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ABSTRACT

The electric field acceleration of electrons out of a thermal plasma and

the simultaneous Joule heating of the plasma are studied. Acceleration and

heating timescales are derived and compared, and upper limits are obtained on

the acceleration volume and the rate at which electrons can be accelerated.

These upper limits, determined by the maximum magnetic field strength observed

in flaring regions, place stringent restrictions upon the acceleration

process. The role of the plasma resistivity in these processes is examined,

and possible sources of anomalous resistivity are summarized. The

implications of these results for the microwave and hard X-ray emission from

solar flares are examined.

The major conclusions are:

(1) The simple electric field acceleration of electrons is found, in

agreement with Spicer (1983), to be incapable of producing a large enough

electron flux to. explain the bulk of the observed hard X-ray emission from

solar flares as nonthermal bremsstrahlung. For the bulk of the X-ray emission
4

to be nonthermal, at least 10 oppositely directed current channels are

required, or an acceleration mechanism that does not result in a net current

in the acceleration region is required.

(2) If the bulk of the X-ray emission is thermal, a single current sheet can

yield the required heating and acceleration timescales, and the required

electron energies for the microwave emission. This is accomplished with an

electric field that is much smaller than the Dreicer field (ED/E - 10-50).

(3) The rise time of the nonthermal emission is determined by the time needed

to generate the required number of runaway electrons, rather than the time



needed to accelerate the electrons to the required energies, which is

generally a much shorter timescale.

(4) The acceleration of enough electrons to produce a microwave flare

requires the resupply of electrons to both the current sheet and the runaway

region of velocity space. The electrons may be supplied by either the inflow

of electrons that are already in the runaway region, or by the collisional

scattering of electrons into the runaway region from the bulk plasma. For the

latter case, the number of accelerated electrons is sensitive to the plasma

resistivity.

(5) To obtain the required heating timescale and electron energies, the

resistivity in the current sheet must be much greater than the classical

resistivity of a n=«lCr cm"3, Te-10
7 K plasma. A plasma density -1011 cm"3 is

required in the flaring region, or, if the density in the current sheet is

less than 10 cm" , the resistivity in the sheet must be anomalous. -J||~

driven anomalous resistivity cannot be responsible for the higher resistivity

unless the plasma electrons can first be heated to a. temperature that is at

least an order of magnitude greater than the ion temperature.

(6) "Inertial resistivity", which was applied to flare heating by Duijveman,

Hoyng, and lonson (1981), is shown to always be negligible compared to the

classical Coulomb resistivity.

(7) Whenever the current is inductively determined by the magnetic field

through Ampere's law, the energy that goes into Joule heating will always be

greater than the energy that goes into accelerated electrons.

Subject headings: particle acceleration — Sun: flares



I. Introduction

The Impulsive phase of solar flares is characterized by the production of

energetic charged particles and the rapid heating of thermal plasma. DC

electric fields provide the simplest and most direct means of accelerating

electrons out of a thermal plasma. The energy released in flares is generally

understood to derive from the energy stored in magnetic fields and their

associated currents. Therefore, most solar flare models result in the

production of DC electric fields or, at least, electric fields that are not

rapidly alternating (see Heyvaerts 1981 for a review). Since there is a

macroscopic current associated with the electric field (JaaE), there will also

be simultaneous Joule heating of the thermal plasma.

Specific requirements for the number and energy of energetic electrons

produced during a flare, and the timescales involved in accelerating them, are

provided by microwave and hard X-ray observations of flares. The microwave

emission from flares is understood to be gyrosynchrotron radiation from

electrons with energies of 100 keV or greater. The hard X-ray emission (£.25

keV photons) can be interpreted as being either thick-target bremsstrahlung

from nonthermal electrons (thin-target radiation may also contribute to the X--

ray emission, but the process is less efficient), or thermal bremsstrahlung

from hot, impulsively heated plasma. The relative contribution of thermal and

nonthermal emission to the flare radiation is not well determined.

In view of the constraints from flare microwave and hard. X-ray data, and

the expectation that macroscopic electric fields and currents play an

important role in solar flares, it is of interest to study the electric field

acceleration of electrons and the Joule heating of flare plasma without



recourse to a specific model for the generation of the currents and electric

fields. The basic physics of the electric field acceleration of "runaway"

electrons is developed in Section II. Fundamental timescales for the

acceleration of electrons out of a thermal plasma are derived and compared.

Joule heating timescales are derived in Section III, and the coupling between

Joule heating and electron acceleration is examined.

The resistivity (thermal collision frequency) of a plasma plays an

important role in determining both the rate at which electrons are accelerated

and the Joule heating rate. Hence, the role of anomalous resistivity in these

processes is examined in Section IV. The requirements for simultaneous

electron acceleration and Joule heating in solar flares are studied in Section

V. The major results of the paper are discussed and summarized in Section

VI.

Although the application in this paper is to solar flares, for which good

microwave and X-ray spectral and timing data are available, it should be noted

that most of the results presented here are directly applicable to any dynamic

system of currents and magnetic fields where particle acceleration is

apparent. In addition to the obvious application to stellar flares in

general, runaway electron acceleration may be important in supernovae, close

binary star systems, active galaxies, and other astrophysical systems where

steep magnetic field gradients and, hence, significant DC electric fields can

arise.



