalized v' or Ly

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

	Samp	le Si	ze	2	150						BL	, *	Lv									
			1	?	3	4	-5	6	7	8	9	17	.11	17	13	1.4	15	16	17	14	19	20
		1	16 4	5	6 15	37	C A	n 2	0	Ċ,	ר ז	r.	n C	ר ז	n		ĉ	ŗ	Ċ	-	C.	Ś
		3	3	3	13	B	8	ż	1	ĩ	1		-	-	0	-	ŗ		ğ	1	c	<u> </u>
		5	ģ	1	1	1.		. ģ.	2	-	1	.].			с S	ŕ	<u>,</u>	. 1.	¢			r
		7	ç	1	1	0	Ċ	10	C O	ų. T	с 1	j U	0		2	С С	ĥ	Ê	с 0		2	ń ń
	* • • • •	8 9	ח ס	J.	1	ר ח	C C	19 1	0	r r	с Г	ר ת	ing ing	ĥ	9. 0	n n		'n	0	n 	0	Ċ,
p A	1 * 1	10	0	, C	1	1	C C	0	C D	n n	n D	ů Ú	0	-	т С	្ព	r r	ç	Ċ	1	n n	r r
		12 13	C	ų,	רי ס	3	C	 	C C	5	1	й а	5	2		Ċ		Ċ,	0	-``n 	7	с с
		14	C	j j	1	0	0 .c	'n	Č.	î n	i	1	'n	n 6		r	n	n c	ð	2	2	
		16	20	1	, 1 2	ő	č	2	Ċ	0	7	4	c.		.0	, r		r	C C	-		Ċ
		18	C	1	1	3	ף נ	n .	,c		ר	0	r.		- ç		'n	ŕ	C D	л Г	ĉ	C C
		19 20	0 0	7	J D	3	C C	7	c C	r r	ġ.	3	r D	ì	C C	с С	5	ĉ	0	, U	, n	r r

Expected Cell Count

ä

ρ = .3	2287	Υ ₁ =	2.185	8	^Y 2	= 2.7620		ຖ ສ .2	571	
	_1. <u>06</u>	2.00	3,70	4. <u>J</u> a	5,00	6.00	7.70	e.no	9•00	19.0 <u>0</u>
1.00	4.87	1.7 + 5 3	9.25	4.72	2.31	1.03	. 43	.17	. 77	•C3
2.00	5.96	1:4 . 26	12.50	5°.7	4.72	2.05	.93	.40	.17	• 67
3.00	3.26	8.73	9.55	5.11	7.50	1.84	.90	. 42	.19	•08
4,00	1.93	4.24	4.60	3.52	7.74	1.27	.++	. 33	.15	.07
5.00	.56	1.84	2.19	1.92	1.75	.75	. 42	.72	.11	. (15
6.00	.21	.74	.97	. 37	. 64	. 41	. 74	.13	. 77	. 5 3
7.00	.07	.29	.41	. 19	. 30	.21	.13	.17	. 64	.52
9.00	•C2	•11	.16	.17	. 1.4	.16	. "0	.04	• " Z	.51
9.00	.01	.04	.Ob	. 17	. "+	. 15	. 13	• 7 2	.01	-01
10.00	.01	.01	• 72	. 13	. "3	. 17 2	. 1	.71	.01	.00
		CHI-SQUARE:	7.24976	CFLLS	USED=	711.F CFL	COUNTS	LPEATER	THAN OF	R ECUAL TO SE

Expected Cumulative Probability

1

	1.00	2.00	3, 10	4.00	5.00	6.• Cu	7. °0	P.73	٥٩. ٥	17,00
1.00	.63250	.10272	.15795	.18944	.27482	.21167	.21455	.21571	.21617	.21634
2.00	-ú7220	.23750	.37607	.45612	.50364	.52414	•57321	.53715	.57912	.51924
3.00	.09396	.31743	.51303	.63627	•7°370	73647	.75154	.75815	.76395	.76212
4.00	.10347	.35519	.58149	. 72078	.81053	.85175	.37175	• #PC72	.8F3F5	.AA547
5.00	.10726	.37116	.61278	.77152	.86157	.97793	.93611	.94036	,94401	.94677
6.00	.10858	.37747	.624 A5	.79,108	.88437	• 93335	.95774	.96837	.97377	.97557
7.00	.10906	.37986	.62994	.79777	.89409	.94446	.94920	.93092	.98610	.99843
8.00	.10922	.34074	.63190	.80085	.89810	.94913	.97431	.99619	.99161	.99402
9.00	.10928	.38105	.63264	.80205	.89971	.95105	.97643	.98845	.99395	.99640
10.00	.10930	.39116	.63291	.80251	.90034	.95182	.97730	.98938	.99492	.99739

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Siz	ze: 10 De	egrees			Sample ;	size: 1	150			
OBSERVED Expected	1	7 9.19029 7.67176	13 14.71942 CFLLS USED=	4 16 20.02629 7 (I • F • • CELL EXI	25 23.8 COUNTS GR	9242 2 EATER THAN TPIBUTION	6 6+07274 Or Equal	7 25 25,73198 10 51	23 20.92166	9 1 8,56736
ANGLE CUMULATIVE P Sector Proba	ROBABILITY EILITY	10. .01253 .01253	20. .06713 .05460	.16525 .09812	43. .29876 .13351	50. .45PU4 .15°28	63186 •63186 •17382	70. .90341 .17155	80. .94288 .13948	90. 1.30000 .n5712

Table A3. Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized |u'| or Lu

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

Expected Cell Count p = .2625 $Y_1 = 3.2219$ $Y_2 = 3.5734$ n = .2764 5.00 6.30 7.00 8.00 9.00 10,00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 5.00 7.00 8.00 9.00 10.00 .01 .78 .16 .54 1.68 1.50 .90 .44 .08 .03 .01 .00 2.27 7.15 7.05 4.64 2.50 1.19 .52 .22 .09 .03 2.50 8.67 9.47 6.88 4.06 2.11 1.01 .45 .19 .08 1.75 6.65 8.01 6.37 4.79 2.30 1.18 .57 .26 .11 .09 .98 •48 •21 •09 2.16 1.05 .17 3.09 1.62 .79 2.88 1.62 .99 2.14 1.25 .71 1.38 88 51 •80 54 .33 •31 .20 •22 .16 .11 .11 .99 .06 741.6.,CELL COURTS 69_47ER 44 . 21 .**P**≉ .20 .36 .41 .77 .28 .19 4.06 5.35 4.62 <u>3.20</u> 1.93 1.06 .54 .26 .12 .18 .15 .10 .07 .09 .02 OR EOUAL TO 51 •12 •07 •04 Tuan

Expected Cumulative Probability

Ì

4

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	9.70	9.00	10.7
1.00	.00387	.01901	.03567	.04734	.05386	.05775	.05848	.05908	.05933	.0598
2.00	.01506	.07787	.15231	.20833	+24192	.25950	.26790	.27167	.27328	.2739
3.00	.02506	.13485	.27242	.38194	.45108	.48926	.508*6	.51748	.52152	. 5232
4.00	.03105	.17177	.35519	. 50706	.60710	.66449	.69448	.70912	.71592	.7189
5.00	.03399	.19137	.40186	.58099	.70236	.77402	.81255	.83193	.84118	. 8454
6.00	.03527	20060	.42517	.61963	.75388	.83471	.87909	.97188	.91299	.9182
7.00	.03579	.20861	. 43590	. 63823	.77954	.86571	.91368	.93868	.95106	.9569
8.00	.03599	206.26		. 64 66 6	.79157	-88063	.93064	.95696	.97719	. 9764
9.00	.03606	20690	.44249	.65031	.79696	.88749	.93859	.96565	.97929	.9859
10.00	.03609	.207.15	.44 326	.65193	.79929	.89053	.94219	.96964	.98353	.9903

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S:	ize: 10 De	egrees			Sample	Size: 1	150			
EXPECTED	-1	2 7.37967 2.99514	15 16.90481 CELLS USED:		5 30 29.9 L COUNTS GR XPECTED DIS	Z 6561 2 EATER THAN TRIBUTION	6 9.80054 OR EQUAL	7 25 24.00736 10 5)	8 15 13.21130	9 2 2 • 49285
ANGLE CUNULATIVE SECTOR PROD	PROBABILITY BABILITY	.00668	20. .05567 .04920	16857 .11270	4C. .33682 .16824	50. •53659 •19977	60. .73526 .19867	70. .89531 .16005	80. 81299. 80880	90. 1.00000 -

A-a

Į,

Table A9. Observed and Expected (Gamma) Cell Counts, KSC April, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized | v'| or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

