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In this talk we will be considering the extensive ultraviolet spectra of

broad line active nuclei and the large body of X-ray photometry and

spectroscopy of these objects, and the constraints that these data place on

the photoionization models of the broad emission line region (BLR) of these

objects. Many active galactic nuclei, in particular quasars and Seyfert I's,

are characterized by strong, broad (full width > 2000 km/sec), emission lines

froin permitted transitions in abundant elements. 	 In the simplist models these

lines originate in clouds located at some characteristic distance from the

central ionizing source in a quasi-spherical distribution. 	 While the dynamics

of these clouds are quite important we will not consider them here. 	 Instead,

we will concentrate on how to derive the observed line strengths and line

ratios.

The main inputs into these photoionization models (see Davidson and

Netzer (1919) for an extensive review) are:

1) Atomic Physics

2) The continuum spectrum

3) The Cloud Model

4) The global geometry of the region

5) The influence of dust, if any

6) The cheir.ical composition of the gas-that is the metallicity

The main output of these codes are the absolute line strengths and the

ratios of these, the "distance" to the clouds, and the general properties of

the clouds and the intercloud medium.

Atomic physics, that is the relevant cross sections and reaction rates of

the most important processes and the identification of these processes, is

perhaps the most crucial input for these models. Unfortunately, at present,
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not all of these values are known with sufficient precision. However, enough

proyress has been made that most model builders have been using a consistent

set of data (see Mendoza 1983). Thus the relative agreement of the models

with the observations is a weak sign that most of the relevant processes and

cross sections are understood.	 It is anticipated that future revisions in the

relevant atomic physics will not make a strong c113nge in the modeling

results.	 It must be kept in mind, however, that such changes have happened in

the past.

The Continuum

The form of the continuum is perhaps the quantity most susceptible to

observation. Of course, it is the interaction of the continuum photons with

the ions in the cloud that provides most of the ionization in the broad line

region.	 Thus the continuum is the engine that drives the entire model. 	 There

are several distinct regions in which the "ionizing" continuum is observed:
	 r

1) The ultraviolet, E<13.6 eV: observed for low redshift objects by IUE and

for high redshift objects by ground based observers.

2) The ionizing extreme ultraviolet (XUV) 13.6<E<500 eV: observed over part

of this range for high redshift objects by IUE hut, for the most part, has to

be inferred from observations of lines originating from ions with high

ionization potentials or by continuity arguments between the LIV and soft X-ray

spectra.

3) The soft X-ray range .5<E<7 keV: observed over the energy range by a

combination of spectrometers on the Einstein observatory anti HEAO-1.

4) The "hard" X-ray range E< 7 kc-V: observed by spectrometers on HEA0-1; in 	
i

this energy range atomic processes are not very important and the major

interactions of photons with ions is through the Thompson cross-section.

X-ray Spectrum

The observed X-ray spectra of broad emission line objects (primarily

Seyfert I's) over the energy ran ge E>3 keV (Mushotzky 1984; Rothschild et al.

1933) is quite simple. 	 It is well fit over the range from 3 -100 keV by a

power law with mean spectral slope of 0.7 and with a very small dispersion of

+/-0.15. There does not seem to exist any dependence of this slope on to.al

luminosity, optical spectral type or radio properties and thus this slope can

J^
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be considered to be one of the defining characteristics of broad line active

galaxies.	 For high luminosity objects, log L(x)>43.7 in the 2-10 keV band,

this characteristic slope continues down to 0.5 keV (Petre et al. 1984).

However lower luminosity objects (Mushotzky 1982, Reichert et al. 1984) show a

rollover at lower energies due to the photoelectric absorption of X-rays by

"cool", log T0.5 K, material.

