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CHAPTER 1

INTRODUCTION

1.1 General Remarks

Epicyclic gearing arrangements are comprised of four
different elements that produce a wide range of speed ratios
in a compact layout. These elements are: (1) Sun gear, an
externally toothed ring gear co-axial with the gear train;
(2) Annulus, an internally toothed ring gear co-axial with
the gear train; (3) Planets, externally toothed gears which
mesh with the sun and annulus; and (4) Planet Carrier, a
support structure for the planets, co~axial with the train,
The name "epicyclic" is derived from the curve traced by a
point on the circumference of a circle as it rolls on the
circumference of a second fixed circle.

By fixing one of the co-axial members and using the
remaining two for input and output, three types of simple
single-stage epicyclic gearing are possible. Generally,
these are called planetary, star, and solar arrangements,
This investigation is primarily concerned with planetary gear
drives (Fig. 1) which have a fixed annulus with the pPlanet
carrier rotating in the same direction as the sun gear.

The principal advantages of epicyclic gears over
parallel shaft gears are considerable savings in weight and

Space (see Table 1). These advantages stem from the fact
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Figure 1 - Planetary Gear Train




Application Turbo-pump Turbo-generator
Power 4360 h.p. 1060 kw.
Speeds, rpm 6160/1120 6000/600
Ratio 5.5 : 1 10 : 1
Drive train type Parallel shaft| Epicyclic Parallel shaft| Epicyclic
Weight, 1b. 3400 2500 3800 2200
Heaviest component, 1b. 1730 1600 2100 1500
Circular pitch, in. 0.907 0.605 0.725 0.518
Pitch circle dia., in. Pinion 5.774 Sun 4.619 Pinion 3.695 Sun 2.474
Gear 31.754 Planet 8.083 Gear 36.950 Planet 9.897
Ring 20.785 Ring 22.269
Pitch line velocity, fps 155 102 96.5 58.5
Horsepower 1losses
Bearing 46.2 38 21 8.2
Tooth 26 21.4 9 8.1
Gearcase size, in.
Length 42 36 37 30
Width 48.5 33 47 33
Height 36 32 48 32

Table 1 - Comparison of Parallel Shaft -vs- Epicyclic Gear Trains




that the use of multiple planets allows the load to be
transmitted by several tooth contacts, and the co-axial
arrangement of input and output shafts gives a more compact
layout. For a planetary arrangement with three planets, each
tooth engagement of the sun gear would have to carry one
third of the total load. Consequently, the dimensions of the
sun gear would be one~third of the pinion of aparallel shaft
gear-train designed to transmit an equivalent torque.

It should be pointed out that six planets do not
necessarily give a gearing twice the capacity of a similar
one having only three planets. It is impossible to guarantee
equal loading among more than three planets due to quality
and accuracy of workmanship. For this reason, three planet
designs are preferred, although systems with up to eight
planets are commercially available.

A second advantage of using multiple planets is that
when two or more planets are spaced symmetrically on the
carrier, the radial loads of the planets offset each other.
Therefore, the bearings and the gear housing for the co-axial
elements must be designed only to maintain proper alignment
of the gearing and withstand loads imposed by external
conditions.

Another advantage of epicyclic gearing is that the
smaller gears used can be made more accurately and with less
difficulty than the larger ones of parallel shaft gearing.
They are easier to handle and to harden, and distortion

during hardening is not such a serious problem.
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While the ring gear is not carburized because of the
difficulty of precision grinding of internal teeth, it can be
hardened by nitriding. This causes so little distortion that
gears can be run without any post-nitriding processing.
Normally, hardening of the ring teeth is not that critical
since the surface stress between internal and external teeth
is less than that between two external teeth. The concave
surface of the internal tooth in contact with the convex
surface of the planet tooth results in a larger contact area
than for two external teeth, thus increasing the limiting
wear load. Also, for a given size and number, teeth cut on
an internal ring are stronger than those cut on an equivalent
external wheel.

Use of smaller components gives lower pitch line veloci-
ties. This accounts for epicyclic gear trains being more
quiet than parallel shaft gear trains. Having more teeth in
mesh, not shifting the load so abruptly, also reduces the
noise level.

Generally, single-stage epicyclic gear trains are more
efficient than equivalent parallel shaft gear trains because
power losses occurring through tooth friction and bearing
losses are reduced. Tooth friction losses are approximately
proportional to the tooth load and the pitch line velocities.
With smaller tooth loads and slower pitch line velocities,
the friction loss in epicyclic gears is less than parallel
shaft gears running at the same rotational speed with the

same load. Bearing losses are dependent on bearing size,




which are smaller on epicyclic gears since no tooth reaction
loads are carried.

Epicyclic gear systems have a long history of industrial
use. As early as 1781, James Watt patented a sun and planet
gear arrangement used in one of his early engines. However,
advances in internal gear manufacturing did not parallel
those in external gears, limiting the development of epicy-
clic gear trains. As industrial applications required
transmissions with higher power ratings, the performance of
epicyclic gear systems became poorer at higher loads since
load equalization among the planet gears was not realized due
to poor manufacturing and assembly techniques.

However, the compact layout and inline arrangement found
favor with the early automobile designers. Weight and size
became important considerations since the power source and
transmission were no longer stationary objects, but an
integral part of the moving machine. Dr. F. W. Lanchester is
generally credited with being the first to use epicyclic
gears in automotive applications with the annulus of the
first stage used as the planet carrier of the second stage to
form a compound planetary transmission.

W. G. Stoeckicht adapted epicyclic gears for aircraft
and marine applications. He designed the 3300 HP, 3200 to
1700 RPM gears for the Jumo 222, the largest piston type
aircraft engine developed in Germany. He also designed a
5000 HP, 3770 to 550 RPM marine main propulsion unit, which

had a gear case three feet in diameter, 2 1/2 feet long, and




whose total weight was less than one ton.

Presently, planetary gears are frequently used as main
reduction gears in propulsion gas turbines for merchant
ships. They are widely used in rotor drive gearboxes for
helicopter aircraft. 1In lower horsepower applications, high
ratio planetaiy systems are combined with hydrostatic drives
to produce wheel drives for agricultural and off-highway
equipment.

In an attempt to save weight and material and obtain
better load sharing, current gear train designs are increas-
ingly incorporating lighter, more flexible structures. As a
result, at higher tooth-meshing frequencies, the dynamic
behavior of the gears becomes of increasing interest because
of its affect on gearbox noise and life and power rating of
the transmission.

Efforts have been made to determine the instantaneous
loads on the gear teeth, but few have examined the influence
of the entire gear train on the dynamic loads. Most models
used to date did not account for non-conjugate gear action
caused by the deflection of teeth and other elements under
load, or by inherent errors caused by gear manufacturing and
assembly. Also, most models did not consider changes in the
load sharing among planets when the number of engaged gear
teeth at each planet change. Accurate modeling of the
sun/planet and planet/ring tooth engagements directly affects
the determination of the instantaneous 1load.

In addition to the tooth engagement variations, the




dynamic loading on the gear teeth is dependent upon the
interaction of the components that make up the gear train and
the load transmitted by the gear train. Previous investi-
gators, for the most part, have not considered load
variations which normally occur because of the elastic nature
of the gear train elements. Usually the analysis is made
considering constant torques applied to the input member,
constant velocity ratios maintained between meshing gears,
and a constant torque withdrawn from the output member.

More recently, large-scale digital computer programs
have made it possible to investigate gear tooth interactions
to permit a more realistic model for the epicyclic gear
train. This Qould allow the study of dynamic loading by
considering tooth engagement which is affected by character-
istics of the gears in mesh, such as errors, tooth stiffnes-
ses, masses of the gears and contact ratios. Also to be
considered would be the influence of the gear train composed
of connecting shafts, gears, bearing supports, couplings, and
torque inputs.

It is the purpose of this investigation to develop a
more comprehensive model which considers the affect of tooth
engagement and system parameters. This model will be used to
improve the current analytical methods for determining the
instantaneous loads to which gear teeth are subjected. Since
planetary gear systems are most commonly used, and techniques
exist to determine equivalent planetary gear trains, a

comprehensive method for analyzing the static and dynamic




loading in a planetary gear train will be developed using a
variable-variable mesh stiffness (VVMS) model for external
and internal gear teeth. No current technique uses a non-
linear tooth mesh stiffness in determining planet load
sharing, nor have any investigations been undertaken
examining the effect of the phase relationships of the VVMS
on the dynamic behavior of the gears. Consequently, this
work extends the scope of engineering analysis of epicyclic
gearing. The analysis is applicable toward either involute

or modified spur gearing.
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CHAPTER II

LITERATURE REVIEW

Since the planetary gear train (PGT) is an assembly of
both external and internal spur gears, this literature review
relies on information for PGT's as well as its individual
components in showing the progress and current status of
epicyclic gearing. 1Investigation into the action of the
separate elements must be made in order to better understand
the behavior of the entire system. Consequently, information
is presented chronologically, and in separate sections, for

external/internal spur gears and PGT's, respectively.

2.1 Spur Gears

A major factor in the design of spur gears is the power
that must be transmitted from the primemover to the load.
The force that is transmitted becomes important in designing
for gear tooth beam strength, contact stress and scoring
factor. Dynamic effects must be considered since the load is
being transmitted by an elastic medium, i.e., deflected gear
teeth. Consequently, the iénstantaneous load to which the
engaged gear teeth are subjected is generally higher than the
nominal statically calculated load.

During the late 1920's and early 1930's, the American

Society of Mechanical Engineers Research Committee investi-
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gated dynamic loading of gear teeth. Lewis and Buckingham
conducted tests to determine the effects of operating speed
and manufacturing errors in the involute tooth profile.
Their report presented a method to evaluate the dynamic load
increment due to gear train dynamics and tooth error. These
studies presented a dynamic load solution more commonly known
as Buckingham's Equation's [1]%

Tuplin [2] used an equivalent spring-mass system
representing the gears in mesh to determine the dynamic loads
in gear teeth. The mass was determined from equivalent
masses of the gears concentrated at the pitch circles. The
spring stiffness was determined from the static load-
deflection of two contacting teeth. It was considered
constant and linear. He felt that dynamic loads occured from
the passage of "thick" teeth through the meshing zone. The
excess width impressed a displacement upon the mesh spring,
introducing dynamic effects. Tuplin investigated different
shapes of excitation, i.e., profile errors, and concluded
that the shape of excitation had little effect on his
results.

His calculated load increment was independent of the
average transmitted load and was inversely proportional to
the pitch-line velocity. Also, his equations did not account
for system damping nor multiple tooth contact. In general,
Tuplin's analysis can be considered as using a constant

equivalent mesh stiffness.

* Numbers in brackets refer to bibliography
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Bollingexr [3] was one of the first to consider the tooth
stiffness as a periodic function. Discontinuities in the
effective stiffness between gear pairs resulted from the
change from single to double tooth contact and the change
back from double to single tooth contact. Results of his
study correlated the experimental and analytical work very
well.

This technique can be defined as a fixed-variable gear
mesh stiffness model (FVMS). Although it is an improvement
over the constant mesh stiffness model, the simplifications
used in the model can be generalized as:

a. It does not account for irregular sharing of the
load between simultaneously engaged tooth pairs.
Therefore, analysis is limited to contact ratios
below 2.0.

b. Gear tooth errors have negligible effect or none on
mesh stiffness. This implies for a given load, a
gear with errors will have an equivalent mesh

stiffness as the same gear without errors.

C. Contact is assumed to occur only on the line of
action.

d. The contact ratio and/or mesh stiffness is not
affected by pre-mature or post-mature contact
caused by deflection of the gear teeth under load.

e. The mesh stiffness has a fixed functional relation
to the displacement of the gear.

In an effort to determine tooth mesh stiffnesses,

investigations have been made to determine gear tooth deflec-
tions as a function of the point of load of application.

Weber [4] used the strain energy technique along with the

actual shape of the tooth profile in his deflection
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analysis. Normal, shear, and bending energy in the tooth and
its foundation was considered to the tooth deflection.
Hertzian deformation was calculated using the.tooth profile
radii of curvature as equivalent cylinders. Attia (5]
expanded Weber's model by including circumferential deforma-
tion of the gear rim and the deflection of a tooth under the
effect of loaded neighboring teeth.

Kasuba and Evans [6] used a large scale digitized
approach to calculate directly the gear mesh stiffness of two
external spur gears as a function of transmitted load, gear
profile errors, gear tooth deflections, gear hub deforma-
tions, and position of tooth contact and the number of tooth
pairs in contact. By introducing these aspects, the
calculated gear mesh stiffness (Fig. 2) was defined as being
a variable-variable mesh stiffness (VVMS). The VVMS model
has the following properties:

a. It simulates the gear system by including the

elastic effects of the entire system and not just
the gears.

b. The stiffness of the gear teeth is considered a
function of the position of contact,

C. It allows for multiple tooth contact by examining
each pair of teeth that are in and close to the
theoretical contact zone.

d. The gear tooth profiles are defined with errors to
simulate tooth profile errors found in manufacture.

e. It allows for backlash in the gears.

The actual load sharing and deflection are calculated

for discrete positions within an established mesh arc. For
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any position i, the calculated kth gear tooth pair stiffness
KP(k)j, combined mesh stiffness KGj, and load sharing
incorporate the effects due to profile errors, profile
modifications, and tooth deflections. The individuai gear

pair stiffness then is

KP(k)j = Q(k);/8(k)y (2.1)

where: Q(k) gear pair static tooth load

§ (k) tooth deflection due to bending,

compression, and shear forces; and
total hub deformation
If the effective errors prevent contact, KpP(k); = O.
The mesh stiffness at the ithposition is the sum of the

gear tooth pair stiffnesses for all pairs in contact at

position i,

KG; = IKP(k)j . (2.2)

The concept of the VVMS was further expanded by
introducing an iterative procedure to calculate the VVMS by
solving the statically indeterminate problem of multi-pair
contacts, changes in the contact ratio, and mesh deflections.
The results of the VVMS model showed that:

a. The maximum instantaneous load occurred immediately

after a change in the number of teeth in contact.

b. Dynamic load factors decrease with increasing
average transmitted load between gears.

c. Dynamic load factors vary with the speed of
operation of the system and closeness to the
resonances of the system.
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d. The gear system can be tuned through the use of
torsionally flexible gear bodies/hubs/rims to
reduce dynamic load factors.

e. Dynamic load factors are reduced when the contact
ratio is increased.

f£. Dynamic load factors are reduced when the system

damping is increased.

Pintz [7] used a similar technique for developing the
VVMS for an internal-external gear mesh. This was used to
determine the dynamic loads experienced in an internal gear
drive. Pintz's model used an internal ring gear which was
radially supported and driven by an externally tooth gear.
He stated that the VVMS model was appropriate in light of the
"very high contact ratios" encountered with internal gear
drives. Use of the VVMS allo&ed investigation into problems
unique to internal gears such as ring gear deflections. He
examined the effect of ring deflections on the gear mesh, and
found considerable missing and backhitting of the gear teeth
similar to the performance of gears with sinusoidal profile
errors. Also, larger dynamic load factors were found with an
increase in radial deflection.

The work of Kasuba and Pintz represents the most
effective way to date of determining the discontinuous,

non-constant, gear mesh stiffness.

2.2 Epicyclic Gears

Epicyclic gears have been used as early as the 1700's.
However, the first recorded attempt to apply engineering

analysis was made in the very late 1800's. Lanchester [8]
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recognized the need for "precision in workmanship" to achieve
optimum performance from the planetary gear train by equal
load distribution among the planet gears. He found that the
working clearance for a three planet system allowed the
planets to find an equilibrium postion such that the load was
evenly distributed among the planets. But for a four pinion
combination assembled with the highest degree of accuracy
possible, it was found that the load was not quite so evenly
distributed among the four planets.

Wilson [9] was able to show that his three speed
epicyclic gearbox achieved an efficiency of 99.25%, which was
a marked improvement over existing parallel shaft, sliding-
gear transmissions. He attributed this to reduced oil
churning in the transmission. The centripetal force of the
rotating components forced out any surplus oil, leaving just
the necessary oil film to lubricate the gears.

Love [10] described a two stage design process for
epicyclic gearing. The first is the determination of
relative dimensions based on gear ratios required and the
physical constraints imposed by assembling an epicyclic gear
such that the planets are symmetrically placed about the sun.
The second stage is the determination of absolute dimension
based on considerations of power to be transmitted, running
speeds, and the strength of available material of construc-
tion.

Seager [11] proposed an approximately theoretical

analysis of loading in a simple planetary gear system for
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both centered and non-centered (floating) gears. His
analysis assumed errors in the planet positioning and planet
tooth thickness, and a constant combined tooth stiffness
independent of meshing position. Inertia forces were
neglected, limiting the theory to low speed behavior with
minimal dynamic effects. Based on the equilibrium conditions
about the sun gear and compatible displacements among the
planet gears, Seager developed a set of equations to
determine load sharing among the planet gears. It was shown
that for three planets with a floating sun gear, the total
load is shared equally among the three planets, irrespective
of the distribution of errors. However, it was found if the
number of planets was greater than three, the load was no
longer divided equally among the planets. Furthermore, the
maximum planet load depended on whether the planet lagged or
lead its ideal position.

Imwalle [12] classified designs to achieve load equali-
zation among planets in two systems, statically indeterminate
and statically determinate. Statically indeterminate systems
are ones which rely on precise tolerances of the manufactured
componests to minimize load imbalances. These systems do not
lend themselves to rigorous mathematical analysis. Statical-
ly determinate systems accomplish load egqualization by
introducing additional degrees of freedom into the system.
This is done by the use of floating members or by allowing
rigidly connected members to adjust their position to

provide equalizing action (Fig. 3). Imwalle also developed a
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Figure 3 - PGT with Floating Members
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method for comparing different load equalization systems from
kinematical and dynamic considerations. He assumed the total

dynamic force to be the sum of two components,
Fgq = E‘d' + Fd", (2.3)

where Fq' = Dynamic force independent of load
equalization system and used to
analyze non-uniform rotary motion of
the principle parts.

Fd "

Dynamic force dependent upon the type
of equalization system and its masses.
The F3" component can be used as a design parameter to
evaluate the effect of the system on the total dynamic force.
In general, the lowest value of the dynamic force £or a given
system provides the best load equaliztion, Imwalle's
analysis assumes the planetary gears are undamped and
neglects the mesh stiffness and ring gear flexibility.
Consequently, the analysis does not account for vibratory
phenomena in the gear train.

Seager [(13], noting that even with highquality gears,
vibration and excessive noise is experienced; tried other
means to reduce vibration in epicyclic gearing. He showed
that some potentially troublesome harmonic components can be
neutralized by suitable choice of tooth numbers. Seager
stated that the primary source of tooth excitation is static
transmission error, whose fundamental frequency is the mesh
frequency. The possibility of neutralizing excitation by the
teeth in epicyclic gearing comes from the fact that, in

general, the planets are at different phases of the tooth
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meshing cycle. When the torsional and transverse modes are
effectively de-coupled, the conditions for neutralizing the

components of excitation are:

Z
HE # integer (torsional modes) (2.4)
5%l .
¥ integer (transverse modes) (2.5)
where: Zg = Number of teeth, sun gear

n = Number of planets

These conditions can be satisfied provided that the number of
planets is greater than three, and are only valid if all the
planets are identical and there are no errors in their
position.

Cunliffe and Welbourne [14] built and tested a single
stage epicyclic gear train in order to see whether agreement
could be obtained between the model of it, and dynamic force
measurements make on the gear. Their model had 13 degrees of
freedom and simulated a star gear system with a stationary
carrier and rotating annulus. Their experimental results
show that except for very highly loaded, very accurately made
gears, uniform load sharing cannot be expected even under
quasi-static conditions, i.e., tooth mesh frequencies below
the overall fundamental frequency. Load distribution below
the fundamental frequency can be improved by reducing any of

the component stiffnessess. Above the fundamental frequency,
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the system behaves dynamically. The general results imply
the possibility of dynamic tooth loads of three or four times
mean tooth loads at low frequency resonances, and up to four
to six times for high frequency resonances. The thirteen
mode shapes obtained with the model were classified as to low
or high frequency modes. The seven low frequency modes were
strongly influenced by support stiffness in their dynamic
behavior., Maximum tooth load could be varied by altering
planet pin stiffness to the mesh stiffness ratio. The six
high frequency modes were little affected by planet pin
stiffness. They were, however, critically dependent both on
tooth contact stiffness and accuracy of manufacture. The
excitation of particular modes could be reduced by the
appropriate choice of symmetrical or asymmetrical meshing of
the planets through selection of tooth numbers in the gear.
In their investigation of noise generated by planetary
ring gears in helicopter aircraft transmissions, Chiang and
Badgley [15] studied the mechanism by which gear meshes
generate vibrations. These vibrations, which result from the
deviation from uniform gear rotatjon, are one of the major
causes of gearbox noise. Using known dynamic forces as
inputs in a forced vibration analysis, Chiang and Badgley
were able to determine ring gear vibration mode shapes and
amplitudes. These parameters were used to measure the
effectiveness of design modifications in reducing vibration
amplitudes and decreasing dynamic forces in the gear train.

Their analysis also took into account the phase relationships
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of the dynamic forces on each planetary gear. That is, when
one of the planet gears reaches its peak dynamic force, the
remaining planet gears are at intermediate forces below the
peak value. They concluded that structural modification to
the ring gear to separate natural frequencies from multiples
of lower mesh frequency would be most beneficial from the
standpoint of ring gear vibrations.

Tucker [16] studied the effects of flexible ring gears
in epicyclic gear trains. He concluded that rings with
internal gear teeth have substantially different deflection
characteristics than discs with external gear teeth that will
affect the gear train performance. The greater resilience of
the ring gears, results in greater deflections in the
internal teeth than the external teeth, which have a more
rigid support. These deflections in turn, affect the tooth
stiffness, which is a major factor in determining the dynamic
loads on the teeth. The dynamic load increment, which would

be added to the transmitted load, would be:

W= _Fr® (2.5)

d 2
ket? 1
4M

where: W3 = Dynamic load

ky = Effective tooth stiffness on ring gear
e = Effective tooth spacing error
t = Tooth contact time

M = Equivalent mass of two mating gears




24

The effective stiffness of the ring gear tooth is:

ky = —& (2.7)

where: Wy = Tangential load on tooth
A = Lateral displacement away form mating tooth

due to radial deflection
A' = Lateral displacement away from mating tooth

due to bending moment

Tucker observed that the flexibility of the ring is so
much greater than the tooth that the ring spring rate governs
the dynamic load increment of the tooth. Therefore, at high
speeds, a ring gear generates much lower dynamic loads than
an external gear with equivalent tooth errors.

Tucker felt an important consideration during the design
phase of an eqicyclic gear set was the calculation of the
natural frequencies of the ring gear. These frequencies may
be excited by forcing functions generated during the
operation of the gear set and result in fatigue failures.
The forcing functions which can generate such frequencies

are, in ascending order:

a. Ring gear teeth spacing errors
b. Planet gear teeth spacing errors
c. Oval ring gear

d. Oval planet gear

€. Sun gear tooth errors
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£. oOval sun gear

g. Tooth meshing frequency

A frequency interference (Campbell) diagram should be
drawn to determine operating speeds where resonance could be
expected, since the variation of the forcing functions is a
linear function of the input gear speed (Fig. 4). If a
forcing function frequency is coincident or close to a ring
natural frequency, the ring thickness should be changed to
avoid problems.

Nakahara, Takahasi, and Makuso [l17] examined the
practice of using an intermediate ring between the planet
gear and planet gear pin to improve load sharing among
planets. They point out that a floating sun gear is not very
effective in equalizing planet loads if the system has four
or more planets. Flexible ring gears cannot often be used to
offset errors because resonance conditions may occur due to
the decrease of natural frequencies. However, inserting an
intermediate ring (IR) between the planet gear and its
spindle has been used successfully to eliminate the influence
of relatively large errors on the load distribution among
planets. In general, the effectiveness of the intermediate
rings is due to increasing the compliance related with the
distance between the planet gear and spindle center inde-
pendently of the other planet loads. Two different types of
intermediate rings are used, depending on the application
(Fig. 5).

Figure 5a is used for the case of relatively low speed
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and high torque. Here the IR can rotate at almost the same
angular velocity as the planet gear without help of forced
driving. The IR serves to distribute the planet load to pin
roller bearing over a wider arc while maintaining a
concentrated load on the ring gear. The resulting elastic
deflections of the ring gear then act to offset the system
errors. The reduced Hertzian contact stress also helps to
prolong bearing life,

Figure 5b is used for the case of high power, high speed
applications, such as marine engine transmissions. In this
case, it is necessary for the IR to be driven by the sun and
internal gear in order to rotate with the planet. The ring
is called a "floating"™ intermediate ring because it floats on
an oil £ilm between the planet gear and spindle, The
relatively thick o0il film in the clearance improves the
compliance of the planet. With high centripetal forces due
to high carrier angular velocities, the lubrication film also
increases the damping characteristics significantly.

Botman [18] evaluated the various vibration modes of a
single stage planetary gear in order to predict the gear
tooth loads. Figure 6 shows the dynamic model for only one
planet. BEach component has three rigid body degrees of
freedom. The planets are symmetrically spaced about the sun
and attached to the carrier by means of two equal springs
attached in two perpendicular directions. The total number
of degrees of freedon was 9+3n, where n is the number of

planets. The tooth mesh stiffnesses were assumed to be
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Figure 6 - Botman's Dynamic Model (One Planet Shown)
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constant. The equations of motion in the most general form

are:
M1{4} + (Cl{g} + [(Kl{q} = {F} (2.8)

where g represents the generalized coordinates, and M, C, and
K are the inertia, damping, and stiffness matrices,
respectively, for the components.

Vibration modes obtained for free vibrations with a non-
rotating carrier were categorized into two groups,
axisymmetric or non-axisymmetric. In the axisymmetric, or
rotational, modes, all the planets perform the same motion
with respect to the sun, and the other components have only
rotational vibration. There were six such modes. The
remaining twelve modes were non-axisymmetric. The planets
did not all perform the same motion and at least some of the
other components had lateral motion. The effect of carrier
rotation on natural frequency was found to be small. The
maximum effect was a reduction in the natural frequency of
the lowest mode of about 8 percent at design speed.