1.1.4

	Sample	e Si	lze	3	150						BL	.v *	Lv									
			.1	2	3	.	5 ,	6	7	8	9 .	10	μî.	12	13	14	15	1,6	17	18	19	27
		t	3	6	1	0	8	.0	a	Ū	0	C	0	0	0	<u>ی</u>	æ	a	ø	ġ	0	0
		2	1	18	- •	.6	7	3	3	3	0	1	0	0	0	3	C	0	.0	Ö	0	3
		3	0		11	8	3	1	1	2	0	1	1	3	3	0	O.	7	0	0	a	O.
		- *	0	0	3	7	8	3	3	10	Ö	0	0	0	0	0	ġ.	3	0	0	0	0
		5	0	_1	1	14	3.	<u> </u>	_ 0_		1	0		0	Э	<u>.</u>	•		Ū.	0	0	0
		6	0	0	3	.6	1	1	0	0	a	3	, C	0	0		· •	. 17	0	9	3	0
		7	0	0	1	1	1	0	0	đ	0	1	0	9	•	3		.0	a	n	0	0
		8	0	0	2	0	0	-1	0	0	0	0	n	σ	J	3	7			0	0	3
D 1 4	*	9	.0	0	0	1	0	1	0	0	0	σ.	. 17	n i	3		8		0	.0	0	0
P V	· I ¥ 3	10	0	. 0	0	¢	0	0	0	0	0	0	r.	0	3	3	2	.0	0	0	0	0
		11		0	0	0	0	0	0	0	0	0	<u>.</u> C	0	9	7		0	0	.	0	0
		12	0	0	Ċ	0	0	•	0	0	0	3	0	Ū.	0	0	ġ	2	-0	Ø	0	2
		13	0	0	0	0	0	0	G	Q	0	0	c	0	3	0	9	0	0	7	0	0
		.14	a	0	0	0	0	0	đ		0	0	C.	σ	0	0	ġ.	D	0	0	0	9
		15	0	0	0	0	0	C	0	0	0	0	Ċ	0	Q.	a,	σ	0	Ö	C	0	0
		16	0	0	0	0	0	r	0	C	Ū.	0	Г	0	0	0	9	0		2	5	3
		17	0	0	c	0	0	n	8	0	. 0	a	c	Û	0	0	9	3	0	0	0	0
		18	0	0	Q	9	.0	0	α	Q	a	ç	C	0	0	<u>ں</u>	Ċ,	0	0	P.	0	٦
		19	0	0	0	8	0	0	a	0	0	0		.0	Ċ,	3	.0	3	.0	7	3	0
	•	20	8	0	0	0	0	0	0	0	0	0	•	0	n	0	C	ġ	Ō		0	7

Expected Cell Count

ρ ≡	.2242	Υ <mark>1</mark>	= 3.02	88	Ŷ.	2 = 3.7219)	η=.	2485		
	1,00	2.00	3.00	••00	5.00	6+00 7	.00	9.30 ·	9.00	10.00	
1.00	. 55	2.51	3.13	2.43	1.49	. 79	. 39	.18	.08	.03	
2.00	1.39	6.83	9.20	7.70	5.07	2.89 1	. 50	.73	. 33	.15	
3.00	1.17	6.19	9.08	8.23	5.85	3.58 1	. 78	1.02	. 49	.23	
4.00	.68	3.88	6.17	6.34	4.60	3.00 1	,76	.96	. 49	.24	
5.00	. 33	2.02	3.48	3.65	2.97	2.06 1	.28	.73	. 39	.20	
6.00	.14	. 95	1.75	1.97	1.70	1.24	.81	. 49	. 27	.15	
7.00	-06	. 41	.81	.98	.89	. 69	. 47	. 10	.17	.10	
8.00	.02	.17	. 36	.46	.44	. 36	.26	.17	.10	• 76	
9.00	.01	.07	.15	.20	.21	.18	.13	.29	. 06	.03	
10.00	-00	403	-06	.09	.09	. 08	.07	.35	• "3	•~2	
		CHI-SQUARE:	9.19109	CELLS	USED=	611.E.,CELL	COUNTS	GREATER	THAN O	OR EQUAL	TO 51

Expected Cumulative Probability

	1.00	2.00	3.00	4.00	5.00	6,•90	7.00	5.00	9.00	10.00
1.00	.00366	.02040	.09125	.05743	.36736	.07266	.07524	.07642	.07693	.07714
2.00	.01296	.07525	.15745	.22497	.26871	.29330	.30588	.31190	.31463	.31593
3.00	.02075	.12433	.26705	.38946	.47217	.52060	.54636	.55916	.56519	.56792
	.02525	.15469	.33854	.50120	+61456	.68298	.72049	.73967	. 74897	. 75331
5.00	.02743	.17036	.37739	.56440	.69756	.77970	.82572	.84977	.86170	.86738
6.00	.02838	.17760	. 396 30	. 59642	.74089	.83133	.88277	.91098	.92384	97099
7.00	.02876	.18072	.40485	.61147	.76190	+85692	.91151	.94080	.95572	-96372
8.00	.02891	18200	.40852	.61818	.77154	.868.95	.92525	.95565	.97126	.97896
9+00	.02896	.18250	.41003	. 62175	.77579	.87437	.93155	.96256	97855	98647
10.00	.02898	.18269	. 4 1063	. 62224	.77760	.87674	.93435	.96567	.98186	.98991

Observed and Expected (Gamma) Counts within Equal Area Sectors

	Sector Si	ze: 10 D	egrees			Sample	Size:	150			
-	OBSERVED Expected	1 0 -121193 CHI-5QUARE=	2 3 5.79453 5.55125	9 15.011572 CELLS USED:	4 27 22.16125 6(I.E.,CELL EX	5 32 23.C COUNTS GR PECTED DIS	3 9589 3 E4TER Thin Tribution	6 7 0.33578 Or Equal	7 23 27,24984 70 53	8 18 17.47544	9 I 4.11063
	CUMULATIVE PROB	PROBABILITY	10. •00483 •00483	20. •0*3*6 •03863	30. •13710 •09364	. 28498 . 14778	.47219 .18731	•67443 •2722*	.85609 .18167	.97260	1.00000 .02740

Table Al0. Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized | u'| or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

Expected Cell Count

ρ =	.4053	Ύ1	= 2.3	808	Ŷ	2 = 3.673	33	η <u>⇒</u>	•5034			
	1.0 <u>c</u>	2.03	3.00	4.93	5.00	6.00	7.90	<u>A.</u> 10	•	17.00	·	
1.00	1.70	6.99	7.44	4.97	7.66	1.26	.55	.23	. 69	.Č4		
2.90	1.85	9.32	12.54	19.17	6.35	3.39	1.64	.74	. 32	.13		
3.30	.74	4.86	8,25	8.18	6.01	3.68	1.99	.98	.45	20		
4.30	• 22	1.87	3.96	4.69	4.02	2.80 1	1.64	• 9 2	. 46	.22		
5.00	• 6 6	+62	1.59	2.22	2.19	1.73 1	1.17	.70	. 78	.26		
6.30	.01	.14	.57	.92	1.04	.93	. 69	.46	.27	15		
7.00	•06	.05	.19	.35	.45	. 4 4	. 37	.26	.17	10		
e00	.00	.01	.06	-12	.18	.26	.16	.14	.10	.06		
9.00	.00	.00	. 02	.04	.07	.0.	•] =	. 17	. 55	.53		
10.03	•CQ	•00	.06	.01	.02	.03	.13	.13		.02		
	CH	I-SQUARE =	3.173?	5 CELLS	USED=	SIL.E.,CELL	COUNTS	GREATER	THAN C	R EQUAL	10	5)

Expected Cumulative Probability

Å

	1.00	2.00	3.00	4.00	5.,00	6.92	7.00	P.70	01.9	10.00
1.00	1189	.05848	.10897	.14173	.15.98	.16776	.17103	.17256	.17318	.17343
2.00	.02422	.13294	.26612	.36775	.47714	.45316	. 47275	.47919	.45192	.49303
3.08	2916	.17025	.35967	.51+12	.61431	.669F6	. 59771	.71071	.71546	.71891
4.70	3065	.18424	. 39909	.58578	.71275	.79696	.82612	.04576	.85411	.85803
5.00	.63164	.19875	.41421	.6157.3	.75727	.89304	. 44996	. 91376	.92517	.93038
6.00	. 03114	.19008	.41933	.62098	.77551	.36744	.91897	. 94591	.95902	.96523
7.00	.ü311a	.19344	.42094	.63693	.78245	. 377.34	.97131	. 95991	.97426	.94114
8.0J	. 33116	.19055	.42142	.63224	.79494	. SA113	.97679	.96591	.98081	.99810
9.00	•U3116	.19056	.42156	.63265	.7.4579	.98252	.93876	.96619	.94352	.99105
10.00	3117	.19057	.42160	.63277	.78607	. 39 306	.93892	.96910	.9#461	.99226

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ize: 10 D	egrees			Sample	Size:	150			
OBSERVED Expected	1 0 •14929 CHI-SQUARE=	2 3 1.54197 5.49024	3 6.79702 CELLS USEN=	4 10 15:19964 7(I.E.,CELL EXE	5 26 25+1 Counts G Pecter D15	0489 PEATER THA	6 33 32.84246 N OR EQUAL 1	-7 43 34.06905 0 5.)	8 20 25•56792	9 9 8,43872
ANGLE CUMULATIVE SECTOR PROB	PROBABILITY Ability	10. .06160 .06160	20. . JI 327 . JI 227	30. •05858 •04531	4]. +15995 +101°6	5C. .32721 .16737	.54616 •21895	70. .77329 .22713	80. .94374 .17C45	90. 1.0000 .05626

Table All. Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized **v'** or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

Expected Cell Count

1

P = -3321		Ύı	= 2.99	943	Ύ	2 = 4.3	395	n = .	3998		
	 00	2.00	3.00	4.30	5.70	6.00	7.30	9.70	•.••	17.00	
1.00 2.00 3.00	• 31 • 64 .92	2.08 4.86 3.73	3.19 9.54 7.55	2.78 9.45 9.53	1.83 6.22 7.26	1.02 3.83 9.82	•51 2•19 2•89	•24 1•75 1•57	•11 •50 •*6	•C4 •22 •38	
5.00 5.00 6.00	07 .07 .02	1.93 	2.23	5.PO 3.21 1.56	5.36 3.28 1.75	4.03 2.71 1.57	1.92	1.56 <u>1.22</u> .92	.P5 .71 .51	- 43 - 39 - 30	
\$.00 9.00 10.00	.00 .0D .0D	.04 .01	• 15 • 05 • 72	.78 .11	.38 .16	• 40 • 10 • 16	• 35 • 17 • 78	.za	.33 •19 •11 •C5	.13 •07	
	CH	I-SQUARE =	1.80286	CELLS	USEn=	711.5	LL COUNTS	GREATER	THAN O	R ECUAL	70 EI