II. Electron Acceleration

The response of a thermal plasma to an imposed electric field, *, is to

set up an electric current of current density 3»-env^»c£, where n is the

number density of thermal electrons, e is the magnitude of the electron

charge, v^ is the mean drift velocity of the current-carrying electrons, and a

is the conductivity of the plasma. A fraction of the current-carrying

electrons, however, those, with a velocity greater than a. critical velocity,

vc, will be freely accelerated out of the thermal distribution (Dreicer 1959,

1960). This can be seen from the single-particle equation of motion for an

electron in the plasma:

~-= -eE - mvv(v) , (1)

where m is the electron mass and

m v

InA » InUZTmA ~ 23.2 + l n [ ( , ) ( — —) 1 , (2a)
U 10 cnT" 10 K

is the classical Coulomb collision frequency (Spitzer 1962, Knoepfel and Spong

1979). (Collisions with Z>1 ions are neglected. See Knoepfel and Spong and

Spitzer for a more precise determination of v and InA. Anomalous collision

frequencies are discussed in Section IV.) The Debye length X^ - ve/
aie *

(kT/47Tne2F2 t where ve=(kT/m7'
2 is the electron thermal velocity and

u «(4irne /m) 2 is the electron plasma frequency.



The bulk of the electrons are accelerated by the electric field until the

steady state eE=mv(jVe (equation 1) is obtained, where

v = v(v ) = 3«- 10.0( )(-_)-() .- . (3)
e e e A >/->•' ~"J 1/1' ,. ĵ.z10 cm 10 K

(In using the thermal collision frequency^ vg, it is assumed that

Since J^nev^, the resistivity of the plasma (n • l/<?) is found to be

m\> 4irv
n--f--^. (4)

ne a)

Note that the value of the resistivity given by equations 3 and 4 is a factor

of 2.6 greater than the Spitzer-Harm resistivity, which averages over the

electron distribution, accounting for the skewing of the distribution in the

driving electric field, in addition to electron-ion and electron-electron

collisions.

As can be seen from equations 1 and 2, Che frictional drag on the

electrons decreases with increasing particle velocity. Hence, electrons in

the initial thermal distribution with a high enough velocity will not be

confined to the bulk current, but will be freely accelerated out of the

thermal distribution. The condition for electrons to be in this "runaway"

regime is, from equation 1,

v -
e£ > mvv(v) - mvv (-1) . (5)

We see from equation 5 that a thermal electron of velocity v will run away if



the electric field strength is greater than

» v v - 5-12A. 2.33xl(T
8( Q

n )(— L- ̂(IjI-A) statvolt on'1. (6)
109cm"3 107 K 23'2

E-. is called the Dreicer field. For smaller field strengths (E<ED) , those

electrons will run away that have velocities greater than

It is easy to see from equations 4 and 6 that the Dreicer field and the

electrical resistivity are related through the expression

Since n » E/J =* E/nev^, the following relationships are obtained:

<"

Hence, when E=ED,
 vd=vc*ve and all of the thermal electrons are in the runaway

regime.

A rough estimate of the fraction of the electrons in the initial thermal

distribution that are in the runaway regime is

n (v-v)

n 2v2 * ve

i v ?
- exp[- 4<— )Z] (10)



(Kaplan and Tsytovich 1973, Papadopoulos 1977). The timescale for the

formation of the runaway tail is on the order of the collision time at the

critical runaway velocity, or

(ID

Although equation 10 estimates the initial number of electrons ia the

runaway regime, it does not give the total density or number of runaways

produced, since, in addition to the acceleration of the initial thermal tail

of electrons, new electrons are continously scattered into the runaway region

by collisions. The kinetic theory of runaway production yields the following

result for the runaway rate (Kruskal and Bernstein 196A, Knoepfel and Spong

1979):

Y = Q.35V < £ ) 3 « p [ - 2 ) - <)] s'. (12)
e e e

This result is accurate for vc»
v
e-

 The rate at which runaway electrons are

collisionally produced is, then, ^Qoii^V^jt wnere vj is the volume of the

current channel in which the electron acceleration is occuring (i.e., the

volume of the acceleration region).
•

Before obtaining final expressions for N
co]_]_ and the associated

timescale, it is important to note that the volume Vj is not arbitrary, since

the total allowable current in Vj is limited by the induction magnetic field

associated with it. In other words, observations place an upper limit on the

magnetic field strength that is present in active regions, and the magnetic



field associated with the total current I must not be stronger than this upper

limit. This point was made earlier by Colgate, Audouze, and Fowler (1977) and

by Colgate (1978), who argued that the hard x-ray emission from flares cannot

be nonthennal bremsstrahlung from a directed beam of electrons, because the

magnetic energy in the beam's self-generated field would exceed the magnetic

energy available in the flare region by many orders of magnitude. It was

realized by others, however, that the beam .could induce a cospatial return

current in the thermal plasma that would result in a negligible net current,

thus avoiding the generation of a large induction field (Hoyng, Brown, and van

Seek 1976; Knight and Sturrock 1977; Spicer and Sudan 1983). The current of

interest here is driven by an associated electric field, however, as is

required for the acceleration of runaway particles, and, therefore, there can

be no cospatial return current (see also Hoyng 1977, Spicer 1983). Hence, in

the acceleration region the induction magnetic field cannot be reduced by the

presence of a return current.

For a current sheet of width w, thickness 6r (<5r«w), and length L, with

the current I flowing in the direction of L, the maximum value of the

induction magnetic field is, from Ampere's law, Bj=(2ir/c)(I/w). With I = Jw6r

- nev^wSr, Bj=*(2ire/c)(nvd(Sr). Requiring Bj £ B, the maximum magnetic field

strength in the acceleration region, yields <5r <, (c/ZireXB/nv^). Using

equation 9 for v^, the thickness of the current sheet is found to be

10 cm 10

Since Vj • wL<Sr = A<5r, the acceleration volume is found to be



VJ ̂ Î e"̂  (:T)2 (sheet& e

The sheet area, A, is limited by the observed scale of the acceleration

region. Note that, if the current is flowing on the surface of a cylinder, as

is likely to be approximately the case in a magnetic flux tube, then A=irRL,

where R is the radius of the cylinder (6r«R).