Only the natural frequencies corresponding to the six
rotational modes were found. Hence, Botman concluded that
the lateral modes are suppressed by carrier motion. He also
felt that the dominance of rotational modes suggested it was
more meaningful to measure accelerations of the ring gear in
the tangential, rather than radial direction. Since gear
mesh frequencies tend to be high, the high frequency rota-

tional modes were found to be the significant contributing
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factor in the dynamic tooth loads. Influence of torsional
input or output shafts would occur only if components also
had a high natural frequency.

Hidaka, et al. (19, 20, 21, 22, 23], did a comprehensive
study of the dynamic¢ behavior of planetary gears. Using a
Stoeckicht Type 2K-H, single stage planetary gear system with
spur gears, Hidaka performed experimental studies to
determine its dynamic behavior and how it is influenced by
the operational characteristics of the planetary gear train,
such as operational load, variation of torque, vibration
characteristics of the system, and errors of manufacture and
assembly. In conjunction with the experimental results,
Hidaka attempted, analytically, to calculate the load distri-
bution among planets, displacement of floating members, and
dynamic tooth loads.

Hidaka first studied the problem of load distribution
among the planets. The Stoeckicht planetary gear train used
had both a floating sun and ring gear to eliminate the
influence of manufacturing errors. Fillet strains were
measured 30 times during the interval of one synchronous
position to the next of the gear train. Tooth loads were
then measured from these fillet strains. The dynamic load
was defined as the ratio of dynamic fillet strain to static
fillet strain. The load distribution among the planets was
then found from the distribution of fillet strains on the sun
gear teeth. 1In order to estimate the load distribution and

dynamic tooth load from the measured fillet strains, Hidaka
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calculated the mean dynamic load factors and the standard
deviation through one ‘synchronous interval. A coefficient of
variation was defined as the ratio of standard deviation to
the mean value. It was found that for slow input speeds, the
load was equally distributed among the three planets. For
higher input speeds, the mean load distribution remained
nearly equal for the planets. However, the.sun gear teeth
experienced increased dynamic loading with increased input
speed. Hidaka concluded that this variation in dynamic load
was largely due to torque variation. It also meant that the
dynamic tooth load could not be predicted just from the mean
load distribution and the mean dynamic load; the coefficient
of variation for each of these parameters must also be
calculated. Using the mean tooth loads and the coefficient
of variation from the mean of those loads, Hidaka derived
equations for both the dynamic tooth load and the load
distribution among the planets.

Hidaka found that the dynamic tooth load and the load
distribution among planets is closely related with the
displacements of the sun and ring gear. He found that in the
low speed region, displacement of the sun gear served to
equalize the planet loading. The sun gear moved on the locus
fixed by the influences of the random errors of manufacture
and assembly and the elastic deformation of the components.,
At higher speeds, the amplitude of the displacement of the
sun gear increased and its motion became more circular.

Generally, the periodicity of the sun gear displacement was
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comprised of the following three components:

a. A component of frequency coinciding with the mesh
frequency, representing the stiffness function.

b. A component of frequency coinciding with the
frequency of revolution of the input shaft,
representing run-out errors.

c. A component of frequency coinciding with the
frequency of revolution times the number of
planets, representing errors of assembly and
deformation of the ring gear.

As the sun motion became more circular, the coefficient
of variation for the dynamic load factor and the coefficient
of variation for the load distribution rate both increased
drastically. The larger displacements of the sun gear
affected the meshing conditions between the sun gear and the
planets so that dynamic loads were now being introduced on
the gear teeth. Also, at higher speeds, resonance occured in
the ring gear if the mesh frequency of the planet/ring
approached the natural frequency of the ring.

Hidaka examined ring gear static displacements with
finite elements to derive approxiamte equations for the
calculation of deflections of internal gear teeth. The total
deflection of the internal gear tooth was obtained by super-
imposing the deflections resulting from the bending moment,
shearing force, and inclination at the root of the tooth upon
half the deformation resulting from Hertzian contact. The
deflection of a loaded tooth causes the adjacent non-loaded

tooth to decrease the relative approach distance between

teeth. Consequently, premature contact occurs and the
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contact ratio is increased. Hidaka later determined that
having a ring gear too thin produces the undesirable result
of tip interference with an approaching tooth due to tooth
deformation. He also found that except at resonance, the
influence of the rim thickness of a ring gear on the dynamic
tooth load is small.

Hidaka developed a dynamic model based on the charac-
teristics obtained from the experimental results. Important
assumptions made were:

a. Planet gear shafts were very stiff and deflection
of these shafts due to the centripetal force of the
carrier rotation were neglected.

b. Translation of the ring gear was negligible.

c. Sun gear displacement was restricted to planar
motion, i.e., it did not wobble.

d. Tooth stiffnesses of the sun/planet and planet/ring

meshes were assumed to be constant.

The rotating inertia and the torsional stiffness in the
Planetary gear train were transformed into the equivalent
mass and stiffness along the line of action. The angular
displacements of each component were then also transformed
into linear displacements in the direction of the line of
action. The equivalent masses moved up and down corre-
sponding to the direction of the line of action, but did not
wobble. Since it is possible for the planet gears to rotate
freely about their shaft, the planet gears were treated as
behaving like seesaws. The driving and load elements,

respectively, were connected by flexible shafts to the sun
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and ring gear.

The differential equations were set up by summing the
forces on the elements and solved by means of the CSMP
simulation program for continuous systems. The integration
period was taken as ten revolution of the sun gear (140
pitches) and the dynamic tooth loads were calculated during
30 pitches.

Hidaka concluded that the calculated results satisfacto-
rily agreed with the measured ones. Calculations of the
dynamic load factors were found to be low at the higher
speeds. Hidaka felt this was due to the fact that the main
cause of the variation of the dynamic load was tooth errors
and the tooth stiffness varying once per pitch; something he
was not able to duplicate by assuming a constant average mesh
stiffness. Calculations of the load distribution rates and
variation showed tendencies similar to those of the measured
values, but again the measured load variations were higher in
the high speed range. Hidaka concluded that this implied
that load unbalances caused by runout errors could be
compensated by a floating sun gear. However, with increasing
speeds, as the sun gear assumed a circular motion, the
effects of tooth profile error and stiffness variation
increasingly become prevalent factors in the dynamic loading.

Jarchow and Vonderschmidt (24) developed a model with
three planet gears taking into account manufacturing and
tooth errors and tooth stiffness variations which cause

vibrations with subsequent inner dynamic tooth forces. A
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system of coupled, non-homogenous, non-linear differential
equations of motion wereused to find the tooth forces in the
planetary gears. Their study investigated the influence of
transmitted load and input speed on the effective dynamic

tooth force. Three configurations were evaluated:

a. All coaxial elements fixed
b. Sun gear allowed to float

c. Carrier allowed to float
Two parameters were defined in the load calculations:

a. Planet gear load distribution factor, Ky, which
takes into account the non-uniform load distribu-
tion on the individual planets (Ky = 1.0 for ideal
load distribution).

b. Dynamic load factor Kyrs which considers the
additional dynamic tooth forces.

It was found that for case a, the load distribution
factor decreased with an increase of load, implying influence
of manufacturing errors relative to static load decreased
with increasing load. For cases b and c, K.Y was independent
of the transmitted load.

The product, KYKv' was defined to be the load magnifica-
tion factor. Generally, it decreased with an increase of
load. Case a had the highest load magnification factor,
while Case ¢ had the lowest. Jarchow's experimental work
corroborated these findings. It was found that KYKVincreased

strongly with the increase of sun gear speed. One reason

given was that the entry and exiting impulses increase with
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the increased speed. Again, Case a and Case ¢ had the

highest and lowest load magnification factors, respectively.
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CHAPTER III

ANALYTICAL INVESTIGATION

3.1 Problem Formulation

A complete analysis of the dynamic loading of a
Planetary gear train (PGT) is difficult even under ideal
geometry conditions because of the non-singular engagement
conditions at each sun/planet and planet/ring mesh., addi-
tional difficulties arise because of variations in the 1load
transmitted by the PGT. These variations are primarily
caused by discontinuities in the mesh stiffness resulting
from the continuous changing, depending on the contact ratio,
from n to n+l tooth contact and back to n tooth contact.
Dynamic effects are introduced as the transmitted load is
periodically shared between n and n+l teeth. Further
complications are introduced by transmission errors caused by
gear manufacturing errors. A thin tooth or a pit in the
profile may temporarily prevent or interrupt contact and
cause sudden disengagement and subsequent clashing between
teeth. The nonlinearity of the mesh stiffness is also
greatly affected by the magnitude of the transmitted load.
In some instances, with a large enough load, the compliance
of the teeth is great enough so that the magnitude of the
elastic deflection is greater than the manufacturing error,

restoring any interrupted contact.




40

Since the variable mesh stiffness for any two gears
produces parametric excitation, a PGT system with n planets
will have 2n variable mesh stiffnesses influencing the system
dynamic behavior.. Figure 7 shows a three planet PGT with
input torque at the sun gear. Although the three planets are
spaced symmetrically around the sun gear, the contact points,
and therefore the mesh stiffness, vary at each engaged gear
pair. Consequently, a phase relationship can be established
for the mesh stiffnesses and the dynamic forces (Fig. 8).
Physically, this phase variation is dependent on the position
of the planet gears. Also, for a system with multiple
degrees of freedom, instead of having well defined critical
speeds, regions of critical speed occur within which large
vibrations may occur [25].

In addition to the ring and mesh stiffness affecting the
dynamic behavior, the sun support stiffness must also be
considered. As pointed out in the literature survey, a
common technique for improving load sharing among planets, is
to allow the sun gear to translate and find a position of
equilibrium loading. The magnitude of the sun motion will
then be dependent on the force imbalance. At high input
speeds, the dynamic effects of the sun's translation may
become appreciable. This would be especially true if a
forcing frequency occured near a basic mode of excitation
frequency.

The non-linearities in the geared system give rise. to

instantaneous load fluctuations between gear teeth despite




41

#
#‘?{ Planet 3
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apparently constant load conditions, Furthermore, the
magnitude and duration of these fluctuations is influenced by
the physical characteristics of the geared system. This
would include the masses and stiffnesses of the components as
well as damping and the proximity of natural frequencies with
any of the forcing functions. Having stated the problenm,
this author feels that adequate mathematical tools and
numerical techniques exist for their solution. The task
remains to develop a mathematical model that accurately
describes the physical system and provides meaningful
results. Not only will new techniques have to be developed
but improvements will be made to existing ones to provide a

more efficient analysis.

3.2 Assumptions

The following assumptions and conventions are used to
make the analysis manageable while maintaining a realistic

model:

a. For static equilibrium conditions, two torque bal-
ances must be maintained:
i. Collectively, the sun gear mesh forces must
Create a torque equivalent to the input
torque.
ii. The sum of the torques acting on each
planet must be zero.
b. Since there is no net torque acting on the planet,

there is no net planet hub deformation. Therefore,

sun/planet and planet/ring deflections occur, and
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may be treated, independently.

The analysis will be limited to a single planetary
gear stage and to vibrations in its plane. Vibra-
tions out of the plane of the gear stage are assumed
negligible, This assumption is reasonable when
tooth loads are confined to one plane, as they are

in the spur gears being considered.

The differential equations of motion are expressed
along the actual, rather than the theoretical line
of action. This allows for evaluation of non-

conjugate gear action due to transmission error.

The dynamic behavior of the PGT will be investigated
through several complete engagement or mesh cycles

to insure steady-state operating conditions.

The load-deflection behavior of the tooth pairs in
mesh can be represented by a single non-linear
spring. The gear mesh stiffness is determined as a
function of transmitted load, gear tooth profile
errors, and gear tooth and hub deformations. The
component of dynamic transmitted load due to the
spring force is proportional to the relative dis-
placements of two gears along the instantaneous line

of action.

Gear errors within a component are periodic and non-

singular. Tooth deflections are localized and
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centerline positions of gear teeth non-adjacent to
loaded teeth remain rigidly fixed. As a tooth is
being unloaded it regains its original shape and
regains its rigid body position as the tooth

immediately preceding it becomes unloaded.

Damping in each gear mesh due to lubrication is
represented by a single dashpot assuming Newtonian
damping. A constant damping coefficent of Z = 0.1 is
chosen [26]. The critical damping ratio is definead
as a function of the total effective mass and
instantaneous stiffness. The component of the
dynamic transmitted load due to viscous damping is
proportional to the relative velocities of two gears

along the instantaneous line of action,

The presence of backlash may lead to tooth separa-
tion under certain operating conditions. As such,
the differential equations of motion must consider a
period of no transmitted load before the contact is

restored.

In order to isolate the vibratory phenomena within
the gear train and minimize external influences, the
input and output shafts are made very stiff tor-
sionally. Masses of the driver and load are also

much greater than that of any of the gears.

Displacement of the sun gear caused by allowing it
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to float is restricted to planar motion, i.e., it

does not wobble,

3.3 Method of Solution

The purpose of this investigation is to develop static
and dynamic load analysis techniques for a planetary gear
train. The methods presented in the literature review serve
as the basis for the development of the analysis. The
investigation is divided into static and dynamic sections,
with the static results used as a baseline for comparison
with the dynamic results. The determination of static load
sharing among the planets will be used as the starting point.

An important task is the development of the mathematical
model of the PGT. This allows continuous tracking of the
individual gear components, the forcing function, i.e.,
driving torque, and the load. An accurate determination of
the position of the elements is critical since the mesh
stiffnesses will be considered as functions of gear

displacement. The model also takes into consideration:

a. Floating or fixed sun gear
b. Gear quality

Cc. Positioning errors of components

For a PGT with n planets, the mathematical model has n+4
masses and, depending on the fixity of the gears, up to n+6
degrees of freedom. The model is used to determine the

extent of the dynamic load increment and its dependence on
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component stiffness, input speed, transmitted load, and
planet load sharing. It is also used to study the sun gesar
motion to determine how tooth profile errors affect the
sun/planet mesh, and the effect of the sun's transverse
motion on planet load sharing. This model has been
incorporated into a set of computer programs so that the
static and dynamic behavior of the individual components, as
well as that of the complete gear train, can be examined.

The programs have been developed for use on a mini-
computer system such as the Hewlett Packard HP-1000 at
Cleveland State University (CSU). They are incorporated into
a computer-aided-design package that will be comprised of the
analyses programs as well as menu-driven, interactive pre-
and post- processors. This design package will enable the
designer/analyst to evaluate a PGT design during one
relatively short terminal session, instead of the rather
lengthy time involved with a mainframe-supported batch
system, The inter-active pre-processor allows for easy
changes in the input data, while the post-processor offers
the option of either tabular or graphical output for the user
selected results.

The analyses programs themselves were developed keeping
in mind the memory partition limitations of minicomputers.
For example, the CSU mainframe IBM 370/158 has 4 megabytes of
main memory, while the HP-1000 Model F contains 512K bytes of
main memory. Efficient algorithms were developed as well as

computer techniques, so as not to exceed the limitations of
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the computer. The computer program was used to conduct
parametric studies to determine the effect of manufacturing
errors, tooth profile modifications, and errors damping,
component stiffness, and transmitted torque on dynamic
behavior.

The next three sections of this thesis present a
detailed development of the static and dynamic analysis as
well as a description of the computer program. For reference
purposes, Appendix A explains the techniques used to evaluate
the individual static gear mesh behavior. Appendix B shows
how the methodology developed here can be extended to include
the star and solar type of arrangements of epicyclic gearing.

Appendices C and D contain the computer program listings.

3.4 Static Analysis

As mentioned in the previous section, the strategy for
solution includes investigating the static loading conditions
in preparation for the dynamic analysis. The accurate
determination of the inter-dependence of the components'’
variable mesh stiffnesses and planet load sharing is of
critical importance to successfully analyse the dynamic
behavior of the PGT. The tasks of the static analysis
portion of the investigation are:

a. Detegmine an equivalent gear train with stationary

carrier.

b. Determine phase relationships of all gear mesh

stiffnesses, including the effects of positioning

errors.

c. Determine a synchronous position as a function of
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the sun gear rotation.
d. Examine sun gear position and planet load sharing as
a function of the sun gear rotation.
In addition, the results of the static analysis must be
stored for use in the dynamic analysis and for printing of

selected portions of this material.

3.4.1 Equivalent Gear Drives

In a PGT, the power circulating within the system
components differs from the actual power being transmitted.
This results from the relative motion of the gears and is
present in some degree in all planetary gear trains.
Radzimovsky [27] described a method by which an equivalent
conventional gear train can be developed in conjunction with
the particular kinematic characteristics of the planetary
system. The equivalent conventional gear train would be one
where the transmitted forces remain the same but the gears
would only rotate about their own center, simplifying the
dynamic analysis.

In the conventional gear train (Fig. 9), the pitch line
velocities of the two gears are the same and the power output
by the driven gear is equal to the power input to that gear.
Figure 10 shows the meshing relations in a PGT. The velocity
of engagement of the sun/planet and planet/ring gear is
affected by the relative motion of the planet carrier. For

the planet gears, the velocity of engagement, v is not

e’

equal to the pitch line velocity, v. If F is the tangential

force acting at the pitch circle of the sun gear, the product




Figure 9 - Conventional Gear Train
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LoA

Figure 10 - Meshing Relationships in a PGT
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Fvg, is not equal to the input power at the driving gear.

The PGT shown schematically in Figure 11 has a spead

ratio:
m, = D
H
(3.1)
d
=S +1
da
where: d. = Diameter ring gear
dp = Diameter sun gear

The value of my is positive, implying the input and output
shafts rotate in the same direction. To eliminate the effect
of the rotation of the planet gears around the sun, an
angular velocity, -wy, is added to the entire system. The
angular velocity of the planet carrier goes to 0, while the
relative motions of all the gears in the train remain the
same. The planet gears now become idlers and the entire
assembly may be considered as a conventional gear train with
fixed axes of rotation (Fig. 12).

No external forces or torques have been applied to the
gear train. Therefore, the tangential forces acting on the
gears of the fixed axes gear train, are identical to those in
the actual PGT. Only the pitch-line velocities of the gears
have been changed. With the pitch-line velocities being
equal to the velocities of engagement in the PGT, the rela-
tive motion caused by carrier rotation has been eliminated,
while maintaining the same transmitted forces between gears.

The absolute angular velocity of the input gear can be
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calculated as:

w -
A(l mp) (3.2)

The angular velocity of the output shaft now becomes,

o () ()
H \dg d,/ a

= - Cw

da

(3.3)

0,

'
A
with the minus sign denoting opposite rotations.

Note that since the ring gear is always larger than the
sun gear, in Equation 3.1, the value of my will always be
greater than one. Consequently, the velocities of engagement
of gears in a PGT are less than those in a corresponding
conventional gear train comprised of the same gears having
the same input angular velocity and power. Since the tangen-
tial forces acting on the gears remain the same, the power
developed by a PGT is lower than in a conventional gear
drive. This implies that the dynamic tooth loads and wear,
which are functions of the transmitted force and velocity of
engagement, should be reduced in the PGT.

A kinematic examination of the PGT validates the
equivalent engagement approach. This can be shown by
selecting an arbitrary contact position along the line of
action between the sun gear and a planet gear (Fig. 13). As

the sun rotates through an angle 65, the rotation of the
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Figure 13 - Start of Contact
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output carrier is:

6 = _Ns 4. (3.4)
c Ng + Ng S )

Through the carrier rotation 6,, equal arcs are swept out at

the planet/ring contacting gear pair,

The minus sign is required since the planet and carrier
rotate in opposite directions. The angular displacement of

the planet gear about its own axes is:

RPCg
6, = - 6
P RPCp c

NoN
= - RS 6 * (3.6)
Np(Ng + Ng) S

From Fig. 14, the sun/planet contacting gear pair have ad-
vanced along the line of action through an angle eé,due to

the rotation 6g4. From equivalent arc lengths,

RBCg 6 g = -RBCpOp. (3.7)
Thus, RBC
6, = - Py
s RBCg = P

= - Yp|_ MrWs 5
s | NplNg + Ng) | "5
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Figure 14 - Advancement of Contact Point
along the Line of Action
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o' = IR
=(1—1_>e- (3.8)
mp S

Due to the carrier rotation, the contact point advance-
ment is retarded along the line of action by the factor
(1 - %r), the same as derived in Eq. 3.1. Since no external
forcesphave been appliéd, the analysis of the sun/planet and
planet/ring static and dynamic behavior may be done by
restricting the planet to rotate about its own axis, keeping
the input torque the same, and calculating a new, effective
input angular velocity at the sun gear.

Although this investigation is primarily concerned with
planetary gear drives, thc concept of the equivalent
conventional gear train can be extended to also include the
star and solar gear arrangements. The same principles and
techniques may then be used to evaluate those drives

(Appendix B).

3.4.2.1 Phase Relationships Between Sun/Planet/Ring Mesh

Stiffnesses

As stated in the literature survey, the main sources of
dynamic excitation in geared systems are the variable-
variable mesh stiffness (VVMS) functions and their discon-
tinuities. In both parallel and co-axial shafted spur gear
transmissons, the operational gear mesh stiffness is probably
the single most important element in performing the static

and dynamic analysis. Even in theoretically errorless
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gearing, discontinuities in the mesh stiffness exist caused
by the periodically changing number of teeth in contact. The
only exception to this would be the case where the contact
ratio is a whole number, implying that a gear tooth pair
initiates contact simulaneously as the preceding tooth pair
is concluding contact. In this 'manner, the number of teeth
in contact would remain constant. Additional discontinuities
are introduced when gear tooth errors exist which interrupt
contact, thus altering the normal gear mesh stiffness charac-
teristics. Increased system compliance and transmitted load
also affect the mesh stiffness by increasing pre- and post-
mature contact and decreasing the effect of gear tooth
errors. An assumption that mesh stiffness values remain
constant, or even that the mesh stiffnesses are equal for the
sun/planet and planet/ring engagements, is completely
unacceptable for realistic analyses of planetary gear trains.

Determination of the mesh stiffness as a function of
fully loaded and deflected gear teeth in both the external-
external and external-internal meshes (Fig. 15) must be
completed before attempting any further analysis. The
methodology used in determining the VVMS is described in
Appendix A, To accurately determine the VVMS, the following

parameters must be considered:

a. Magnitude of transmitted load
b. Gear tooth profile errors
c. Position of contact

d. Number of contacting tooth pairs
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e. Operational contact ratio

f. Gear and hub geometry

In Figure 7, three planet gears are shown symetrically
situated about the sun gear. Although equally spaced, the
planet gears generally do not share identical contact
conditions with each other. This can be explained by
examining the number of teeth on the sun and ring gear,
respectively. If the number of teeth is not evenly divisible
by the number of planets, the planets are not spaced a whole
number of tooth pitches apart. Subsequently, different
contact conditions must exist for each planet. The differ-
ence in contact includes the position of contact on the
meshing teeth as well as the number of teeth in contact. 1In
fact, it is often clearly desirable to have nonidentical
conditions to minimize the variation of the mesh stiffness
about the sun and planet gears [13,14].

This model can determine the magnitude and phase
relationships of the mesh stiffnesses at all load transfer
points. These relationships will affect both the static and
dynamic behavior of the PGT. For example, in a low speed,
quasi-static operation, the sun gear will move, if allowed,
in a manner such that loading is equally distributed among
the planet gears. The motion of the sun will be governed by
the sun/planet mesh forces and the supporting mesh stiffnes-
ses. Dynamically, the VVMS's phasing directly affects the
excitation in the drive train, especially at the mesh fre-

quency and its higher harmonics.
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Phasing of the VVMS's depends on maintaining a static
equilibrium condition about the‘sun gear such that the sun
gear mesh forces collectively create a torque equivalent to
the input torque. Also, the sum of the torques acting on
each planet must be zero. This way, the planets experience
no net torque, and the hub deformations on the planet at the
sun/planet and planet/ring meshes remain localized. Planet
gear teeth outside the two contact zones are thus, unaf-
fected.

The phase relationships in the loaded mode between the
individual gear tooth meshes are established by analyzing the
planet positions about the sun gear. These are used to
determine the ith sun/planet and planet/ring mesh stiffnesses
based on the instantaneous angular positions of the sun and
planet, respectively. The first Planet is positioned such
that one incoming tooth pair is initiating contact between
the sun and the planet. This position is then used as the
reference point for the remaining planets.

The values of the fully loaded VVMS's for the ith
planet's engagement states are referenced against this

position by:

Kspi(8s) = Kgp1 (Og+ ¢g;) (3.9)
Kpri (%) = Kppy (8p + ¢p; + dégg) (3.10)

where: fs = Instantaneous sun gear position.
Kgpi = Sun/planet loaded mesh stiffness as a

function of Gs.
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¢gi = Phase angle for the ith sun/planet mesh.

6p = Instantaneous planet gear position.

Kpri = Planet/ring loaded mesh stiffness as a
function of 6p.

¢p; = Phase angle for the ith planet/ring mesh.
bsp = Phase angle between the start of contact at
the sun/planet mesh and the start of contact
at the planet/ring mesh.
The plase angles, ¢g; and ¢gj, are based on the spacing of

the planets about the sun gear (Fig.16) and the individual

loaded gear mesh stiffness cycles. These are calculated by:

= Bl « pgIT 11
by, = B> * PSITPE, (3.11)
o . = BL « psiTRI, (3.12)
P1 2n i
where: 8 = 27(i-1)
i 3

PSITPE; = Load sun/planet gear mesh stiffness cycle,
radians.
PSITPI; = Loaded planet/ring gear mesh stiffness

cycle, radians.

The phase angle, qSR' relates the engagement state at the
reference planet between the sun/planet and planet/ring
meshes. The angle is calculated through an iterative process
which considers the theoretical, undeflected contacting gear
teeth positions and then the actual deflected positions.

The first step requires positioning the reference planet

such that an incoming tooth j would be initiating contact at
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Planet #1

Planet #2 Planet #3

o 2m(i-1)

Figure 16 - Position af Planets about
the Sun Gear
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theoretical, no-load conditions (Fig. 17). The deflected and
undeflected centerline angles of the initiation of gear tooth
contact at the sun/planet and planet/ring engagements have
been previously determined absolutely as detailed in Appendix
A. Since this orientation is done under no-load conditions,
the position of tooth k is also determined. Next, the
position of tooth j is adjusted to reflect the actual, load
conditions (Fig. 18). Since the deflections are assumed to
be localized, the position of tooth k remains fixed.
Finally, the planet is rotated until tooth k has reached the
position of initiating fully loaded contact (Fig. 19).
Concurrently, tooth j has advanced by an amount of dgp
radians, which now becomes the phase angle relating the
contact conditions between the sun/planet and planet/ring
meshes.