Expected Cumulative Probability

1

	1.00	2.00	7.90	4.70	5.00	6.00	7,30	870	9.00	19.00
1.00	.00208	.01595	.03720	.05573	.06792	.07472	.07812	.07971	.04041	.09071
2.00	.00634	.05259	.13080	.27565	.25930	.29161	.37896	.31755	.32156	.32334
3.00	.00913	.03005	.20856	.34629	.44693	.57542	.54211	.56110	.570#3	.57478
4.00	.01038	.09423	.25296	.42333	.55974	.65107	. 775 ?5	.73471	.74969	.75693
5.00	.01086	.10025	.27391	.46566	.67393	.7333C	.37029	.83789	.85762	.86745
6.00	.01102	.13256	.28270	.48492	.65476	.77461	.94965	.89273	.915#9	.92776
7.00	.01107	.10337	.28611	.49292	.66840	.79375	.87333	.91973	.94508	.95823
8.00	+01108	.10365	.28736	.49595	.67408	.37209	. 894 73	.93227	.95891	.97296
9,00	.01109	.10373	.28779	.49713	.67633		.99865	.93733	.96518	.97965
10.00	.01109	.10376	.28794	.49755	.57718	.30694	.89056	.94071	.96792	.99266

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ze: 10 De	egrees			Sample	Size:	150			
OBSERVED	0 •12289 CHI-SOUARE=	2 1 1.95145 7.57823	7 7.67422 CELLS USED=	4 17 17.048 7(1.6.,CEL	30 96 27.4 L COUNTS 69 XPECTED DIS	7 1285 3 Peater than TPIBUTION	6 9 4.56927 Or Equal 3	7 47 334AJ873 10 51	b 15 22.22768	9 8 5.18464
ANGLE CUMULATIVE P SECTOR PROBA	ROBABILITY BILITY	10. •00082 •06062	20. .01383 .01301	3C. • 36499 • 75116	4]. •17954 •11365	50. .36140 .18275		70, .81725 .22539	8C. •96543 •14818	90. 1.00000 .73457

Table A12. observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized | u'| or Lu

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

. . ,å

and a

1.1

	Sample	e Si	ze	= 1	50						BLI	1 *	Lu									
				2		4	_5	6	1	- 1	.9		11	12	13	14	15	16	17	1.9	19	20
		1	4	9	1	Ċ.	b.	1	Ċ.	n	6 11		ė	n	n	n	n		'n	5	'n	'n
		2	0	13	9	.5	-3	ī	ī	ź	ń		ì	5	ř	ō	0	r	ň	, e	'n	õ
		3	0	9	7	7	8	5	3	5	'n	7	5	r	¢	Π	n	'n	ē	÷	•	ò
		4	0	1	8	7	5	.4	2	t	1	7	. Ċ	9	ċ	0	n	:0	9	n	•	Ċ
		5	<u></u>	?	3	8	2	1	Ċ.	.7	า	ņ		2	C	ņ	r	. n.	0		1	C
		6	¢	9	2	1	2	3	1		3	3				0	<u> </u>	r	0		-	
		. 7	0	2	0	1	1	1	1	1	'n	Ť.	Ū.	1	C	C	r.	7	n	•	Ū.	С
		8	9	3	a	1	1	1	a	n	3		c		ŋ	C	°	•	0	•	~	C.
B	* u'		0	- 2	<u>o</u>	0	C	ū.	<u> </u>	- 2	n	2	- <u>- </u>	2	C	Ċ.	r.	<u>, C</u>	Π	÷	n	r
-141	1 - 1	10	0		0		0	7	ä	- 7	- O		0			,C		-	a	~	. 0	C
			<u>u</u>				<u> </u>	-9-	0	<u> </u>				<u></u> _	<u>c</u>	. <u> </u>	Ţ.	<u> </u>	0		<u> </u>	
		12					5	÷.	<u>u</u>						- 2	.0	- 2		0			<u>c</u>
		1.4	č	õ	ň	ň	5	ň	5		4		^o			- E			10			ņ
		15	õ	- í	ń	~	ň	, ,	è		ź				Š							1
		16	ŏ	·	- ñ	- 1	ř	ň	ň	.,	÷	2			с п	ž	т. 1	, r	ů.		1	10
		17	-0	3	ä	ň	č	ñ	ñ	r		•	ŕ	-	ň	<u>,</u>		r.		1	š	
		18	o de la com		Ó		c	ģ.		- n	- <u>'</u>			1	- n	n						ñ
		19	ō	÷.	ĝ	ă	č	ń	5	•	2	÷.	'n		ő	ñ		.r		2		, e
	· · ·	20	Ō	ń	9	ņ	C	0	D	.0	1	'n	C	-	õ	č	r	'n	ó	-	0	č

Expected	Cell	Count

	ρ = .2955		Υ 1	= 2.9	129	Ŷ	2 = 3.6	080	η <u>=</u> .	3289		
	<u></u>	1.00	2.00	3.00	4.00	5.00	5.00	7.00	A.JO	9.00	19.00	-
	1.00	.87	3.44	3.80	7.65	1.48	.72	. 32	• 1 4	. 05	.12	
	2.00	1.85	i 8.19	19.20	7.97	4.92	2.64	1.29	. 59	.25	.11	
	3.00	1.32	6.64	9.41	R. 76	5.67	3.35	1.78	. 98	. 41	.16	
	4.00	.66	3.76	6.01	5.68	4.45	7.86	1.65	. 97	. 44	.21	
	5.00	.28	1.78	3.19	3.44	2.85	1.99	1.23	.70	.37	.19	
. 1	6.00	•11	.76	1.50	1.78	1.60	1.70	.90	. 46	.27	.1.4	
	7.00	.04	.30	.65	.R5	• R 2	.66	. 47	. 36	.18	•1ú	
	. 8.00	.01	.11	.27	. 38	. 19	. 34	. 25	.17	.11	.06	
	9.00	.00	.04	.11	.16	.18	.16	• 13	. 99	. 76	4	
	10.20	.00	.01	. 74	. 76	, 13	7	. 76	. 75	. "3	•CZ	
			CHI-SQUARE =	5.113	95 CELLS	USED=	711.E.,C	ELL COUNTS	GPEATER	THAN O	R ECUAL	TO 51

Expected Cumulative Probability

1

	1.00	5.00	3.90	4,00	5.00	6.00	7,10	8.13	9.00	19.00
1.00	.00581	.02877	.05409	.07176	.09159	.38639	.0*854	.38944	.04981	.08995
2.00	+01813	.09572	.18904	.25984	. 37250	.32489	.33541	.34042	.34248	. 34332
3.00	.02695	.14882	.30495	.43075	.51123	.55592	.57850	.58915	. 5 9 3 9 3	.59599
4.00	.03137	.17834	.37445	.53958	.64973	.71352	.74709	.76357	.77125	.77468
5.00	•03323	.19209	.40944	.59753	.72667	.87369	.94546	.86660	.87674	.88141
6.00	.03394	.19785	+42522	.62520	.76500	.85004	. 39711	.92146	.93340	.93902
7.00	-03419	.20010	.43183	.63746	.79273	.87216	.92235	.94868	.96140	.96806
8.00	.03428	.20093	.43446	.64259	.79048	.84216	.97474	.96151	.97535	.99204
9.00	.03430	.20123	.43546	.64466	.79373	.88650	.91923	.96732	.98155	.99853
10.00	.03431	.20133	.43552	.64546	.79504	.99831	.94146	.96996	.9*471	99119

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Size: 10 D	egrees	Sample	Size: 150			
OBSERVED 0 EXPECTED .61512 CHI-SOUAPE=	2 3 0 1 i 5.17160 13.35374 6.34115 CELLS USED=	4 5 28 34 27.10425 28. 5(I.F.,CELL COUNTS G EXPECTED DI	6 31 76173 31+19594 Peater than or equal St ⁹ 19Ution	7 25 27,59116 T0 51	12 17.19797	9 3 4.00849
ANGLE	10. 20.	30. 43.	50. 60.	70.	80.	Ъ.
CUMULATIVE PROBABILITY SECTOR PROBABILITY	.06410 .03858 .06410 .03448	.12760 .27496 .789C2 .14736	.46671 .67468 .19174 .20707	.95862	.97328	1.00000

Table A13. Observed and Expected (Gamma) Cell Counts, KSC July, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized V or Ly

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

Expected Cell Count

ρ =	.3761	Yıı	= 2.30	66	۲ ₂	a 4.16	76	n≖,	5055		
	1.00	2.00	3.00	4.00	5.10	<u> </u>	7.00	8,70	9.00	10.00	
1.00	.90	5.33	7.58	6.30	4.02	2.21	1.10	.51	.23	.16	
2.00	.85	6.29	11.74 1	0.94	۹.75	4.96	7.71	1.36	.65	.29	
3.00	. 32	2.99	5.54	7.77	5.66	4	2.83	1.56	.80		
4.00	.09	1.08	2.87	4.75	4.70	3.16	2.14	1.29	.71	.37	
5.00	• 0 Z	.33	1.08	1.77	2.91	1.76	1. 74	. 98	.53	.29	
6.00	.01	.10	. 36	.69	.89	.88	.73	.53	. 34	•?(
7.00	• 06	.03	.11	.25	. 36	.«C	. 36	.?8	.20	.13	
8.00	•00	.01	.73	.18	.14	.17	.16	.14	. 11	•C7	
9.00	.00	.00	.01	.03	.05	• 6	• 27	. 76	.05	. * 4	
10.00	.00	.00	. 20	• 71	•"2	. C 2	.73	.73	.02	• F Z	
		CHI-SQUARE:	23.25596	CFLLS	USED=	* II .EC	ELL COUNT	S GREATER	THAN OF	R ECUAL T	0 5)