(he relationship of the X-ray to "optical" (by optical one typically

refers to flux in the 2500-10,000 angstrom range) has been well determined by

a wide variety of observers with data obtained from the Einstein observatory

(see Kriss 1984 for a recent review). 	 If we use a(ox), a parameter which is

related to the logarithmic slope of the mean X-ray to optical fluxes a(ox)=

(log f(opt)- og f(x))/d logv) (Tananbaum et al. 1979), one finds that this

quantity is nerrowly dis`ributed with almost all the objects having a(ox)

between 0.8 and 1.7.	 However this narrow distribution in a(ox) is misleading

because the logarithmic compression "hides" the wide range in the ratio of

X-ray to optical luminosities (Reichert et al. 1982). 	 The ratio of

luminosities is log (L(x)/L(opt)=3.125-2.605a(ox). 	 Thus the ratio of X-ray to

optical luminosity varies by a factor of over 300.

The Ultraviolet-Optical Spectrum

The nature of the UV continuum is a much more complicated subject.

Despite the apparent simplicity, detailed analysis has shown that the form of

the continuum in the 500-10,000 angstrom range is quite complicated and not

well understood at present. Wu, Boggess and Gull (1983) have noted that the

UV continuum is not grossly different from object to object and seems

moderately well fit over the entire IUE range by a simple powerlaw. Malkan

and co-workers (e.g. Malkan 1913) have fit a model to the IR-UV spectrum of a

fairly large sample of active galaxies.	 They find that most objects require

two continuum components to fit the data. A power law of index near 1.2, and

an additional component which we will refer to as the "blue bump" (Grandi

1982). These authors feel that the mean spectral index does not vary much

from object to object but that the ratio of the blue bump to power law

component is qu i te variable. Green and co-workers (e.g. Bechtold et al. 1984)

have found that the spectrum of several high redshift quasars seems to be

W. zw)
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considerably steeper than Malkan's mean power law at wavelengths shorter than

the Lyman limit.	 It is not clear at present if this steepening is due to

absorption due to intervening hydrogen clouds between the observer and the

continuum source, to a steepening of the power law component or to the high

frequency exponential roll over of the blue bump.

To considerably confuse the situation, detailed studies of several

Seyfert I galaxies (such as NGC 4151, NGC 4593, NGC 3783 etc.) seem to show

that the slope of the power law in the IUE band is strongly correlated with

luminosity, that is the instantaneous luminosity of the galaxy seems to be

correlated with the spectral slope, with the steeper spectra being associated

with lower luminosity. There is no correlation between the absolute

luminosity of a galaxy and the slope of the UV continuum. However there is at

present some controversy over whether this effect is real and, if real,

whether it is due to an intrinsic change in the continuum form, to variable

reddening, or to a change in the blue bump.

The nature of the blue bump is unclear at present. The present

speculation centers around three possible origins, viz. an  extremely strong

Balmer continuum of rather peculiar shape (see Oke, Shields and Korycansky

1984), a "black body component" due to the accretion disk around a massive

black hole, or a forest of FeIi emi s sion lines (see Netzer et al. in this

symposium).	 It is most likely that the observed component is due to the sum

of two or more of these possibilities (or perhaps something else). The

detailed data available from IUE on NGC 4151 (Perola et al. 1982) indicates

that this blue component does not contribute much to the ionization of CIV

and, while strongly correlated to the power law continuum, sometimes may vary

out of phase with it. The Oke et al. results show that the bump is strongly

correlated with H B but not with Mg II. 	 IUE data on moderate redshift objects

z=0.5+/-.2 where the Lyman and Balmer lines, the strong permitted UV lines and

the continuum over a broad band is directly observable, will be of great use

in understanding the nature of the bump.

Given all these complication-, most models of the ionizing continuum have

used a simple two power law form w4th a relatively steep, a - 1.2 UV

continuum and a flat, a - 0.7 x-ray continuum. To avoid over-predicting the

soft X-ray flux (Petre et al. 1984) the UV continuum is required to steepen at
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some energy greater than 1:.).6 eV. However the energy at which this occurs and

the form of the steepening are poorly determined observationally.

Cloud Model and Geometry

The X-ray data on absorption due to cold material in the line of sight

provides unique information on the column density, coveriny fraction and

global geometry of the clouds. The direct observation in the X-ray of

absorption in several objects gives ar. observed range in the total column

density from 2-13 x10 22 atms/cm2 . This result is in quite good agreement with

models developed to "explain" the anomalous Balmer decrement in AGN (e.g. Kwan

and Krolik 1981), which require thick clouds of column density greater than

1022 in addition to X-ray heating of these deep, warm regions. This

agreement, if not fortuitous, indicates that the X-ray absorption is due

directly to the clouds responsible for the optical emission lines (and of

course that the models developed to explain these lines have some predictive

capability).