It is interesting to compare equation 13b with the corresponding result

for a filled cylindrical geometry (uniform current density filling a circular
2

cross section - a current filament). For this case Vj-irR^L and

Bj=(2/c)(I/R)-(2Tre/c)(nvdR). Hence, requiring Bj £ B gives R£(c/2ire)(B/nvd)

and

< L^ 2 (̂ -)
2(̂ -)4 (filled cylindrical geometry). (14)

4 im e e e

Since two spatial dimensions are constrained by the induction field, as

compared to just one dimension for the sheet geometry, the constraint on V. is

more severe for a (filled) current filament.

Using equations 12 and 13b, the runaway production rate is found to be

ft .. < 2.49xl07 ABv (—) f(—) electrons s~L, (15)coll *• e v ve e

where f(vc/vg) < 1, with f(vc/ve) - 1 when vc - 1.32ve:

() - 4.66 ( ) e x p [ - 2 ) - )]. (16)
e e e e



•

The timescale for the production of N runaway electrons is tN = N/N, or, from

equation 15,

V

165 (_)(— - ) _ — J— —) - _-)/£<--) s
1032 1018cm2 10° G 107 K 10 s"1 Ve

In addition to the constraint on Vj, the induction field limit puts a

•

strict upper limit on N. The current associated with the runaway electrons is
•

Since the induction field associated with this current is

), requiring Bj < B gives

10 cm

Note that this result is independent of the temperature, density, and

resistivity of the plasma. ^run is a part of the total current, I, and will,

always be less than (or equal to) I if I is determined by B through Ampere's

law (see Spicer 1983 for further discussion of this point). Hence, this
*

maximum value of N corresponds to the extreme case of Irun
=I« This result for

Co a minimum value for the timescale required to generate N runaway

electrons:

10" 10 cmlax

For a cylindrical sheet or filament geometry, NMax is larger, and t°in

smaller, by a factor of it (with R replacing w in equations 18 and 19).



In addition to generating the runaway electrons, it is also necessary to

accelerate them up to the required energies. Neglecting the collision term in

equation 1 , the time required to accelerate an electron from VG to a velocity

v is, for a constant electric field,

m(v-v ) E_ v , v „ v .

(If the final velocity is relativistic, v in equation 20 is replaced by YV,

where y is the usual Lorentz factor. Fewer runaways are generated if vc is

relativistic, and none are generated if v >c - Connor and Hastie 1975.) An

important constraint on the acceleration time is the distance over which the

acceleration can occur. For the simplest case of a constant electric field,

the acceleration distance is

where W« is the energy of the accelerated electron and W =mv£/2. If the

available distance over which the electrons can be accelerated is L, then

requiring x < L yields an upper limit on T :

(22),n10 cm 10 cm s

This requirement also leads to a lower limit on the electric field strength:

W ~W W — W
E > -flT1" 3.3X10"7 (— l—)-̂  * « ) statvolt cm"1. (23)

10 cm

10



It is interesting that if we also require E<EQ, so that the entire particle

distribution is not in the runaway regime, a lower limit on the collision

frequency in the plasma is obtained (equations 6 and 23):

f c t e N . ., f c w T \-l/2,_L_x-l f>,\1 " '' > "'' ' <24)

If the collision frequency is classical, this puts a constraint oh the density

and temperature in the current channel (equation 3). A time varying electric

field is considered in Section III.

In closing this section, it is worthwhile to compare the runaway tail

formation, particle generation, and acceleration timescales, TT, tN, and Ta.

The time required to accelerate N electrons out of a thermal plasma to a

velocity v is determined by the longest of these timescales. It can be seen

from equations 11 and 20 that t& - [(v/v )-l]T̂ . therefore, Ta>TT whenever

v>2vc. Since V»VG for most astrophysical systems, the timescale T^ is

generally not important. Hence, the required time is determined by either Ta

or tjj. The timescale Ta is restricted by an upper limit (equation 22), while

a lower limit on t« was found (equation 19). For the reference parameters

used here in deriving the numerical coefficients, which are typical of a solar

flare region, t^ is seen to exceed Ta. Hence, t^ is likely to be the dominant

timescale for most astrophysical systems.

III. Joule Heating

The purpose of this section is to derive an estimate of the time required

11



to heat a current-carrying region through current dissipation, rather than to

develop a detailed model for specific conditions. Hence, an estimate of the

time required to heat a volume V to a given temperature will be obtained,

without considering the details of the dissipation process, or heat loss

mechanisms that may eventually balance the Joule heating. This timescale will

be compared with the runaway timescales derived in Section II. Models for the

heating of non-flaring coronal loops through current dissipation have been

developed by a number of authors (Tucker 1973, Rosner et al. 1978, Hinata

1980, Benford 1983). Joule heating in solar flares has been studied by Spicer

(1981 a,b) and by Duijveman, Hoyng, and lonson (1981).

Since the energy dissipated by a current density J is J'E erg on s~ , a

Joule heating timescale TJ= nk.T/(J'E) can be defined. Using J-E/n together

with equations 4, 6, and 9 gives

Note that TJ is always longer than the runaway tail formation timescale

(equation 11) as long as vc>ve, since TJ/TT =
 vc/ve* Tne cimescale Tj is

shorter than the runaway acceleration timescale, T (equation 20), whenever v

> ((vc/ve)+l]vc.