Expected Cumulative Probability

1

		1.00	2.00	3,.30	4.00	5.00	5.00	7.00	P.73	9.00	10.00
1	.00	.00602	.04158	.09212	+13411	.16092	.17562	.1.295	+18637	.19790	.19856
2	.00	.01168	.09918	.21335	.32826	.47876	.4565L	.49198	.49443	50324	.57286
3	.00	.0138C	.11125	.27899	.44572	.57062	.64938	.67364	.71654	.72769	.73287
	.00	.0144C	11903	.33592	. 49963	.65122	. 75109	. 37961	.84112	.85704	.86468
5	5.00	.01456	.12141	.31548	.52100	.6P597	.79773	.86517	.90257	.92272	.97163
6	.00	.01459	.12208	.31856	.52969	.69959	.81724	.89956	.93248	.952?1	.96318
7	.00	.01460	.12226	.31949	.53127	.70457	.82497	. 89959	.94240	96546	.97729
8	.00	.01460	.17233	.31976	.53239	.77629	.82769	.97351	.94726	.97173	.99334
9.	.00	.01460	.12231	.31983	.53234	.79686	.87858	.97407	.94915	,97328	.99584
10	.00	.01460	.12232	.31985	.53241	.70704	.82902	.90550	.94987	.97415	.98685

Observed and Expected (Gamma) Counts within Equal Area Sectors

Table A14. Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized | u'| or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

3

1

	Sample	Si	ze	#	150						B	Lu	* I	n								
			I	2	3	54	5	6	7	Е	9	10	11	12	13	14	15	16	17	IO	19	20
B [עי	* [u']	I 2 3 567 a 9911234 567 a 911234 567 a 911237 567 a 911234 567 a 911237 a 911234 567 a 911234 577 a 911235 577 a 911255 5775 577 a 911255 5775 5775 5775 5775 5775 5775 5775	2 000000000000000000000000000000000000	I* 30 0000000000000000000000000000000000	57 2000000000000000000000000000000000000	E 3 4 3 I I 0 0 0 0 0 0 0 0 0 0 0	3 925 1000000000000000000000000000000000000	I 10 30 10000000000000000000000000000000	15 563≈000000000000000000000000000000000000	075000000000000000000000000000000000000	022000000000000000000000000000000000000	0=0100000000000000000000000000000000000	II # 10000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Expected Cell Count

Р =	.3348	^Y 1 = 2.0788			-	$^{Y}2 = 4.$	7338	η =	50	52	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	9.00	9.00	10.00	
1.00 2.00 3.00 5.00 6.00 7.00 0.00 9.00	.42 .31 .03 .03 .00 .00 .00	3.97 3.57 1.44 .46 .13 .03 .01 .00 .00	7.m 8.53 4.18 1.60 .54 .17 .05 .01	E.37 10.69 6.23 2.78 1.08 .38 .13 .00 .01	5.55 9.5s 6.37 3.66 1.44 .57 .21 .07 .08	4.27 6.94 5.21 8.99 1.48 .65 .27 .10	2.47 4.39 3.65 2.31 1.26 .61 .27 .11	1.32 2.52 2.28 1.58 .93 .49 .24 .11 .05	.66 1.35 1.31 .98 .62 .35 .19 .09	.32 .68 .71 .56 .23 .13 .07 .03	
10.00	.00 Ch	.00 I-SQUARE®	.80	.00 33 CELLS	.01 USED-	.01 7(1.E.,c	. 02 ELL COUNT	.02	.02 THAN	OR EQUAL	TO 51

Expected Cumulative Probability

3

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
I.00 2.00 3.00 5.00 5.00 7.00 (1.00 5.00 (1.00	.00282 .00%89 .00555 .00572 .00577 .00577 .00578 .00578 .00578	.02926 .05513 .05537 .06660 .06950 .06973 .06979 .06981 .06981	.08150 .16426 .20239 .21630 .22079 .22213 .22251 .22251 .22261 .22263 .22264	.13730 .29134 .37079 .40322 .41492 .41880 .42038 .42038 .42052	.18099 .39871 .52062 .57482 .59512 .60384 .60647 .60732 .60759 .60767	.20947 .47347 .63012 .70428 .73542 .75749 .75199 .75343 .75395 .75411	.22597 .51926 .70022 .78981 .82932 .84547 .85169 .85399 .85399 .85480 .85508	.23477 .54489 .74104 .84116 .88689 .90631 .91413 .91714 .91825 .91866	.23920 .55831 .76319 .86982 .91971 .94150 .95055 .95416 .95556 .95556	.24132 .55498 .77457 .88495 .95739 .95074 .97066 .97472 .97633 .97695

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector	Size: 10 I	Degrees			Sample S	Size: 150			
OBSERVED EXPECTED	1 0 .00976 CH1-SQUARE=	2 0 .26735 4.84266	3 1.67538 CELLS USED+	4 5.66824 5:1.E.,CELL EXP	5 11 13.51660 COUNTS GREATE ECTED DISTRIB	6 25 25.17894 R THAN OR EQUAL UTION	7 40 37.67198 10 51	8 53 42.69010	9 17 23.32165
ANDLE CUMULATIVE	E PROBABILITY DBABILITY	.00007 .00007	.00105 .00178	.01302 .01117	.05080 .1 .03779 .0	50 60 4092 .30978 9011 .16786	70 .55992 .25115	.84452 .29460	98 1.00000 .15548

Table A15. Observed and Expected (Gamma) Cell Counts, VAFB Winter, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized **V'** or Ly

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

	Sampl	e Si	ze	nd.	150						8	Lv.	* L	v									
			I	2	3	4	5	6	7	е	9	10	11	12	13	∎c	15	15	17	18	19	50	
v 'I	* [יי	123056789011234567 101234567	700000000000000000000000000000000000000	13010000000000000000000000000000000000	121320001000000000000000000000000000000	93930000000000000000000000000000000000	080400000000000000000000000000000000000	3 Y 82000 I 000000000000000	4 540 0000000000000000 00	022000000000000000000000000000000000000	0000====0000000000000000000000000000000	000000000000000000000000000000000000000	2	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000		99999999999999999999999999999999999999	800000000000000000000000000000000000000	000000000000000000000000000000000000000	

Expected Cell Count

в

ρ ж	.3205	Y	1 = 1	.6875		Υ <mark>2 =</mark> 3	.0769	n	≈ , 48	58	
	1.00	2.00	3.00	4.00	5.00	5.00	7.00	0.00	9.00	10.00	
1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00 9.00 9.00	2.02 1.04 .29 .07 .02 .00 .00 .00 .00	10.42 6.71 2.39 .72 .20 .05 .01 .00 .00 .00 .00	14.10 11.17 4.89 1.78 .18 .05 .01 .00 .00 .00 .00	11.65 10.93 5.65 2.91 .92 .32 .11 .03 .01 .00	7.55 8.11 4.83 2.35 1.01 .15 .05 .02 .01 5 USED-	4.25 5.09 3.41 1.96 .83 .39 .16 .05 .02 .01 8(1.EC	2.18 2.96 2.11 1.27 .32 .1Y .06 .07 .01 ELL COUNT	1.05 1.48 1.19 .78 .45 .23 .11 .05 .02 .01 S ORCATER	.49 .73 .62 .44 .27 .15 .08 .04 .04 .04 .04 .01	.22 .34 .23 .15 .05 .05 .03 .01 .01 R EQUAL	TO 51

Expected Cumulative Probability

1

	1.00	5.00	3.00	9.00	5.00	6.00	7.00	0.00	9.00	10.00
1.00	.01347	. 08292	. 17692	.25459	. 30492	. 33323	.34777	. 35479	.35802	.35947
2.00	.02038	.13454	. 30 300	. 45353	.55796	.62025	.65382	.67072	.67879	.68250
3.00	.02233	15291	.35338	.54159	.67820	.76317	.91093	.83565	.84788	
5.00	.02292	.15913	.37595	59624	74528	94953	00009	91048	95000	.93296
6.00	+6520	15950	.37742	.58996	.75165	.85753	.92021	95472	.97269	.98164
7.00	. 02294	.15960	. 37786	.59111	.75379	.86073	.92437	.95962	.97812	.9874I
0.00	.02295	15962	. 37798	.59146	.75448	.86183	.92587	.96146	15086	.98967
10.00	.02295	.15963	. 37802	.59158	.75476	.86232	.92658	.96237	.98158	.99087

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	Size: 10 D	Degrees			Samp	le Size:	150			
OBSERVED EXPECTED	I D .04473 CHI-SQUARE=	2 1.63967 6.07990	3 2.68414 CELLS USED-	4 6.951 8(1.E.,CEL	5 148 13.9 1. COUNIS GR EXPECTED 015	6415 23 EATER THAN TRIBUTION) 1.19646 Or Equal	7 33.45749 70 53	8 YO 40.23577	9 23 29.92610
ANOLE CUMULATIVE SECTOR PRO	PROBABILITY	10. .00030 .00030	20. .00436 .00426	30. .02246 .01789	40. .06880 .04634	50. .16123 .09243	60. .31587 .15464	70. .53092 .22305	80. .80715 .25824	90. 1.00000

Table A16. observed and Expected (Gamma) Cell Counts, VAPB Winter, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized [u'] or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