The fact that some objects do show absorption in the X-ray band indicate

that most of the line of sight to the central X-ray source is covered by

cloud(s).	 If this is not circumstantial then this means that the clouds have

a large covering factor in these objects. 	 Analysis of relatively large sample

of objects (Mushotzky 1982, Reichert et al. 1984) shows that the probability

that an object will be absorbed is inversely related to its luminosity.

However a detailed analysis of these data (Reichert et al. 1984), in

particular explaining why some objects seem to be only "partially covered"

(Holt et al. 1981), indicates that this luminosity effect is probably due to

the matching of cloud and continuum sizes. 	 That is, the intrinsic cloud size

probably is constant from object to object but the continuum source in the

lower luminosity sources are small. Thus at low luminosities the projected

solid angle to the clouds is the same size, or larger, than the continuum

source and when a cloud "gets in the way" we have a total eclipse. For higher

luminosity objects a single cloud is too small to occult all the radiation

from the large continuum source and the source looks either unabsorbed or

partially covered.

The ratio of the strength of the X-ray iron 6.4 LeV fluorescent line to

the depth of the X-ray Fe K absorption edge optical depth is a measure of the

global geometry of the absorbing region (see Mushotzky et al. 1978). 	 If the

0.1
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line is strong relative to the edge we are probably observing a disklike

system face on, while if the edge is strong relative to the line the system is

edge on. Unfortunately only two objects are bright enough to have had these

parameters well determined, Cen-A (Mushotzky et. al. 1978) and NGC 4151 (Holt

et al. 1980).	 In these two syste , ns the data are consistent with a spherical

absorbing region.

Dust and Metallicity

The effect of dust on the ultraviolet emission lines is potentially very

important. Not only does oie have to correct the observed line strengths for

the effect of reddening but also correct the form of the continuum.	 In the UV

even a small amount of dus'_ has a very large effect.	 For E(B-V)=0.1 the flux

in Lyman a is changed by a factor of 8 and CIV by a factor of 7. The slope of

the spectrum in the ultraviolet is changed by 6a =2.5E(B-V).	 The UV spectrum

of Seyfert galaxies and quasars does not evince a strong 2200 A feature which

is indicative of dust in our galaxy. However, as demonstrated by the

reddening curve in the LMC (Hutchings this symposium) it is not clear that all

dust has this feature. More detailed measurements, especially in the infrared

wavelengths where silicates and ices show spectral features, will be necessary

to determine the amount of dust.	 In addition, if the partial covering models

are correct, the analysis of the reddening will have to include the effect of

light leaking through the holes (Mushotzky 1982). This can be an extremely

important effect in the UV; for example the Seyfert II NGC 1068 has a very

large amount of dust in the line of sight as determined by IR observations

(see Rieke and Lebofsky 1979) but also has a strong UV continuum (Neu(jebauer

et al 1980).	 Thus in this system the UV light must either originate in a

different region from the IR flux or there must be holes.

The metallicity of the gas in the broad line region is poorly determined.

As pointed out in Ferland and Mushotzky (1984) since the cooling in the BLR

clouds is primarily due to the strong emission lines of the metals (as well

has hydrogen) their intensities cannot change greatly in an energy conserving

model. Thus from the strength of the emission lines we can only conclude that

the clouds must have a metal abundance roughly consistent with solar because

the models do not need peculiar abundances to reproduce these line

strengths. X-ray absorption measurements of the strength of the K absorption
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lines in AGN can potentially determine the column density of the heavy

elements (in particular Fe, Si and S) if the column density is greater than

1022 .	 In the case of NGC 4151 it appears as if the Fe abundance is twice

solar. With future X-ray spectroscopy missions, such as USS-2, it should be

possible to determine these abundances in many more objects.