Knowing the phase felationships of all the individual
meshes allows the static loading and positioning to be
determined simply as a function of the angular position of
the sun gear. This is an important index as it will allow
the monitoring of the rotation of seven elements and the two-
dimensional translation of the sun gear through one
independent variable. The techniques used in the static
analysis are implemented in the investigation of the dynamic

behavior of the PGT.

3.4.2.2 Incorporating Planet Positioning Errors

Any attempted modeling of a physical system must

acknowledge the existence of errors and allow for them in
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Planet tooth j

Planet tooth k

¢éR = Angle at start of
undeflected contact

Y = ¢, 1f TGP is even
T . . -
Y = w-}ﬁf, if TGP is odd

Figure 17 - Tooth j Initiates No-Load Contact
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= Angle at start of
deflected contact

¥pR

Figure 18 - Tooth j Initiates Fully-Loaded Contact
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Tooth k— p~

wSP = Angle at start of
deflected contact

Figure 19 - Tooth k Initiates Fully-Loaded Contact
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their simulation or offer sufficient evidence that these
errors are negligible, their effect is small in comparison
with other disturbances, and therefore, may be omitted.
Significant system errors which may occur through the quality

of manufacturing and assembly of PGT's are:

a. Gear geometry errors
b. Radial positioning errors of planets.

c. Tangential positioning errors of planets

Since manufacturing techniques are inexact, gears do not
possess the ideal involute geometry. Instead, they may have,
to varying degrees, deviations from the true involute,
thickness error, spacing error, or even develop errors such
as pitting after prolonged use. These errors may interrupt
contact, introducing additional dynamic excitations in the
system. In this model, it is not necessary that all the
planets reflect the same gear error. By separately
establishing the mesh stiffness characteristics for each
planet, it is possible to examine the effect on gear errors
on just one planet, rather than identical errors on all n
planets.

Figure 20 shows a planet with tangential, e, and
radial,eg, positioning errors. These errors are measured
from the position the planet would occupy if it were properly
located. The magnitude of the combined effect of these

errors can be taken as the eccentricity, ¢, where:

(3.13)
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RPC = Pitch circle radius, planet
RPCs = Pitch circle radius, sun
RPCR - Pitch circle radius, ring

Figure 20 - Tangential and Radial Positioning Errors
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Previous investigators have generally ignored eccentricity
errors since tooth errors are found to have a much greater
effect on dynamic loading [11, 21]. This investigation will
consider the tangential component since this directly affects
the phasing of the mesh stiffnesses among the components. It
can be easily shown that the effects of the radial component
of the positioning error is indeed small in comparison with
tooth errors.

Investigations by Richardson, Kasuba, and Harris, have
shown that for high quality gears, errors present are

sinusoidal in nature. Thus:

€. = €¢maxSin(wt - o) (3.14)
€, = €gsin(fpt - ) (3.15)
where: gy = tooth error

gy = radial error
w = tooth engagement velocity
p = angular velocity of gear
e,y = phase angles of errors with respect to
correct tooth position
The frequency of tooth error is the same as the tooth
engagement frequency and can be found from the number of

teeth on the planet (TGP) and the angular velocity by:
©w = TGP * fp. (3.16)

The frequency of radial error is the same as speed of

rotation since there is one cycle of radial error for every
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rotation of the planet about its axis. The resulting accel-
erations caused by tooth and radial errors can be found by

differentiating Egs 3.13 and 3.14 twice with respect to time:

d
2% - . w?sin (wt - a) (3.17)
dt2 tmax
= -¢ TG6P262s5in (TGP * 65 - a)
tmax e o
dze
r - _ 2¢5in(d -
32 ekep sin( b v) (3.18)

If TGP = 28, and €¢max = 0.1 g, the accelerations causead by
the tooth errors are still almost two orders of magnitude
larger than those caused by radial error. Consequently,
radial errors may be ignored [(26].

While the effect of the radial error has been dismissed
by previous studies ([11], the tangential error may not be so
lightly dismissed. The reason for this is the interdepen-
dence of all the sun/planet/ring mesh stiffnesses. The
tangential errors could cause either a lead of a lag error in
the engagement characteristics of a particular planet. Also,
some commercial designs, such as the Stahl-Laval model CPG,
purposely use asymmetrically spaced planets. The tangential
error can be incorporated into the model by readjusting the
Planet spacing calculation in Egs. 3.11 and 3.12 (Fig. 21).

if,

= ¢t (3.19)
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Figure 21 - Modeling Tangential Positioning Error
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Then g; the spacing angle, becomes;

B, =%ﬁ+ 8. (3.20)

The sign on eei is positive if the planet leads its design

position, negative if it lags.

3.4.3 Synchronous Positioning of PGT's

An important parameter in the modeling of a system is
the determination of the time period in which physical events
re-occur. Since this investigation is concerned with the
steady-state operation of a PGT, it is necessary to find the

period, T, such that:
s(8g + th)g = S(8g), (3.21)

where S is a function of system response based on loading and
displacement, and 64 is the input predicated by the monitored
position of the sun gear. Thorough examination of the system
through one period would then be sufficient to develop a time
history for the system, and to make time based judgements on
design parameters such as fatigue failures.

A static evaluation through one period must be done to
establish baseline values for the mesh forces against which
the dynamic forces will be compared. The time period is
important dynamically for two reasons. One, it determines
how long the differential equations describing the system
must be evaluated to eliminate transient behavior and assure
steady state operation. Second, it determines the time

increment required for stability during the numerical
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integration of those equations.

A synchronous position is defined as one whaeres a
predetermined state of engagement between all 2n gear meshes
is repeated, and the period is defined as the elapsed time
bétween synchronous positions. In the case of the PGT shown
in Figure 7, the synchronous position would occur when planet
#1 returns to the 12 o'clock position, with the #1 sun tooth
engaged with the #15 planet tooth, and the Nos. 2 and 1
planet teeth engaged with the Nos. 1 and 70 ring teeth, For
the particular case shown, for one revolution of the output
shaft, the planet rotates 2.5 times about its own axis.
Therefore, the output shaft must rotate twice and the olanet
five times about its own axis to duplicate the initial
engagement state. The five planet rotations mean there are
five times 28, or 140 engagement cycles between synchronous
positions. The engagement cycle is defined as the mesh cycle
which is extended due to pre- and post-mature contact caused
by elastic deflections.

For the case where the planets have identical errors,
and therefore, identical stiffness functions, the period of
the synchronous position is shortened to just the period of
the meshing cycle. Since there are no singular planet
errors, the synchronous position is repeated with the
beginning of contact of two gear teeth between the sun and

reference planet.

3.4.4 Static Load Sharing Among Planet Gears

Previous experimental investigations have confirmed the
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fact that allowing the sun gear to float tends to equalize
the load distribution among the planét gears. it is the
purpose of this section to formélly develop a static model
based on a sun gear with variable fixity, mathematically show
that for static conditions this model correctly predicts the
proper load sharing, and further refine the model so it can
be used in an efficient, computer algorithm.

Other studies [19, 24] have assumed that the sun gear
was not centered and determined equivalent torsional models.
The sun motion was then calculated based on influence
coefficients from all the mesh stiffness. This technique
affords no way of allowing for adjustments in the sun
support. Also it cannot be used to determine planet load
sharing if the support is soft, i.e., the support is not
stiff enough to £fix the sun center, but it is stiff enough
that it is not negligible.

Figure 22 shows the static model of the equivalent
conventional gear trainused for improving this study. The
sun and ring mesh stiffnesses are represented by kgi and Xpg,
respectively. As described in the preceding section, these
values are functions of 85, the angular position of the sun
gear. The angular position will be some jEﬂ interval of one
synchronous cycle. The sun support stiffness is modeled by
two equal perpendicular springs, k', whose values can be
varied to simulate different degrees of £ixity on the sun's
center. Figure 23 shows the coordinate system usad in the

static development.
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Figure 22 - Static Model of Equivalent PGT
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iEE Planet

Figure 23 - Coordinate System
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The static analysis determines the motion of the compo-
nents relative to the sun gear. Therefore, 85 may be taken
as zero. Only the torques about the planets and ring gear
need to be considered to find their relative angular dis-
placements and the translation of the sun gear. Summing up
the torques about the ring when the sun is at the jEﬂ
position gives:

n

! RECgIKgj4(RPCp
i=1 ~

1] - RPCReRj)] = Tout (3.22)
The forces acting on the ith planet are affected not only by
the relative angular displacements, but also by the
translation of the sun. Summing up the torques about the ith

planet gives:

RPCpKpj § (RPCR 8p4 - Rpcpeij) + Rpcpxsij(RPcsesj - Rpcpeij)

+ RPCsziijjCOS i + RPCPKsinsjsinai = 0 (3.23)

Finally considering the static equilibrium of forces on the

sun gear in the x and y directions gives:

‘KSij + Ksij[(RPCPeij - RPCgBg) - xgcosoy - Ygsinaj]cosa; =0
(3.24)
‘styj + KSij[(RPCPeiJ - RPCS %) - Xscosdi . yssindi]sindi =0
(3.25)

These equations can be combined in matrix form:
(K1{e}y = {v} (3.26)

where: % = displacement vector
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= [err elr cvey enr X35y YS]T
V = force vector
[-Tout’ 0, LR 0, O' O]T

K = stiffness matrix (Fig. 24)

The relative displacement vector, ¢, can now be solved simply
by using a Gaussian elimination and back substitution
technique. The matrix symmetry also allows the stiffness
matrix to be quickly assembled.

Since the sun rotation is 0, and the mesh force is
calculated by the relative displacement along the line of
action, the iEE.planet load for the jEﬁ position of the sun

gear is:

Fij = Kgj§RECpO; (3.27)

With the planet being in static equilibrium, this force must
be equivalent to the force transmitted by the planet/ring
mesh., Finally, to check whether the proper relative motions
and transmitted forces have been calculated, the input and
output torques must be balanced through the following rela-

tionships:

n

Tin = 1 Fjy * RBCg (3.28)
i=1
n

Tout = L Fjj * RBCp (3.29)
i=1

. /4
The sun gear bearing support reactions are:




-

2
RPCRZKRi

~RPC .
R RRPCPKRl

~RPC_RPC_K
¢ P

-RP
R CRRPCPK

-RPC_K . cosa

(matrix is symmetric)

0 .
o « « + Rgpc? (K. +K_) . .
P Sn Rn
-RPC_K _cosQ L -RPC_K_ cosQ K' + 3K cosza .
P S2 2 P Sn n Si i
2
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Figure 24 - Stiffness Matrix
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n

Fos = ) F.icosa; (3.30)
n

Fyi = Z Fijsincxi (3.31)

3.5 Dynamic Analysis

The gear train to be used for the dynamic analysis is
shown in Figure 25. The gear train is comprised of a power
source, load, the equivalent planetary transmission, and the
input and output shafts and their bearings. .It is capable of
considering fluctuating output torque: damping in shafts,
gears and bearings; non-involute gear meshes; and loss of
contact between gear teeth. The dynamic model of this gear
train has a total of nine degrees of freedom. The sun gear
has three degrees of freedom, two transverse and one
rotational. The driver, planets, ring, and the load have one
degree of freedom (rotation). It was assumed that this was
the minimum number of allowable motions to accurately
simulate the gear train behavior without making the analysis
overly cumbersome. Assumptions for restrictions on the
motion of the planet gears seem valid since the bending
stiffnesses of the planet shafts are generally much greater
than the mesh stiffnesses. According to experimental results
[(20], the displacement of a ring gear as a rigid body is
small in the radial direction. So, it can be assumed that
the ring gear has no planar motion. The coordinate system

given in Figure 23 is also used in the dynamic analysis.
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briver, D

Input shaft
Sun gear, JS

Planet gear, JP

Ring gear, J
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Carrier, JC

Output shaft

Load, JL

Figure 25 - Gear Train Model Used

for Conventional Gear Train
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The equations of motion used to calculate the
instantaneous dynamic loads are based on the equivalent
companion gear train shown in Figure 15. By adding the
negative angular velocity of the carrier to the angular
velocities of the components shown in Figure 25, the effect
of the carrier rotation on the pitch-line velocities is
eliminated. Therefore, the equations of motion need only to
consider the effective engagement velocities.

The inertial influence of the carrier on the dynamic
loads can be preserved by assigning an equivalent moment of
inertia to the ring gear, which now becomes the transmission
output element. The equivalent ring gear inertia should be a
function of the planet and carrier masses.

The equations of motion developed for the companion gear
train use the instantaneous parameters determined during the
static analysis for various mesh arc positions. These
parameters are based on the instantaneous rather than the
theoretical line of action. Dynamically, their effect is to
change the transmission ratio to reflect the actual contact
condition as influenced by deformation in the contact zone
and tooth profile errors. For example, if contact occurs
above the intended line of action, the effective base circle
radius of the driven gear is reduced, decreasing the output

torque. This can be expressed as:

out = Tout * "pyge (3.33)
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where: RBC' = instantaneous base circle radius
RBC = theoretical base circle radius
Tou; = instantaneous output torgque

Tout = theoretical output torque
np/g = Per cent effective reduction due to
pinion/gear deformation
For the PGT modeled, the input torque will be assumed to
be constant, while the output torque will vary according to
the change in the effective base circle radii of the planet
and ring gears, respectively. The derivation of the instan-
taneous output torque can be started by examining the
equivalent conventional gear train with just one planet. If
all components were considered rigid, the output torque would
be:

- RBC REBC
= R P » (3.34)
out RBCp, RBCg in

If the instantaneous transmission parameters due to profile
errors and modifications, deflections, height of engagement,
and angular position of engagement are now considered, the

effective output torque becomes:

v RBCR * Np/R , RBCP * Np/g T

out RBCp RBCg in
= RBCR * nP/R * ns/P * Tin/RBCS’ (3.35)
where: "p/r = Per cent change of RBCp due to planet/ring
deformation

Ng/p = Percent change of RBCp due to sun/planet
deformation
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The term Tin/RBcs is the force transmitted along the
line of action of the sun/planet mesh. Therefore, for an
arrangement with n planets, the instantaneous output torque
is:

1
Tout = RBCR * (Mp g * Mg/p * GPTFE) 4 (3.36)

where: GPTFE sun/planet gear pair transmitted force based

on load sharing

j = instantaneous values at the jEﬁ position of
the sun gear

The differential equations of motion for the components

of the equivalent companion gear train in Figqure 25 are:
Driver

Ip¥p + Caplp + Cps iy - ¥g) + Kps (P - bg) = 15, (3.37)

Sun Gear

Iglg + Cas‘z’s + Cpglig - Up) + Kpg (Vs - ¥p)

n
+ 1 (RBCg * GPTFE;) = O (3.38)
i=1
n
MgXg + Cgxg + Kgxg + | [GPTFE; * cos(m - ¢ - (i=1)*2T)) _ g
i=1 n
(3.39)
n
Mg¥g + Cg¥g + Kgyg + L [GPTFE; * sin(m - ¢ - (i=1)*2T)y _ 4
i=1 o
(3.40)

Planet i

. Py '
Jp¥; + Cp¥; - RBCp(GPTFI; - GPTFE;)

|
@)

(3.41)
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Ring

(3.42a)
n
+ 1 (RBCy * GPTFI;) = O
i=1
Jp = (Jo + 3Jp) + (Mg + 3Mp)REC} (3.42b)
Load
L] [ 4 L] '
30 + cpp¥p + Crs(Vn - Vp) * Kpg (¥ - Vp) = ~Toue
(3.43)

The variables GPTFE; and GPTFI; are the gear pair trans-
mitted force for the itR external-external (sun/planet) and
internal-external (planet/ring) meshes, respectively. They
represent the dynamic response of PGT meshes to the excita-
tion provided by the discontinuities in the mesh stiffnesses
and changes in the transmission ratio. At each mesh, three
situations can occur based on the relative dynamic motions of

the involved gears. These are:

. 1
i) 1f RBCjo < RBCkwk

where: 3j driven gear

~
1]

driving gear

then normal operating situation exists, and the dynamic

transmitted force is:

. Ve .
GPTFE; = Cgpj [RBCg*VYg = RBCp*V; + xgcosQ; + ygsindy]
(3.44)

! 3
*+ Kgpj [RBCg*Ug - RBCp*V¥; + xgcos®; + ygsind;]
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* [}
GPTFI; = Cpgrj [RBCR*¥p - RBcp*wi]
(3.45)

+

]
Kpri [RBCg*¥p - RBCp*¥;]

i =T - ¢ - (i-1)*2™
n
ii) 1f RBC4¥4 > RBC;V;
but, (RBCj¥5 - RBC;¥;) < BACKLASH

the gears have separated, disrupting contact between the gear

teeth. The gears are now rotating independently of each

other.
So,
GPTFE; = O (3.46)
GPTFI; = O (3.47)
iii) If RBC5¢j > RBC;¥;
and, Racéwj - RBC;¥; > BACKLASH

The driven gear has impacted on the backside of the driving
gear tooth immediately preceding it, and the line of action

is momentarily reversed. Therefore,

. 1 N
GPTFE; = Cgp;* [RBCg* Vg - RBCp*V; + xgcosa; + ygsindy]
(3.48)

+ Kgpj*[RBCg*¥g - RBCp*¥; + xcosa; + ysind - BACKLASH]

GPTFI = CPRi*[RBcR*ﬁR - RBCé*ii]
(3.49)
* Kppi*[RBCp* ¥ - RBCp*Y; - BACKLASH]
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In cases i and iii, if the instantaneous Kgpj or Kppj = 0,
then the respective transmitted force is zero.

The equations of motion contain damping terms for the
components in addition to the stiffnesses. The damping
component in the bearings has been combined with the element
located nearest that particular bearing, i.e., damping from
the inboard drive bearing, Cggr is included in the sun gear
equation. Based on published experimental results [26], a
critical damping ratio of Lg = 0.005 has been used to
calculate the effective shaft damping. The shaft masses have
been taken to be the effective mass between the connected

masses. Thus,

(3.50)

(3.51)

The critical damping ratio for engaged gear teeth,Zs,
has been measured to range between 0.03 and 0.10 [6], [25].

The effective damping of the gear meshes is,

(3.52)

(3.53)

Since, the damping is shown as being a function of gear mesh,

this term will change throughout the various mesh arcs.
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The equations of motion (Eqns. 3.36 - 3.43) represent a
system of nine, simultaneous, linear second-order differen-
tial equations with periodically varying coefficients. The
initial displacements of the gears are determined using the
technique described in Section 3.4.4. These values are found
by solving for the vector ¢ . The stiffness matrix, K, would
be based on positioning the gears such that an arbitrary sun
gear pair is initiating contact with the No. 1 planet.

The initial positions of the driver and load are
referenced against the initial position of the sun gear,
which was taken to be zero. Since the driving torque and
driver displacement act in the same direction, the initial

displacement of the driver is:
¥ = Tin/Kps (3.54)

The load torque acts in the opposite direction of the load
displacement. Therefore, the initial displacement of the

load is:

Vo= Yo - T e/Kpg (3.55)

where wR is the initial absolute displacement of the ring
gear. The initial angular velocities are set to be the
nominal steady-state equivalent engagement velocities as
determined in section 3.4.1. The initial translational
velocities of the sun center are taken as zero.

The equations of motion are numerically integrated by

using a fourth order Runge-Kutta method. The integration
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time increment is based on the shortest natural period of a
system with comparable stiffness parameters. Since the gear
meshes have time varying stiffnesses, the system has no
discrete natural frequencies., Even if average stiffness
values are used, the process to solve for the natural
frequencies of a nine degree of freedom system becomes a
tedious exercise. BAppendix C gives a method for solving the
natural frequencies of a PGT based on constant, average mesh
stiffness, as well as a technique to set up a simplified
model to determine a natural period from which the
integration time step may be determined. The time step is
taken to be one-tenth of the shortest natural period. At
higher input speeds, the mesh period decreases to the point
where it is equal to the natural period. At this point, and
for all higher input speeds, the integration time step is
taken to be one per cent of the mesh stiffness period.

The numerical integration duration is left as a user
input variable. The integration should be carried out at
least for a length of time sufficient for the start-up
transient to decay. The proper length of integration is
dictated by how often the synchronous position occurs in the
model. As mentioned in Section 3.4.3, if all nplanets have
either no or identical profile errors, a synchronous
positions takes place as often as each new tooth engagement
at the reference sun/planet mesh. For these conditions, the
integration duration should be the time required for the sun

gear to make one complete revolution. If all n planets have
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distinctive errors, the synchronous position occurs much less
frequently and the length of integration should be adjusted
accordingly.

During the entire integration process, results from the
static analysis programs are used to determine the following
dynamic information:

a. How the individual mesh dynamic loads are shared
among the contacting tooth pairs during periods of
miltiple tooth contact.

b. Variation of the transmission ratio of a contacting
tooth pair as the pair moves through the contact
zone,

While individual mesh parameters are based on static
results, system behavior, such as load sharing among planets
and movement of the sun center, is calculated independently
and entirely from the differential equations of motion.
Consequently, comparing the dynamic results for a quasi-
static operating state with the static results should offer a
guide as to the validity of the dynamic model and the
integration process.

For the dynamic analysis, it is assumed that the loaded
mesh arcs are of the same length as those experienced in the
static mode. This is a reasonable assumption because the
rapidly changing loads should not cause a permanent change of
the meshing arc lengths. It is aiso assumed that the sun
center motion has little affect on the mesh stiffness
characteristics, This seems acceptable because the magnitude

of the sun center displacement is smaller than what Hidaka




94

{23] and Pintz (7] considered was necessary to appreciably
affect the meshing characteristics.

With these assumptions, the dynamic absolute angular
displacement of the sun gear is used to interpolate mesh
conditions in the static mode for all 2n gear meshes in the
PGT. 1In such a manner, the parameters listed above are used
in the interpolations between dynamic and equivalent static
positions to calculate the dynamic mesh forces.

The dymanic mesh force represents the amount of load
increment due to the periodic excitations within the system.
The dynamic load factor is used as a means of measuring this
increment based on the nominal static load. It is also used
as a penalty to de-rate the load capacity of a PGT based on
the transmitted power. There are two ways of calculating the
dynamic load factor. One is based on the total dynamic mesh
force at each engagement, the other is based on the load
sharing that occurs within that mesh.

In the first case, the dynamic load factor at the jEﬂ

position is defined as:

DF_.,. = i=1, «..,n
113 Q5 (3.56)

where: GPTFj dynamic gear pair transmitted mesh force

Qj nominal static transmitted mesh force

The force Qj is calculated in the static analysis and is
determined by the load sharing within the system. DF;jj can

be thought of as the dynamic load factor of the individual
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gear mesh and its shafts and bearings.

The dynamic load, QD, for the kEh contacting gear tooth

pair at the jEB dynamic mesh position is:

KP, _
Q 2 =_IQ. 1 = 1’ -..,n
DiJk  KPjj °jJ (3.57)

where: KPy = gear tooth pair stiffness

K:

ij total mesh stiffness

The second dynamic load factor can be defined as:

= Wik

DF_, . (3.58)
2ijk Qijk

The force Qijk is the component of the total force Qij which
is transmitted by the kth contacting gear tooth pair. 1t
also is calculated in the static analysis. DFZijk is the
dynamic load factor for an individual gedr tooth pair
traversing the mesh arc. It is particularly important when
the strength of the gear teeth is of primary concern. The
larger of the two calculated dynamic load factors will be

used as the design dynamic load factor, DF.

3.6 Computer Programs

The development of a set of computer programs which
implement the analytical work presented in Sections 3.4 and
3.5 was one of the stated goals of this investigation. These
programs constitute a comprehensive, analytical tool enabling

the user to quickly evaluate PGT transmission designs. The
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programs were written with the intent of running them on a
mini-computer system. Memory constraints of mini-computers
place a premium on efficient programming techniques, and, the
direct inter-active capabilities offer the user much more
flexibility in executing these programs than is available in
batch mode systems. The computer programs in their entirety,
along with sample outputs, are listed in Appendix D.
Highlights of the computer programs, their structure and
inter-dependence, explanation of data transfer, and results
available for output are discussed in this section.

The PGT transmission analysis package is written in
Fortran IV for use on a Hewlett Packard HP-1000 F Series
computer with the RTE-IVB operating system. The programs
have been arranged into three groups which may be classified
as the pre-processor, processor, and post-processor. Figure
26 shows the block diagram of the entire package. Each
program may be compiled, loaded, and executed independently
with its results being stored in data files for either
immediate examination, or use by subsequent programs. The
parallel development of external-external and external-
internal spur gear programs also enables the user to evaluate

a single stage parallel-shafted transmission.

3.6.1 Pre-processor

The pre-processor group consists of the programs which

do the following tasks:

a. Accepts, and organizes input data, and writes input
data to a data file
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b. Defines tooth profile

c. Determines stiffness characteristics of gear teeth

The programs EXPRO and INPRO define the tooth profiles
by digitizing the involute into 100 points defined by‘a gear
based coordinate system. Both standard and non-standard gear
forms can be digitized. These programs also check for
interference between mating teeth and calculate the
theoretical contact ratios. These results are written to
data files EXPROD and INPROD The.programs EXDEF and INDEF use
these results to calculate tooth deflections due to a unit
load as it is applied to all the digitized profile points.,
These results are written to data files EXDEFD and INDEFDT

for use in the processor programs.

3.6.2 Processor

The processor group contains the programs which perform
the actual static and dynamic analysis of the PGT. The
static analysis for an external-external and an external-
internal mesh are done as parallel tasks. These results are
then combined based on the configuration of the PGT. The
dynamic analysis is then performed taking into account all 2n
individual mesh stiffnesses.

The static analysis EXSTA and INSTA use an iterative
process to solve the indeterminate problem of static load
sharing among multiple tooth gear meshes. First, the gears
are treated as perfectly rigid bodies in order to use

geometric analysis techniques to establish points of contact
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for 50 positions in the mesh arcs. Then the results of EXDEF
and INDEF are used to redefine the tooth profiles to reflect
the loaded and deflected engagement conditions at 50
positions along the now extended mesh arc. 1In this manner,
it is possible to determine the stiffness of the individual
pairs, as well as the variable mesh stiffness as a function
of the driving gear's position.

Because of the length of these programs and memory
limitations of the HP-1000, it was necessary to use
segmentation techniques to enable these programs to be
executed (Fig. 27). Since both programs have identical
structures, common segment names have been used. Segment
MAIN acts as the executive controller for the programs. It
reads and stores the profile and deflection data previously
calculated. Segment PART1 determines the initial and final
positions of contact, establishing the extremities of the
mesh arc. Segment PART2 then determines the position of
contact and remaining static mesh information for 48 equally
spaced positions within the mesh arc. By eXecuting PART1 and
PART2 in a two-pass do-loop, it is possible to evaluate first
the unloaded, rigid body, and then the loaded and deflected
behavior of the gear mesh.