The timescale TJ is generally only a lower limit on the actual heating

time, tj, since the volume of plasma to be heated, V, is usually much larger

than the volume of the current channel, Vj. The global heating of the plasma,

neglecting losses, is determined by the equation (cf. Duijveman et al. 1981)

12



(J'E)Vj. (26)

The heat deposited in the current channel may be conductively or convectively

transported to the larger volume. It is implicitly assumed here that the heat

is distributed throughout the larger volume on a timescale that is less than

or on the order of the heating timescale. Otherwise the X-ray rise time will

be determined by the heat transfer timescale rather than by the Joule heating

timescale.

It is apparent from equation 26 that in order to correct for the larger

volume to be heated, TJ should be divided by the factor £ = Vj/V, the fraction

of the total volume occupied by the current channel. If the density in the

current channel, n, is different from the average density in the volume V, ny,

then TJ should also be multiplied by the factor ny/n, where TJ is evaluated

for the physical parameters within the current channel. (The density in an

equilibrium current sheet may be larger than that in the surrounding medium,

for example, so that pressure balance is maintained.) Using equation 13 for

Vj, the heating timescale is found to be

Cj . (5.)T /e > L.24x10
5 ( -A rl(̂ rl( °V_=̂ )( V_

10 cm 10 cm 10 cm

10 K 10 s e

Since e is typically much less than unity, this timescale is generally much

longer than T..

In order to obtain a better feeling for the derived timescales, the

13



remainder of this section will be devoted to examining some simple models for

the time development of the Joule heating and electron acceleration. The

plasma density, magnetic field, and the volume V will be taken to remain

constant. The Joule heating term in equation 26 can be written as
2

(J*E)Vj=VjE /n. If E and Vj both remain constant, this term is proportional

to T^' , since n varies as T~' (the slow variation of InA with T will be

neglected). On the other hand, if the cross sectional area of the current

channel is determined by the ambient magnetic field so that Vj scales with

—3/2
temperature as T ' (equation 13), the Joule heating term is independent of

T. For this case the total current, I, remains constant, while I is not

conserved if Vj remains constant. If J instead of E remains constant, the

7 —3/7Joule heating term (J*E)Vj=VjnJ is proportional to T . Vj necessarily

remains constant in this case, and the total current is conserved. Using

equation 26, the thermal evolution of the plasma can be obtained for these

three cases by solving the equation

where T=T/TQ, TQ is the temperature of the plasma at time t=0, and tj is

evaluated for T=TQ (equation 27). The solution to equation 28 is

T - TQ[l+|<l-s)|-]
1/(1~s) . (29)

For the case of E and Vj constant (s*»3/2), an increase in temperature by

a factor of 10 requires t=2tj. The temperature increases rapidly, within the

14



time t=Otj, until the heating is balanced by losses. Since E is constant, the

runaway acceleration time ta™Ta (equation 20). The runaway production time,

tN, is given by equation 17 with T=Tg if tN«tj. The dominant effect of

increasing the temperature on tjj is to increase f(vc/ve), decreasing tN. If

t̂ (T0) ^ tj and tjĵ Max̂  £ tj, the runaway production time will be on the

order of tj. If tjj(T0) and tjj(TMax) are both longer than tj, the actual

runaway production time will fall between CN(T âx) and tN(Tg).

When E and I are held constant (saO), the temperature increase is more

gradual. A factor of 10 increase in temperature requires t=»13.5tj and the

temperature increases linearly. Hence, CJ(TQ) can significantly underestimate

the actual heating time.

When J and I remain constant (s=-3/2), the temperature increase is even

more gradual. An order of magnitude increase in temperature requires

t=189tj. This slow heating occurs because of the T~3'2 dependence of the

classical resistivity so that, as the temperature increases, the heating rate

decreases. Since E=«nJ is not constant, the acceleration time is also

modified. Using equation 29 with s=-3/2 for the time dependence of the

temperature in E=nJ, and solving equation 1 without the frictional drag term,

gives

(3C)

When T9«tT, t =T. If T,»tT, t^- 0.22(T /tT)
3'2T. It is interesting that,d u a a a o a a j a

unlike for the case of constant E, t^, increases with increasing T.

The simple models presented here primarily indicate the care that must be

15



exercised in applying the derived timescales to astrophysical systems. They

indicate how the actual physical times can vary from the estimated timescales

under different physical conditions. Keeping these considerations in mind,

however, they do indicate the conditions that are required for electric field

acceleration and Joule heating to be applicable to a given astrophysical

system.

IV. Anomalous Resistivity

The plasma resistivity can be much higher than the classical value

(equations 3 and 4) if low-frequency electrostatic turbulence is present in

the current channel. The current density J will induce the growth of such

turbulence if its drift velocity (v̂ ) exceeds a threshold velocity that is

.greater than the plasma ion sound speed, cg=(kTe/n»j_)'2 . The generation of

anomalous resistivity by currents flowing parallel to the ambient magnetic

field has been reviewed by Papadopoulos (1977). The generation of anomalous

resistivity by currents flowing across the magnetic field has been reviewed by

Papadopoulos (1980) and by Huba (1983). The growth of low-frequency

electrostatic turbulence may also be stimulated by temperature or pressure

gradients in the plasma (cf. Morrison and lonson 1982), or by the presence of

streaming, nonthermal electrons in the plasma (Papadopoulos 1977). The

computed thresholds and wave levels for the Jn-driven instabilities, which

are the better studied of the current driven instabilities, are summarized in

this section.