Model Building and Results

In developing the i,lodels there have been two general approachs, a

constant pressure, and a constant density model. 	 In the these two cases the

value of the ionization parameter U is defined differently.	 In the constant

density model the parameter is dimensionally L/nR 2 , where L is the luminosity,

or number of ionizing photon, n is the density in the cloud and R is the

distance of the cloud from the ionizing source. 	 In the constant pressure

models (see Kallman and McCray 1982) the ionization parameter is L/R 2 P where P

is the pressure. As one can see both models have two essentially adjustable

parameters once all the other inputs are specified.

Both models can adequately fit the observed AGN spectra with a fair

amount of detail (see table in Ferland and Mushotzky 1982). 	 In particular, in

the constant density models it is found that virtually all the AGN spectra

(Mushotzky and Ferland 1984) can be fit with values of log dersity between 9

and 10.2 and values of log U between. -0.5 and -3.0. 	 These mode'.: adequately

account for virtually all the strong emission lines (but see below) and can

explain apparent trends in the data. 	 In particular, the Baldwin effect, the

fact that hiyher luminosity objects have a smaller equivalent width of CIV,

appears to be related to a luminosity dependent mean value of U, with the

higher L objects having a lower value of U (Mushotzky and Ferland 1984). 	 In	 j

addition, these models more or less correctly predict the size of the BLR. 	 In

the case of NGC 4151 Ferland and Mushotzky (1982) calculated a size of 16

(n/3x10 9 ) -1j2 light days.	 The observations of Ulrich et al. give a size of 13 	 i

light days.

DeEpite the relative success of these models there still are many

difficulties in understanding the broad line regions.	 First and foremost is
I'

the problem of dynamics (Mathews 1982). How do the clouds acquire their high
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velocities, are these velocities inflow, outflow, turbulent or rotational?

t

	

	
Furthi:rmure, the detailed ME studies of several Seyfert 1 galaxies show that

the line profiles of different lines (e.g. CIV vs. Mg II) are different and

change with time. 	 In particular Ulrich et al. (1984) claim that these effects

require the existence of several regions of emission of the broad lines. 	 It

t	 is also not clear what the detailed geometry of the broad line region is. How

are the clouds distributed and what are the shapes of the clouds themselves

(pancakes, spheres etc). 	 In addition, the field of absorption line

spectroscopy of Seyfert galaxies is in its infancy (Penston et al. 1979). 	 It

seems clear that it those objects with a large covering fraction, such as

NGC 4151, that high resolution absorption line studies of the CIV absorption

line will give detailed information on the number of clouds and their sizes

relative to the continuum .

In addition to these general problems there still are considerable

difficulties in fitting certain lines, in particular the He lines (MacAlpine

1981) and the FeII lines (Netzer et al. this symposium). 	 These two
T

difficulties are rather vexing as the He lines should be easily predictable

a^d the very strong UV lines make the estimates of the total cooling of the

deep cool regions where the H6 lines originate very uncertain.	 Of course, tie	 y

nature of the "blue bump" is still very uncertain. 	 If it is related to the

lines, then the photoionization models must be able to account for it.

It seems clear that, at present, we have at least some understanding of

	

0^1
the origin of the broad lines in active galaxies and have developed models

that, at least computationally, are self consistent and account for many of

the observed properties of these objects. However, there is much left to do

and many observations are needed to constrain the (more complicated) models

that will be developed. While the Space Telescope will be of great use, the

monitoring capability of IUE for these variable objects will continue to be

very important (see Wamsteker et al. these proceedings). The future of X-ray

spectroscopy is ml ,ch more problematical and hopefully we will not have to wait

until AXAF t.' obtain new results.