EPCYC assembles the mesh informpation from EXSTA and
INSTA for use in the dynamic analysis. The main task of
EPCYC is to properly orientate the mesh stiffness of all the
sun/planet and planet/ring engagements to properly show the

phase relationships among them. This will allow tracking and
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interpolation of all the mesh characteristics as a function
of the sun gear position.

The program INTEG performs the numerical integration of
the differential equations of motion given in Section 3.5.
The calculations are based on a dynamic cycle which starts
with the initiation of contact as a tooth pair enters the
contact zone and ends with the initiation of contact with the
following tooth pair. INTEG examines the mesh stiffness
function for the reference sun/planet mesh to determine the
arc length of this cycle. This arc length is then compared
against the absolute dynamic angular position of the sun gear
to establish the number of sun gear mesh engagement cycles
which have been integrated, and also to interpolate the
instantaneous position within the mesh arc of the currently
engaged sun/planet gear teeth. By tracking the sun gear
position this way, it is possible to interpolate mesh
stiffness values for all the remaining gear meshes and
calculate their instantaneous dynamic forces.

The total number of sun gear mesh cycles to be
integrated is user defined andshould bebased on the
synchronous positioning of the PGT. As defined in Section
3.4.3, a synchronous position occurs with a duplication of a
reference engagement state. After completion of integration
of the pre-determined n number of sun gear mesh cycles, the
dynamic force data is stored in a buffer, which is then
written to a data file. By varying the data sampling rate,

the user can adjust the length of integrated time over which
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data is stored. In the present version of the program, a
buffer length of 6000 elements is used to store the results.
This allows the storage of 6000/(m+l) independent, i.e.,
time, and 6000/ (m+l) dependent values for m variables.

The integration of the differential equationé is done
using a fourth-order Runge-Kutta technique. This is per-
formed by the use of two subroutines in INTEG, RKUTTA and
MORERK. The subroutine RKUTTA deeps track of the step size
and number of iterations across the integration interval,
while MORERK evaluates the derivative being integrated and
sums these values across the integration interval. The
results of the integration for the displacement and velocity
of each mass are the amounts of deviation from the steady-
state values over that time interval. These are added to the
steady-state values to obtain the absolute displacement and
velocity of each element. The dynamic forces are then
calculated based on the relative motion of the elements.
These values are then stored for examination by the post-

processor program.

3.6.3 Post-processor

The function of the post-processor is to provide access
to all the data that has been generated by the above pro-
grams. The user has the option of presenting this data in
either tabular or graphical form. The program which evolved
during the course of this investigation has proved particu-
larly useful in evaluating the calculated results and 1is

described in this section.
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The program FORCE calculates the static load sharing
among the planets and then the tooth load sharing among the
gear teeth within the same mesh for a given position of the
sun gear. Also, included in the analysis is the position the
sun center assumes if it is allowed to move to compensate for
unequal planet loading. By evaluating these forces and
movements at a specified number of discrete positions within
one sun gear's engagement cycle, a baseline is determined
against which the dynamic forces and movement can be
compared. This results in the calculation of the dynamic
load factors as a function of sun gear position. The user
can direct this output either to the terminal screen for a
quick indication of trends, periodicity, and maximum and
minimum forces; or to the printer for more accurate examina-
tion of the results. In addition, the locus of the sun
center static and dynamic movement may be plotted.

The program DRAW c¢an be used to graphically examine the
integration results., The user specifies the data file to be
read and offers the option of graphing the sun/planet mesh
stiffnesses and dynamic forces, the planet/ring mesh
stiffnesses and dynamic forces, and the dynamic sun gear
center displacement. Output can be direc;ed to either the

screen or four peh plotter.
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CHAPTER IV

RESULTS, DISCUSSION AND SUMMARY

4.1 Results and Discussion

4.1.1 Introduction

The planetary gear train (PGT) analysis methodology
developed for this thesis was used to perform a series of
comparative parametric studies in order to validate the
methodology and assess the PGT drive performance. Design
parameters of the gears and system properties used in this
study are given in Table 2. The analyses of this particular
PGT considered tooth profiles, sun support stiffness,
critical damping ratios, shaft stiffness, and transmitted
power. Static and dynamic computer analyses were conducted

under identical conditions.

4.1.2 Static Analysis

The equivalent gear train of the model shown in Figure
25 was used in the static analysis to investigate the planet
load sharing and displacement of the sun gear. Figure 28
shows the phasing and magnitude of the stiffness functions
used for the static analysis. Two conditions were examined;
a floating or free, sun gear, and a fixed sun gear. The sun
gear fixity was determined by its support stiffness. The
floating sun gear was allowed to translate in the x and y
directions by setting the two perpendicular sun support

stiffnesses to 1.0 lb/in. Fixed sun gear conditions were




Design Parameters

Diametral Pitch
Pressure Angle
Number of Teeth
Sun
Planet
Ring
Face Width
Addendum
Dedendum
Theoretical Contact Ratio
Sun/Planet

Planet/Ring

System Properties

IDriver
Jsun
Msun
Jplanet
JRing

JLoad
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22.5°

25
24

73

l in

0.20

0.27

5.000
0.040
0.015
0.033
2.000

5.000

Table 2 - Design and System Parameters
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achieved by assigning a stiffhess two orders of magnitude
larger than the gear mesh stiffness to the sun gear supports.
The results of the static analysis were used as baseline data
against which the dynamic results were compared. The tor-
sional stiffness of the input shaft was the same in both

cases.

4.1.2.1 Planet Load Sharing

Figure 29 shows the loading for one sun/planet/ring
through one sun gear engagement cycle for the fixed sun gear
condition. Since the planets are in static equilibrium, the
sun/planet and planet/ring mesh loads per planet are equal,
The loads illustrate the phasing of the mesh stiffnesses
about the sun gear. These static results were obtained by
evaluating Equations 3.25 and 3.26 for 100 intervals during
the engagement cycle. These results agree with Hidaka's
approach ([21] who treated the sun/planet and planet/ring
stiffnesses as springs in series and then proportioned the
sun loads according to the relative stiffness of the equiva-
lent spring. However, Hidaka took the three sun/planet
stiffnesses and three planet/ring stiffnesses to be equal.
Therefore his load distribution does not reflect the VVMS at
each mesh which causes load variations during the engagement
cycle.

Figqure 30 shows thevload sharing among the engaged teeth
for one mesh cycle at one sun/planet/ring interface. As the
engagement state changes from two to one tooth pair contact,

the total load generally decreases. Changes in the
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sun/planet contact state affect the planet load more notice-
ably than changes in the planet/ring contact stite.

Figures 3la,b,c show that as the sun support stiffness
is reduced, the planet load becomes a constant value inde-
pendent of the sun's position, implying equal load sharing.
Table 3 gives the ranges of both mesh loads and tooth loads
as the sun gear support stiffness is reduced. Thus, for
static conditions, equal load sharing can be achieved by

allowing the sun gear to float.

4.1.2.2 Displacement of the Floating Sun Gear Center

As explained in Section 3.4.2.1, the contact conditions
at each sun/planet mesh will differ due to the following
reasons:

a. The actual number of teeth in contact differ at

each mesh,

b. The location of contact on the engaged teeth differ

at each mesh.
In accordance to the VVMS model, gear mesh stiffness values
will also vary at each sun/planet andg planet/ring engagement,
Consequently, at static load conditions, the sun gear will
move to the position such that:

a. The mesh loads collectively produce a torque about

the sun's center equal to the input torque.

b. The sum of the mesh loads resolved in the x and Yy

directions is zero.

Since the gear mesh stiffness is a periodic function

with a period of one pitch, the center of the sun gear is
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Ksun Max Mesh Min Mesh
(1bf/in) Load (lbf) Load (lbf)
1 x 108 792 528
1 x 106 753 398
1 x 103 703 610
1 x 104 651 647

Table 3 - Effects of Sun Gear Support

Stiffness on Mesh Loads




113

forced to move with a period of one pitch according to the
variation of all the mesh stiffnesses. Since the mesh
stiffnesses are implicitly a function of sun gear rotation,
the movement of the sun center can be tracked through the
sun's angular displacement.

Figure 32 shows the x and y displacement of the sun's
center versus the sun gear rotation through one mesh cycle.
These curves depict the adjustment of the sun gear position
to the changes in the six stiffness functions in Figure 28 in
order to preserve the static equilibrium conditions. The
displacement curves display two types of motion, dwell and
transitional. The dwell motion denotes a staticnary position
of the sun gear center as the gear rotates, meaning the
number of teeth in contact at all six meshes remain constant.
The transitional motion is relatively large lateral displace-
ment which occurs during a short interval of rotation of the
sun gear. This is caused by a change in the number of teeth
in contact at one of the six meshes. For the case of the
three planet PGT studied, one mesh cycle had 12 transitions
in the number of teeth in contact. Figure 33 is a polar plot
of the movement of the sun center. Point 1 is representative
of a dwell region as shown in Figure 32, Segment AB is repre-
sentative of the transitional zone in Figure 32 . Since three
identical planets are used, the polar plot also exhibits
three-lobed symmetry which is caused by the plasing of the

mesh stiffnesses among the planets.

4.1.3 Dynamic Analysis
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The gear train in Figure 25 was used for dynamic para-
metric studies over an input speed range of 80 to 16,000 RPM.
Based on the equivalent gear train concept, the equivalent
mesh frequency varied from 155 to 30,000 Hz. The solution of
the dynamic equations of motion (Equations 3.36 to 3.43)
leads to dynamic loads which depend on the shaft stiffness,
operational contact ratio, sun/planet and planet/ring gear
mesh characteristics, transmitted loads, damping in the
system, and operating speeds. Numerical integration of the
differential equations was done on an HP-1000 mini-computer.
Stability for the integration process was obtained by using a
time step that was five per cent of the system's shortest
natural period. The integration was done for a time length
equal to 10 times the longest natural period to assure that
the start-up transience had decayed to the point where the
system was in steady-state operating mode. Appendix C
contains a description of the algorithm used to determine

these natural periods as well.

4.1.3.1 Low Speed Operation

For low speed operation below the first resonance, it
was found that the floating sun gear does position itself to
provide for equal loading among the planets (Fig 34). For a
static mesh load of 650 1lb., (4500 1lb-in at the sun gear) the
maximum load increment factor was 1.04. The floating sun
gear motion was able to compensate for the unequal mesh
stiffnesses at each engagement and provide for relatively

constant planet loading. This corroborated Hidaka's experi-
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mental results of equalization of load distribution at very
low driving speeds. At low speeds, the movement of the sun
gear calculated by solving the dynamic equations of motion
duplicated the static analysis results (Fig 35). The polar
representation of the dynamic x and y translation of the sun
gear center better illustrates the dwell region and transi-
tional motion as discussed in Section 4.1.2.2 (Figure 36).
Figure 37 shows the mesh loads for a typical planet at low
speeds with a fixed sun gear. The extra vibratory phenomena
exhibited by the planet/ring mesh is the result of transmis-
sion error being compounded through the sun/planet and

planet/ring engagements.

4.1.3.2 High Speed Operation

Conditions of operation for the parametric tests of the
dymanic model are given in Table 4. Results of the tests for
both floating and fixed sun gear conditions over a range of
input speeds are given in Figures 38 through 47. The results
support Cunliffe's skepticism [14] about the ability of a
floating sun gear to compensate for load imbalances and
reduce dynamic loading. Equal load sharing among the planets
was not preserved at speeds above pseudo-static conditions,
and in general, the floating sun gear arrangement lead to
higher dynamic loading than a fixed sun gear arrangement
under identical operating conditions.

Figures 38 and 39 show the sun gear center locus over a
range of operating speeds. At a very low input speed, the

sun center follows the regular geometrical motion as
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Figure Ksun Gear $haft Input
- Error Stiffness Torque
(1bf/in) (in) (lbf-in/rad) (1bf/in)
40 1 0 885000 4500
41 1 x 108 0 885000 4500
42 1 2.5 x 10~4 885000 4500
43 1 x 108 2.5 x 1074 885000 4500
44 1 0 185000 4500
45 1 x 108 0 185000 4500
46 1 0 885000 5400
47 1 x 108 0 885000 5400

Table 4 - Operating Conditions
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prescribed by the static equilibrium conditions (Fig. 38a).
At higher speeds up to the first system resonance, the motion
of the sun gear becomes a three-lobed orbit that gradually
approaches a circular shape with increasing input speeds
. (Figs. 38b, 38c, 38d). At speeds above the first resonance,
the translational motion of the sun gear decreases, although
it still maintains the symmetrical orbit (Figs. 39a, 39b,
39¢c, 39d). Therefore the influence of the floating sun gear
decreases at increasing mesh stiffness frequencies.

Figures 40 and 41 compare the dynamic factors for the
floating and fixed sun gear conditions at the sun/planet and
planet/ring meshes. The higher loads shown in Figure 39 in
the lower speeds can be directly attributed to the increasing
sun gear radial displacement. In non-resonant regions
between 6,000 and 11,000 RPM, the floating sun gear arrange-
ment shows generally slightly higher dynamic loads, which are
due to the sun gear displacement. Both configuations showed
higher dynamic loading at the Planet/ring mesh for a given
input speed due to the compounded transmission error
occurring through the sun/planet/ring meshes. Increased
system damping decreased the dynamic loads in Figure 39.

Both figures show similar resonance regions at high
input speeds, This is the tooth mesh resonance which
produces the highest dynamics in the system., Although the
fixed sun gear shows a lower dynamic factor, it was found
that a dynamic factor over 2.5 was indicative of tooth

separation within the mesh, and therefore, was an unaccepta-
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ble operating condition. Both fixed and floating sun gears
had experienced dynamic factors over 2.5, indicating neither
configuration sucessfully minimized dynamic loading at high
frequency resonances.

These findings are similar to Cunliffe's [14] who found
high dynamic loads at low frequenacies for a floating sun
gear and even higher ones at the high frequency resonances.
Hidaka's [23] experimental results also show two resonance
regions with the highest dynamic loads occuring at the high
frequency resonance.

Lanchester, Love, and Allen (8], [10], [29], all pointed
out the need for high precision gearing in order for proper
operation to the PGT. Figures 42 and 43 show the effect of a
sine error on the sun's gear teeth on the dynamic loads. The
magnitude of the sine error was purposely set at a relatively
large error (0.00025 in.) to illustrate a worse case
condition. Independent of the sun gear's fixity, the tooth
mesh resonance was particulary sensitive to the gear tooth
quality.

Figures 44 and 45 show the effect of having softer input
and output shafts. The torsional shaft stiffnesses affect
the two PGT configurations in opposite ways. For the
floating sun gear, the peak loads were relatively unchanged
at the low speed resonance, but were reduced at the high
speed range. For the fixed sun gear, peak dynamic loads were

reduced in the low speed range, but only slightly decreased

at the high speeds.
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Increased static mesh loads caused a decrease in dynamic
loads in the non-resonance region (Fig 46 and 47). In-
creasing the input torque load from 4500 lb.-in. to 5400 lb-
in, increased the operational contact ratio of the sun/planet
mesh from 1.578 to 1.623; the planet/ring operational contact
changed from 1.891 to 2.021. The planet/ring dynamic loading
decreased generally for both systems reflecting the more even
mesh stiffness and smoother load transition at the

planet/ring mesh.

4.2 Summary and Conclusions

A new methodology has been developed for the static and
dynamic load analysis of planetary gear trains (PGT). Prior
to this investigation, there were no established methods
which used a non-linear tooth mesh stiffness in determining
component loading, nor considered the effect of the phase
relationships of the variable mesh stiffnesses on the dynamic
behavior of the gears. With this newly developed methodolo-
gy, the design and analysis of planetary gear trains is based
on an engineering rather than an empirical approach.

The analysis procedure is applicable to either involute
or modified involute spur gearing. It uses non-conjugate
gear action caused by deflection of gear teeth and by
inherent gear manufacturing and assembly errors. Both fixed
and floating sun gear PGT's can be evaluated. The methodolo-
gy is capable of considering fluctuating output torque,

elastic behavior in the entire system as well as in the
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gears, and allows for backlash and possible loss of contact
between engaged gear teeth. The above properties are improve-
ments over models used by previous investigators.

The entire methodology has been incorporated into a
series of computer programs which comprise a computer-aided-
design (CAD) package for the analysis and evaluation of
PGT's. Graphical output permits the engineer to quickly and
selectively examine all or just portions of the design data
base which includes static and dynamic tooth mesh loading,
variations in transmission ratio, and sun gear displacements.
The results of the parametric computer studies yielded the
following conclusions for a typical single stage three-planet
planetary gear drive:

a. Under static conditions, a floating sun gear will
move to a position such that the mesh loads among
the planets are equalized. The locus of the sun
center's motion isa determined path with a
periodicity equal to one mesh cycle.

b. Under static conditions, a fixed sun gear dis-
tributes the load among the planets according to
the relative stiffnesses of the effective
sun/planet/ring meshes.

c. For pseudo-static conditions, i.e. very low speeds,
the floating sun gear can maintain equal load
distribution among the planets.

d. At all higher operating speeds, variations and
discontinuities in the VVMS, introduce dynamic
effects which lead to increased tooth loads. The
floating sun gear can no longer maintain equal load
distribution among the planets.

e. Allowing the sun gear to float introduces a
resonance region where the sun/planet and
planet/ring tooth loads are affected by the

floating sun gear movement to the point of markedly
increased dynamic loads.
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£. In non-resonance regions, the floating sun gear
configuration generally shows slightly higher
dynamic loading than the fixed sun gear configura-
tion, indicating that the floating sun gear motion
adds to the dynamic loading in the PGT.

g. At high operating speeds, a resonance region occurs
that is indicative of tooth-mesh resonance and
results in the highest dynamic loads. This
resonance is particularly sensitive to gear tooth
errors, and is not affected by the fixity of the
sun gear.

h. Altering system components such as the input and
output shafts' torsional stiffness, changes the
operating characteristics of the PGT. Also, the
dynamic loading can be decreased by increasing the
system damping and/or the operational contact
ratio.

Through the consideration of deformable components,
variable operational contact ratio, and time dependent system
parameters, the methodology developed during the course of
this investigqation represents a definite advancemert of
planetary gear train design technique and assesment. It
reflects the latest state-of-the-art understanding of
involute and non-involute spur gear performance, and has been
adapted for use in a mini-computer based CAD environment. 1In
addition, it establishes the groundwork for further studies

on the effect of the dynamic loads on the PGT support

structure.
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APPENDIX A

DEVELOPMENT OF THE GEAR VARIABLE-VARIABLE MESH STIFFNESS

This appendix describes the methodology used for the
development of the Variable-Variable Mesﬁ Stiffness (VVMS)
for the sun/planet and planet/ring gear engagements. The
VVMS realistically reflects the gear mesh conditions both as
the number of teeth in contact vary and also as the position
of contact on the engaged gear teeth vary. An iterative
procedure was used to calculate the VVMS as a function of
transmitted load, gear tooth profile errors, gear tooth
deflections and gear hub torsional deformation, and position
of contacting points.

Before the VVMS can be determined, the contacting
profiles are digitized into 100 coordinates. Straight line
segments connecting the digitized points, which include
profile errors and modifications, describe the gear tooth.
Deviations from the theoretical involute profile may occur
because of manufacturing quality or by design. Also the gear
profile may change through extended use, often drastically
through surface faults such as pitting or spalling. In terms
of an involute profile chart, the involute variation can be

expressed as:

M = PV(RA), (al)
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where M = Deviation from the line of action.
RA = Roll angle measured from the base circle.
PV = Profile variation as a function of RA.

A true involute profile is defined by:
M = PV(RA) = 0,

The digitized profile points are then used in the iteration
process to establish contact points on the gear teeth and
also to incorporate appropriate deformations to simulate non-
involute action.

A three step procedure is used to determine the VVMS
directly. First angular positions are determined for the
point of initial contact and point of final disengagement
along the theoretical line of action. The contact arc is
divided into 49 arc segments, and the two digitized tooth
profiles are placed at their respective initial contact
positions. This gear pair (GP3), along with the preceding
two pairs (GP1,GP2) and the following two pairs (GP4,GP5), is
tracked as it rotates through the contact zone. By tracking
five gear pairs, it is possible to observe both the mesh
behavior composed of all the teeth in contact at a particular
time and each individual contacting gear tooth pair, for gear
pairs with a contact ratio up to 3.0.

Next, gear tooth deflections are calculated based on
candidate contact points established by tracking the movement
of GP3 through the mesh arc. Candidate contact points for an

individual gear pair are determined by a search procedure
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that examines the horizontal distance between 20 to 40 points
within an estimated contact zone at every one of the 50
angular positions. Contact occurs if two points are found to
be within a prescribed distance of each other. 1If no profile
points meet this criteria, then a no-contact condition is
declared for that gear pair at the ith angular position.

The contact gear tooth pair deflection (k); can be

expressed as:

S(k); = S3(k)g + Sy(k); + Sy(k)yg (A2)

Deflection of the kEh tooth of gear 1 at

where Sy (k)4
mesh arc position i.

52(k)i = Deflection of the ktD tooth of gear 2 at
mesh arc position i.
5H(k)i = Localized Hertz deformation at the point of

contact.

The gear tooth deflection él(k)i and 65 (k); are defined by;

Gj(k)i = 5Mj(k)i + GNj(k)i + st(k)i + (SBj(k)i + SRj(k)i

s=1,2 (A3)
- 14

where 8y = Gear tooth deflection due to bending.
8y = Gear tooth deflection due to normal force.
dg = Gear tooth deflection due to shear force.

GB = Gear tooth deflection due to deformation of
surrounding hub area.

GR = Gear tooth deflection due to gross torsion of
the rim or hub.
These deflections are considered as equivalent positive

profile errors which cause premature engagement and delayed
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engagement.,

In the third step, the Gl(k)i, 52(k)i and apportioned
dy(k); deflections areadded to the respective digitized
profiles in order to simulate the above gear behavior. The
gear pair GP3 is again tracked through the contact arc but
now under "loaded and deflected" conditions. The search
procedure is repeated during this step. New candidate
contact points and positions for five gear pairs are now
determined under full load. As a result of the deflections,
the contact arc, and therefore the contact ratio of the gear
is increased.

For any mesh arc position i, the calculated kth gear
tooth pair stiffness, KP(k);j, mesh stiffness KGj, and load
sharing incorporates manufactured profile errors, profile
modifications, and deflections by means of the iterated
numerical solutions.

The individual gear tooth pair stiffness can be

expressed as :

KP(k); = Q(k);/ 8(k) ;. (A4)

If the effective errors prevent contact, Kp(k); = O.
The sum of gear tooth pair stiffnesses for all pairs in
contact at position i represents the variable-variable mesh

stiffness KG,
KGi = Z KP(k)i. (AS5)

The load carried by each of the pairs moving through the mesh
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arc in the static mode can be determined as:

KP (k) §

—_— A
KGjy t (A6)

Q(k), =
i

where Q. is the total normal static load carried by the gear

at any mesh position i in the static mode,
Qg = 1 Q(k)j. (A7)

Determination of the deflected contact points allow the
calculation of instantaneous pressure angles and transmission
ratios due to non-conjugate gear action. From Figure A-1,
the instantaneous parameters for the contact point A' defined

by the coordinates UCP(k) and VCP(k) are:

PPD'

Distance to instantaneous pitch point (A8)

- RBC1
coSs Al + Bl

= : - UCP (k)
aAl arcsin RCPL (A9)

= . . UCP (k)
aAz arcsin P2 (Al10)

aBl = arctan RBCT—

o' = Instantaneous pressure angle (A12)

=0a1 t9py

n = Theoretical (involute) transmission ratio
(Al3)
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Figure A-1 - Instantaneous Contact Point
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n' Instantaneous transmission ratio (Al4)

- (C - PPD')
PPD'

A similar procedure is used for determining the
analogous instantaneous parameters in the external/internal
mesh engagements. Where errors interrupt contact, the values
of the instantaneous parameters are set equal to the
theoretical values. Values for the position dependent mesh
stiffness, KGP;, tooth pair stiffness KG(k);, and
instantaneous transmission ratio, n'iy, are written to data

files and used in the subsequent dynamic calculations.
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APPENDIX B

EVALUATION OF OTHER TYPES OF EPICYCLIC GEARING

As mentioned in Section 3.4.1, the concept of equivalent
gear drives may be extended to the other two types of
epicyclic arrangements, star and solar, so that the
techniques developed in this investigation may be used to
evaluate those drives. This appendix is included to explain
how this may be accomplished.

The star drive (Fig. B-1) has a fixed carrier, so no
relative motion is introduced in the gear train. The pitch
line velocities are equal to the velocities of engagement,
Therefore, the absolute angular velocity of the input gear is
equal to the actual given input angular velocity. Note that
the star drive is a conventional gear train arrangement,
meaning no equivalent input velocities must be calculated.