For a current flowing along the ambient magnetic field, the instabilities

that can lead to anomalous resistivity are the electrostatic ion cyclotron

16



(SIC), ion acoustic (IA) , and Buneman instabilities. The Buneman instability

is not of primary interest here, since its threshold velocity is given by v^i

2ve and, therefore, the instability only occurs when the entire thermal

electron distribution is in the runaway regime. Computer simulations indicate

that heating causes the instability to saturate when ve
=v.. If the current is

driven by a constant electric field the instability oscillates, with both v^

and v increasing in steps, keeping vH=ve*

The instability thresholds for the SIC and LA. instabilities have been

computed by Kindel and Kennel (1971) and Morrison and lonson (1982) and

references therein. These thresholds are a sensitive function of the ratio of

the electron temperature to the ion temperature, Tg/T^. The thresholds are

plotted in Figure 1, based upon the results of Morrison and lonson. These

authors have accounted for the skewing of the electron distribution function

in the driving electric field, and their (steady-state current) velocity

thresholds are somewhat higher (by a factor of approximately 2) than those of

Kindel and Kennel and others. (Tg is the temperature of the unperturbed

Maxwellian distribution function.) The effect of runaway electrons has not

been included, which is likely to further increase the threshold velocities.

For 0.1CTe/Ti<8 the EIC instability has the lowest threshold (cf. Kindel and

Kennel). Otherwise, the IA instability is the first to go unstable. When

Te"Ti« vthr(EIC)=0*8ve (=35cs)' ^en V8Ti' vchr(EIC,IA)=8cs. For vthr=cs,

T_ must be more than an order of magnitude larger than T. , with the IA mode

being the unstable mode.

Since the wave turbulence has the effect of increasing the collision

frequency in the plasma, both the Joule heating and the runaways are

17



affected. If the effective collision frequency due to the wave turbulence,

ve£f(v), simply scales with particle velocity in the same way as the classical

collision frequency, so that vfif ̂ (v)=vef£(ve/v) , the results of the previous

sections carry over to the case of a turbulent plasma by simply replacing vg

with veff Such a velocity dependence is expected for IA turbulence (Kaplan

and Tsytovich 1973, Papadopoulos 1977). The turbulent collision frequency

will be assumed here to always have the simple v~^ velocity dependence.

Hence, in the turbulent plasma, ve
>v
eff, 1eff»4irveff /ue » EJj

 f=(m/e)vevef f ,

vJff-(mve£fve
3/eE)1/2 , etc.

The approximate relationship between the anomalous collision frequency

and the energy density in low-frequency IA turbulence, W , is

The accual turbulence level that will be reached for a given instability is

not well established, and depends upon the details of the system. Simulations

of the IA instability typically yield an effective collision frequency that is

on the order of

10'cm J 10 s l

Hence, an effective resistivity that is as much as a million times greater

than the classical resistivity may be obtained if the drift velocity of the

primary current exceeds the threshold for the IA instability.

The anomalous resistivity that can result from the EIC instability is

18



less well established Chan Che resulc for Che IA instability. Quoted here is

the result of lonson (1976), which has been found to be consisCent with a

computer sumulation of the instability (Pritchett, Ashour-Abdalla, and Dawson

1981):

0.2Q, 3 2 x l o T ) ( - r r v e I', (33)
10 s

where flj_ is the ion gyrofrequency. If both the EIC and Che IA modes are

present, the IA mode will generally provide the largest contribution to the

effective resistivity.

If the primary current is stable to the EIC and LA instabilities, it may

be possible for a significant level of low-frequency IA turbulence to be

generated by the runaway electrons. If the runaway electron distribution

developes a positive slope so that it is unstable to the growth of Langmuir

waves, and the energy density in these waves (normalized to nkT) reaches a

level on the order of (vg/vr) , where vr is Che mean screaming speed of Che

runaway electrons, che waves can nonlinearly collapse Co shorter wavelengths,

generating ion density fluctuations in the process (the oscillating two-stream

instability - OTS). The effective collision frequency resulting from the

presence of these density fluctuations has been estimated by Papadopoulos and

Coffey (1974) to be

OTS n v „ Av
Veff " 0'3aJe(nJL)(v£)2(v~£) ' (34)

e r

where Avr is the velocity spread in Che runaway eleccron beam. For Avr/vr
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1-/3, vr/
v
e " 10 > and nf =• 10~

3n, for example, v°|| = 10~2o>e. Hence, It may be

possible to generate an anomalous resistivity that is comparable to that

estimated for the IA instability (equation 33). The generation of anomalous

resistivity by streaming relativistic electrons has been studied by Scott et

al. (1980), with application to the heating of gas in clusters of galaxies by

cosmic ray electrons.

An additional form of resistivity, "inertial resistivity" (Speiser 1970),

has been applied to the heating of plasma in solar flares by Duijveman, Hoyng,

and lonson (1981). The argument for inertial resistivity is that if the time

required for thermal electrons to cross the current sheet, ̂ r/vg, where <5r is

the thickness of the sheet (cf. equation 13), is less than a collision time,

v~* , the electrons will be accelerated by the electric field while they are

within the sheet and a net current density J N̂ = (ne /m)(6r/ve)E will flow.

Since this current is thermalized in a few collision times, there is a

contribution to the Joule heating rate with an effective collision frequency

of vgff =ve/^
r* (This assumes, of course, that the crossing of the sheet by

the thermal electrons is not suppressed by the ambient magnetic field.) Since

6r £ 1 km for solar flare conditions (see equation 13a and Section V.a.), the

eff/varatio v f / v
a
 can b® quite large. This result is misleading, however, since

is derived on the basis of the current density J-̂ , which is quite small

when compared with the steady-state current density J=E/rie, where ne is the

classical (Coulomb) resistivity. It is easy to see that the ratio of these

current densities is Jjjj/̂  = v
e<5r/ve, and the ratio of the corresponding Joule

2 2 7
heating rates per unit volume is ve^xN^

ve^ = (ve^r/ve^ Since the ratio of

the volume containing J to the volume containing J is V^ - "*e/
v
e6*» the
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2 7
ratio of Che total heating rates is ve

JINVIN/ve VJ = Ve
5r/ve'

condition for inertial resistivity to be important was ^e6r/ve < 1, however.