Apology : 1 have not been able in this short paper to truly reference all

the excellent work in this field and I apologize to the various workers in the

JAI
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field for over-referencing my own papers. 	 In such a vast subject one's

prejudices have too much roan to operate.
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VERY RECENT IUF OBSERVATIONS OF 2 BL LACERTAE OBJECTS

C.M. Urry l,2 , Y. Kondo 2 , K.R.H. Hackney3,

R.L. Hackney 3 ,S.L. Mufson 4 , and W. Wisniewski5

ABSTRACT

IUE observations of two BL Lacertae objects, consisting of 2 spectra of 1218+304
and 12 spectra of Mrk 421, are presented. The former object has never been observed
with IUE, possibly because it is very faint, but the fact that it is an X -ray Source, and a
highly varlabie one, makes it particularly interesting. Mrk 421 has been observed many
times with IUE as part of a continuing monitoring program. The present observations
indicate an intensity decrease of -25% on a timescale of one month, with little if any
associated spectral change. With one exception, the spectra of these two objects show
no discrete features, and the continua are well fit by power law models. The one excep-
tion is a long SWP exposure of Mrk 421, from 1984 March 9, which shows a broad emission
feature near 1580 A. The validity of this feature has not yet been established.

INTRODUCTION

As part of a continuing program of monitoring the broad band spectra of BL
Lacertae objects, 1218+304 and Mrk 421 were observed with IUE in January, February,
end March of this year (1984). Here we present the IUE data, and where possible, men-
tlon the simultaneous coverave in other bands.

1218+304

The BL Lac object 1218+304, first detected with the Ariel V X-ray satellite, was
the first BL Lac to be discovered as an X-ray source (Wilson et al. 1979). In the X-ray, it
has been seen to vary both in intensity ( Wilson et a?.) and in spectral shape ( Worrall et al.
1981, Urry 1984). It was also detected in the HEAO-1 X-ray All Sky Survey (Piccinot et
al. 1982), and is one of the few extragalactic sources from that survey that he, not been
observed with IUE. (Because its visual magnitude is -r16, it is one of the faintest objects
that can be successfully observed with IUE.)

10
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Figure 1. IUE Spectrum of 1218+304

On 1984 Febrnjary 2, we obtained
two images. SWP 22137 (exposed 395
minutes during US 1) and LWP 2733
(exposed 210 minutes during a very low
background US 2). The binned data
( AX-125A) are shown in Figure 1, with
error bars determined from the stan-
dard deviatio from thN mean, and with
a line indicating the nest fit power law

model of the firm F ,= (A/In26)

(410 15 )" ergs/cm ? /s/Hz, where
A = 0.6610.08 and a=0.64t0.1Q. The inte-
grated ultraviolet flux from this object

-1).	 111&-)"

-1•.

^E -1•.

1 Johns Hopkins University, now at MIT. ? NASA/Goddard Space F light Center.
3 Western Kentucky University. 4 1ndian3 University. '̀University of Arizona.
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Mrk 421

is (1.2;0.9)x10- 12 ergs/cm 2 /s. The com-
pesit e- spectrum, compiled from non-
simultaneous data (the simultaneous X-
ray, optical, and infrared data are not
yet reduced), is shown in Figure 2.
Because of the reported variability, it
is difficult to com ment on this spec-
tru m, beyond saying that it has the
typical flat radio-to-optical appear-
ance, followed by a break around 10 14

-1015 Hz, with a steeper spectrum
extending smoothly into the X-ray
regime. The IUE spectrum seems too
flat, flatter than the optical, and we
intend to i m prove the definition of the
continuum with a gaussian extraction
method, to see if this flat index
changes (see Hackney, Hackney, and

K ondo, this volu me).

Mrk 421 is one of the brightest BL Lac objects observed with IUE, and has been
monitored steadily since the launch of the satellite (Boksenherg et al 1978, Ulrich et al.
1984). The observations discussed here were made on 5 differences: 3 days at t-Fe end
of January ana beginning of Februa,y, and 2 days at the beginning of March. The date,
image number, and duration of each observation is given in Table 1. In the one month
between the two groups of observations, the intensity of Mrk 421 decreased dramatically,
confirming it as one of the most variable BL Lac objects. The ultraviolet and optical
intensities both decreased by about 20-25% in the space of 4 weeks; there was no ob-
vious variability between the observations that were separated by only a few days. This
is illustrated by the light curve in Figure 3, in which we have plotted the ultraviolet and
V band fluxes (values taken or adapted from Table 1).