The solar drive (Fig. B-2) has a fixed sun gear, input
at the ring gear, and output at the carrier. From Table B-1,

the speed ratio of this arrangement is:

To eliminate the relative angular velocities caused by

carrier rotation, the carrier is "stopped" by adding a
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Fixed Input Output Over-all
Arrangement
Member Member Member Ratio
N
Planetary Ring Sun Carrier T + 1
S
NR
Star Carrier Sun Ring T
S
Ng
Solar Sun Ring Carrier F t 1
R
NS = Number of sun teeth NR = Number of ring teeth

Table B-1 - Epicyclic Gear Data
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velocity of - ¢ to all the components. The absolute angular

velocity of the input ring gear is now:

)
W, = W

R “c (B1)

w = - _R @ (B2)

o5

The solar drive arrangement can now be treated as a
conventional gear drive with the equivalent sun gear and ring

gear velocity equal to  and -WpN./Np, respectively.
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APPENDIX C

CALCULATION OF TOTAL INTEGRATION TIME AND STEP SIZE

To minimize computer time and yet guarantee stable and
accurate numerical solﬁtions, it was decided to base the
total integration time and step size on the system's longest
and shortest natural periods, respectively. To isolate just
the natural frequencies of the gear train, the effect of
driver and load ineritas were not considered, although the
torsional stiffness values of the input and output shaft were
used. The time dependent mesh stiffnesses were assumed to be
constant; their value being the average between one and two
pairs of teeth in contact. A generalized Jacobi Method was

then used to solve the eigenvalue problem:
K$ = AMS
where K = Stiffness matrix based on differential
equations of motion (see Section 3.5)
¢ = matrix of eigenvectors

A = diagonal matrix of eigenvalues

M = inertia matrix

sun -0-
sun
sun

-0- Jp3

ring.
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<830613.1126>

FTN4,L

c

PROGRAM PGT

Cr=xi=kTHIS PROGRAM CALCULATES THE NATURAL FREQUENCIES UP 70 A 18 0.O.F.
CxwxxxMODEL. DEGRESS OF FREEDOM CAN BE ELIMINATED BY SELECTING VERY HIGH
CuxxxxSTIFFNESS.

c

IMPLICIT DOUBLE PRECISION (A-H,K,0-Y)

COMMON /AAA/ A(18,18),B(18,18),X(18,18),E16V(18),D(18)
DIMENSION KSP(3),KPR(3),CB(3),5B(3),CA(3),SACI)
DIMENSION CG(3),S6(3),2ETA(2,18) ,ETAC2,18)

DIMENSION ZX(3,16),2Y(3,16),16¢192),ITITLE(C20)

C SIZE, MASS, AND STIFFMESS DATA FOR PLANETARY GEAR SYSTEM

30
31

32

33

40

SO

60

uaxixt GEAR RADII (PITCH CIRCLED msmxix

DATA RPCS/2.50000000/, RPCP/2.4000000D0/

okt JHERTIA ELEMENTS xexesex

DATA SM/.01500000/, SJ/.04D0/, PM/.014D0/, PJ/.033D0/
DATA Ct1/9.00D05/, €J/9.0005/, RH/1.D-1/, RJ/2.00D0/
mxxst SUPPORT STIFFNESS ELEMENTS »esexxes

DATA KS/1.D0/, KTS/8.85DS/, KP/9.DS5/, KTP/0.D0/

DATA KC/8.005/, KTC/9.000005/, KR/9.DS5/, KTR/8.85D5/

st GEAR MESH STIFFMESS mmcmmn
DATA KSP/3%1915435.D0/, KPR/3x%2586154.D0/
DATA N/18/, PH1/22.5D0/, P1/3.141592653589790D0/

PHI = PI & PH1/180.

WRITE(1,31) RPCS,RPCP
FORMAT(C///’RPCS,RPCP’,T25,2F13.7)
WRITE(1,32)

FORMAT (“ CHANGE? [Y/M} _%)
READ(1,21) 1IaQ

IFC(IQ.EQ.1HN) GO TO 40

WRITE(1,33)

FORMATC(’ENTER NEW VALUES)
READ(1,%) RPCS,RPCP

WRITE(1,3)

WRITE(1,4) SH,SJ,PH,PJ,CM,CJ,RM,RJ
WRITE(1,32)

READ(1,21) 14

IF (IQ.NE.1HY) GO TO SO
WRITE(1,33)

READ(1i,®) SM,SJ,PH,PJ,CH,CJ,RHM,RJ
WRITE(1,6)

WRITEC1,4) KS,KTS,KP,KTP,KC,KTC,KR,KTR
WRITE(1,32)

READ(1,21) 1Ia

IF (IQ.NE.1HY) GO TO 60
WRITEC1,33)

READ(1,%) KS,KTS,KP,KTP,KC,KTC,KR,KTR
WRITEC1,7) KSP,KPR

WRITE(1,32)

READ(1,21) 1IQ

IF (IQ.NE.1HY) GO TO 70
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WRITE(1,33)
READ(1,%) KSP,KPR

RC = RPCS + RPCP

RPCR = RPCS + 2=%RPCP
RS = RPCS = DCOS(PHI)
RP = RPCP % DCOS(PHI)
RR = RPCR = DCOS(PHI)
I0UT = 1

STIFFNESS MATRIX

D0 75 I=1,N

DO 75 J=1,N
ACT,JI=0.0
CONTINUE
AC1,1) = KTS
AC2,2) = KS

AC3,3) = KS

AC13,13) = KTC +3.%KPxRCx%2
ACL4,14) = 3 .=KP + KC
AC15,15) = J3.%KP + KC
AC(16,16) = KTR

AC17,17) = KR

A(18,18) = KR

DO 100 J=1,3

BETA = 2./3.%P1x(J-1)
ALPHA = BETA + PI/2. - PHI
GAMMA = BETA + PI/2. + PHI
CBCJ) = DCOSCBETA)

SBCJ) = DSINCBETA)

CACJ) = DCOSCALPHA)

SACJ) = DSINCALPHA)

CGCJ) = DCOSCGAMMA)

SGCJ) = DSINCGAMMA)D

I = 4 + 3mJ

ACL,1) = AC1,1) + KSPCJI=RSHM™2
AC1,2) = AC1,2) + KSPCJIXRS®CA(J)
ACL,3) = AC1,3) + KSPC(JI®RS%SA(J)
AcC2,2) = AC2,2) + KSP(JIXCA(J) %2
AC2,3 = AC2,3) + KSPC(JIXCACJIXSA(J)

AC3,3) = A(3,3) + KSP(JI®SACJ)mm2
AcCL, 1 = -KSP(J)*RSxRP

AC1,1+1) = -KSP(JI=RS%CACJ)
ACL1,1+2) = -KSP(JI®RSHSA(J)

AC2,1) = -KSP(JI®RPXCACJ)
AC2,1+1) = -KSP(JIXCA(J)I=n2
AC2,1+2) = -KSP(JIXCACJI®SACL)

AC3, 1) = -KSP(JI)XRP%SA(J)
AC3,1+1) = -KSP(JIRCACJIIXSACJ)
AC(3,1+2) = -KSPCJIMSA(J) w2

ACL, 1) = KTP + (KSP(J) + KPR(J)I=RPmx2

ACIL,TI+1) (KSP(J)®CA(J) - KPR(JI®CG(J))I=RF
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100

200

401

601
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ACT,1+2) = (KSP(JI®SA(J) - KPRCJI®SG(J))%RP
ACI+1,1+1)= KP + KSP(JIXRCA(JI%m2 + KPR(J)I%CG(JI=x%2
ACI+1,1+2)= KSP(JIRCA(JI=SA(J) + KPR(JI®XCGCJIXSG(J)
A(1+2,1+2)= KP + KSP(J)%SA(JI*®%2 + KPR(JI®SG(J)%n2
A(13,14) = A(13,14) - XPxRCxSB(J)

AC13,15) = A(13,15) + KP%RCx%CB(J)

ACl+1,13) = KP=RCxSB(J)

ACl+1,14) = -KP

ACl+2,13) = -KPxRCxCB(J)

A(l1+2,15) = -KP

A(16,16) = A(16,16) + KPR(J)*RRx»%2

AC16,17) = A(16,17) - KPR(J)I®RR%®CG(J)

AC16,18) = A(16,18) - KPRCJI®RR%®SG(J)

AC17,17) = A(17,17) + KPR(JI®CG(JI%x%2

AC17,18) = A(17,18) + KPR(JI%CG(J)I%SG(J)

AC18,18) = A(18,18) + KPR(JIXSG(J)I%x%2

ACl,16) = -KPR(J)*%RPXRR

AC1,17) =  KPR(JI®RPXCG(J)

ACI,18) = KPR(JIZRPX®SG(J)

ACI+1,16) = KPRCJIXRR™CG(J)

ACI+1,17) = -KPR(JI%CG(JI®n2

ACl1+1,18) = -KPR(JI®CG(JII%SG(J)

ACI+2,16) = KPRCJI®RRXSG(J)

ACI+2,17) = -KPRCJIXCG(JIXSGCJ)

AC1+2,18) = -KPR(JI®SGCJI=x2

INERTIA ELEMENTS

IF (J.GE.2) B(J,J) = SM
B(I,ID = PJ
B(I+1,1+1)= PM
B(I+2,1+2)= PM
IF (J.GE.2) B(J+12,J+12) = CM
IF (J.GE.2) B(J+15,J+15) = RM
CONTINUE
B(1,1) = SJ
B(13,13) = CJ
B(16,16) = RJ

FILL SYMMETRIC MATRIX

DO 200 I=%,HN
DO 200 J=1i,N
ACJ, 1D = ACI,N
CONTINUE
IF (IOUT.NE.6) 10UT = 1
CALL JACOB(N,1.00-12,20,0,I0UT)

PRINT RESULTS

WRITE(1,2)

READC1,x) 10UT

IFC(IOUT.NE.1 .AND. IOUT.NE.&) GO TOU 601

WRITECIOUT,31) RPCS,RPCP




649
650

660

CA
(F

OOOO0

700

800

801
802

SN

N®»

11
12
15
i6
21
22

157

WRITECIOUT,3)

WRITECIOUT,4) SM,SJ,PM,PJ,CM,CJ,RM,RJ
WRITECIOUT,6)

WRITECIOUT, 4> KS,KTS,KP,KTP,KC,KTC,KR,KTR
WRITECIOUT,7) KSP,KPR

DO 650 J=1,N

EIGV(J) = DSARTCEIGV(JI)I/(2%PI)

PERIOD = 1./EIGV()

WRITECIOQUT,649) J,EIGV(J),PERIOD

FORMATC(IS,5X, ‘FREQUENCY*,F12.5,’ Hz’,SX, ’PERIOD’,F11.7, sec’)
CONTINUE

WRITE(1,660)

FORMATC’PRINT MODE SHAPES? [Y/N1 21

READ(1,21) IPICK

IF CIPICK.EQ.1HN) 60 TO 801

WRITECIOUT,11) (J, J=1,ND
WRITECIOUT,16) (EIGVCJ)Y, J=1,N)
WRITECIOUT,12)

LCULATING LOCAL COORBINATE DISPLACEMENTS FOR PLANETS #2 ¢ 3
OR PLANET #1, LOCAL & GLOBAL COORDINATES ARE IDENTICAL.)

DO 800 I=1i,N
DO 700 J=2,3
JJ = 3Im) +2
2ETACJ-1,1) = X{JJ,I1I%CBCJ) + XCJJ+1,1)%SBCJ)
ETACJ-1,1) = ~X(JJ,1I=SBCJ) + XCJJ+1,1)%CBCY)
CONTINUE
WRITECIOUT,15) I, XCI,9, J=1, M)
IF (1.EQ.8 .OR. 1.EQ@.11) WRITECIOUT,16) (ZETACI/S,J),J=1,N)
IF (1.EQ.9 .0OR. 1.EQ.12) WRITECIOUT,16) (ETACI/6,9),d=1,N)
CONTINUE

WRITE(1,802)

FORMATC///’AGAIN? [Y/NI _%
READ(1,21) IPICK

IF CIPICK.NE.1HN) 60 TO 30

CONTINUE

FORMATC// "MODE NO.*, IS, / (/3C(2F12.4,6X)))

FORMATC/“LU FOR QUTPUT DEVICE? ([1-SCR 6=PRTI _’//>
FORMATC/*INERTIA ELEMENTS: M-CMASS) & J=(MOMENT) /)
FORMAT(‘SUN‘,TZS,ZFiS.5/'PLANET’,TZS,2F13.5/'CARRIER’,T25,2F13.5/
& ‘RING’,T25,2F13.5)

FORMAT(/ *SUPPORT STIFFNESSES: K-CTRANSLATION) & Kt-CTORQUE) )
FORMATC/’MESH STIFFNESSES’/’KSP (SUN/PLANETY‘,T25,3F13.3/

& ‘KPR (PLANET/RING)/,T25,3F13.3)

FORMATC//// *NATURAL FREQUENCIES CHZ): 18 DOF SYSTEM*// 18F7.1)
FORMATC// "EIGENVECTORS OF SYSTEM®)

FORMAT(/ 12,18F7.4)

FORMAT(2X,18F7.1)

FORMAT (A1)

FORMATC/ *TO CALCULATE MODAL DISPLACEMENT OF ANY EIGENVECTOR,* /
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¢ "ENTER ITS NUMBER (1-18), ENTRY OF ‘0‘ TERMINATES PRGGRAM _*)
23 FORMATC/ °"FOR GRAPHICS OUTPUT ON SCREEN, ENTER “1‘* / °*FOR GUTFUT
40N 4-PEN PLOTTER, msxxxFIRSTxxxx_L0AD 8.5 X 11 PAPER VERTICALLY" /
¢ "AGAINST LEFT & BOTTOM STOPS, THEN ENTER:* / *’2,0” FOR FULL PAGE
¢ DRAWING® / "“2,1’ FOR UPPER HALF PAGE DRAWING, OR*® /
& *’2,2’ FOR LOWER HALF PAGE DRAWING _*)
26 FORMATC/ “ENTER TITLE (MAX. 40 CHARACTERS-TO HERE)®")
27 FORMAT (20A2)
999 END
c
c
BLOCK DATA RAA
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /AAA/ AC18,18),B(18,18),X(18,18),E16V(18),D(18)
DATA A/324%0.D0/, B/324%0.D0/, X/324%0.00/, EIGV/18%0.D0/
END




159

(2]

SUBROUTINE JACOB(N,RTOL,NSMX,IFPR,10UT)

IMPLICIT DOUBLE PRECISION CA-H,0-2)

COMMON /AAA/ A(18,18),B8(18,18),X(18,18) ,E16V(18),D(18)
DIMENSION ITIME(S),JTIMECS) ,NTIME(S)

IF (I0UT.EQ.0) 10UT =

c

[ i!x!!x!x!xx:x!:!x!!x:;xn;x:x!!x!!xxx*xx!x;!xii!x!l!ix!!!!i!;i!raini
Cc %
C x EIGENVALUE SUBROUTINE (USING GENERALIZED JACOBI ITERATION) *
cC = b
C = [INPUT VARIABLES:
C = A(18,18) =~ STIFNESS MAT’X (MUST BE POSITIVE DEFINITE) =
C = B(18,18) = MASS MAT’X (MUST BE POSITIVE DEFINITE) =
c = N = ORDER OF MATRICES (MUST BE <= 18) E
C = RTOL = CONVERGENCE TOLERENCE (TYP. 1.0D0-12) =
C = NSMX = LIMITING NUMBER OF SWEEPS (TYP. 15) 3
C = IFPR = FLAG FOR PRINTING INTERMEDIATE VALUES *
C = (IF .EQ. 0, WILL NOT PRINT)
C = »
C %= OUTPUT VARIABLES: »
C = ACN,N) v DIAGONALIZED STIFFNESS MATRIX *
C = B(N,N) = DIAGONALIZED MASS MATRIX *
C = X{N,N) = EIGENVECTORS STORED COLUMNWISE *
C = EIGV(N) = EIGENVALUES *
C = F3
C = D(18) = WORKING VECTOR »
C = Y
(o] !!I!!!!!!!!!l!!l!l!!l!!!l!!!!!l!l!!!!!!!!!!l!!!!!!!!lliil!ll!il!!i!
c

C INITIALIZE EIGENVALUE & EIGENVECTOR MATRICES

Cc

DO 10 I=1,N
IF CACI,1).GT.0. .AND. BCI1,13.6T.0.) GO TO 4
WRITECIOUT,20200 1I,AC1,1),BCI,I)
STOP 1
4 DCId = ACI,I)/BCI,I)
EIGV(I) = D(ID
10 CONTINUE
DO 30 I=1,N
D0 20 J=1,N
20 X(I,J) = 0.
30 XCI,1) = 1,
IF (N.EQ.1) RETURN

c
C INITIALIZE SWEEP COUNTER & BEGIN ITERATION
c
Ia = 0

C C(INTERMEDIATE WRITE(1,2997)
C VALUE DuMP) READ(1,x) IQ

CALL EXECC(C11,ITIME)

NSWEEP = 0

NR = N-1

40 NSWEEP = NSWEEP + 1
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IF CIFPR.EQ.1) WRITECIOUT,2000) NSWEEP

[
C CHECK WHETHER PRESENT OFF-DIAGONAL ELEMENT REQUIRES ZERGING.
c
EPS = (.,O01%»NSWEEP)%xx%2
DO 210 J=1,NR
JJ = J+1
DO 210 K=JJ,HN
IF CIQ.EQ.1) WRITECIOUT,2998) J,K
ATOL = CACJ,KI=x2)/CACJ,JI*ACK,KD)
BTOL = (B(J,K)%%2)/(B(J,JI)*B(K,K))
IF CCATOL.LT.EPS).AND.(BTOL.LT.EPS)) GO TO 210
c
C IF ZEROING REQ’D, WE CALCULATE ROTATION MATX. ELEMENTS °*CA®* & "CG°.
c
AKK = ACK,K)®B(J,K) = BC(K,KI*ACJ,K)
aJJd = ACJ,JIXBCJ,K) - BCJ,JI*A(J,K)
AB = ACJ,JImB(K,KD -'A(K,K):BCJ,J)
CHK = (AB#%2 + 4. %AKKXAJJ)/4.
IF (CHK) 50,60,60
S0 WRITECIOUT,2020) K,CHK
STOP 2
60 SQCH = DSQRT(CHK)D
Di = AB/2. + SQCH
D2 = AB/2. - SQCH
DEN = D1
IF (DABS(D2).GT.DABS(D1)> DEN = D2
IF (DEN) 80,70,80
- 70 CA = 0.
€6 = -ACJ,K)/ACK,K)
G0 TO 90
80 CA = AKK/DEN
CG = -AJJ/DEN
IF C(1Q.EQ.1) WRITECIOUT,2999) K,CA,CG
c

C PERFORM GENERALIZED ROTATION TO ZERC PRESENT OFF-DIAGONAL ELEMENT.
C

a0 1F (H-2) 100,180,100
100 JP1 = Jei
JML = J-1
KP1 = Ke+i
KM1 = K-1
1F ¢JumM1-1) 130,110,110
110 DO 120 1=1,JM1
AJ =°ACI,P
BJ = B(CI,N
AK = ACI,K)
BK = B(CI,K)
ACI,J) = AJ + CGXAK
BCI,J) = BJ + CGuBK
ACI,K) = AK + CAAJ

BC(I,K) = BK + CAxBJ
IF C1Q.EQ.1) WRITECIOUT,2999) I,(ACI,I1),1I=1,N)
120 CONTINUE
130 IF (KP1-N) 140 140,160




c

140

150
160
170

i8¢0
190

D0 150
AJ =
BJ =
AK =
BK =
ACJY, 1D
B(J, 1)
ACK, 1D
B(K, 1)

IF (1Q.EG.1)

CONTINUE

1=
AGJ, D)
B(J, 17
ACK, DD
B(K,I)
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KP1,N

= AJ +
s BJ +
= AK +
= BK +

CGxAK

CGxBK

CAX%AJ

CAxBJ

WRITECIOUT,2999) I,CACI,II),II=1,N)

IF (JP1-KM1) 170,170,190
DO 180 1=JP1,KM1

AJ = ACJ, D)
BJ = B(J, D)
AK = AC(CI,K)
BK = B(I,K)

ACJ,ID
BC(J, 1)
ACI,K)
BCI,K)

IF (lQ.EQ.1

CONTINUE

= AJ +
= BJ +
= AK +
= BK +

CoxAK

CG%xBK

CAXAJ

CA%BJ

WRITECIOUT,2999) 1,CACI,II1),I1=1,N)

AK = A(K,K)
BK = B(K,K)

ACK,K) =
B(K,K) =
ACJ,J) =
B(J,J) =
ACJ,K) =
B(J,K) =

AK + 2.%CA%ACJ,K) + ACJ,J)%CAX=2
BK + 2.%CA%B(J,K) + B(J,J)®CAxx2
ACJ,J) + 2.%CGX¥A(J,K) + AK%CG™x2
B(J,J) + 2.%CGXB(J,K) + BKxCGmx2
0.
0.

C UPDATE EIGENVECTOR MATRIX AFTER EACH ROTATION.

c

0C 200 I=1,N

XJ = XCI,d
XK = X(I,K)

c

200
210

X1,
X(I,K)

= XJ
= XK

+ Co=XK
+ CAxXJ

IF (1Q.EQ.1) WRITECIOUT,2999) I,(XCI,II3,1I=1,N)
CONTINUE

CONTINUE

C UPDATE EIGENVALUES AFTER EACH SWEEP.

c

c

220

DO 220 I=i,N

IF CACI,I)>.6T.0.
WRITECIOUT,

STOP 3
EIGVCID

.AND. B(I,I2.6T.0.) GO TO 220

2020 1,ACI1,1),B(I,D)

= ACI,I)/BCI, 1)

IF (IFPR.EQ.0) GO TO 230
WRITECIOUT,2030)

WRITECIQUT,2010)

(EIGVC(I), 1=1,N)

C CHECK FOR CONVERGENCE.
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c
230 DO 240 I=1i,N
TOL = RTOL=DCID
DIF = DABS(CEIGV(I) - D(IX)
IF (DIF.GT.TOL) GO TO 280
240 CONTINUE
c
C CHECK ALL OFF-DIAGONAL ELEMENTS TO DETERMINE IF ANOTHER SWEEP REQ‘D.
c
EPS = RTOLmm2
D0 250 J=1,NR
JJ = Jed
DO 250 K=JJ,N
EPSA = (ACJ,K)=%2)/CACJ,JI®ACK,K))
EPSB = (B(J,K)==®2)/(B(J,J)*B(K,K))
IF CCEPSA.LT.EPS).AND. CEPSB.LT.EPS)) GO TO 250
GO TO 280
250 CONTINUE
c
¢ FILL BOTTOM TRIANGLE OF A & B MATRICES & NORMALIZE EIGENVECTORS.
c
255 DO 270 I=1,NH
XX = 0.
Do 260 J=1,N
XX = XX + X(J,)==m2
acJ,I1d = acCl,d
BCJ,I1> = B(I,N
260 CONTINUE
DO 270 J=1,N
XCJ,1) = XCJ,I12/DSARTCXX)
270 CONTINUE '
CALL EXEC(11,JTIME)
DO 285 I=1,5
285 NTIME(CI) = JTIMECI) - ITIMECI)
WRITECIOUT,2040) 1TIME,JTIME,NTIME,NSWEEP

RETURN
c
C UPDATE °"D®" MATRIX, START NEW SWEEP, IF ALLOKWED.
c

280 DO 290 I=1,N
290 DCI) = EIGV(I)
IF CNSWEEP.LT.NSMX) GO TO 40

G0 TO 255
2000 FORMAT ¢/ °*SWEEP NUMBER =*,14)
2010 FORMAT(4620.12)
2020 FORMATC/ °*m»mmERRORm=xMATRICES NOT POSITIVE °*,

¢ °DEFINITE ...VALUE OF I =* IS,* ACI,I> & BCI,I) =",2F12.4)
2030 FORMATC/ *“JACOB’: CURRENT EIGENVALUES..." /)
2040 FORMATC/ *STARTING TIME =%, SIS / SFINISH TIME =*, SIS /

¢ °"COMPUTING TIME =°, SIS, * NO. OF SWEEPS =*, IS)

2997 FORMATC/ *IF CALC. DISP. DESIRED, ENTER 1 ELSE 0°)
2998 FORMAT(/ °*TOP OF LOOP: J,K =", 51I8)
2999 FORMATC *TEST*, 15,(6F12.32)

END
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APPENDIX D
PROGRAM ~ PAGE
EXPRO 164
EXDEF 173
EXSTA 178
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DRAW1 225
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c <830610.1521>
FTHN4,L
PROGRAM EXPRO
c
c THIS PROGRAM GENERATES GEAR TOOTH PROFILE COORDINATES
c
COMMON/C1/X1(€100),X2¢100),Y1(100),Y2(100),THETA1(100),THETA2C100),
b W1¢100),W2¢100),21¢1002,22¢100) ,kk1¢100),kRR2(100)
COMMON/C2/EL,G1,PR1,YP1,RR04,RI1,Fl1, XMINL,
1 E2,62,PR2,YP2,RR02,RI2,FKH2,XMIN2
COMMON/C3/P1,PHI,T61,TG2,TP,PD1,PD2,RPC1,RPC2,RACL,RAC2,TIN,RECH,
1 RBC2,C,SP,EP
c
DIMENSION LENGTH(2)
DIMENSION TITLE(10)
DIMENSION IBUF(40),1DCB1(144),INAM(3),ISIZE(2)
DIMENSION IDATA(2)
c
REAL KL,LEI,KEI
c

CxxwxxNO LIBRARY ARCCOS OR ARCSON FUNCTIONS REQUIRES FOLLOWING FUNCTIONS
c
ARSINCX) =ATANC(X/SART (1. -X=xx%2))
ARCOS(X)>=P1/2.-ATAN(X/SAQRT(1.-X%%2))

c
c
DATA LENGTH/2HIN,2HMM/
c
C FOLLOWING DATA STATEMENTS ARE FOR INPUT
c

DATA DP/S5./,DELTP/.01/,PHID/22.5/
DATA MODCOD/0/
DATA AD1,AD2,UD1,WD2,GRRF1,GRRF2/2%.200,2%.470000,2%.020000/

DATA DP,DELTP,PHID/8.4666667,.01,22.5/

DATA MODCOD/0/

DATA AD1,AD2,WD1,WD2/2%.11811,.269,.265748/
DATA GRRF1,GRRF2/2x.0S5/,RPMIN/1000./

OQOOOOOO0

WRITE(1,2) )
2 FORMATC/INPUT LU FOR OUTPUT DEVICE,PER1,CYC1,PAP1%)
READ(1,%) LU,PER1,CYC1,PAP1

TODEGR=180./P1
& PHI=PHID®P1/180.
TOUT=TIN®TG2/TG1
RPMOUT=RPMIN®TG1/TG2
G1=0.5%E1/(1.+PR1)
G2=0.5%E2/ (1. +PR2)
PD1=TG1/DP
PD2=TG2/DP
RPC1=0.5%PD1
RPC2=0.5%PD2
7 IFCRI1.EQ.0.0) RI1=C16.%TIN/(PI*TAUMAX))xx(1./3.)=0.5
1IFC(RI2.EQ.0.0) RI2=(16.%TOUT/(PIXTAUMAX))=x(1./3.)%0.5
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IF(JG1.EG@.0.) JG1=.SxGAMAL1XP I*FW1*RPC1x%4/356.
IF(JG2.EQ.0.) JG2=.S¥GAMAZSXP IxFW2XRPC2%x%x4/386,
C=RPC1+RPC2

CP=P1/DP

BP=CP=COS(PHI)
RF1=.7%(GRRF1+(WD1-AD1-GRRF1)*%2/(,S%PD1+WD1-AD1-GRRF1))
RF2=, 7% (GRRF2+ (WD2-AD2-GRRF2) x%2/ (.5%PD2+WD2-AD2-GRRF2))
RAC1=RPC1+AD1

