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AaSTRACT

In an SU(5) GUT model of phase transitions in toe early universe, we snow

now the degeneracy between vacua witn different spontaneously broken CP can be

dynamically lifted by crea:ing a bias through the formation of a heavy fermion

pair condensate of fermions. The fermion condensate bias drives a transition

to a unique vacuum state. Tne final resulting transition to a true vacuum

eliminates the romain walls, solving the domain wall problem in a matter-

antimatter domain cosmology.
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The question of wnetner the universe is globally baryon asymmetric or

there are "islands" of matter and antimatter on a very large scale depends on

the nature of CP violation at the GUT energy scale. 	 If the CP violation is

nard, i.e., of the Kobayasni-Maskawa [1] type, one expects the former; if the

CP violation in the GUTS is spontaneous [2], the latter situation may occur

L3,4]. Sato [5] has shown now the CP domains can grow to astronomical size

with moderate suoercooling and inflation. Stecker [61 has recently discussed

important observational aspects of such a baryon symmetric domain cosmology.

Such initial CP domains are separated by domain walls which are very massive

ano could eventually gravitationally dominate the evolution of the universe in

conflict with observation. Thus, they must either not exist or decay in the

early universe [7,3].

A very interesting solution to this "domain wall" prob l em was proposed by

Kuzmin, et 31. [y]. They have shown that for a wide range of parameters in

the Higgs sector, the CP symmet ry of the Lagrangian, which is broken at high

temperature, is restored again at a lower temperature.	 As a result, the walls

disappear at lower temperature.	 It has also been argued that the inflationary

universe [10] scenario couid solve domain wall problem.

In wnat follows, we shall describe another possible scenario where the

domain walls can disappear naturally. By combining the idea of a strongly

interacting SU(5) phase [11] with spontaneous CP violation, we show how the

deyene racy between the two different vacua with respect to CP symmetry can be

lifted dynamically before the transition from the SU(5) phase to the low

energy SU(3) X SU(2) X U(1) phase is completed.

Our model of spontaneous CP violation in an SU(5) GUT is closely related

to the model of Branco [12] and Nieves [13].	 In distinction to their model,

we snall not take natural flavor conservation into account. 	 Further, we only
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use dimensionful couplings in the Lagrangian and shall use Coleman-Weinberg

[la] type of symmetry breakiny.

I
The model contains tnree Higgs fields	 H_s (	 = 1,2,3 )	 all

belonging to the 5 of SU(5). The multiplets H 1 and H 2 are assumed to have the

following coupling to the fermions:

ao

Ly	 `Lab f 1 R H1 + F abcde "R	
t2 

xLd 
H2 + n.c.	 ( 1)

Here eacn generation of fermions is assigned to the fundamental 5 of SU(5)

denoted 5y ^ and the antisymmetric representation 10 is denoted by x. The

YuKawa coupling constants f 1 and f 2 are matrices in generation space and are

assumed to be real.	 In addition we introduce two Higgs fields 24 of SU(5);

. 1 and a 2 and define a complex field.

_ - (^ 1 + i ^ 2 )
	

(2)

The Hiyys potential for the fields D'S and H.' s (; = 1,2,3) can be written as

V = V0( ^) + V1( ; ,H) + V2(H)	 (3)

,mere,

2
^ U (^) = v l (Tra ,;+ ) 2 Y , 2 [ 1 Tr^ 2 )	 + n.c.]

2
+ v 3 (Tr ^ ) (Tr P+ ) + ^ 1 Tr( +a^+)

+ ,^Tr( ^a>+ ) 2 + n 3 [Tr ^4 + n.c.]	 (4)
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V 1 (^,H) _	 a.H.H,Tr (DD) + 3 y H
+

D	 H F+ 3,, H r_ 	 H,
,' y l ^_ 1 , 5	 ,	 ^	 S

+ o S [ Hya2H^+ ri.c.] + Y :.[ H^ + H y (TrD 2 ) + h,c.]