Hence, heating due to inertial resistivity will never be significant compared

to the heating by the primary current. The timescale for J~N to be

thermalized is the same as the timescale for the steady-state current density

J to be established (a few collision times). Therefore, even if a steady-

state current density (J) has not yet been achieved, inertial effects cannot

contribute to the heating of the plasma until the larger current density J is

established.

V. Application to Solar Flares

•5 1 -iO
A typical microwave flare requires that 10 - 10 electrons be

accelerated to energies on the order of 100 keV . It is interesting to compare

this number of electrons with the number that can be supplied by the original

distribution of thermal electrons in the current channel, N = n(v>vc)Vj,

without considering the resupply of particles to the system. The maximum

number of electrons that can be accelerated is obtained when v ,=v =v and

n(v>v )=n, giving (equation 13b)

10 cm 10 K
(35)

This result, which is independent of the density and the resistivity of the

plasma, corresponds to accelerating all of the electrons in the current

18 2channel. A sheet area of 10 cm , if spread out in a single sheet parallel to

the solar surface, corresponds to a 14"xl4" sheet, as seen from the earth.
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The number of accelerated electrons decreases rapidly with an increase in the

ratio vc/
v
e (equation 10). Note that a much smaller limit on N is obtained if

the current is assumed to be confined to a cylindrical volume (equation 14),

rather than to a sheet geometry.

The maximum observed magnetic field strengths in flaring regions are on

the order of 1000 G. It is interesting that under plausible, although

somewhat extreme conditions it is possible for enough electrons to be

accelerated from the original plasma in the channel to produce a microwave

flare. In general, however, additional time is required for more electrons to

be supplied from the thermal plasma. These particles must be obtained from

plasma outside of the acceleration region. The rate at which runaways are

•

produced is then determined by the collisional rate, N^ (equation 15), or

the rate at which new thermal electrons with v>v flow into the current

channel, whichever is greater. The current density J can supply electrons

•

with v>vc to the acceleration region at the rate N̂ j- n(v>vc)v^w6r. If plasma

is flowing into the current sheet from the sides, as in a region where

magnetic field merging is occuring, electrons in the runaway regime can be

•

supplied at the rate N^3 2n
0(

v>vc)
vujA, where no is the density of the plasma

outside of the current sheet and v^ is the inflow speed of the plasma. For a

steady-state magnetic neutral sheet, for example, v™ is estimated to be

~0.01-0.1vA, where vA=B/(4Trm1no)'2 is the Alfven speed (Priest 1981). N

• • •

is generally larger than N̂ j. The ratio of Nco]i to No. is

•

-5 3 , Ve no l, VIN .-1 , T /7H 9 s
10 s 10 cm 10 cm s 10KA
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(36)

where equation 10 has been used for nQ(v>vc). For vc/vg - 5 and the other
• • i •

parameters as shown, for example, N̂ ĵ /N̂  = 5*10" . Hence, N^ is greater
•

than NCOII unless v̂ jj is small or the thermal collision frequency in the

channel is much greater than LO s . Irrespective of whichever process

determines the runaway production rate, it cannot exceed the upper limit given

by equation 18, however.
• •

When Ng^ does not exceed NCQ^, an additional requirement for the runaway
•

rate to be determined by NCQJ^ is that thermal electrons be flowing into the

channel at a. rate that is greater than NCO^]_« Hence, either S, = nv^wSr or N^
*

= 2n v-jujA must exceed NCOH« Multiplying equation 36 by the factor exp[-

7 * *(vc/ve) /2] gives the ratio
 N

co]_i/N\- It is easily seen that, unless there is
• •

little or no inflow from the sides of the channel, N^ does exceed NCO]_I« The
• • i

ratio Ncon/Nj is equal to simply YL/v^. The timescale Y represents the

time required for all of the thermal electrons entering the current sheet to

be scattered into the runaway regime, while L/v^ is the time required for an

average thermal electron in the current density J to traverse the length of
• * _ 1 • •

the sheet. Ncon
<Nj when L/vd < T • It is interesting that when Ncon

>>Nj>

the current is dominated by runaway electrons so that there is primarily
• •

particle acceleration and minimal Joule heating. N 11 can exceed Nj when the

resistivity in the channel is high and vc/vg is small. As can be seen from

equations 13 and 18, however, Nj=NMax if Bj=B. In this case Ncoll will always
. . .

be less than or equal to Nj, since NCQJJ cannot exceed %ax« Hence, as has

been emphasized by Spicer (1983), the primary current will always exceed the
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runaway current if J is determined by B through Ampere's law and, therefore,

•

the production of runaways will be maintained by NT.

It has been noted (cf. Norman and Smith 1978) that since the fraction of

electrons in the runaway regime depends only upon vc/
v
e» and, therefore, v^/ve

(equations 9 and 10), if v. remains constant and there is a change in the

plasma resistivity, there is no change in the number of accelerated

electrons. Since the number of accelerated electrons depends in general upon

•

the runaway production rate, N, rather than simply upon the fraction of

particles initially in the runaway regime, however, this conclusion is not
•

universally valid. If the runaway rate is determined by N^ and v^ is not

sensitive to the resistivity in the channel, this conclusion remains valid.