490 m g

j

1

	Sample	Siz	ze :	= 1	50					BL	u	L	J						
₿ [u'	* [u']	IE3+56709101123+567199	3 000000000000000000000000000000000000	2 e*000000000000000000000000000000000000	3 3673200000000000000000000000000000000000	¥ ¥66460000I000000000000000000000000000000	5 129 33 201,0 1000000000000000000000000000000000	7 0 1 7 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 5 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 00E00P00000000000000000000000000000000	10 1 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 000000000000000000000000000000000000	13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0000000000000000000000000000000000000		17 000000000000000000000000000000000000	19 000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Expected Cell Count

P = .2802	Ŷ	1 = 2.	6077	2	$^{\prime} 2 = 4$	5529	η	. 3	702	
1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
1.00 .30 2.00 .46 3.00 .45 4.00 .11 5.00 .04 6.00 .01 7.00 .00 9.00 .00 9.00 .00 9.00 .00 9.00 .00	2.49 9.22 2.69 1.26 .51 .19 .06 .02 .01 .00	4.53 6.64 6.22 3.28 1.47 .60 .23 .08 .03 .01 9.009	4.58 9.70 7.82 4.57 2.27 1.01 .42 .17 .06 .0P	3.44 7.99 7.11 9.57 2.47 1.20 .54 .83 .09 .04	2.16 5.46 5.31 3.71 1.13 .55 .25 .11 .0''	1,21 3,29 3,96 2,60 1,69 ,92 ,47 ,23 ,10 ,03 ELL COUN	.62 1.81 2.04 1.65 1.11 .66 .36 .18 .09 .09	.93 1.12 .95 .95 .13 .07 .07 .03 R THAN	.14 .48 .58 .53 .40 .26 .16 .09 .05 .05 .05	TO 5)

Expected Cumulative Probability

1

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00 2.00 3.00 5.00 6.00 .00 9.00 10.00	.00200 .00503 .00674 .00745 .00770 .00778 .00781 .00781 .00782	.01852 .04969 .06931 .07840 .08202 .08334 .08379 .08394 .08390	.0487 .1374 .1986 .2295 .2429 .2482 .2482 .2507 .2507 .2511 .2511	07924 23271 34592 40731 43584 44789 45265 45445 45511 45534	10214 30890 56138 60639 62644 6348 6381 6393	11653 .33968 .55569 .67225 .73173 .75934 .77135 .77632 .77830 .77906	.12459 .38965 .60871 .74264 .81304 .84676 .86191 .86839 .87106 .87106	. 12874 .40587 .63857 .78341 .86121 .899331 .91685 .92451 .92781 .92781	13076 41411 65429 80561 89795 92894 94813 95672 96042 96198	.13170 .41810 .66215 .81699 .90197 .94471 .95496 .97415 .97817 .97909

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ze: 10 D	Degrees			Samp	le Size:	150			
OBSERVED EXPECTED	0 06302 CHI-SQUARE=	2 0 1.12979 5.47256	3 4. 85563 SELLS USED-	4 11.821 5(1.E. ,CEL	L COUNTS OF	2081 EATER THAN TRIBUTION	OR EQUAL	7 36,82254	8 36 31.0+680	9 11.1 5283
ANGLEATIVE P	ROBABILITY	.000%2	. 08095	. 0%032	. 19919	.29005	. 46095	.77834	. 98665	1.0 90 00
SECTOR PROBA	BILITY	.00042	.00753	.03237	.07886	14197	.20680	. 24548	.21231	07435

Table A17.Observed and Expected (Gamma) Cell Counts, VAPB Winter,
Jimsphere, 12 km, Wavelength Range, 420-2470 m
Non-dimensionalized v' or Lv

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

	Sampl	e Si	ize	#	150																	
	-										В	Lv	* I	v								
			I	5	3	4	5	6	7	е	9	IO	11	15	13	14	15	16	17	10	19	20
B v	* v "]	1234567a901123151167892	300000000000000000000000000000000000000	amooooooooooooooooooooo	₽66⊥₹00000000000000000000000000000000000	I@#571100000000000000000000000000000000000	590*631I0000000000000	36 ;;; 33 - 100000000000000	03 330 00000000000000000000000000000000	0.# 1 = - 010000000000000000000000000000000	002200000000000000000000000000000000000	03=I=0000000000000000000000000000000000	001100000000000000000000000000000000000	00-000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	•	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Expected Cell Count

. 1

ą

ρ = . 2898	۲	1 = 2	. 5709		^γ 2 = 4	.7895	η	= .3	956	
1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.09	10.00	
1.00 .22 2.00 .31 3.00 .16 5.00 .02 6.00 .01 7.00 .00 9.00 .00 10.00 .00 10.00 .00	2.15 3.43 2.06 .94 .35 .12 .04 .01 .00 .00	4.38 7.89 5.41 e.72 1.17 .46 .17 .06 .01 .01 .01	4.77 9.61 1.41 4.17 1.99 .86 .34 .13 .05 .02 58 CELLS	3.80 8.42 7.21 4.49 2.34 1.10 .20 .09 .09 .03 5 USED=	2.50 6.05 5.68 3.89 1.11 .52 .23 .10 .04 7(1.0, C	1.45 3.80 3.87 2.04 1.74 .95 .47 .22 .10 04 ELL COUN	.78 2.17 2.37 1.07 1.23 .71 .39 .19 .09 .04 IS GREATER	.39 1.15 1.35 1.35 1.35 1.35 1.35 1.35 1.35	.19 .58 .64 .57 .51 .10 .05 .05 OR EQUAL	10 51

Expected Cumulative Probability

1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
10.00 .00526 .06587 .21428 .40992 .59747 .74583 .84901 .91448 .95324 .974	1.00 2.00 3.00 5.00 6.00 7.00 0.00 9.00	.00147 .00354 .00463 .00505 .00525 .00525 .00525 .00526 .00526	.01580 .04077 .05561 .06214 .06462 .06547 .06575 .06584 .06586 .06586	.04498 .12253 .17342 .19607 .20834 .21223 .21361 .21423 .21423 .21428	.07682 .21843 .31843 .37118 .39470 .40429 .40796 .40929 .40976 .40992	.10212 .29989 .44829 .53057 .56972 .58665 .59351 .59615 .59712 .59747	.11878 .35685 .54310 .65103 .70477 .72911 .73944 .74360 .74522 .74583	.12948 .39185 .60389 .73072 .79604 .82671 .84020 .84585 .84813 .84901	.13365 .41147 .63933 .77861 .85210 .80752 .90354 .91045 .91332 .91448	.13625 .42174 .65058 .80412 .92278 .94063 .94851 .95186 .95324	.13750 .42685 .66847 .81953 .90140 .94211 .96118 .96973 .97343 .97498

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector	Size: 10 I	Degrees			Sampl	e Size:	150			
OBSERVED EXPECTED	1 0 .03201 CH1-SQUARE=	0 .72853 3.19877 CE	3 0 3.63240 LLS USED=	9.890 9.890 6: I.E.,CEL	3 24 86 19.41 L COUNTS GRE XPECTED DISTI	27 27 30 30 426 30 ATER THAN RIBUTION	. 35837 OR EQUAL	7 39 38.21277 TO 51	3 4.83965 91 9	9 11 12:09019
ANOLE CUMULATIVE SECTOR PRO	PROBABILITY	.01 55000.	20. . 00 508 . 004 96	30. 02929 .02422	40. .09523 .06594	.02 88#25. 12943	60. 42705 20239	70. .68180 .25475	80. 91407 23227	90. 1.00000 .08593

Table A18. Observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wayelength Range. 90-420 m Non-dimensionalized |u'| or Lu

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

< A

1.14

I

ž

1

Sample	S	ize	z	150						Bj	Lu	* Ľ.	1									
8 u' * u'	123×567e9111111111		00000000000000000000000000000000000000	3 4742000°00 0000000000000000000000000000000	00000000000000000000000000000000000000		20000 20000 0000 0000 0000 0000			B 9 1 0 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0						5 000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	7 a 00a a 0 a 0 0 0 0 a 0 a 0 0 0 0 0 0				0
	1 2	9 0	0	0	0	0	0	8	0				Ö	8	8	0	00	000	00	0	Ö	

Expected Cell.Count

ρ =	.2768	Ŷ	1 = 2.	6824	-	^Y 2 = 5.	9186	η	= .4	111	
	1.00	2.00	3.00	4.00	5.00	5.00	7.00	8.00	9.00	10,00	
1.00 2.00 3.00 5.00 5.00 6.00 7.00 0.00 9.00 10.00	.03 .04 .02 .01 .00 .00 .00 .00 .00	.61 1.02 .51 .26 .10 .03 .01 .00 .00 .00	2.11 3.91 2.63 1.29 .53 .20 .07 .02 .01	3,38 6,91 5,18 2.79 1.27 .20 .07 .02 .01	3.62 9.09 5.68 3.95 1.97 .35 .35 .14 .05 .08	3.05 7.38 6.63 4.26 2.50 1.11 .49 .21 .0e	2.18 5.55 3.50 2.21 1.14 .54 .24 .10	1.39 3,85 9.01 2.97 1.84 1.01 .51 .24 .11 .05	.62 2.39 2.65 2.09 1.37 .80 .43 .21 .10 .05	.45 1.38 1.62 1.35 .94 .32 .17 .08	10 81
	CH	II-SOUMI"	7.884	II CELLS	S USED.	911.EC	ELL COUN	TS GREATER	t than	OR EQUAL	10 51