+ 112 
6 E^' [ H; 2 H ; ,+ h.c.] +

	

+ 112 Y^ y l[ HSH ; ,(Tr ,92 ) + n.c.]	 (5)

we stress here that ox o^,^ and Y y	= Y 	 And further, the

diagonal elements Y_ and b, are not zero.
S	 -,

V
2 
(H)=	 i 3	 [ a	 H +H,) (H _±H ,) + 1/2 t)	 H^+H _;I 2

I_1	 SS	 S s

+ 1/2 c;:IC( H	 H :•) ( H± H : ,) + h.c.]
5 5	 7	 5	 5 

+ 112 d_:IC(H± H :,) (H±,H:,) + h.c.] ]	 (6)
S5	 S y	 5

Here a and o,are symmetric in ; and s' and c and d are zero along the

diagonal.	 all tn,e constants in V U , V 1 (^D,H)	 and V 2 (H)	 as Aell as f l and f2

are real so that the Layranyian is invariant under the CP transformation:H- - n_

th¢*	 ^R	 ? L 	 ^L i ^R	 Note that D 1 3rd ^, transform under CP

as a l	 n a l	 and P 2	 _ n r2	 where n	 1	 Thus, when hotn D1

and ? 2 develop VEV simultaneously CP is spontaneously broken. In thi; case

<a> is complex and the Y and 5 couplings in (5) lead to a complex mass matrix

rur the physical color triplets of the H's which will be denoted as A-'s .

The CP invariance is also broken by the H_ s when SU(2) x U(1)y breaks to

U(1) em . This reproduces the CP violation at electroweak energy scale

In order to obtain the correct pattern of symmetry breaking SU(5) i

SU(3) c x SU(2) x U(1)y i SU(3) c x U(1) em , the various VEV must have the form

#1 In Ref. 13 it was assumed that the coupling constants o-r- and 	 are
symmetric. However ,complex VEV of v then will not lead to'CP violation as the

authors nave claimed.

k

C P-^],
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< v > = ; e	 di ay [ 1,1,1,-3/2,3/2 ]

< H 1 > = e "column (0,0,0,0,v1),

< H 2> = column (0,0,0,0,v 2),	 (7)

< H 3> = column (0,0,O,O,v3)

Here ^ and v_'s are real.	 In <,^>, the VEV of the component of (D which

transforms as (1,3,0) under SU(3) c x SU(2) L
 x U(1)

1
 is of the order

MW 2 /M where MX is the unification mass scale and is therefore ignored. 	 In

Eq.(1), the Higgs multiplet H 3 does not couple to the fermions and its phase

may tie taKen to be zero in Eq. (7). The relative phase between H 1 and H 2 is

denoted by i'. This phase can not be rotated away since the Higgs fields

carry the same U(1) quantun numoer. Thus, for a range of parameters of the

Hiyys Potential, there exist CP non-conserving solutions. 	 The	 and 0'

dependence of the potential in general can be written as

V = V 	 ( P ) + V1( ^,H) + V 2 ( H )	 (3)

A + d cos4 ,1 + C cos(26-'b ') + D cos2 V + E cos y ' + F cos2^

Here A, B, C, D, E and F are parameters of the potential which are

independent of	 and y '. The CP nonconserving solution for : and 7', which we

tormaliy denote as^ o and 7', clearly has the symmetry 40
	 y0

i 0	- _j 0 . Such discrete symmetries gives rise to the well -known domain

structure in the early universe [3,4] and domain walls [7]. The reason is

simple: below the transition temperature, the Higgs fields have a non-zero VEV

corresponding to some point in the manifold of degenerate vacua. If this

manifold is disconnected, a domain structure ,)f the universe will be created.

_ _ - ___ _D 
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Thus, as the temperature of the universe decreases below the scale of the

superneavy yauye bosons, we expect that separate domains were generated

witn t'o'	 o} and t-ao ,_,o J phases.

Of course, these phases will affect the details of the mechanism of

baryon production. The dominant contribution to the baryon asymmetry comes

from the decay of superneavy gauge and Higgs bosons corrected at the one loop

level oy an exchange of Higgs scalars [15,16] (shown in Fig. 1).

The baryon to p hoton ratio is yiven by [15]

N

^ _ (Nxn	 )LB(r -r) 	 (9)
r

wnere NX and N are the number of species of superheavy and light particles,

respectively and r (F) are the orancning ratios for the production baryons anr,

antioaryon in the decay of the superneavy particles with -%B	 p (net change in

baryon number).

In our model, the decay of the superneavy colored Higgs A,.'s must mix to

ylve rise to baryon production. The mass matrix for these Higgs fields is

computed to oe

	

2i	 2i —`
a l	o12e	

13e

- 2i	 7	 2i o

M2 = 0 2 (-5/3U)	 J 2l e	°2	 23e
-2i	 -2i7

^3 31 e	 a32e	 133

Here	 a: +	 1,2,3) and we have ignored terms of order MW2/MX2.