•

If the runaway rate is determined by NCOH, however, the number of accelerated

particles is sensitive to the resistivity in the current channel.

•

The upper limit on N is particularly important for interpreting the hard

X-ray emission from flares. Interpreting the £25 keV X-ray emission from a

flare Co be thick-target, nonthermal bremsstrahlung requires a minimum of 10

electrons s to be accelerated. Since observed magnetic field strengths are

limited to B^IOOO G, equation 18 shows that such a high particle flux cannot

be achieved. Hence, the simple electric field acceleration of runaway

electrons cannot produce a high enough electron flux to explain the bulk of

the observed X-ray emission as non-thermal bremsstrahlung. This result agrees

with a similar result obtained by Spicer (1983; see also Hoyng 1977). The

hard X-ray emission could all be non-thermal if the flaring region is

filamented into many small, oppositely directed (so that the net current is

small or vanishes) current channels (with each channel conforming to the upper
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• A
limit on N). This requires at least 10 individual current channels to

produce a (i25 keV) hard X-ray burst, however. The plausibility of producing

this situation, and its stability, requires further study. Alternatively, an

efficient statistical acceleration process, which does not require or result

in a net current in the acceleration region, may be able to generate the

required flux of nonthermal electrons. Otherwise, although the highest energy

X-rays may be nonthermal, the bulk, of the hard X-ray emission must be thermal.

In view of the preceding results, it is of interest to determine what

conditions are required for the production of an impulsive hard X-ray burst

through Joule heating, and an accompanying microwave burst through the

acceleration of runaway electrons when a single current sheet is present. The

microwave and hard X-ray rise times in solar flares range from seconds to

hundreds of seconds (cf. Wiehl et al. 1983). For concreteness, a timescale of

30 sec will be taken here as typical of both the microwave and hard X-ray rise

times. The hard X-ray rise time is related to tj and, considering the

discussion at the end of Section II, the microwave rise time is expected to be
•

related to tj^N/N. The exact relationship between tj and t^ and the rise

times depends upon the individual flare, but for the purposes of this analysis

it is reasonable to take tj=t»|=30 sec. In equation 27 for tj, ny and V are

not independent, since they are related through the (observed) emission

measure of the thermal X-rays, EM=ny V. It is apparent from inspection of

equation 27 that tj can only be of the right magnitude if vg is much greater

than 10 s in the current channel, or if the X-ray emission volume is much

smaller than 10 cm3 (and, therefore, ny is larger than 10 cm~^). Note also

Q

that B must be somewhat larger than 100 G, or w larger than 10 cm, if the
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•JO

lower limit on CN (equation 19) is to be satisfied when N-LCr'
4 electrons.

•

Taking the runaway production rate to be determined by NCOJ_I, so that tN

is given by equation 17, estimates for the required values of the collision

frequency and vc/vg can be obtained. The value of vc/ve depends only upon the

ratio of tj to tN and the value of tiyV/N. For tj=tN and 1̂ =10' cm"3, V=»10

cm3, and £*1032, so that nyV/N - 10
4 (Case I), *c/ve=6 a

nd» using equation 9,

vd=1.2cg. When tylO11 cm"3 and V=-1023 cm3, so that n^V/N - 102 (Case II),

vc=4vg and v^^Z-SCg. Similar results are obtained for vc if t^ is determined

by Nj^ with ^=30 sec and vIN=10
8 cm s~l , rather than by NCO]_I-

From equation 27 with tj=30 sec, the required collision frequency in the

current channel for Case I is found to be -10 times greater than the

9 —3 7classical collision frequency when n=10 cm and T^IO K (this factor

decreases somewhat if A or B is increased). Therefore, either the density in

Che current channel must be HO1* cm"3 (n can be smaller if T is lower), or

the resistivity in the channel must be anomalous. For Case II with n=nv, che

required collision frequency is only -10 times greater than the classical

value. Densities as high as 10* cm"3 (but with T-10^ K) have been predicted

for pre-flare current sheets (Syrovatskii 1976). Densities of 1011 cm"3 are

commonly deduced from UV observations of flare loops (Dere et al. 1979 - it is

not at present clear whether these densities are representative of the

impulsive hard X-ray region, however). Hence, the impulsive microwave and

hard X-ray emissions can be generated without the presence of anomalous

resistivity within the current sheet. This is most easily accomplished with a

plasma density -10 cm" in both the current sheet and the X-ray emitting

region. For a density of 10 cm"3 and T-10 K, the thickness of the current
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sheet is £1 cm (equation 13a) and is less than or on the order of the

gyroradius of a 100 keV electron (depending upon the value of B). It is also

worth noting that for this case, with T-10 K the bremsstrahlung cooling time

in the sheet is on the order of the Joule heating time. If the density in the

current channel is -10-10*^ cm"3, anomalous resistivity is required. For

JI I-generated anomalous resistivity, Figure 1 and the derived values for v^

indicate that the ion acoustic instability will dominate. A high value of

Te/Ti ̂  10^ is re<luired for the instability, however.