Expected Cumulative Probability

1

	1.00	5.00	3,00	W.00	5.00	5.00	7.00	8,00	9.00	10.00
1.00 2.00 3.00 5.00 5.00 6.00 7.00 9.00	.00019 .00046 .00061 .00067 .00069 .00069 .00069 .00069	.00%26 .01131 .01550 .01731 .01778 .01820 .01827 .01829 .01830	.01833 .05143 .07313 .08345 .08762 .08916 .08969 .08986 .08991	.04098 .12002 .17624 .20516 .21782 .22283 .22468 .22533 .22555	.06504 .19812 .29889 .35415 .37992 .39079 .39507 .39666 .39724	.08536 .23752 .41246 .49615 .53725 .55550 .56306 .56602 .56602	.09990 .31977 .50137 .61047 .66629 .69214 .70330 .70788 .70968	.10920 .35471 .56303 .69196 .76004 .79262 .80719 .81337 .81589	.11467 .37611 .60209 .74495 .82217 .86008 .87748 .88509 .88827	.11768 .38834 .62514 .77702 .96049 .90224 .92180 .93053 .93053 .93128

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector	Size: 10	Degrees	•		Samp	ole Size:	150			
OBSERVED EXPECTED	1 0 .00335 CH1-SQUAR	2 -0 .16501 E= 11.18729	3 2 1.36638 CELLS USED-	4 7 5.335 6(1.E.,CEL E	S 9 13.8 L COUNTS GR XPECTED DIS	13097 2 EATER THAN STRIBUTION	8 3 7.13013 OR EQUAL	7 30 41.17909 TO 53	8 56 43.56314	9 13 17.41773
ANGLE CUMULATIVE	PROBABILITY	10. .00002 .00002	20. .00113 .00111	30. .01024 .00911	40. .04581 .03557	50. 13807 .09226	60. .31893 .18087	70. .59346 .27453	.08 98298. 29042	90. 1.00000 .11612

Table A19. Observed and Expected (Gamma) Cell Counts. VAFB Transition, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized **| v'** | or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

 $< -\eta$

. 3

.1

2

1

	Sample	e Si	ze	=)	150						Bj	Lv	* L	۷								
			I	5	3	4	5	6	7	e	9	10	11	12	13	14	15	16	17	18	19	20
B [v']	*] v'	12345670901234567890	501000000000000000000000000000000000000	15沿 5%~8 00 80000000000000 0000	7157220000000000000000000000000000000000	3-984400000000000000000000000000000000000	17e371102000000000000	023210010000000000000000000000000000000	103120000000000000000000000000000000000	0-3200000000000000000000000000000000000	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000000000000000000000000000	800000000000000000000000000000000000000	000000000000000000000000000000000000000	0 00000000000000000000000000000000000	80000800800800800000888	

Expected Cell Count

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P =	.3755	γ	1 = 2	2247	ì	2 = 3.	4086	η	46	548	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00	2.00	3,00	4.00	5,00	6.00	7.00	8.00	ð,00	10.00	
	1.00 2.00 4.00 5.00 6.00 7.00 9.00 10.00	2.72 2.62 1.06 .03 .03 .03 .01 .00 .00	8.99 10.88 5.57 2.19 .75 .23 .07 .02 .01 .00	8.72 13.09 8.31 3.96 1.62 .60 .20 .07 .02 .01	5.53 9.93 7.55 4.24 2.01 .55 .33 .12 .04 .01	2.96 5.95 5.26 3.40 1.83 .E7 .38 .15 .06 .02	1.32 3.10 3.26 1.37 .72 .35 .16 .07 .03	.57 1.464 1.32 .88 .51 .27 .13 .03	.23 .65 .70 .51 .33 .19 .05	.09 .28 .35 .29 .19 .12 .07	.04 .11 .15 .16 .14 .10 .07 .04 .07	

Expected Cumulative Probability

3

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8,00	9.00	10.00
1.00 2.00 3.00	.01814 .03564 .04271	.07007 .16011 .21231	.13617 .31348 .41311	.17303 .41656 .56656	.19212 .47534 .66044	.20093 .50480 .71061	.20472 .51836 .73509	.20629 .52426 .74629	.20690 .52672 .75118 .87531	.20715 .52771 .75323
4.00 5.00 6.00 7.00	04557	.23472	.47273	.66799 .67925 .68332	.79664 .81384 .82045	.87101 .89303 .90196	.91021 .93566 .94640	.92953 .95716 .96914	.93857 .96746 .98022	.94264 .97220 .98540
9.00	.04578	.23711	.48104	.68515	.82371	.90670	.95241	.97612	.98785	.99347

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ze: 10 D	Degrees			Sample	Size:	150			
OBSERVED EXPECTED	1 0 .27069 CHI-SQUARE=	2 1 2.56744 5.55562 CI	3 8 7.94353 ELLS USED+	4 15 15.77473 6(1.ECELL (EXP	5 19 24.289 Counts Grea Ected Distr	6 33 09 30.89 TER THAN OR 18UT ION	948 EQUAL TO	7 14 52.50697 53	8 28 25.96669	9 2 9.78140
ANOLE CURLATIVE P SECTOR PROBA	ROBABILITY BILITY	10. .00180 .00180	.01892 .01892 .01712	30 .07100 .05296	17704	.33897 .	50 54497 20600	.76168 .21571	.93%79 .17311	90 1.00000 •06521

Table A20. Observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wavelength Range, 420-2470 m, Non-dimensionalized | u'| and L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

.

.

۱ د

в

i

	Sampl	e Si	ize	=	150)					в	Ľu	* L	.U									
			1	5	3	9	5	6	7	8	9	10	11	r	13	14	15	16	17	18	19	20	
u '	• u'	123456789011234567890 111234567890	500000000000000000000000000000000000000	850000000000000000000000000000000000000	10000000000000000000000000000000000000		27 * 4 53 * 0 ≈ 00000000000000000000000000000000	158 72 000000000000000000000000000000000000	0#3110000000000000000000000000000000000	1300 0 000000000000000000000000000000000	01CI00000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	0===00000000000000000000000000000000000	00100000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Expected Cell Count

ρΞ	2119	Y	1 = 2	.4196		γ_{2 = 4.}	3057	n, s	= ,28	326	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
1.00 2.00 3.00 5.00 5.00 7.00 8.00 9.00 10.00	.45 .65 .30 .17 .07 .02 .01 .00 .00	3.30 5.12 3.25 1.57 .67 .01 .01 .00 1.50 .01	5.W 9,56 6.60 3.48 1.60 .50 .27 .10 .0b	5.62 10.18 7.83 4.33 2.14 .977 .42 .11 .03 53 (7)	4.19 8.14 6.57 4.00 2.11 1.02 .48 .20 .03	2.55 5.48 4.73 3.07 1.72 .99 .19 .19 .08 .04	1.50 3.29 3.01 2.08 1.23 .66 .33 .16 .07 .07	.78 1.81 1.76 1.29 .EO .45 .24 .12 .05	.39 .44 .73 .48 .29 .16 .09 .02	.18 .46 .50 .40 .27 .17 .10 .05 .01	10 51

Expected Cumulative Probability

Ĵ,

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00 9.00	.00302 .00736 .00989 .01102 .01147 .01163 .01168 .01168 .01170 .01171	.02501 .06352 .09771 .09932 .10422 .10614 .10614 .10614 .10710 .10710 .10721	.06289 .16511 .23333 .26813 .28309 .29012 .29358 .29358 .29358 .29358	.10033 .27041 .38948 .45317 .48302 .49593 .50122 .50330 .50439	.12827 .35265 .51551 .60589 .64983 .66955 .67793 .68134 .68269 .68269	14592 .40684 .60122 .71208 .76750 .79308 .80425 .80896 .81087 .81087	-15590 -43872 -65320 -77790 -84152 -87150 -88490 -89065 -89305 -89402	-161 IC -45603 -68224 -81547 -88440 -91738 -93236 -93889 -94166 -94281	. 16370 . 46487 . 69750 . 83562 . 90775 . 94762 . 95862 . 95862 . 96873 . 97001	.16492 .46919 .70514 .84592 .91996 .95584 .97249 .97249 .97290 .98311 .98447

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	ize: 10 D	egrees			Sample	e Size:	150			
OBSERVED EXPECTED	1 0 . 12377 CHI-SQUARE -	2 0 1.64281 5.76571	3 3 5.73031 CELLS USED+	9 13.152 6(1.53.158	5 24 20.15 L COUNTS GRE XPECTED DIST	8 35 89 28 ATER THAN RIBUTION	.93286 R EQUAL	7 32 34.73003 10 5)	8 38 32.96639	9 9 13.95580
ANDLE CUMULATIVE SECTOR PROB	PROBABILITY ABILITY	10. .00083 .00083	20. .01178 .01095	30. .049 98 .03820	40. 13100 .08102	50. .26537 .13437	60. .45559 .19022	70. .60712 .23153	80. .90689 .21978	90. 1.00000 .09311

Table A21. observed and Expected (Gamma) Cell Counts, VAFB Transition, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized y' or Ly

Observed and Expected (Gamma) Counts within Square8

Observed Cell Count

	sampl	e Si	ze	Ŧ	150)					B	Lv	* <u>I</u>	Ŷ									
			I	а	3	4	5	6	7	а	9	10	11	12	13	19	15	16	17	18	19	20	
₿ ∨'[* v'	123 507 890112345578990	≱ ■000000000000000000000000000000000000	3 a1000000000000000000000000000000000000	177207 3000000000000000000000000000000000	*#55460=0000000000000000000000000000000000	15 52 - 01 000000000000000000000000000000000	3580-00000000000000000000000000000000000	00000000000000000000000000000000000000	aa oo=ooooooooooooooooooo	00	00000=000000000000000000000000000000000	000000000000000000000000000000000000000	000=00000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