Let U	 oe the unitary matrix that diagonalizes the above mass matrix

.^- ,..•-	 -	 -_ -
J

r.-

W!

i ;

(10)
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and 'n j , m 2 and ln3 denote the masses of the physical Higgs-boclons

A. (;=1,2,3).	 In reference [13] it nas been shown teat with the assumption

m 1 2 >> m 2 2 >> m32

(r-r) 2 	 Im (U12 
U. 	U	 U22	 13)	

(11)

wnere the subscript 2 indicates tnat the colored Higgs boson A 2 provides the

dominant contribution to (r-r). 	 Clearly si,ce 6 is the only phase that will

appear in the unitary matrix U,

(r-P) - Sind
	

(12)

as can oe verified explicitly using Eq.(10).	 Domains with matter and

antimatter excesses corresponding to the different signs of d will be formed

as the universe goes throuyn the phase transition. This is the same type of

matter-antlinatter oomain structure previously emphasized [3,4].

In order to provide our new solution to this domain wall problem,

tollowiny ker.11, we add to our model a 5 + 5 of heavy fermions -42 , with the

YuKawa coupliny to the 24 Piet of Higgs in the form:

L Y E _	 - GY Ji^iJ f 	 + n.c.	 ! 13)

The Layrangian clearly has the discrete symmetry	 ,'Yi i f 5 Ti

The one loop correction to the potential is given by#3

tnese can appear naturally in higher rank GUTS incorporating fermion
generations. The asymptotic freedom is unspoiled [17] for a certain range of

the YuKawa coupling constant 'Gy'.

#3 A= (3/6 a.12 ) (25/ .,3) 2 9 4 - 1/64 ,2 (105/8)G Y 4 , Keeping only yaug	 boson and
termion contributions.	 The scalar contribution is of order g 	 (V.A. Kuzmin,

M.E. Snaposnnikov and I.I. Tkacnev, Proc. Intl. Seminar on Quantum Gravity,

11"loscow, 1981) .

1
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(14)

2
1 I ^) = A ^p `1 L ,.n(	 j - 1/2 ]

p2 = 2/15 Tr	 (15),(15),

This one loop correction term retains the symmetry t + -,D

and CP symmetry ^ i n v* . The temperature correction terms

J( ^,T) = 5/3 y 2 ^ 2 Tr( sa+ ) + o^T2 Tr (»+) + ^j T 2 Z (HRH 1	 (16)

and the nigher order terms obey these symmetries as well. The second and

tnird temperature correction, terms are 0(y 4 ) and can be neglected (see ref. ro

Kuzmin, et al., footnote #3).

Let us now recall that we have employed a Coleman-Weinberg type of

potential ,,here there is no cnaracteristic mass term. 	 If a large negative

mass *erm were present in the potential given in Eq. (4), the phase transition

would taKe place when the mass term and the term in Eq.(15) are equal. 	 In

such a case where the perturbative potential respects the CP symmetry, the

domains will inevitably appear. However, in a Coleman-Weinbery type of Higgs

I
potential, the transition proceeds very slowly due to the flatness 14 of the

potential. Most of the universe is trapped in the symmetric SU(5) phase and

supercooling results. As the universe cools to the temperature - 10 7 Ge`J,the	 ''

recent calculation by Sher X17] bears out the evidence that the presence
of tnese neavy fermions help create such a potential witnout any fine tuning.
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coupling constant grows stronger and stronger* 5 and finally we enter the

region wnere the non-perturbative effects come into play.

Following Ref. [11] we assume that, in this strong coupling region, SU(5)

instanton effects give rise to SU(5) singlet condensates of the form <y
i W i > .66

It is evident that once such condensates are formed, quadratic and cubic terms

liKe

i	 GY m(T)2e2ia Trp2 = cos 2(51 +6) 	 (17)

and

G Y 3m(T)e 3i ' Tr;	 + n.c. a cos 3(^+3)	 (13)

will oe induced #7 .	 (See F y. 2 below,. Here	 denotes the non-absorbable

pnase of she SU(5) singlet <7 i *, i > condensate.	 The phase angle is calculable

d for the stronyiy interacting SU(5) phase and is dependent or the fermion

masses as in the QCD case [19]. Since 3 is non-zero, the CP degeneracy will

be lifted in the presence of such an induced term in the Lagrangian. 	 It can

be snown that in the absence of any extra U(1) symmetry, as is the case here,

the phase d of the condensates <^O i > of these heavy fermions cannot be
I

rotated away.

The fact tnat the induced terms given in Eq.(17) and Eq.(19) create an

energy difference between the two degenerate vacua is not hard to explain

"'
5
 Tne SU(5) running gauge coupling constant has the teri erature dependence

y 2 ('')/4n - 2 n /b xn (T/ ^) where 0=12, •1 =10 5-6 GeV, for g g (M X )/ 47 = 1/42.

'Jne can obtain similar condensation affects at a higher temperature with the
assumption that there are otner fer;^ions belonging to higher representations,

z.y. for a 11i of SU(5), A_ 10 12 GeV.