Table 1. Recent lUF Observations of Mrk 421

Date Image
Length
(win) A a F U y

LWP 2699 75
1984 Jan 23 SWP 22082 100 6.65*0.12 1.04*0.04 6.01	 0.11 13.33

LWP 2700 210

LWP 2711 80
1984 Jan 28 SWP 22128 33 6.35*0.20 1.01+O.n7 5.82+0.11 13.34

LWP 2712 210

1984 Feb 2 LWP 2732 90 6.71x0.15` 1.13{0.20* 5.88*0.1R' 13.32

LWP 2881 80

1984 Mar 3 SWP 22398 240 5.24;0.18 1.10* 0.08 4.6140.16 13.61
LWP 2882 60

1984 M or 9 LWP 2915 95
SWP ' ._ 1, : 260 5.04:0.21 1.12*0.08 4.3Ra0.14 13.60

• Determined fro  L W P spectrum only, extrapolated whert necessary.
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For each day's observations,
the LWP and SNP spectra were
corrlbined (except for the February
2 observation, when only 1 LWP
spectrum was taken), and the
continuum was fit with a power law
of the form given earlier. The
parameters A and a are listed in
Table 1. In Figure 3, the spectral
index determined for each set of
spectra has been plotted, and
confirming previous findings for
this and other BL Lac objects (Urry
et al. 1982, M araschi et al. 1983,
UTnch et al. 1984), we see no
evidence o-r strong spectral varia-
bility accompanying the more
obvious intensity variability.

In each case, the power law
model provided a good fit to the
data. The details of the simulta-
neous measurements in other
wavebands are not yet available,
although we know that the X-ray
flux was weak during January and
March 1984, relative to previous X-
ray observations ( Y. Tanaka, pri-
vate com munication). We have
arse m bled a co m posite spectra m of
Mrk 421, shown in Figure 4, from
non-simultaneous observations.
This figure suggests that like oth,2r
BL Lac objects, Mrk 421 has a
smooth spectrum extending from
radio to X-ray frequencies, with a
break near 10 13 or 10 14 Hz.
Detailed analysis of the broad band
spectrum will be postponed until
the simultaneous observations are
asse m bled.
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Figure 3. Light Curve of Mrk 421

W flux, V band flux, and UV spectral
index as a function of tide.
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In the final SWP spectrum of
Mrk 421 there is a dramatic, broad	 Figure 4. Composite Spectrum of Mrk 421

emission feature near 1580 A, with
equivalent width 1011 A. The 4 SWP spectra are shown in Figure 5. The reality of this
feature is in doubt for at least 3 reasons: (1) it was not present in the SWP image obtained
6 days earlier (there is a suggestion of a weaker feature, E W^2 A, displaced --5 A
shortward); (2) it may be related to a hot spot in the SWP camera near 1570 A ( Hackney,
Hackney, and Kondo 1982); and (3) if it is CIV, it is at a redshift z = 0.01 1 10.002, not the
reported [optical] redshift of the galaxy (z=0.0308, Ulrich et al. 1975). However, other
facts must also be considered. First, BL Lac objects are higFi _variable, and Mrk 421,
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Figure S. SHIP Spectra of Hrk 421

which is one of the most variable, is
certainly variable on the ti mescale of a
day. Second, the observed emission
feature is broader than a typical cosmic
ray hit, and lies directly on top of the
spectru m, centered at line 28 (as is the
rest of the spectru m ). Third, there m ay
be reasons to expect discrete features
to be blue-shifted relative to the source
frame; in particular, the emission or
absorption might arise in a cloud that is
moving an a relativistic jet closely
aligned with our line of sight, as was
suggested to explain the absorption
feature seen in the X-ray spectrum of
another BL Lac object, PKS 2155-304
(Canizares and Kruper 1984). Further
investigation of the validity of this
feature, including examination of the
photowr^tes from the IUE observations
immediately preceding and following
the March 9 observation (to look for
spurious emission near 1580 A); examin-
ing reprocessed 110x110 files to deter-
mine more precisc-ly the profile and
location of the feature in the cross-
dispersion direction; and repeating the
observations, in the ultraviolet and/or
visual bands, will he attempted as soon
as possible.
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