Expected Cell Count

P ≖	.2063	Y	1 = 2	.4816		^Y ₂ = 3.	3918	ŋ.	. 2	412	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
1.09 2.00 3.00 5.00 5.00 5.00 7.00 0.00 9.00 10.00	1.56 2.52 1.62 .79 .34 .13 .05 .02 .00	5.70 9.90 6.91 3.65 1.68 .71 .29 .11 .04 .02	6.25 11.77 8.96 5.14 2.56 1.17 .50 .21 .08 .03 • 16.890	4.49 9.14 7.55 C.67 2.50 1.22 .55 .25 .10 .04 .24 .04	2.62 5.N 5.11 3.39 1.00 .49 .22 .10 .04	1.36 3.17 3.02 2.13 1.29 .71 .36 .17 .08 09 04.E0	.65 1.63 1.22 .78 .45 .24 .12 .05 .03 ELL COUN	.29 .77 .83 .65 .26 .15 .08 .04 .02 .02 .15 .02	135 350 350 350 350 350 350 350 350 350 3	.05 .15 .18 .18 .18 .05 .03 .01 .01 .01 OR EQUAL	D 51

Expected Cumulative Probability

a

	1.00	S.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00	.01041	. 044 10	.09003	.110-19	.13747	19601	.15082	. 15-77	15361	19798
c.00	.02721	. 13119	.25126	.34215	. 39700	.42803	.44306	.45011	.435.18	. 4346-6
1.00	. 0 3000	.10004	. 36786	. 50903	(b(M)C .	.64912	.67503	.68739	.69.941	.69601
4.00	.0+1-5	.21765	.43172	. 60406	.71641	.78095	.81501	.83192	.839475	. 84 56-2
5.00	.0+5+9	.23108	.46226	.65125	.77640	94962	. 80888	.90871	.918.8	92273
0.00	.04630	.23672	.47571	.67294	.80474	.002'60	.92485	.94644	.95690	.96195
7.00	.04670	.23895	.48131	.68210	.81733	.89758	. 84144	.96402	.97512	.98040
0.00	.0+682	.23982	. 48358	.68606	.82270	.90413	.94880	.97189	.90331	.98876
9.00	.0+695	.24014	. 48443	.68763	.82493	.90690	.95196	.97532	.98690	.99745
10.00	.0+688	.24025	.48476	.68824	.82583	.90804	.95329	.97677	.96843	.99403

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector Si	ize: 10 D	egrees			Sampl	e Size:	150			
OBSERVED EXPECTED	1 0 .82250 CHI-SQUARE*	2 1 5.43618 16.53747	3 8 12.17956 CELLS USED=	4 34 18.901 7(1.E.,CEL E	5 17 27 24.5 L COUNTS GRI XPECTED DIS	2 25 25 25 25 25 25 25 25 25 25 25 25 25	5 7 9.35350 OR EQUAL	7 31 28.72930 51	8 22 22.87175	9 10 8,13043
ANOLE CURULATIVE P	PROBABILITY	10. .00548 .00548	20. .04172 .03624	.08 95180.	40. .24 893 .12601	50. .41277 .16383	60. 60179 18902	70. .79332 .19153	80. .94580 .15249	90. 1.00000 .05420

Table A22. Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized | u'| or L_u

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

.•

 $> 2 \eta$

: 3

	Sample	• S:	ize	#	150																		
	*										BI	u '	L	U									
			Ι	2	3	4	5	6	7	8	9	10	11	15	13	14	IS	16	17	18	19	20	
B u'	* u']	12345670M11121				90 00000000000000000000000000000000000	0 1 1 2 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0		346330100-0000 0000000000000000000000000000									00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000			~ 0
		1 1 1 1 1 2	6 7 9 0	0 0 0	0 0 0	0 0 1 0) () () 0) 0) () () () () (0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	00 00 00 00	000000	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	

Expected Cell Count

ρ =	.3090	Y	1 = 2.	5139		$\gamma_2 = 5$.0005	η	= .43	58	
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
1.00 2.00 3.00 5.00 6.00 7.00 8.00 9.00	.17 .22 .10 .04 .00 .00 .00 .00 .00 .00 .00	1.97 2.85 1.56 .54 .23 .07 .02 .01 .00 .00	4.37 7.26 4.64 2.18 .89 .32 .11 .04 .01 .00 5.8050	5.07 9.52 6.93 3.69 1.67 .68 .26 .09 .03 .01 8 CELLS	4.21 8.81 7.20 4.28 2.15 .96 .18 .05 .02	2.87 6.59 5.96 3.90 2.14 1.05 .20 .08 .03 6(1.E.,0	1.72 4.23 3.01 1.80 .95 .46 .21 .09 .00 .00	94 2.52 2.68 2.06 1.32 .75 .39 .19 .09 .04 5 GREATER	.48 1.37 1.56 1.29 .53 .53 .30 .15 .07 .03 THAN C	.24 .70 .85 .35 .20 .11 .05 .03 R EQUAL	TO 5)

Expected Cumulative Probability

a.e

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
I.00 2.09 3.00 4.00 5.00 6.00 7.00 9.00 9.00 10.00	.00117 .00263 .00331 .00356 .00365 .00365 .00365 .00366 .00366 .00366	.01428 .03471 .04583 .05033 .05291 .05241 .05256 .05261 .05262 .05262	.04344 .11227 .15429 .17333 .18075 .18339 .18455 .18455 .18463 .18466	.07722 .20950 .29774 .34141 .35998 .36715 .36975 .37065 .110* .37103	.10529 .29628 .43252 .50472 .53759 .55120 .55646 .55839 .55907 .55930	.12444 .33939 .53535 .68071 .70131 .70972 .71298 .71420 .71464	.13593 .39942 .60356 .72185 .78098 .80792 .81941 .82407 .82588 .82657	. 14222 . 42248 . 64450 . 77653 . 84448 . 87643 . 89052 . 89645 . 89694 . 89977	.14545 .43485 .66728 .00709 .08172 .91724 .93330 .94024 .94312 .94428	. 14703 .44112 .67925 .82494 .90229 .94014 .95757 .96524 .96951 .96995

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector	Size: 10 I	Degrees			Sample 3	Size: 150			
OBSERVED EXPECTED	1 0 .01551 CHI-SQUARE=	2 0 .43428 10.60759	3 2.56885 CELLS USED+	5 7.9833 6(1.ECELL EX	5 17 10 17.3879 COUNTS GREATE PECTED DISTRIE	6 28 2 29.41591 IR THAN OR EQUAL JUTION	7 48 39.41712 TO SI	8 44 37.90742	9 5 14. 86970
ANGLE CUMLATIV SECTOR PR	E PROBABILITY GRADILITY	10. .00010 .00010	20. .00300 .00 290	30. .02012 .01713	40. .07335 .1 .05322 .1	50. 60. 18913 .38524 1579 .19611	70. .64602 .26279	60. .90074 .25272	90. 1.00000 .09926

Table A23. Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 90-420 m Non-dimensionalized | v'| or L_v

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

a.d

... 1

. .}

ч. J

	Sample	Si	ze	=	150																		
	-										B	Lv	* L	v									
			1	s	3	4	5	6	7	9	9	10	н	15	13	14	,15	16	17	18	,19	20	
 ⊽' ●	[v']	1 23 5 67 290 111 121 156 109 101 109 100		121a22000000000000000000000000000000000	570 * IOI 000000000000000	25000000000000000000000000000000000000	207 62	031111000000000000000000000000000000000	0##110000000000000000000000000000000000	003100000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	8=0000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	

Expected Cell.Count

в

P = .3368	Ŷ	1 = 2.	4416	ì	2 = 3.	3521	n :	= ,39	947	
1.00	2.00	3.00	4.00	5.00	6.00	7,00	8.00	9.00	10.00	
1.00 2.21 2.00 2.89 3.00 1.48 4.00 .59 5.00 .68 7.00 .02 8.00 .01 9.00 .01 9.00 .01 9.00 .01	7.07 10.96 6.74 3.10 1.23 .45 .15 .02 .00 CHI-SQUARE	6.77 12.44 9.09 4.89 2.24 .93 .36 .13 .05 .02 9.326	4.27 9.12 7.74 4.77 2.98 1.15 .20 .08 .03 36 CELLS	2.20 5.35 5.17 3.59 2.07 1.06 .50 .22 .09 .04	1.01 Z.N 2.97 2.29 1.46 .92 .92 .09 .04 9(1.E.C	. 43 1.29 1.54 1.30 . 55 . 30 . 15 . 07 . 03 CLL COUNTS	.18 ,57 .74 .51 .33 .20 .11 .05 .03 5 GREATER	0743337 3337 192 .042 HAN	.03 .10 .15 .15 .13 .07 .04 .02 .01 OR EQUAL	TO 51

Expected Cumulative Probability

a

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	9.00	9.00	10.00
1.00 8.00 3.00 4.00 5.00 5.00 7.00	.01471 .03399 .04388 .04772 .04902 .04955 .04955	.06183 .15421 .20901 .23349 .24298 .24636 .24748 .24748	.10696 .28229 .39769 .45477 .45477 .45477 .4921 .48677 .49229	.13544 .37154 .53851 .62741 .66835 .68557 .69557 .69236	.15013 .42189 .62331 .73613 .79090 .01521 .82534	. 15688 . 44693 . 66814 . 79620 . 86068 . 89043 . 90334	.15975 .45038 .68985 .82657 .89706 .93047 .93047	.16092 .46333 .69972 .84096 .91485 .95047 .95047	.16138 .46538 .70400 .84745 .92312 .95999 .97701	.16156 .46620 .70579 .85021 .92682 .96435 .99181
9.00	.04959	.24796	.49393 .49406	.69583	.83088	.91080	.95438	.97677	.96778	.99300