RAC2=RPC2+AD2

RRC1=RAC1-WD1

RRC2=RAC2-WD2

RI1 =RRC1
RI2 =RRC2
RBC1=RPC1%COS(PHI)
RBC2=RPC2%COS(PHI)
c
Li=100
L2=L1
P=TIN/RBC1
c
c NEXT SEGMENT OF CODE IS FROM MOD
c
c T6-=-=--- NUMBER OF TEETH
c DP-==-- DIAMETRAL PITCH
c PHI----PRESSURE ANGLE
c AD----- ADDENDUM
[~ WD=--=--- WHOLE DEPTH CAPPROXIMATE)
c GRRF---GENERATING RACK EDGE RADIUS
c 1loceem- IDENTIFIES GEAR 1
c 2e====- IDENTIFIES GEAR 2
c RfF-==--- FILLET RADIUS
[~
c
CxmmwxmREAD PROFILE MODIFICATIONS CIF ANY)
c

mxxxMCHECK FOR INTERFERENCE

QOO0

199 RCHK1 = SQRT(RBC1mm2 + (CHMSINCPHI))mm2)
RCHK2 = SGRT(RBC2m®2 + C(CESINCPHI))™%2)
IF (RAC1.GT.RCHK1.0R.RAC2.6T.RCHK2)_ INF=2
IF (INF.EQ.2) GO TO 4563
X=RF1/(RRC1+RF1)
ALPHA1=ARSINC(X)
X=RF2/(RRC2+RF2)
ALPHA2=ARSIN(X)
RTF11=(RRCL1+RF1I%COSCALPHAL)
RTF22=(RRC2+RF2)%COS (ALPHA2)

c
WRITE(LU,200) TGI,T625?HI,DP,RPCI,RPCZ,RBCl,RBCZ,RRCl,RRCZ,RFI,
¢RF2,RI1,RI12,ALPHAL,ALPHA2,RTF11,RTF22

200 FORMATC’/TGL,TG2 1 %,2F14.7/

& ‘PHI,DP :17,2F14.7/
& ‘RPC1,RPC2 +/,2F14.7/
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& ‘RBC1,RBC2 1/,2F14.7/
& ‘RRC1,RRC2 1/ ,2F14.7/
& ‘RF1,RF2 1/,2F14.7/
& ‘RI1,RI2 1 7,2F14.7/
& ‘ALPHAL ,ALPHA2 :7,2F14.7/
& ‘RTF11,RTF22 /,2F14.7/)

CALCULATION OF LIMIT RADII (RLM1 AND KLM2)

AUX1=ARCOS(RBC1/RAC1)

AUX2=ARCOS (RBC2/RAC2)
Cl1=RAC2%SIN(AUX2)-RPC2xSINCPHI)
CI2=RACIXSINCAUX1)-RPC1xSIN(PHI)
RALR1=ATANC(RPC1%SINC(PHI)>-CI1>/RBC1)
RALR2=ATANCCRPC2xSINCPHI)-C12)/RBC2)
RLM1=RBC1/COS(RALR1)

RLM2=RBC2/C0S (RALR2)

WRITE(CLU,15) AUX1,AUX2,CI1,C12,RALR1,RALR2,RLM1,RLM2

FORMAT (AUX1,AUX2 1/,2F14.7/

1 ‘Cl1,Cc12 1/ ,2F14.7/
2 ‘RALR1,RALR2 14,2F14.7/
3 ‘RLM1,RLM2 | 1/ ,2F14.7/7)

RR1=RAC1-RLM1
RR2=RACZ-RLM2
IF (RLM1.LE.RRC1) RR1=RAC1-RTF11
IF (RLM2.LE.RRC2) RR2=RAC2-RTF22
220 FORMATC’0”,2X,’NOTE: RADIUS OF THEORETICAL LAST POINT OF CONTACT
40N GEAR 1 IS LESS THAN THE ROOT CIRCLE RADIUS. ‘/
&’ TO AVOID INTERFERENCE PROBLEMS, THIS TOOTH SHOULD BE UNDERCUT’/)
221 FORMAT(’0‘,2X,’NOTE:s RADIUS OF THEORETICAL LAST POINT OF CONTACT
0N GEAR 2 IS LESS THAN THE ROOT CIRCLE RADIUS.’/
&’ TO AVOID INTERFERENCE PROBLEMS, THIS TOOTH SHOULD BE UNDERCUT‘/)

LI1=IFIXC((RR1/(RAC1-RRC1))IxL1)
LI2=IFIXC((RR2/(RAC2-RRC2))I=L2)
RINCI1=RR1/FLOATCLIL1-1)
RINCI2=RR2/FLOAT(LI2-1)

RAl-=--- ROLL ANGLE,GEAR 1t

RATM1---LENGTH OF TIP MODIFICATION IN DEGREES OF ROLL,GEAR 1
RAT1----ROLL ANGLE AT TIP OF GEAR 1

RATI1---ROLL ANGLE AT TOP OF INVOLUTE,GEAR 1

RABI1----ROLL ANGLE AT THE BOTTOM OF INVOLUTE,GEAR 1
RABM1---LENGTH OF ROOT MODIFICATION IN DEGREES OF ROLL,GEAR 1
PATM1---MAGNITUDE OF PARABOLIC MODIFICATION AT THE TIP,GEAR 1
PABM1~---MAGNITUDE OF PARABOLIC MODIFICATION AT THE BOTTOM,GEAR 1
STTM1---MAGNITUDE OF STRAIGHT LINE MODIFICATION AT THE TIP,GEAR 1
STBM1--~-MAGNRITUDE OF STRAIGHT LINE MODIFICATION AT THE BOTTOM,GEAK
PER1---MAX MANUFACTURED PROFILE ERROR,GEAR 1

PAP1---ANGLE FROM START OF SIN. ERROR TD START OF INVOLUTE,GEAR 1
RTI1----RADIUS TO TOP OF INVOLUTE,GEAR 1

RBI1----RADIUS TO BOTTOM OF INVOLUTE,GEAR 1
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C

CxxxxxCALCULATION OF ROLL ANGLES TO INVOLUTE TOP, PITCH, AND BOTTOM; AND
Cxxxx%RADIAL DISTANCES TO (UNXMODIFIED INVOLUTE TOP, FITCH, AND BOTTOM

C

RAT1=TODEGR®SQRT((RAC1/RBC1) xx2
RAT2=TODEGR%SQRT((RAC2/RBC2) xx2
RAM1=RAT1-RATM1
RAM2=RAT2-RATM2
RTI1=RBC1%SQRT((RAM1/TODEGR) %%2
RTI2=RBC2%SQRT ((RAM2/TODEGR) %%2

1.)
1.)

+

+

[PSY
.« .
oW

RAP=TODEGR®TAN(CPHI)
RATIP1=RAM1-RAP
RATIP2=RAM2-RAP

RABI1=TODEGR®*SQRT ((RLM1/RBC1Ix%2 - 1.)
RABI2=TODEGR%*SQRT ((RLM2/RBC2)%%2 - 1.)
RAN1=RABI1+RABM1
RAN2=RABI2+RABM2
RBI1=RBCi%SQRT((RAN1/TODEGR)%%2 + 1.)
RBI2=RBC2%SQRT ((RAN2/TODEGRI%%2 + 1.)
c
CxxxxxCALCULATION OF RRO
C
230 TP=PI*.5/DP
PHIB1=ARCOS(RBC1/RLM1)
BETAB1=P1/(2.%TG1)+(TANCPHI)-PHI)-(TANCPHIB1)-PHIB1)
IF (RLM1.GE.RTF1i1) GO TO 285
ARG1=((RRC1+RF1)xx2 + RLMi%%2 - RF1x%2)/(2.xRLM1%(RRC1+RF1))
ALPHA1=ARCOS (ARG1)
285 RRO1=RRC1ixCOS(BETAB1+ALPHA1)

XMIN1=RTF11%SINC(BETABL)
PAP1=PAP1/TODEGR

PHIB2=ARCOS(RBC2/RLM2)
BETAB2=PI/(2.%7G2)+(TANCPHI) -PHI)-(TAN(PHIB2)-PHIB2)
IF (RLM2.GE.RTF22) GO TO 290
ARG2=((RRC2+RF2) %2 + RLM2%%x2 - RF2%%2)/(2.%RLM2%(RRC2+RF2))
ALPHA2=ARCOS (ARG2)
290 RRO2=RRC2%COS(BETAB2+ALPHA2)

XMIN2=RTF22%SINC(BETAB2)
PAP2=PAP2/TODEGR

WRITE(CLU,291) BETAB1,BETAB2,ARG1,ARG2,ALPHAL,ALPHA2,RR01,RRO2
291 FORMAT(’BETAB1,BETAB2 .:/,2F14.7/

2 ‘ARG1,ARG2 1/ ,2F14.7/
3 ‘ALPHAL,ALPHA2 :7,2F14.7/
4 ‘RRO1,RR0O2 1! ,2F14,7/)
c
c

Cxxxx%CALCULATION OF INVOLUTE PROFILE COORDINATES, GEAR 1
c
DO 330 J=1,LI1
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ET1=0.
PE1=0.
C
R1=RAC1-RINCI1¥(FLOAT(J-1))
PHI1=ARCOS(RBC1/R1)
BETA1=PI/(2.%TG1) + (TANCPHI)-PHI)> - (TANC(PHI1)>-FHI1)
THETA1(J)=PHI1-BETA1L
RA1=TODEGR®TANCPHI1)
IF (J.EQ.1) RA1=RAT1
c
CxxxxxCHECK FOR TIP MODIFICATIONS
c
IF (RATM1,EQG.0..0R.RAL1.LT.RAM1) GO TG 300
IF (STTM1.EQ.0.) ET1=PATM1%(1.-SART((RAT1-RA1)/RATMLI)
1IF (PATM1.EQG.0.) ET1=STTMix(RA1-RAM1)/RATML
c
CxxxmxCHECK FOR SINUSOIDAL ERRORS
c

300 IF (PER1.EQ.0.) GO TO 310
IF (RA1.GT.RAM1) PE1=PERIXSINC(PAP1)
IF (RAL1.LT.RAM1)
& PE1=PERIX®SINC(PI®(RAM1-RAL1IXCYC1/RATIP1) +PAP1)
c
CxxxxxCHECK FOR BOTTOM MODIFICATIONS
c
310 IF (RABM1.EQ.0..0R.RA1.GT.RAN1) GO TO 320
IF (STBM1.EQ.0.) ET1~PABM1i%(1.-SQRT((RA1-RABI1J/RABM1))
IF (PABM1.EQ.0.) ET1=STBMix(RA1-RAN1)/RABMI1

320 X1(J)=RI1%SINC(BETAL) + (ET1+PE1)/COS(THETA1(JI)
Y1(J)=R1*COS(BETA1) - RRO1
IF (J.NE.1)> THETAL1(J-1)=ATANCCX1(JI-X1CJ-123/CY1(J-10-Y1(JID)D
330 CONTINUE
c
CxmwumxF ILLET COORDINATE POINTS, GEAR 1
c
BETA1=ATANCX1CLI1)/(Y1C(LI1)+RRO1))
RINCB1=(R1-RRC1)/FLOATCL1-LILD
LI11=L11+1
DO 340 J=LI11,L1
RFIL1=R1-RINCB1*FLOAT(J-LI1)
IF (RFIL1.GE.RTF11) ARC1=ALPHA1L
X=((RRC1+RF1)mm2+RFIL1xx2-RF1%%2) /(2. %RFIL1%(RRC1+RF1))
IF (X.GT.1.) X=1.0
IF (RFIL1.LT.RTF11) ARC1=ARCOS(X)
BETAF1=BETA1+ALPHA1-ARC1
X1(J)=RFILI%SINCBETAF1)
Y1(J)=RFIL1%COS(BETAF1) - RRO1
340 THETAL(J-1)=ATANC(X1(J)-X1CJ=-1)D/CYL1(JU-1)-Y1(JID)
THETA1(L1)=.5%P] - BETAF1
c
CxmxxxCALCULATION OF INVOLUTE PROFILE COORDINATES, GEAR 2
c
00 380 J=1,LI2
ET2=0.
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PE2=0.

R2=RAC2-RINCI2%(FLOAT(J-1))

PHI2=ARCOS(RBC2/R2)

BETA2=P1/(2.%7G2> + (TAN(PHIJ-PHI) - (TAN(PHI2)-PHI2)
THETA2(J)=PHI2-BETA2

RA2=TODEGR®TAN(PHI2)

IF (J.EQ.1) RA2=RAT2

IF (RATM2]EQ.0..0R.RA2.LT.RAM2) GO TO 350
IF (STTM2.EQ.0.) ET2=PATM2%(1.~SART((RAT2-RA1)/RATM2))
IF (PATM2.EQ.0.) ET2=STTM2%(RA1-KAM2) /RATM2

IF (PER2.EQ.0.) GO TO 360
IF (RA2.GT.RAM2) PE2=PER2%SINCPAP2)
1F (RA2.LT.RAM2)
& PE2=PER2%SIN((PI%(RAM2-RA2)%CYC2/RATIP2) +PAP2)

IF (RABM2.EQ.0..0R.RA2.GT.RAN1) GO TO 370
IF (STBM2.EQ.0.) ET2=PABM2%(1.-SARTC(C(RA2-RABI2)/RABM2))
IF (PABM2.EQ.0.) ET2=STBM2%(RA2-RAN2) /RABM2

X2(JI)=R2%SIN(BETA2) + (ET2+PE2)/COS(THETA2(J))
Y2(J)=R2%COS(BETA2) - RRO2

IF (J.NE.1) THETA2(J-1)=ATANC(X2(JI~-X2(J-1D)/CY2(J-13-Y2(N))IJ
CONTINUE

CxxwxxF ILLET COORDINATE POINTS, GEAR 2

c

c

RINCB2=(R2-RRC2) /FLOAT(LL1-LI2)

WRITE(CLU,16) RLM1,RLM2,R1,R2,RINCB1,RINCB2,RTF11,RTF22

FORMAT (/RLM1L ,RLM2 1’ ,2F14.7/

1 ‘R1,R2 1/,2F14.7/
2 ‘RINCB1,RINCB2 :7/,2F14.7/
3 ‘RTF11,RTF22 17,2F14.7/)
LI22=L12+¢

DO 390 J=LI22,L2

RFIL2=R2-RINCB2%FLOAT(J-LI2)
X=((RRC2+RF2)##2+RF IL2w=2-RF2¥%2) / (2. %RF IL2% (RRC2+RF2))
IF (RFIL2.GE.RTF22) ARC2=ALPHA2

IF (RFIL2.LT.RTF22)
&¢ARC2=ARCOS (XD

BETAF2=BETA2+ALPHA2-ARC2

X2(JI)=RFIL2®SIN(BETAF2)

Y2(J)=RFIL2%COS(BETAF2) - RRO2
THETA2(J-1)=ATANC(X2(J) =X2CJ=12)1/CY2(J=12-Y2(JI )
THETA2(L2)=.5%P] - BETAF2

CONTACT RATIO CALCULATIONS
AUX1=ARCOS(RBC1/RTI1)

AUX2=ARCOS(RBC2/RT12)
AL1=ARCOS(RBC1/RBI1)
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AL2=ARCOS(RBC2/RB12)
CRU1=RPC1%(SIN(PHI)-COSCPHI)®TANCAL1))/BP
CRU2=RPC2%(SIN(PHI)-COSC(PHI>*TANCAL2))/BP
CR1=((RTI2)%SIN(CAUX2)-RPC2%SIN(PHI))/BP
CR2=((RTI1)%XSINCAUX1)-RPC1%SINC(PHI))/BP

WRITE(LU,17) CRU1,CRU2,CR1,CR2,RBC1,RBC2,RBI1,RBI2
17 FORMAT (“/CRU1,CRU2 1 7,2F14.7/
‘CR1,CR2 :?,2F14.7/
‘RBC1,RBC2 +7,2F14.7/
3 ‘RBI1,RBI2 s 7,2F14.7/)

N

IFC(C(RBC1.GE.RBI1).AND. (RBC2.GE.RBI2)) 60 TO 18
IF(CRU1.LE.CR1) CR1=CRU%
IF(CRU2.LE.CR2) CR2=CRU2
IF(CRUL1.GT.CR1) CR1=CR1
IF(CRU2.GT.CR2) CR2=CR2
18 CR=CR1+CR2
SP=CR1xBP
EP=CR2x%BP
SE=CRxBP
INF = 1
12 FORMAT(T46, ’THE THEORETICAL CONTACT RATIO =’,F8.3/)
c
Cxxxx»P]1T [NSERTIOM
c
DEEP1=0.0
DEEP2=0.0
IF (DEEP1.EQ.0.0) GO TO 4561
DO 4560 I=IPIT11,IPITi2
4560 X1(1)=X1(I1)-DEEP1
4561 IF (DEEP2.EQ.0.0) GO TO 4563
DO 4562 I=IPIT2%1,IPIT22
4562 X2(1)=X2(1)-DEEP2
4563 CONTINUE

c

WRITE(CLU,4570) RAC1,RAC2,LI1,LI2,RF1,RF2,RR0O1,RRO2
4570 FORMAT(’RAC1,RAC2 1/,2F14.7/

1 ‘L1i,LI2 37,2114/

2 ‘RF1,RF2 1/ ,2F14.7/

3 ‘RRO1,RRO2 17 ,2F14.7/7/)

WRITE(CLU,292) PER1,PER2,CYC1,CYC2,PAPL1,FAP2
292 FORMAT(’SINE ERRORS’,6F11.6/)

c
c NEW CODE FROM SLOWM FOLLGOWS
c
DO 702 I=1,L1
W1CID=X1CID
Z1(I)=RR0O1+Y1CI)

RR1(I)=SQRT (WL (I)mm2+2Z1 (1) mx%2)
IF(RR1(I).GT.RAC1) RR1(I)=RAC1
W2(I)=X2CID

Z22(1)=RRO2+Y2(CI)
RR2CII=SQRT (W2 (1) »%2+22 (1) %x2)
IFCRR2(1).GT.RAC2) RR2(I)=RAC2
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702 CONTINUE
DO 703 I=1,L1
IPP=1]
IF(RPC1.GE.RR1(IJ) GO TO 704
703 CONTINUE
704 CONTINUE
c
WRITE(1,4571)
4571 FORMAT(’LIST DATA? CY/NY >_")
READ(1,4572) IPICK
4572 FORMAT (A1)
' IF (IPICK.EQ.1HN) GO TO 4610
c
WRITE(LY,4578)
4578 FORMAT(’ I’,8X,’X1’,12X,°Y1’,10X,*THETAL”,10X,’X27,12X,’Y2*,
&10X, THETA2)
DO 4608 1=1,L1
4608 WRITECLU,4608) 1,X1CI),Y1C1),THETALCI),X2CI),Y2C1),THETA2CI)
4609 FORMAT(I3,6F14.7)
c
4610 WRITE(1,4620)
4620 FORMATC’WRITE TGO DATA FILE? ([Y/Nl >_%
READ(1,4572) IPICK
IF (IPICK.EQ.1HY) CALL TRANS

END
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SUBROUTINE TRANS
COMMON/C1/BUF1(1200)
COMMON/C2/BUF2(16)
COMMON/C3/BUF3(17)

DIMENSION IDCB(144),INAMEC(3)
DATA INAME/2HDP,2HRO,2HFL/,1CODE/1/

CALL OPENCIDCB, IER, INAME,1,-99,36)
IF (IER.GT.0) GO TO 13

WRITE(C1,10) IER,ICODE
FORMATC’FMP ERROR :’,1S5,’ AT ICODE=‘,12,’ PROGRAM ABORTED’)

GO 70 S0

ICODE=ICODE~+1

CALL WRITF(CIDCB,IER,BUF1,2400)
IF (IER.LT.0> GO TO 9
ICODE=ICODE+1

CALL WRITF(CIDCB,IER,BUF2,32)
IF (IER.LT.0) GO TO 9
ICODE=1CODE+1

CALL WRITF(IDCB,IER,BUF3,34)
IF (IER.LT.0) GO TO 9

WRITEC(C1,30> INAME
FORMAT(’DATA FROM PROFL WAS WRITTEN TO FILE ’,3A2)

CALL CLOSECIDCB,IER)
RETURN
END

BLOCK DATA

COMMON/C1/BUF1(1200)

COMMON/C2/E1,G1,PR1,YP1,RR01,RI1,FIWL,XMINT,

b E2,G2,PR2,YP2,RR02,RI2,FW2,XMIN2
COMMOH/C3/PI,PHI,TGI,TGZ,TP,PDI,PDZ,RPCl,RPCZ,RACl,RACZ,TIH,RBCI
1 RBC2,C,SP,EP

b

DATA E1/30.E06/,E2/30.E06/,PR1/.285/,PR2/.285/
DATA 61/.288/,G2/.288/,P1/3.141592654/

DATA TG1/14./,TG2/28./,R11/.66/,R12/1.500/
DATA TG1/25./,TG2/24./,R11/2.2300/,R12/2.1300/
DATA FW1,FW2,TIN/1.0,1.,1500.0/

END




FTN4,
c
c
c

9000
c
c
c

5

10

15

173

L
PROGRAM EXDEF

COMMON/C1/X1(100),X2€¢1003,Y1C100),YZ(100),THETAL1(100),THETA2(100),
1 W1(100),W2(1002,21¢1002,22¢1007,R1C¢100),R2¢100)
COMMON/C2/E1,G1,PR1,YP1,RR01,RI1,F1,XMINY,

1 £2,62,PR2,YP2,RR02,RI2,F2,XMIN2
COMMON/C4/DCP1(100),DCP2(100) ,THETC1(100),THETC2¢100)

DIMENSION X(100),Y(100),AC100),DCPC100),THETACL100),BMLC100)
DIMENSION MI(100),THETAC(C100),PLC100),VL(100),0M4C100)
REAL MI1,MI2,MI

WRITE(1,9000)

FORMATC(/ENTER LU NUMBER OF OUTPUT DEVICE’)
READ(C1,») LU

CALL ERLSTCLUY)

CALL TRANR

Li=100
L2=L1
KH=1
KL=100

PI=3.141592654

16=1

IF(IG.EQ.3> G0 TO 150
IF(1G.EQ.2) GO TO 1S
E = E1

G = G1

PR = PR1

YP = YP1

RRO = RRO1

RI = RIt

XMIN = XMIN1

F =F1

LL = L1

DO 10 I = 1,LL

XC(I) = X1CDD

YCID = Y1CID
THETACI) = THETA1C(D)
ACI) = 2.xX(1)%F
MICI)=(F=(2.%X(1))=%3)/12.
GO TO 25

E = E2

G = G2

PR = PR2

YP = YP2

RRO = RRO2

RI = RI2

XMIN = XMIN2

F = F2

LL = L2

DO 20 I = 1,LL
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X1y = X2¢I

Y1) = Ya2(ID)

THETACI) = THETAZ2(I)

ACl) = 2.=X(1)x%F
MICI)=(Fx(2.%X(1))xx3)/12.
BW=2.xXMIN

IF (1G.EQ.1) YH=Y1(1)

IF (IG.EG.1) YL=Y1(100)

IF (1G.EQ.2) YH=Y2(1)

IF (1G.EQ.2) YL=Y2(100)

DO 30 L = 1,LL
KH = LL +1 - L

IFCYCKR) .GE.YH) GO TO 40

CONTINUE

DO S0 KL = 1,LL

IFCYCKL) .LE.YL) GO TO 60

CONTINUE

DO 70 L = 1,LL

DCPCL) = 0.0

THETACCL)=0.0

CONTINUE

Q@ = 1.0

DO 110 K = KH,KL

THCTACCKY) = THETACK)

P = QAXSINCTHETAC(K))

V = QO®COSCTHETACCK))

YCT = Y(K) - X(KI®XTANCTHETACCK))

BR1 = (QA¥(COS(THETACCK)))®%2)/E

BR2 = (5.2m(YCT%%2))/(Bhm»%x2) + YCT/BW
BR3 = 1.4%(1.+C(TANCTHETACCKI ) »%2)/3.1)
DCPBR = BRi1%(BR2 + BR3)

T = VE(YCK) + RRO)

PSIRD = (T/(C4.%PImFxG)I®(1./CRI%2)-1,/(RROX®2))
RCP = SQRTCCRRO + Y(K))®®2 + X(K)x%2)
THETAQ = ATANCXCK)/(RRO + Y(K)))

ARG = ABSC(THETAC(CK) + THETAQ)

DCPRD = RCPXPSIRD%COSCARG)

DO 80 L = 1,LL

BMLCL) = 0.0

PLCL) = 0.0

VL(L)=0.0

DO 20 J = K,LL

BM = (Y(K)-YCJII®MV - X(K)%P

BML (J) =BMxBM/ (MI (J)I%QQ)
PLCJI=PXP/ (ACJ)I %QQ)

VL CJ) =V=V/ CACJI) =QQ)

DCPBM = 0.0

DCPP = 0.0

DCPV = 0.0

N =LL -1

DO 100 J = K,N

DELTAY = Y(J) - Y(J+1)

DCPBM = DCPBM +« ((BML(J)+BMLCJ+1))%.5)%DELTAY
DCPP = DCPP + ((PLCJ)+PLCJ+1))%.S)XDELTAY
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DCPV = DCPV + ((VL(JI+VL(J+1))I) %, 5)%DELTAY

CONTINUE

DCP(CK) = DCPRD + DCPBR + DCPBM/E + DCPP/E + (1.2%DCPV)/G
IF (K.LT.11) WRITE(LU,105) DCPRD,DCPBR,DCPBM,DCPP,DCPV
FORMAT (SEL14.7)

CONTINUE

IFCIG.EQ.2) GO TO 120

DO 115 1 = 1,LL

DCP1(I) = DCPCID

THETC1CI)=THETACCI)

I1G=16+1

GO TO 5

DO 125 1 = 1,LL

BCP2(I) = DCP(I)

THETC2CI)=THETACCI)

I1G=1G+1

GO TO S5

CALL TRANW

WRITE(1,155)

FORMATC’LIST DATA? [Y/N1’)

READ(1,156) IPICK

FORMAT (A1)

IF CIPICK.EQ.1HN) GO TO 159

WRITECLU,157)
FORMAT(’X1’,5X,’Y1’,5X,’DCP1/,5X,’X27,5X,’Y2’,5X,’DCP2)
WRITECLU,158) (I,X1CI),Y1(I>,DCPLCI),X2C1),Y2(1),DCP2C(1),1=1,100)
FORMAT(I4,2F11.7,E13.7,2X,2F11.7,E13.7)

CONTINUE

END

LN
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SUBROUTINE TRANR
COMMON/C1/BUF1(1200)
COMMON/C2/BUF2(16)

DIMENSION IDCB(144), INAME(3)
DATA INAME/2HDP,2HRO,2HFL/,1CODE/L/

CALL OPENCIDCB,IER, INAME,D,-99,36)
IF (1ER.GT.0) GO TO 13

WRITE(1,10) lER,ICODE
FORMATC’FMP ERROR :’,15,” AT ICODE=’,I12,’
GO TO S0

ICODE=ICODE+1

CALL READF(IDCB,IER,BUF1)
IF (IER.LT.0) GO TO 9
ICODE=ICODE+1

CALL READF(IDCB,IER,BUF2)
IF CIER.LT.0) GO TO 9
1CODE=ICODE+1

WRITE(1,30) INAME _
FORMATC’DATA FROM ’,3A2,° WAS READ’)

CALL CLOSECIDCB,IER)
RETURN
END

PROGRAM ABORTED)
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SUBROUTINE TRANM
COMMON/C4/BUF4(400)

DIMENSION IDCB(144),INAME(3)
DATA INAME/2HDD,2HEF,2HL /,ICODE/1/

CALL OPENCIDCB,IER,INAME,0,-99,36)
IF (IER.GT.0) GO TO 13

WRITEC1,10) IER,ICODE

FORMATC’FMP ERROR :/,15,’ AT ICODE=’,I2,’

GO TO 50

ICODE=ICODE+1

CALL WRITF(CIDCB,IER,BUF4,800)
IF (IER.LT.0) GO TO 9
ICODE=ICODE+1

WRITE(C1,30) INAME

FORMAT(’DATA FROM DEFL WAS WRITTEN TO FILE “,3A2)

CALL CLOSECIDCB,I:zZR)
RETURN
END

BLOCK DATA
COMMON/C1/BUF1(1200)
COMMON/C2/BUF2(16)
COMMON/C4/BUF4(400)
END

PROGRAM ABORTED’)
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c <830611.1023>
FTN4,L
PROGRAM EXSTA,3
C .
Cx»xxxTHIS PROGRAM PERFORMS THE STATIC ANALYSIS OF AN EXT/EXT SPUR GEAR SET
c
COMMON/C1/X1¢100),X2¢100),Y1¢100),Y2C100),THETAL1(100),THETA2(100),
& W1¢100),W2¢100),21¢100),22¢100),R1(1007,R2(100D
COMMON/C2/E1,G1,PRY,YP1,RR01,RI1,F1,XMINL,
& E2,62,PR2,YP2,RR02,RI2,F2,XMIN2
COMMON/C3/PI,PHI1,T61,TG2,TP,PD1,PD2,RPC1,RPC2,RACL1,RAC2,TIN,RBCL,
] RBC2,C,SP,EP
COMMON/C4/DCP1(100),DCP2(100) ,THETC1(100),THETC2(100)
COMMON/CS/PS11SL,PSI1EL,PSI2SL,PSI2EL ,DELTAL,DELTA2,TDEFL1(5,50),
& TDEFL2(5,50)
COMMON/CE/L1,L2,11,1R1S,IR2E,INSTN
COMMON/C7/BUF7(708)
DIMENSION INAM1(3), INAM2(3), INAM3(3)

ARCOS(X)=P1/2.-ATANCX/SQRT(1-X%%2))
DATA INAM1/2HPA,2HRT,2H1 /,1NAM2/2HPA,2HRT,2H2 /
DATA INAM3/2HPA,2HRT,2H3 /

) WRITE(1,998)
998 FORMATC’LU FOR OUTPUT DEVICE?’)
READ(1,%> LU

7050 CALL TRANR
TIN=1500.0
c GO TO 9989

a0

1BYPSS=1
L1=100
L2=L1
PSI1SL=0.
BUF7¢1)=0.