*7 Tne induced mass term has an approximate temperature dependence of the form
m( T) - T C 5 [2 n 1 ( T ) ] 10 exp[-2-, / ( T) ] , ,4ne )e C 55 = 7.5 x 10 -4 F181 at T=O.	 The
correction term from scalar fields is <10 at 3 transition temperature of -.106

GeV and thus does not significantly affect our conclusion.
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physically. The phase :; indicates the alignment of the vacuum, namely in the

airectiun of the condensates <; i r i > . As the universe supercools, the

direction of the CP symmetry, wh -.. ch is initially different in different

aemains, is influenced uy the condensates to become effectively a l igned in

their direction. 	 This is very much like the alignment of ferromagnetic

aoiains in the presence of the external magnetic field. The same cubic term

wnich dynamically breaks the degeneracy due to the discrete symmetry D - -^ [1l],

also removes the vacuum degeneracy owing to the initial CP symmetry in our

case where the CP symmetry is broken spontaneously.

The fact that the domain walls never dominate the evolution of the

universe implies that [11]

T C5 [2-aa(T)] 10 Y2 (T) [exp(-2n/x(T)^	 MX /M a,	 (19)

j
where M  = 1.2 x 10 19 GeV is the PlancK mass. 	 This condition follows from

ey.(ld) and is satisfied for T 1	0(1) .% with .>	 10
5-5 

GeV.

The Hiyys-boson decay into fernions can produce net zero baryon number.

This can oe achieved either through the decay of the heavier 5 of Higgs boson

into a Higgs boson of the lighter 5-plet L"201, or throuyn the direct decay of

a Higgs scalar o` the 24-plet into Higgs bosun of the 5-plet [21]. 	 In order

to insure tnat enouyn baryons are produced after the phase transition, tho

reneat ea temperature of the universe must be at least = 1011-12 Ge'/. A	 i

reasonable baryon number density can be produced if certain constraints are

satisfied (See Ref. [20,21] for details). 	 If the universe passes through

intermediate phases SU(5) - SU(4) x U(1) + SU(3) x SU(2) x U(1) or

SU(5) - SU(4) + SU(3) x SU(2) x U(1), then the net baryon number cou l d be

yener3tea while the universe is in an intermediate phase such as t;ne SU(4) x

.i..^04.- --
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U(1) cr SU(4) phase.	 In the SU(4) phase, where SU(2) flavor symmetry is

oroKen, the superneavy fermions [20] could decay to produce suffic Ent baryon

asymmetry.

;n summary, we have shown now the vacuum degeneracy resulting from

spontaneous CP violation can be broken dynamically by a condensate of heavy

tcrm.on pairs. 48 This c,n occur before the universe goes thrc- p a

supercoo l ed first order phase transition. We have also demonstrated that Such

a scenario solves the domain wall problem by creating an energy difference

between the two CP degenerate vacua, driving the phase transition to a true

vacuum state of unique CP. This transition occurs at T << M GUT , Such a phase

transition will trnereforE result in monopole suppression. 	 Our scenario also

allows a sufficient baryon asymmetry to be produced in the early universe.

However, to our case, this asymmetry is local ratnor than universal owing to

the initial CP domain struc^ure which can persist through th 	 ,upercooling

phase. The mechanism suggested by Sato [5] can then act to produce fossil

"domains" of oaryon and antibaryon asymmetry of survivable size at reheating,

after the inflation of the CP domains wnicn occurs during the supercooling 	 j

phase. The elimination of the CP domain wall problem suggested here thus 	 i

allows for the possibility of a viable baryon-symrietric domain cosmoIoay.^g

f

F

i

"The scalar self couplings	 (94) are too weak to allow a scalar-scalar

condensate at T >_ 1', e Gev.

" 9Tnis model can be easily extended to A(IJ). c.g., we can introduce complex
antisymme tric scalar fields whicm couple to neavy fermions in 15 and 7
representations. Thus, cubic terms can he generated witn complex pnases Such
nut C? symmetry can again be dynamically broken (in preparation),

't
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FIGURE CAPTIONS

1.	 Dominant diagrams at the one loop level contributing to the production

of oaryon asymmetry in the early universe. A's denote the superheavy

Hiyys scalars (tne indices 	 and y ' count different sets of such

multiplets needed in this model).

2(d). The diagram contributing to the dynamically induced term

Cc GY m(T) Tr^ 3 which breaks the CP as well as 	 degeneracy.

(b). The diagram contributing to the dynamically induced mass

term - Gym 2 (T) Tr.a2.

T J
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