Although it is beyond the scope of this paper to consider heat transport

mechanisms in flares, it is desirable to check the plausibility of the

assumption made in Section III that the heat transfer timescale is less than

or on the order of the Joule heating timescale. Taking the heat to be

transported primarily in the direction perpendicular to the plane of the

current sheet, the effective speed at which the heat must be transported is on

the order of V/2Atj. This gives -100 km s"1 for Case I and -1,000 cm s"1 for

Case II. Both velocities are well below the Alfven speed, and the highest

(Case I) is on the order of the ion sound speed. Hence, it is reasonable to

take tj to be the dominant timescale. It is certainly possible that in some

flares the X-ray rise time is determined by the heat transport timescale,

rather than by tj. In the absence of an additional heating mechanism,

however, these flares will be characterized by a declining temperature during

the rise phase of the flare, as the heat energy is spread over the larger

volume. In this case, the results of the preceding paragraph are minimum

requirements for the Joule heating to be accomplished with a single current

sheet.
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The time required Co accelerate an electron from v to an energy of 100

keV (v = 1.64xl010 on s~l) is given by equation 20. For Case I Ta~10~
4 sec,

— 2

while for Case II T.-10 sec. These acceleration times are much less thand

ty, as expected. The energy that can be gained by an electron in a current

channel of length L is found from equations 21, 9, and 6 to be

7.0 (_-)( - S-rX— T— )(-̂ ~2 k?v' (37)
1 C 10 K 10 s l 10 cm e

For Case II with T=107 K and v /v =4, W^=8 keV . Electron energies ~400 keV
C 6 C

Q

can be attained in a distance of 10 cm for Case II. Much higher energies,

~20 MeV , are possible for Case I. If the resistivity is due to a high density

rather than to anomalous resistivity, however, the small thickness of the

current sheet is likely to limit the electron energy that is attainable. It

is interesting that, as was found for the Joule heating and runaway production

timescales, the acceleration of electrons to an energy of 100 keV requires a

collision frequency that is much greater than 10 s .

VI. Discussion and Conclusions

The rate at which the current I puts energy into Joule heating is ~IEL,

while the rate at which energy goes into runaway electrons is IrutlE integrated

over the length of the current sheet. Therefore, the energy that goes into

particle acceleration will always be less than the energy that goes into

* •

heating if Irun<*
 or» equivalently, if N<Nj. If I is determined inductively

« • • •

with Bj=B, then, as was seen in Section V, Nj*NMax and N<Nj. Hence, the

energy that goes into accelerated electrons will always be less than the
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energy that goes into heating the plasma for such an inductively generated

flare. This general result is in agreement with the conclusions reached by

Smith (1980) from his analysis of specific inductive acceleration mechanisms.

The runaway production rate that is required for a microwave flare is

N~(1032 electrons)/(30 sec) » 3xl030 electrons s"1. Since this is on the

•

order of Nwax (equation 18), solar flares will have Irun~I when the electrons

exit the acceleration region. The fact that the rate of electron acceleration

•

required for a microwave flare is on the order of Nuax may be an indication

that an inductive flare model, with I determined by B through Ampere's law, is

indeed correct.

The direct acceleration of electrons by an electric field has the

important consequence that the electron flux from one or a small number of

current channels cannot be large enough to explain the bulk of the observed

hard X-ray emission from flares as nonthermal bremsstrahlung. Hence, an

important test of flare models involving the directed acceleration of

electrons is to determine whether or not the lowest energy hard X-rays (20 to

~100 keV) from a given flare must be primarily nonthermal in origin. The

current that is required to produce a typical hard X-ray burst has an

induction magnetic field of at least 10 G associated with it. Since such

fields are not observed on the sun, if nonthermal electrons are required for

these lowest energy X-rays, either the acceleration region must contain at

least 10 individual, oppositely directed current channels, or the

acceleration mechanism must not require a directed current of electrons in the

acceleration region.

If the bulk of the hard X-ray emission is thermal, a single current sheet
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is able to generate the required microwave and hard X-ray emissions. A

9 9current sheet with dimensions -10 xlQ cm that is inductively generated by a

magnetic field of a few hundred Gauss can accelerate the required number of

runaway electrons and deposit the required amount of heat on a timescale of a

few tens of seconds if the density in the sheet and in the more extended X-ray

emitting volume is -1011 cm~3. The thickness of the current sheet will be

-400 cm, and the volume of gas to be heated is -200 times larger than the

volume of the current channel. Electrons can be accelerated up to energies

-400 keV in a timescale -10 sec. If the density in the current sheet is

less than -101 cm"3, the resistivity in the sheet must be anomalous. A large

collision frequency decreases the Joule heating timescale and the runaway

production and acceleration timescales, and increases the maximum energy of

the accelerated electrons. For an effective collision frequency -10 s ,

electron energies up to -20 MeV are obtained. The required drift velocity of

the current-carrying thermal electrons in the sheet is not high enough to

expect Jn-driven anomalous resistivity unless the thermal electrons are first

heated to a temperature that is well above lOTj. If such an electron

temperature can be attained, the ion acoustic instability will dominate.

In a recent study of the hard X-ray and microwave emissions from a flare

that occured on June 25, 1980, it was concluded that the emissions at the time

of the peak 6 cm microwave radiation were most likely nonthermal (Holman,

Kundu, and Dennis 1984). Since the power flux of electrons required for the

hard X-ray emission (assumed to be thick-target bremsstrahlung) did not

increase at this time, however, it was also concluded that either the

acceleration mechanism must have only operated on already energetic particles

30



at this point in the flare, or two populations of energetic electrons were

present. In view of the results obtained here, the best interpretation is

that the bulk of the hard X-ray emission was thermal bremsstrahlung, while the

secondary peak at the time of the microwave peak (the X-ray spectrum flattened

at this time) corresponds to the acceleration of electrons to higher

energies. The total electron power flux did not increase at this time

because, although electrons were accelerated to high energies, the total

energy in accelerated electrons was small compared to the energy in the hot

thermal plasma.

Some of the results presented in this paper have been summarized

elsewhere (Holman 1984). These results will be applied to a specific flare in

a subsequent publication (Holman and Kundu, in preparation; see also Holman

1984).
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