PAS=7
LINF = 1

P = TIN/RBC1

F = F1

IFCF2.LT.F1) F = F2

WRITE(1,99)
99 FORMAT(’/ENTER NUMBER OF ITERATIONS (1 - RIGIDy 2 - DEFLECTEDI’)
READC(1,%) ITER
DO 120 I1=1,ITER
WRITE(CLUY,9900)
9900 FORMAT(/’CALL EXEC FOR PARTL’)

ASSIGN 100 TO INSTH
CALL EXEC(8, INAM1)
100 CONTINUE
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c

WRITE(LU,93810)
9910 FORMATC(/’CALL EXEC FOR PART27)
c

ASSIGN 110 TO INSTN
CALL EXEC(8, INAM2)
110 CONTINUE

120 CONTINUE

WRITECLU,9930)
9930 FORMAT(/’CALL EXEC FOR PART3? [Y/Nl > _ >
READ(1,130) IPICK
130 FORMATCA1)
IF C(IPICK.EQ.1HY) CALL EXEC(8, INAM3)

END
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SUBROUTINE TRANR
COMMON/C1/BUF1(1200)
COMMON/C2/BUF2(16)
COMMON/C3/BUF3(17)
COMMON/C4/BUF4(400)

DIMENSION IDCB(144), INAM1(3), INAM2(3D
DATA INAM1/2HDP,2HRO,2HFL/,ICODE/1/
DATA INAM2/2HDD,2HEF,2HL /

CALL OPENCIDCB,IER,1NAM1,0,-99,36)
IF CIER.GT.0) GO TO 30

WRITE(C1,20) IER,ICODE
FORMATC’FMP ERROR :’,15,’ AT 1CODE=’,I12,’
GO TO S0

1CODE=1CODE+1

CALL READF(CIDCB,1ER,BUF1)
IF CIER.LT.0) GO TO 10
ICODE=ICODE+1

CALL READF(CIDCB,IER,BUF2)
IF CIER.LT.0) GO TO 10
ICODE=ICODE~+1

CALL READF(IDCB,IER,BUF3)
IF C(IER.LT.0) GO TO 190
ICODE=ICODE+1

WRITE(C1,40) INAM1
FORMATC’DATA FROM “,3A2,’ WAS READ’)

CALL CLOSE(CIDCB,IER)

CALL OPENCIDCB,IER,INAM2,0,-99,36)
IF C(IER.GT.0) GO TO 70

WRITE(1,20) 1ER,ICODE
GO TO S0

1CODE=ICODE~1

CALL READF(IDCB, IER,BUF4)
1IF (1ER.LT.0) GO TO 60
ICODE~=ICODE+1

WRITE(1,40) INAM2
FORMATC(’DATA FROM ‘,3A2,‘ WAS READ)

CALL CLOSECIDCB,IER)
RETURN
END

PROGRAM ABORTED’)
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PROGRAM PARTL,S
COMMON/CI/XICIOO),X2(100),Y1(100),Y2(100),THETA1(100),THETAZCIOO),
N1(100),N2(100),21(100),22(100),R1(100),R2(100)

COMMON/CZ/EI,Gl,PRI,YPi,RROI,RIl,Fi,XMINi,
E2,62,PR2,YP2,RR02,RI2,F2,XMIN2
CONMON/C3/PI,PHI,TGI,TGZ,TP,PDl,PDZ,RPCI,RPCZ,RRCI,RRCZ,TIN,RBCi,

& RBC2,C,SP,EP

COMMON/C4IDCP1(100),DCPZCIOO),THETCi(lOO),THETCZCiOO)

CUMMON/CS/PSIISL,PSIiEL,PSIZSL,PSIZEL,DELTAi,DELTAZ,TDE?Li(S,SO),
TOEFL2(5,50)

COMMON/C6/L1,L2,11,1R1S, IR2E, INSTH

DIMENSION U1(€100),U2¢100),V1¢100),V2¢100),CDEFCS0)

ARCOS(X)=PI/2.-ATANCX/SQRT(1-X%%2))

AB-SQRTCRACiIIZ-RBCI!!Z)OSGRT(RAC2!!2-RBC2!!2)-ClSIH(PHI)
E1B=SQRT(RAC1x%2-RBC1%%2)

EiA=E1B-AB

E1P=RPCI®SIN(PHI)

AP=E1P-E1A

PB=AB-AP

SP=AP

EP=PB

WRITE(1,279)
FORMATCENTER OUTPUT DEVICE’)
READ(C1,x) LV

IF (11.EQ.2) GO TO 47

WRITE(LU,280) SP,EP

FORMATC’SP :7,F12.7,3X, ’EP s/,F12.7)

Li=100

L2=L1

US = -(SP)®COS(PHI)

VS = -(SPYXSIN(PHI) + RPC1

UE = EP%COS(PHI)

VE = EP®SINCPHI)> + RPC1

R1S = SGRTCUSHAx2 + VvSax2)

R2S=SQRT (USHM2+ (C-VS) %x2)

R1E=SQRT(UEm%2+VE%%2)

R2E = SQRTCUE™®2 + (C-VE)xx2)

ARG1 = ARCOS(RBC1/R1S)

BETA1S = TP/PD1 + (TANCPHI)-PHI) - (TANCARG1) -ARG1)
ARGZ2 = ABS(US)I/VS

PSI1SL = PI/2. + ATANCARG2) +« BETA1LS

ARG1 = ARCOS(RBC1/R1iE)

BETA1E = TP/PD1 + (TANCPHI)-PHI) - (TANCARG1)-ARG1)
ARG2 = VE/UE

PSI1EL = ATANCARG2) + BETA1E

ARGL = ARCOS(RBC2/R2S)

BETA2S = TP/PD2 + (TANCPHI)-PHI) - (TANCARG1) -ARG1)
ARG2 = ABS(US)/(C-VS)
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PSI2SL = (3.xP1)/2. - ATANCARG2) + BETA2S

ARG1 = ARCOS(RBC2/R2ED

BETA2E = TP/PD2 + (TAN(PHI)-PHI)> - (TANCARG1)-ARG1)
ARG2 = UE/(C-VE)

PSI2EL = (3.%P1)/2. + ATANCARG2) + BETAZ2E

DELTA1 = (PS11SL - PSI1EL)/49.

DELTA2 » (TG1/TG2)xDELTA1

c
Y15=R1S%(COS(BETA1S))-RROL
Y1E=R1Ex(COS(BETA1E))-RRO1
Y25=R2S%(COS(BETA2S)) -RR0O2
Y2E=R2E%(COS(BETA2E))-RR0O2
c

00O 290 IR1S=1,L1
1IF(R1S.GE.R1(IR1S)) GO TO 291
290 CONTINUE
291 DO 292 [R2S=1,L2
IF(R2S.GE.R2(IR2S)) GO TO 293
292 CONTINUE
293 DO 294 IRiE=1,L1
IFC(R1E.GE.R1CIR1E)) GO TO 295
294 CONTINUE
295 DO 296 IR2E=1,L2
IF(R2E.GE.R2(IR2E))> GO TO 297
296 CONTINUE
297 CONTINUE
WRITECLU,9000) IR1S,Y1S,IR2S,Y2S,IRLE,YL1E,IR2E,Y2E
9000 FORMAT(//’THEORETICAL INITIAL AND FINAL POINTS OF CONTACT’
¢ /1X,4C18,F11.7,4X))
WRITECLU,8900) R1S,R1(IR1S),R25,R2(1R2S) ,R1E,R1(IRLE),R2E,R2CIR2ED
8900 FORMAT(’THEORETICAL AND ACTUAL RADII TO CONTACT FOINTS?/1X,
& 4(2F11.7,4X))
47 CONTINUE
PSS1SL=PS11SL
PSS1EL=PSI1EL
PSS2EL=PSI2EL
PSS2SL=PSI2SL
INT=50
WRITECLU,9001) PSI1SL,PSIL1EL,PSI2SL,PSI2EL,DELTAL,DELTAZ2
9001 FORMATC’THEORETICAL INITIAL AND FINAL ANGLES OF CONTACT’,
t’, ANGULAR INCREMENTS’/4F11.7,3X,2F11.7)
ViSP=0.0
UiSP=0.0
Vv2sP=0.0
u2spP=0.0
ViEP=0.0
U1EP=0.0
V2EP=0.0
U2EP=0.0
Ui1=0.0
u22=0.0
U12EP=0.0
U12SP=0.0
MMC=0
NNC=0
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KKKK=(2%L1)+10
DELT=0.2

NLIM=75

ML IM=NL 1M

NLIMi=2%NLIM

MLIM1=NLIM1

L11=L1-1

L22=L2-1

IRDEL=30

IR1S1=1R15-IRDEL

IR152=1R15+IRDEL
P1SL=PSS1SL+DELTAL1=(FLOATCHLIM-1))Y%DELT
P2SL=PSS2SL~-DELTA2%(FLOATCNLIM-1))%DELT
DIF1=CY1(1)-Y1CL1))/CFLOATCLL))
DIF2=(Y2C1)-Y2(L2))/ (FLOATCL2))
IFCDIF1.GE.DIF2) DIFF=DIF1
IFCDIF2.GT.DIF1) DIFF=DIF2
IFCIR1S1.LE.1) IR1Si=1

IFCIR1S2.6GT.L1) IR1S2=L1-1

DIFF=9.99

WRITE(LU,9017) TDEFL1(3,1),TDEFL2(3,1),TDEFL1(3,50),TDEFL2(3,50)

8017 FORMAT(’DEFL. ADDED AT ENTRANCE’,2X,2F11.7/

& ‘DEFL. ADDED AT EGRESS /,2X,2F11.7)

49 CONTINUE

4900

IF (NNC.EQ.8.0R.MMC.ER.5) DIFF=DIFF+(DIFF/3.)

WRITECLU,4900) PSS1SL,P1SL,PSS52SL,P25L
FORMATC/*PSS1SL,P15L*,2F14.7//PSS52SL,P2SL*,2F14.7)

DIST=100.

DO S0 Ni=1 ,NLIM1

PSI1SL=P1SL-DELTA1%(FLOATCN1~1))=DELT
PSI2SL=P2SL+DELTA2%(FLOATC(N1-1))%DELT

DO S1 L=1,25

LC=L
U2(L)-ZZ(L)!SIN(PSIZSL-i.SiPI)-(NZ(L)*TDEFL2(3,1))!CDS(PSIZSL-1.5t
&PID
V2(L)-C-(ZZ(L)!COS(PSIZSL-i.S!PI)*(NZ(L)*TDEFL2(3,1))!SIN(PSIZSL—
&1.5%P1))

uzsp=v2(LC)

V2sP=v2(LC)

DO 52 JY=IR1S1,IR1S2

JC=J

U1CJ) = (W1 CJII+TDEFLLI (3, 1)) %SINCPSI1SL) +21 CJI%COSCPSI1SL)
U1CJ+1) = (W1 CU+1)+TDEFL1(3,1)I%SINCPSI1SL) +Z1 CJ+1)%COSCFSI1SL)
V1€ =-(W1CJII+TDEFL1(3,1))%C0S(PSI1SL) +Z1 (JI=SINCPSILSL)

IF (V1CJ).LT.V2SP) GO TO St
V1(J*l)'-(Hl(J*i)*TDEFLI(3,1))§COS(P5215L)'ZICJ*1)!SIN(PSIISL)
IF (V1(J>.GE.V2SP.AND.V1(J+1).GT.V25P) GO TO S5z
V12SP=V1(J>-V2SP

ARG11=V1(J+1)-V1(J)

ARGV11=(V2SP-V1(J)I®(UL(J+1)-UL1CJII)

U11=C(ARGV11/ARG11)+U1()

U12SP=U11-U2SP

MMC=8

WRITE(LU,S200) J,L,U125P,PSI1SL

5200 FORMAT(217,2F14.7)
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IF (U11.GE.U2SP.AND.ABS(V125P).LE.DIFF.AND.U12SP.LE.0.000100)
¢ GO TO 53
MMC =7
IF CABSCU12SP).LE.0.000010.AND.ABSCV12SP).LE.DIFF) GO TO 53
IF (ABS(U12SP).GT.ABS(DIST)) GO TO S2
DIST=U12SP
JCA=J
LCA=L
ANGS1=PSI1SL
ANGS2=PSI2SL
52 CONTINUE
51 CONTINUE
S0 CONTINUE
WRITECLU,5000) DIST,JCA,LCA,ANGS1,ANGS2
S000 FORMATC/’MISSED INITIAL CONTACT POINT‘/
+’CLOSEST APPROACH I1S’,F11.7,¢ BETWEEN PTS.’,I4,’ AND’,14/
4’ AT PS1I=’,F10.7,° PS12=’,F10.7)
MMCaS
53 CONTINUE
WRITECLU,9010) N1,J,L,U11,V1CJ),U2¢L),V2(L),U125P,V12SP,MMC
5010 FORMATC’ACTUAL START OF CONTACT’/1X,
¢ 315,3C2F11.7,4X),15X, “CONTACT CODE -/,I13)
4910 FORMATU’Ni,J,L,MMC,~*,415,20X, U11,V125P,U125P-* ,3F14.7,/,
& UL1CJI,U2CL),V1CJ),V2(L) - ,4F14.7,20X, ‘PSS15L,PS525L~",2F14.7)
Y15=21¢JC) -RRO1
Y25=22(LC)-RRO2
V1SP=V2SP
U1SP=U2SP
P1EL=PSS1EL-DELTA1%(FLOATCMLIM-13)%DELT
P2EL=PSS2EL+DELTA2%(FLOATC(MLIM-1) ) *DELT
IR2E1=IR2E-IRDEL
IR2E2=IR2E+IRDEL
IFCIR2E1.LE. 1) IR2E1=1
IFCIR2E2.6T.L2) IR2E2=L2-1
. WRITECLU,4920) PSS1EL,P1EL,PSS2EL,P2EL
4920 FORMATC/’PSSiEL,P1EL’,2F14.7/“PSS2EL.P2EL’,2F14.7)
DO 60 Mi=1,MLIMI
PSI1EL=P1EL+DELTA1®(FLOAT(ML-13)%DELT
PSI2EL=P2EL-DELTA2%(FLOAT(M1-1))%DELT
PO 61 J=1,25
JE=J
U1CJ) =CHLCJI+TDEFLLCS, INTIISINCPSI1EL) +Z1 (JI®COS(PSILEL)
V1CJ) == CWL CJI+TDEFLA (S, INT)IXCOSCPSILEL) +21 CJI®SINCPSILELD
UL1EP=U1CJED
VIEP=V1(JEY’
DO 62 L=IR2E1,I1R2E2
LE=L
U2(L)=22CL)®SINCPSI2EL-1.5%P1) - C(W2CL)+TDEFL2(3, INT))*CGS(PSI2EL
¢-1.5%P1)
U2CL+1)=Z2CL+1)%SINC(PSI2EL-1.5%P 1) -(W2(L+1) +TDEFL2(3, INTI )%
4COS(PSI2EL-1.5%P1)
V2 (L) =C-(22 (L) %COSC(PSI2EL-1.5%P 1)+ (W2CL) +TDEFL2(3, INTYI®SINCPSI2EL
&-1.5%¥P1))
IF (v2C¢L).GT.ViEPY GO TO 61
V2(L+1)=C-(Z2CL+1)%COSCPSI2EL-1.5%P 1)+ (W2(L+1)+TDEFL2(3, INT) ) =SIN
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&(PSIZEL-1.5%P1))

IF (V2C(L).LE.V1EP.AND.V2(L+1).LT.V1EP> GO TO 62
ARG22=V2(L+1)-V2(L)

ARGV22=(VIEP-V2(L))=x(U2(L+1)-U2(CL))
U22=(ARGV22/ARG22)+U2(L)>

U12EP=U1EP-U22

V12EP=V2 (L) -V1EP

NNC=5

IF (U1EP.GE.U22.AND.ABS(V12SP).LE.DIFF.AND.U12EP.LE.0.000080)
¢ GO TO 63

NNC=6

IF (ABS(UL12EP).LE.0.000010.AND.ABS(VI2EP).LE.DIFFY G0 TO 63
CONTINUE

CONTINUE

CONTINUE

NNC=8

CONTINUE

WRITECLU,9020) M1,J,L,U1(J),V1(J),U22,V2(L),VU12EP,VI2EP,DPSI2L,
& NNC

FORMAT(’ACTUAL END OF CONTACT’,/1X,315,3(2F11.7,4X),F11.7,
44X, ’CONTACT CODE -7,13)

DELTA1=(PSI1SL-PSI1EL)/49.

DELTA2=(TG1/TG2)%0ELTAL

YiE=Z1 (JE)-RRO1

Y2E=Z2(LE)-RRO2

VZ2EP=V1EP

U2EP=ULEP

R1S=SQRT(U1SPx%2+V1SP¥%2)

R1E=SAGRT(ULEP*%2+ViEPx%2)

CONTINUE

IF (NNC.EQ.8.0R.MMC.EQ.5) GO TO 49

DELTAl1 = (PSIISL - PSILEL)/CINT-1)

DELTA2 = (TG1/TG2)%DELTA1
PRANG=ATANCABS(R1EXSINC(PSI1EL)-R1S%SINCPSI1SL))/ABS(R1ExX
¢COS(PSI1EL)~R1S*COS(PSI1SL))>)=180. /P!

WRITECLU,9021) PSIi1SL,PSILEL,PSI12SL,PSI2EL,DELTAL,DELTA2
FORMAT(/“ACTUAL INITIAL AND FINAL ANGLES OF CONTACT’,

&’, ANGULAR INCREMENTS’/4F11.7,3X,2F11.7)

WRITECLU,9030) MMC,NNC,PRANG

FORMAT(“CONTACT CODES:’,216/’PRESSURE ANGLE:’,F6.2)

GO TO INSTN
CONTINUE
END
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PROGRAM PARTZ2,S
COMMON/C1/%X1(100),X2¢100),Y1¢100),Y2¢100),THETAL1(100),THETA2(100),

& W1¢100),W2¢100),21¢100),22(¢100),R1(100),R2(100)
COmMMON/C2/EL,G1,PRY,YP1,RROL{,RI1,F1,XMINL,
& E2,62,PR2,YP2,RR02,RI12,F2,XMIN2

COMMON/C3/P1,PHI,TG1,T62,TP,PD1,PD2,RPC1,RPC2,RACL,RAC2,TIN,RBCY,
& RBC2,C,SP,EP

COMMON/C4/DCP1(100),DCP2(100) ,THETC1(100),THETC2(100)
COMMON/CS/PS11SL,PSI1EL,PSI2SL,PSI12EL,DELTAL,DELTA2,TDEFL1(5,507,
& TDEFL2(5,50)

COMMON/CE/L1,L2,11,IR1S,IR2E, INSTN

COMMON/C7/VELR(S50) ,PS11(50),PS12(50),Q(5,50),TPS(5,50),CMS(50),

& ANG(8)

DIMENSION U1(100>,U2¢1003,V1(100),Vv2(100),CDEF(50),
¢RESIDL(2,50),THUVP(50),RC1(5,50),

¢RC2(¢5,50) ,RCC1(5,50),RCC2(5,50) ,RNCP(50),

4 THBUV(50) ,TDEF1(50) ,TDEF2(50) ,HDEF (50) ,5VS(50),
&XC1(3,50),X%C2(¢(5,50>,YC1(5,50>,YC2(5,50),PHIOP(S0),
&PS1(50) ,H2PS(50) ,PVS(50),VELRAT(100),STATLD(100)
REAL M,JD,J61,J62,JL,KDS,KGPAVG,KLS,LDS,LLS,LLR,
&MI1,MI2,KT

DIMENSION PSI11P(S),PSI2P(5),UCP(5),VCP(S),XCP1(S),
¢XCP2(5),YCP1(5),YCP2(S5) ,RCP1(5),RCP2(5),RCCP1(5),
&RCCP2(5),UC1(5),UC2(5),VC1(3),VC2(5),TDCPL(S),
&TDCP2(5) ,THCP1 (53 ,THCP2(5) ,PSIRD1(5),PSIRD2(S),
¢H1(5) ,H2(5) ,HD(5) ,CDEFL(S) ,STIFF(5),QTP(5),PSIL1TP(S),
&PSI2TP(5),2CP1(5),2CP2(5) ,WCP1(5) ,WCP2(5),TD(5)
DIMENSION ITIME(S),IPT1(5),IPT2(5)

DATA IR1S2,IR2E2/70,72/, RPMIN,RPMOUT/30.,10./
ARCOS(X)=P1/2.~-ATAN(X/SQRT(1-Xx%2))

WRITE(1,9000)

FORMAT(/ENTER LU OF OUTPUT DEVICE AND NO. OF ANGULAR INTERVALS?)
READC1,») LU, INT

CALL EXEC(11,ITIME)D

WRITECLU,3001) ITIME(S),ITIMEC4),ITIMEC(S),ITIMEC2),ITIMECL)
FORMATC/’START PART2 EXEC’,15,4(’:¢,12))

WRITECLU,9002) PSI1SL,PSILEL,PSI2SL,PSI2EL,DELTAL1,DELTAZ,TG1,TG2
FORMATC’/PSI1SL,PSI1EL’,2F11.7,3X,PSI2SL,PSI2EL,2F11.7/

& ‘DELTA{ ,DELTA2,2F11.7,3X,“761,T62,2F6.1)

WRITE(1,9003)

FORMATC(’PRINT RESULTS? [Y/N1‘)

READ(1,9004) IPICK

FORMAT (A1)