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector :	Size: 10 E	Degrees			Sample	Size:	150			
OBSERVED EXPECTED	1 0 .51017 CHI-SQUARE=	2 1 4.08583 3.35038	3 12 10.85150 CELLS USED+	16 18.9550 6(1.E.,CELL EX	5 27 26.284 COUNTS GREA PECTED DISTR	6 34 89 30.51 TER THAN OR 19UTION	8856 Equal	7 30 29 .8963 1 70 51	8 29 21.78320	9 1 6.9749
ANOLE CURLATIVE SECTOR PRO	PROBABILITY	.00340	.030 64 .030 64	. 10298 . 07234	, 22935 . 1 2637	. 40458 . 17523	. 66917 . 20459	. 80 3 92 . 19924	. 95364 . 14522	1.00000 .04636

Table A24, Observed and Expected (Gamma) Cell Counts, VAPB Summer, Jimsphere, 12 km, wavelength Range, 420-2470 m, Non-dimensionalized [u'] or Lu

Observed and Expected (Gamma) Counts within Squares

Observed Cell Count

. 3

	Sampl	Sample Size = 150 B _{Lu} • Lu																							
			1	2	3	4	5	e	5	7	8	9	10	1	1	12	13	14	15	16	17	18	19	20	
8 u'	* u'	12345678910111111111	4 0 000 0 0000 1234567 8 90	81111 ⁰ 00000000000000000000000000000000	1192 ¹ 21000 00000000000000000000000000000000	1999 ² 14000 0000000000000000		4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0		0102 19000000000000000000000000000000000	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0001 00000 000000000000000000000000000	000000000000000000000000000000000000000	000001000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00 ₀₀ 00000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ₀₀ 00000000000000000000000000000000	0

Expected Cell Count

ρ = .3578		Υ _]	$\gamma_1 = 2.6448$			^Y 2 = 3.8	826	η =		
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00 10	0.00
1.00	93	4 39	5 34	3 95	2 29	1 15	53	23	10	.04
2.00	1 37	766	11 08	9 54	6 30	3 54	1 79	84	37	. 16
3.00	71	4 85	8 41	8 47	6 41	4 05	2 27	1 16	56	.25
4.00	27	2 21	4 54	5 28	4 53	3 20	1 97	1 10	57	.28
5.00	09	86	2 05	2.72	2 6 2	2 05	1 38	84	47	.24
6.00	03	30	82	1 24	1 33	1 14	84	55	33	. 18
7.00	01	10	31	52	61	58	46	33	21	. 12
8.00	00	03	11	20	26	27	23	18	12	08
9.00	00	OL.	04	07	11	12	11	09	07	04
10.00	00	00	01	03	04	05	05	04	03	.02
	C	HI-SOUARE.	6 41015	6 CELLS	USED=	8(1 E .CEU	L COUNTS	S GREATER	THAN OR	EOUAL TO 5)

Expected Cumulative Probability

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00	.00622	03552	.07113	.09746	. 11271	. 12040	12393	12547	. 12611	12637
2.00	.01532	09567	. 205 12	29503	. 35228	.38358	39907	. 40621	40934	. 4 1067
3.00	. 02009	. 13276	. 29827	. 44467	. 54462	60292	63352	.64841	65526	.65827
4.00	.02191	. 14934	.34510	.52673	. 65686	.73646	,78019	.80242	81307	8 1795
5.00	.02250	15565	.36506	. 56484	7 1243	.80569	.85866	88649	90027	90677
6.00	.02268	15782	37273	.58077	,73724	83813	89672	92824	94423	95196
7.00	.02273	15852	37547	.58696	74752	.85226	91394	94764	96502	97359
8.00	.02274	15873	.37640	.58924	75155	85809	92132	95620	97440	98348
9.00	.02275	15879	37670	.59003	75305	.86039	92436	95983	97847	98784
10.00	02275	. 15881	.37679	.59030	.75360	86126	.92556	.96132	.98018	,98970

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	Size: 10 D	egrees								
OBSERVED EXPECTED	1 0 . 18233 CHI - Square =	2 0 2.27353 2.74946	3 8 7.98986 Cells U\$ED•	4 13 16.808 7(I.ECEL	5 31 20 26.3 L COUNTS GRI XPECTED DIS	3 5405 3 Eater Than Fribution	6 13.12780 1 or Equal	7 31 33.13930 10 5)	8 26 23.46334	9 5 6.65151
ANGLE CUMULATIVE SECTOR PRO	PROBABILITY BABILITY	10. .00122 .00122	20. .01637 .01516	.06964 .05327	. 18 169 -1 1205	50 .35745 .17576	. 57831 . 22085	. 7 9923 . 22093	.95566 .15642	90. 1.00000 .04434

Table A25. Observed and Expected (Gamma) Cell Counts, VAFB Summer, Jimsphere, 12 km, Wavelength Range, 420-2470 m Non-dimensionalized |v'| or Lv

Observed and Expected (Gamma) Count8 within Squares

Observed Cell Count

Sample	Si	ze	=	150							B .	. *	Lv									
											-174											
		1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17	18	19	20
	1	4	9	1	3	0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	3	8	2	5	2	4	•	2	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	4	13	6	10	5	4	-	1	0	1	0	0	0	0	0	0	0	0	0	0
	5	ő	6	2	4	3	3	د 1		2	0	ó	ŏ	6	ö.	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
	õ	ŏ	ŏ	ō	5	2	1	- 1	•	ŏ	ž	ŏ	ō	ō	ō	0	õ	õ	Ō	ō	ō	ō
	7	0	0	0	3	1	0	1		0	0	0	0	0	0	0	0	0	0	0	0	0
	8	0	0	0	1	1	0	C)	0	0	0	0	0	0	0	0	0	0	0	0	0
B + v!	9	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
- I A I - I - I	10	_0	0	~0	_0	`,	~ 0	~ (· ~	0	0	0	0	0	0	0	0	0	0	0	0	0
	12	1	۰ <u>۸</u>	<u>ں</u>	⁰	<u>ں</u>	⁰ م	^с с	, U	۲ 0	~ 0	~ ~	ູ	ູ	~	~	~	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ň	Ň	Ň
	1	3	ັ	ູ້	ິ	ູ້	٥Č	ດັ	้ด	č o	Č0	ິດ	ň	ň	ň	ň	ň	ŏ	ŏ	ŏ	ŏ	ŏ
	1	4	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
	1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1 2	0	Ő	Ő	ő	0	0	Ő	ő	0	0	0	0	0	0	0	ő	0	0	0	ő	0

Expected Cell Count

3

ρ = .3390 η		ΥŢ	= 2.	9615	Ŷ	2 = 4.1	560	ሻ 🛥			
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
1.00	.43	2.49	3.47	2.81	1.75	.93	.45	. 20	. 09	.04	
2.00	.86	5.71	9.19	8.51	5.95	3.50	1.84	.89	.41	. 18	
3.00	.55	4.32	8.11	8.62	6.80	4.46	2.58	1.36	.67	.31	
4.00	. 25	2.25	4.88	5.90	5.21	3.78	2.39	1.37	.73	.36	
5.00	. 09	.97	2.41	3.21	3.22	2.56	1.76	1.09	.62	.33	
6.00	.03	.37	1.05	1.60	1.73	1.50	1.12	.74	.45	.26	
7.00	.01	.13	.42	.71	.84	.79	.64	.45	.29	. 18	
8.00	.00	.04	. 16	.29	.38	.39	.33	. 25	.17	.it	
9.00	.00	.01	.06	.12	. 16	.18	. 16	.13	.io	.06	
10.00	.00	.00	.02	.04	. 07	. 08	. 08	.07	.05	.04	
	CH	I-SOUARE'	5.566	50 CELLS	USED.	6(I.E.,	CELLCOUNTS	GREATER	THAN O	EQUAL	TO 5)

Expected Cumulative Probability

1

	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
1.00	.00288	.01949	.04259	.06135	.07301	.07921	.08219	.08353	.08410	.08434
2.00	.00860	.06331	. 14765	. 22315	.27446	. 30401	.31928	. 32658	.32989	. 33132
3.00	.01230	. 09580	. 23420	. 36718	. 46383	. 52313	. 55560	.57198	. 57976	. 58329
4.00	.01395	.11245	. 28337	. 45566	.58704	,67153	.71993	.74544	.75806	.76400
5.00	.01457	.11955	. 30652	. 50067	.65349	75505	.81521	.84799	.86474	.87288
6.00	.01478	. 12225	. 31623	. 52 103	. 68538	.79695	.86457	90231	.92207	.93192
7.00	.01484	. 12320	.31999	. 52953	. 69949	.81635	.88823	.92898	.95071	.96173
8.00	.01486	. 12352	. 32 136	. 53286	. 70536	.82481	. 89891	.94136	.96425	.97601
9.00	.01487	. 12362	.32184	. 53411	.70768	82832	. 90352	94685	.97038	.98257
10.00	.01487	. 12365	. 32200	.53456	. 70857	.82972	.90543	.94920	.97306	.98549

Observed and Expected (Gamma) Counts within Equal Area Sectors

Sector S	ize: 10 D	egrees								
OBSERVED EXPECTED	1 O .16875 CHI-SOUARE-	2 0 2.36625 4.7 9338	3 5 8.62914 CELLS USED-	4 24 18.190 6(I.E.,CEL	5 26 24 28.0 L COUNTS GE EXPECTED DIS	3 18763 3 Reater than Tribution	6 5 4.24971 I OR EQUAL	7 33 32.55081 To 5)	<i>8</i> 26 20.91976	9 1 4.63765
ANGLE CUMULATIVE SECTOR PROB	PROBABILITY MABILITY	io. .00112 .00112	20. .01690 .01578	30. .07443 .05753	40. . 19570 . 12127	50. . 38295 . 18725	60. .61128 .22833	70. .82828 ,21701	80. .96775 .13947	90. 1.00000 .03225

а