L1=100
L2=L1
P=TIN/RBC1
F=F1
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C2=(1.-PR1%%2)/E1 + (1.-PR2xx2)/E2
C3=(2.%(1.-PR1%%2)) /(PI%F1xEL)
C4=PR1/(2.%(1.-PR1))
C5=(2.%(1.,-PR2x%2))/(PI%F2x%xE2)
C6=PR2/(2.%(1.-PR2))
PSI1EP=0.
PSI2EP=0.
b0 81 = 1,50
THUVP(I>=0.0
VELR(CI)>=0.0
THBUV(I)=0.0
RNCP(I) = ¢
TDEF1(I) = 0.0
TOEF2CI)> = 0.0
HDEF(CI) = 0.0
CDEF(I) = 0.0
RESIDL(C1,1)=0.0
RESIDL(2,1)=0.0
DO 8 K = 1,5
QdK,1) = 0.0
YC1(K,I) = 0.0
XC1(K,I) = 0.0
YC2(K,1) = 0.0
XC2¢X,I1> = 0.0
RC1(K,I) = 0.0
RC2(K,I) = 0.0
RCC1(K,I> = 0.0
RCC2(K,I> = 0.0
TPS(K,I> = 0.0
IPT1(K)=0
IPT2(K>=0
8 CONTINUE
PSI1TP(1)=PSI1SL - 4._.%PI/TG1
PSI2TP(1)=PSI2SL + 4.%P1/TG2
PSI1L = PSIATP(1)
PSI2L = PSI2TP(1)
PSIi1LS = PSI1SL
PSIILE = PSIIEL
PSIILS = $.0001%PSI1SL
PSIILE = ,99999mPSI1EL
WRITE(LU,9005) TIN,P,C,Li,L2
9005 FORMATC’TIN’,F9.2,’ P’,F9.2,° c’,F9.5,” LI,L27,21I5)
DO 46 I = 1,INT
IF CIPICK.EQ.1HY) WRITECLU,461) I
461 FORMATC’ ANGULAR POSITION’,I3)
NCTP=0
Vi1=0.0
DO 10 K = 2,5
J=K-=-1
PSI1TP(K)=PSI1TP(J) + 2.%P1/TG1
PSI2TPCK)=PSI2TP(J) - 2.%P1/TG2
10 CONTINUE
PSI1(I)=PSI1TP(3)
PS12CI)=PSI2TP (3>
DO 23 XK = 1,5
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PSI11=PSI1TP(K)
PS122=PS12TP(K)
UCP(K) = 0.0
VCP(K) = 0.0
ZCP1(K) = 0
ZCP2CK) = 0
WCP1(K) = 0
WCP2¢K) = 0
XCP1(K) = 0
XCP2¢K) = 0
0
0
0
0

YCP1(K) =
YCP2(K) =
RCP1(K) =
RCP2(K) = 0.
RCCP1(K)=0.0

RCCP2(K)=0.0

JCPT1=0

JCPT2=0

JCPB1=0

JCPB2=0

VEL1=0.0

VEL2=0.0

IFCCPSILTPCK).GT.PSI1LS).OR. (PSILTPCK).LT.PSI1LE)) G0 TO 23
1R1522=1R152+1

IPRIME=0

IF (K.EQ.3) GO TO 8990

ARG=(PSILTP(K)~-PSIATP(3))/DELTAL

IPRIME=IFIXCARG)+1

IF CARG.LT.0) IPRIME=IFIX(ARG)-1

N=[-1PRIME

IF CCI-IPRIME).LE.0.OR.(CI-IPRIME).GT.S50) 60O TO 23
REMEM1=TDEFL1(3,N)

REMEM2=TDEFL2(3,N)

IF (K.LE.3) GO TO 8993

TOEFL1(3,N>)=0.0

TDEFL2(3,N)=0.0

IF (11.EQ.1) GO TO 8983

TDEFL1(3,N)=RESIDL(1,N)

TDEFL2(3,N)=RESIDL(2,N)

CONTINUE

DO 901 J=1,IR1S22

U1CJ) =CW1CJ) +TDEFLL (I, NIIXSINCPSI1ITP(K) ) +21(JIXRCOSCPSI1ITP(K))
Vi(J)--(Ni(J)*TDEFLICS,H))xCOS(PSI1TP(K))021(J)!SIH(PSIlTP(K))
CONTINUE

IR2E22=1R2E2+1

DO 902 L=1,IR2E22
U2(L)-22(L)!SIN(PSI2TP(K)-1.5!PI)-(NZ(L)0TDEFL2(3,N))!COS(PSIZTP(K
&)-1.5%PI)
V2(L)-C-((ZZ(L)!COS(PSIZTP(K)-1.5!Pl)'(NZ(L)OTDEFchs,H))lSlN(PSIZ
¢TPCK)-1.5%P13))

CONTINUE

TDEFL1(3,N)~REMEM1

TDEFL2(3,N) =REMEM2

CONTINUE

MMM=91

0
0
0
0
.0
.0
0
0
0
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C THIS SEGMENT LOCATES THE CONTACT POINT BETWEEN A GIVEN TOOTH PAIR
IFC(PSI1TP(K).GT.PSI1LS).OR. (PSI1TP(K).LT.PSILLEY) GO TO 23
DISTL = (RAC1 - RRC1)/(FLOAT(L1)%S.)

GO TO 14
13 DISTL = 2.%DISTL
14 DO 15 J=1,IR1S2
DIST = CABSCTANCPHII®U1(J)-V1(JI+RPC1))/(SARTCCTANCPHI) ) =x2+1.))
IFC(DIST.LT.DISTL) GO TO 16
1S CONTINUE
GO TO 13
16 IF(DIST.EQ.0.0) GO TO 21
IF(J.EQ.1) GO TO 18
IFCU1(J).EQ.0.0) GO TO 17
ARGS = ABS(RPC1-V1(J))/ABSCU1(CJ))
SLOPE = ATANCARGS)
IFCCSLOPE.GT.PHI),AND. (U1(CJ).LT.0.0)) GO TO 19
IFCC(SLOPE.LT.PHI).AND. (U1(J3.6T.0.0)) GO TO 19
GO TO 18
17 IFC(V1(J).LE.RPC1) GO TO 19
C POINT 1S ABOVE THE LINE OF ACTION
18 UA = UL
VA = V1(J)
us Ul1dJ+1d
VB = V1(J+1)
GO TO 20
C POINT IS BELOW THE LINE OF ACTION
19 UA = UL1(J-1)
VA = V1(J-1)
UB = U1dJ)
VB = V1(D
20 SLOPE = (VA-VB)/(UA-UB)
A1l = TANCPHI)
A12 = RPC1
A21 = SLOPE
A22 = VB - SLOPE=UB
UCP(K) = (A22-A12)/(A11-A21)
VCP(K) = A11%UCP(K) + A12
G0 T0 22
21 UCP(K) = U1(D)
VCP(K) = V1(D)
22 CONTINUE
RCP2N = SQRT(CUCP(K)®w%2) + ((C-VCP(K))%%2))
JCP=J
JOEL=40
JCPB1=JCP+JDEL
JCPT1=JCP-JDEL
IF (JCPB1.GE.IR1S2) JCPB1=]R152
IFCJCPT1.LE. 1) JCPTi=1
R2N=SQRT((C-VCP (K) ) %m2+UCP (K) =n2)
DO 165 L=1,]R2E22
LCP=L
IFCR2N.GE.R2(L)) GO TO 166
165 CONTINUE
166 JCPB2=LCP+JDEL
JCPT2=LCP-JDEL
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IF (JCPB2.GE.IR2E2) JCPBZ=1R2E2
IFC(JCPT2.LE. 1) JCPT2=1

WRITECLU,167) I,K,JCP,LCP,W1CJCP),Z21CJCP),WH2CLCP),2Z22(LCP)
FORMATC/“POSITION’,13,5X,’PAIR’,12,5X,’CANDIDATES,215/

¢ ‘LOCAL GEAR COOR. NO. 1/,2F10.7,° NO.2’,2F10.7)

MMM=92

U1U2P=U1 (JCP)-U2(LCP)

V1V2P=V1(JCP)-V2(LCP)

IFCCK.EQ.3).AND. (1.EQ.1).AND. (V2SP.NE.0.0)) VCP(K)=V2SP
IFC(C(K.EQ.3).AND. (1.EQ.1).AND. (V2SP.NE.0.0)) UCP(K)=U2SP
IFCCK.EQ.3).AND. (1.EQ.1).AND. (V2SP.NE.0.0)) GO TO 35¢
IFCCK.EQ.3).AND. (1.EQ.S50).AND. (VIEP.NE.0.0)) VCP(K)=VLiEP
IFCCK.EQ.3).AND. (1.EQ.50).AND. (VIEP.NE.0.0)) UCP(K)=U1EP
IF(C(K.EQ.3).AND. (1.EQ.50).AND.(V1EP.NE.0.0))> GO TO 350
DV11i=0.0

U11=0.0

u22=0.0

Vi1=0.0

ALIMIT=0.00001»(1,+.35%FLOAT(2-11))

DO 204 J=JCPT1,JCPB1

IF (J.EQ.JCPT1) COMPAR=100.0

Ui1=U1(J)

Vi1=v1idJDd

VCPT2=V2(JCPT2)-5.

IF (V11.LT.VCPT2) MMM=3

IF (V11.LT.VCPT2) GO TO 1939

D0 202 L=JCPT2,JCPB2

IF (V2(L+1).6E.V11) GO TO 222

CONTINUE

MMM =7

GO TO 204

ARGV2=V2(L+1)-V2CL)

IF CARGV2.NE.0.0) U22=((V11-V2(L))I®(U2C(L+1)-U2(L))/ARGV2)+U2(L)
IF (ARGV2.EQ.0.0) U22=U2(L)

ui2=y11-uy22

IF (U11.GE.U22) MMM=0

IF (U11.GE.U22) GO TO 349

IFCABS(UL12).LE.ALIMIT) MMM=18

IFCABSCU12) .LE.ALIMIT) GO TO 349

MCA=1

IF (V1(J+1).6T.V2(L)) GO TO 203

ARGV3=V1(J+1)-V1(hN

IFCARGV3I.NE. 0.0) UL11=((V2(L)-V1(J)I®U1(J+1)-U1CJIII/ARGVII+UL(D)
IF CARGV3.EQ.0.0) U11=U1(J+1>

Uiz=ut1-v2cd

IF (U11.GE.U2(L)) MMM=T72

IF C(U11.GE.U2(L))> GO TO 349

IFCABSCU12) .LE.ALIMIT) MMM=73

IF(ABS(U12) . LE.ALIMIT) GO TO 349

MCA=2

IF (L.EQ.1) GO TO 203

IF (V1CJ+1).GT.V2(L-1)) GO TO 203

IF CARGV3I.NE.0.0) U11=C(V2(L-1)-V1(JII=(UL1(J+1)-U1CJII/(V1(J*1)~
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IF (ARGV3.EQ.0.0)> U11=U1(J+1)
Ut2=U11-U2(L-1)

IF (U11.6E.U2(L-1)) MMM=78

IF (U11.GE.U2(L-1)) GO TO 349
IF(ABS(U12) . LE.ALIMIT) MMM=79
IFC(ABSCU12).LE.ALIMIT) GO TO 349
MCA=3

IF (ABS(U12).GE.ABS(COMPAR)) GO TO 205
COMPAR=U12

JCA=J

LCA=L

CONTINUE

CONTINUE

CONTINUE

CONTINUVE

WRITECLU,S05) I,K,MCA,PSI1TP(K),PSI2TP(K),COMPAR,JCA,LCA

FORMATC/AT POSITION’,I3,” TOOTH PAIR’,12/
&’ NO CONTACT FOUND MCA’,14,7 PSI1,2¢,2F12.7/

&’ CLOSEST APPROACH :’,F12.7,’ BETWEEN PTS.’,I13‘ AND‘,I3)

UC1 (K)=U1CJCP)
VC1(K)=V1(JCP)
UC2(K)>=U2(LCP)
VC2(K)=v2(LCP)
UVDCP=0.0
MMM=15
VELR(I)>=TG2/TG1
GO TO 360
CONTINUE
UCP(K)=U11
VCP(K)=V11
CONTINUE

WRITE(CLU,9080) J,U1(J),V1CI) ,PSTATPCKI,L,U2¢L) ,V2(CL) ,PSI2TP (KD

& MMM, U112, COMPAR
FORMAT(5X,*ACTUAL,15,3F13.7/11X,15,3F13.7/
& SX, “CONTACT CODE’,I5,5X, ‘U12,COMPARY,2F12.7)

IPT1(K) =y

IPT2(K) =L

UVDCP=0.0

NCTP = NCTP ~+1

RCP1(K) = SQRTCCUCP(K)®%2) + (VCP(K)*%x2))
RCP2(K)=SGRT(UCP (K) %%2+ (C-VCP (K))%x2)

2CP2(K) = (C-VCP(K)>%COS(PSI2TP(K)-(3.%P1)/2.) +
1UCP(KI®STIHCPSI2TP(K)-(3.%P1)/2,)

ZCP1(K) = UCP(K)XCOS(PSI1TP(K)) + VCP(K)®SINCPSI1TP(K))
WCP1(K) =~ UCP(KI®SINCPSI1TPC(K))> - VCP(K)I®COSCPSI1TP(K))
WCP2(K) = (C-VCP(K)I®SIN(PSI2TP(K)-(3.%P1)/2.) -
1UCP(K)®COSC(PSI2TP(K)-(3.%P13/2.)
RCCP1(K)=SQRT(ABS(RCP1(K)®X2-RBC1%%2))
RCCP2(K)=SART(ABS(RCP2(K)X%2-RBC2X%2) )

IFC(K.NE.3) GO0 TO 359

IF(K.EQ.3) THBUV(K)=ATANCWCP1(K)/ZCP1(K))
ANG1=ATANCUCP (K) /VCP(K))
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IFCUCP(K).LE.0.0) ANG1=ATANCABS(UCP(K))/VCP(K))
ANG2=ATANCUCP(K)/ (C-VCP(K)I)D

IFCUCP(K).LE.0.0) ANG2=ATANCABSCUCP(K))/(C-VCP(K)))
AN12=ANGL+ANG2

ANB1=ATAH(RCCP1(K)/RBC1)

AN1B=ANB1+ANG1

IF (UCP(K).GT.0.0) AN1B=ANB1-ANG1

AN11=PHI-ANG1

AN22=ANG2+PHI1

IF (UCP(K).GE.0.0) AN11i=PHI+ANG1

IF (UCP(K).GE.0.0) AN22=PHI-ANG2
RCCNi-SGRT(eBS(RBCi!!Z*RCPi(K)lia‘Z.*RBCIXRCPi(K)¥CDSCAN11)))
RCCN2=SQRTC(ABS(RBC2%%2+RCP2(K) %%2-2 . %RBC2%RCP2(K) *COS(AN22)))
PPND=RBC1/COS(AN1B)

RPMOTN=PPND%RPMIN/ (C-PPND)

VELRCI)=RPMIN/RPMOTN

VEL1=RCP1(K)%RPMINX2.%P1/12.
VEL2=RCP2(K)®RPMOTH»2 . %P1/12.

PPP=PPND-RPC1

VEL11=VEL1

VEL22=RCP2(K)%RPMOUT=2 . %xP1/12.
SV12=SQRTCABS(VEL1*%2+VEL2%%2-2, *VEL1%VEL2%C0S (AN12)))
SVS(1)=5V12

SV11=SQRTCABS(VEL11xx2+VEL22%%2~2. *VEL11#VEL22%(C05CAN12)))
OMEGA1=2,. %P I*RPMIN/60.

OMEGA2=2. %P I=RPMOUT/60.

SLIDV1=SQRT (ABS(RCP1(K)*%2-RBC1X%%2))

SLIDV2=SQRTC(ABS (RCP2(K)xx2-RBC2%%2))
SV13=(ABS(OMEGA2%SL IDV2-0MEGAL1XSLIDV1)) %S,
SVR=SVS(I)/SV13

RVELR=RPMOTN/RPMOUT

C INTERFERENCE CHECK

LINF=1

NHNN=1

IFCRCP1(K).LT.RBC1) LINF=2

IFCRCP2(K).LT.RBC2) LINF=2

IFCRCP1(K).LT.RBI1) LINF=2

IFCRCP2(K).LT.RBI2) LINF=2

IF(VCP(CK).GT.0.0) UVDCP=SQRTCCUCP(K)-U1(JCP)I ) xx2+ (VCP(K)-V1(JCP))I=
1%2)

1IF(VCP(K).EQ.0.0) UVDCP=~-1.0

IFCVCPCK) . LT.V1CJCPID UVDCP=-UVDCP
PHIOPCI)=CANB1+ANG1)%57.29578

IF CUCP(K).GT.0.0) PHIOP(I)=CANB1-ANG1)%57.29578

359 CONTINUE
360 CONTINUE

UU1MAX=0.0

KKMAX=0

KKMM=0

NMAX=0

IFC(RCP1(K).EQ.0.0.0R.RCP2(K)>.EQ.0.0) GO TO 23
IFCCPSILTPCK).GT.PSI1LS).OR. (PSIL1TP(K).LT.PSI1LE)) GO TO 25
XCP1(K) = WCP1(K)

XCP2(K) = WCP2(K)

YCP1(K) = 2CP1(K) - RRO1
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YCP2(K)=2CPZ(K)-RR0O2
CONTINUE

Q1 = 1.0

KT = 0.0
PSIRLT = 0.0
PSIR2T = 0.0
DO 35K = 1
TOCPL(K) =
TDCP2(KD
THCP1 (KD
THCP2 (KD
TDCK) = 0.0
PSIRD1C(K) = 0.0
PSIRD2(K) 0.0
H1CK) = 0.
H2(K) = 0.
HD(K) = 0.
CDEFL(K) = 0.
STIFF(K) = 0.
KT=0.0
TPS(K,1)=0.0
Mif=7
IFC(RCP1(K).EQ.0.0.0R.RCP2(K).EQ.0.0) MM=35

IFCC(PSIITP(K) .GT.PSI1LS).OR. (PSIL1TP(K).LT.PSIL1LED) MM=36
IF(RCP1(K).EQ.0.0.0R.RCP2(K>.EQ.0.0) GO TO 35
IFCC(PSIITP(K).GT.PSI1LS).OR. (PSILTP(K).LT.PSILLE)) G0 TO 35
DO 24 K1 = 1,L1

IFCY1(K1).EQ.YCP1(K).OR.Y1(1).LT.YCP1(K2>) GO TO 30
IF(Y1(K1).LT.YCP1(K)) GO TO 31

CONTINUE

DO 26 K2 = 1,L2

IF(Y2(K2).EQ.YCP2(K)) GO TO 32

IFCY2(K2).LT.YCP2(K)) GO TO 33

CONTINUE

TDCP1(K) = DCP1(K1)

THCP1 (K> = THETC1(K1>

GO TO 25

CONTINUE

YINCRM=(Y1(K1-1)-YCP1(K))/(Y1(Ki-1)-Y1(K1))
TDCP1(K)=DCP1(K1-1)+YINCRM®(DCPL1(K1)-DCP1(K1-1))

THCP1(K) =THETC1(K1-1)+YINCRM®(THETCL (K1) -THETC1(K1-1))

GO TO 25

TOCP2(K2> = DCP2(K2)

THCP2(K) = THETC2(K2)

GO TO 35

CONTINUE

YINCRM=(Y2(K2-1)-YCP2(K))/(Y2(K2-1)-Y2(K2))
TDCP2(K)=DCP2(K2-1)+YINCRM%(DCP2(K2)-DCP2(K2-1))
THCP2(K)=THETC2(K2~1) +YINCRM#*(THETC2(K2)~THETC2(K2~-1))
CONTINUE

DO 36 K = 1,5

IF(RCP1(K).EQ.0.0.0R.RCP2(K).EQ.0.0) GO TO 36
IFC(PSI1TP(K).GT.PSI11LS).OR. (PSI1TP(K).LT.PSIL1LE)) GO TO 36
TDC(K) = TDCP1(K) + TDCP2(K)

S
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Ci = (4.%RCCP1(KI)®RCCP2(K))/((PI%F)®(RCCP1(K)+RCCP2(KI))
BH = SQRT(C1xC2xQ1)

H1(K) = XCP1(K)/COS(THCP1(K))

H2(K) = XCP2(K)/COS(THCP2(K))

ARG3 = (2.%xH1(K))/BH

ARG4 = (2.%H2(K))/BH

HD(K) =(C3%(ALOGC(ARG3) -C4)+CSx(ALOG(ARG4) -C6)I=QA1

CDEFL(K) = TD(K) + HDCKD

STIFFCK) = 1.0/CDEFL(K)

KT = KT ¢ STIFF(KD

TPS(K, I)=STIFF(K)

CONTINUE

CMS (1) =KT

po 37 K = 1,5

QTP(K) = 0.0

IF (KT.NE.0.0) QTPCKI=(STIFF(K)/KT)%pP

IF (PSI1TP(K).GT.PSI1LS.OR.PSIATPC(K).LT.PSIILEY GO TO 37
Vi1 = QTPC(KI®COSCTHCP1(K))

TL = V11%(YCP1(K) + RRO1)

PSIRD1(K) = (T1/(C4.»PIxFixG1))%(1./(RI1%%x2)~1./(RRO1%x%2))
PSIRL1T = PSIR1IT + PSIRD1(K)D

V22 = QTP(K)>®COS(THCP2(K?)

T2 = V22%(YCP2(K) + RRO2)

PSIRD2C(K) = (T2/(4.%PIxF2xG2))%*(1./(RI2%%2)-1./(RRO2%x%x2))
PSIR2T = PSIR2T + PSIRD2(K)

CONTINUE

KT=0.0

DO 40 K = 1,5

IFC(RCP1(K).EQ.0.0.0R.RCP2(K)>.EQ.0.0) GO TO 40
IFC(PSI1ITP(K).GT.PSIILS).OR. (PSIL1TP(K).LT.PSILLE)) GO TO 40
THETAG = ATANCXCP1(K)/(RRO1 + YCP1(KJ)))

ARG = ABS(THCP1(K) + THETAQ)

STIFFC(K) = 1.0/CDEFL(K)

KT = KT + STIFF(K)

TPSCK,I)=STIFF (KD

TDCP1(K) = TDCP1(K)®QTP(K) + RCP1(K)®(PSIR1T-PSIRD1(K))I%C3OS(ARG)
THETAQ = ATAN(XCP2(K)/(RRO2+YCP2(K)))

ARG = ABS(THCP2(K) + THETAQ)

TDCP2(K) = TDCP2(K)®QTP(K) + RCP2(K)%(PSIR2T-PSIRD2(K))*COS(ARG)
TDC(K) = TDCP1(K) + TDCP2(KD

BH = SQRT(C1%C2xQTP(K))

ARG3 = (2.%H1(K))>/BH

ARG4 = (2,.%H2(K)>/BH

HDC(K) = (C3%(ALOG(ARG3>-C4> + CS=C(ALOGC(ARG4)>-C6))I=QTP (KD
CMS (1) =KT

CDEFL(K) = TD(K) + HD(CK)

CONTINUE

RNCP(I) = NCTP

DO 4000 K=2,5

IF (PSILTP(K).GT.PSI1LS.OR.PSIATPCK).LT.PSI1LE) GO TO 4000
IF (QTP(K)>.NE.0.0) GO TO 4000

RCP11=SQRT(UC1(K)x%2 + VC1(K)I%%2)

RCP22=SQRTC(UC2(K)>=x2 + (C-VC2(K))=%2)
TDCP1(K)=RCP11%(PSIR1T-PSIRD1(K))
TDCP2(K)=RCP22%(PSIR2T-PSIRD2(K))
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CONTINUE

DO 43 K = 1,5

TPS(K,1)=STIFF (KD

Q¢K,I) = GTP(K)

YC1(K,1) = YCP1(K)

XCL1(K,I) = XCP1(K)

YC2(K,1) = YCP2(K)

XC2(K,I) = XCP2(K)

RC1(K,I) = RCP1(K)

RC2(K,I) = RCP2(K)

RCC1(K,I) = RCCP1(K)

RCC2(K,I)=RCCP2(K)

TOEFL1(K,I>=TDCP1(K) + HDC(KI*DELTA1/(DELTA1+DELTA2)
TDEFL2CK,I)=TDCP2(K) + HD(K)XDELTA2/(DELTA1+DELTA2)
IF(K.NE.3) GO TO 41

RESIDL(C1,I)=TDEFL1(3, 1)

RESIDL(2,I)=TDEFL2(3,I)

IFCCVCP(3).NE.0.0).AND. CUCP(3).LE.0.0)) THUVPC(I>=ATARCUCP(3)/VCP(S
1))-THBUV (1) +THPPL

IFCCVCP(3).NE.0.0).AND. (UCP(3).G6T.0.0)) THUVPCI)=ATANCUCP(3)/VCP (3
13)-THBUV(I)+THPP1

IF(VCP(3).EQ.0.0) THUVP(I)=0.0

THUVPCI) =THUVP(1)%57.29578

CONTINUE

IF C(IPICK.EQ.1HN.OR.QTP(K).LT.5.) GO TO 43
WRITECLU,411) K,STIFF(K),QTP(K),TDEFL1(K,I),TDEFL2(K,ID,
& IPT1(K),PSILTPC(K,,IPT2(K),PSIZTP(K)
FORMAT(16,E%3.7,F10.2,2E11.5,5X,2(16,F11.7,3X))
CONTINUE

TDEF1(1) = TDCP1(3)

TDEF2(1) = TDCP2(3)

HDEF (1) = HD(3)

CDEF(I) = CDEFL(3)

TPS(3,1)=STIFF(3)

IF (Q(4,1).6T7.1.0.AND.PSI1EP.EQ.0) PSIL1EP=PSI1TP(3)
IF (Q(4,1).GT7.1.0.AND.PSI2EP.EQ.0) PSI2EP=PSI2TP(3)
GO TO 4S

TPS(3,1) = 0.0

PSI1TP(1) = PSI1L - FLOAT(I)®DELTA1

PSI2TP(1) = PSI2L + FLOAT(I)®DELTA2

HZP=0.0

IF (RC1(3,1).EQ.0.0.0R.RC2(3,1).EQ.0.0) GO TO 4500
SRCN=1./RCCN1+1./RCCN2
HZN=0.564%SQRT((Q(3, 1) %SRCN) / (F%C2))
SHZN=HZN=SVS(I)%0.2

SRCC=1./RCC1(3,1)+1./RCC2(3, 1)
HZP=0.564%SGRT((Q(3,1)%SRCCI / (F%C2))
SHZI=HZP%SV13%0.2

IF (11.EQ.2) SHZI=HZP=SV1i2x0.2

RBCN=RBC1ixVELR(I)
RCC2(3,1)=SQRT(RC2(3, 1) xx2~-RBCN==2)

CONTINUE

CORTINUE

WRITE(LY,9989)

FORMAT(/COMPLETED PART2”)
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IF (I11.EQ.2) GO TO 9990
ANG(1)=PSI1SL
ANG(2)=PSI1EP
ANG (3> =PS1I2SL
ANG (43> =PSI2EP
GO TO 9991
ANG(S5)=PSI1SL
ANG(8)=PS11EP
ANG(7)=PSI2SL
ANG(8)=PSI2EP
GO TO INSTHN
END

PROGRAM PART3,S
COMMON/C?7/BUF7(708)

DIMENSION IDCB(144), INAME(3)
DATA INAME/2HEX,2HDA,2HTA/,ICODE/1/

CALL OPENCIDCB,IER,INAME,1,-99,36)
IF (IER.GT.0) GO TO 13

WRITE(1,10) IER,ICODE
FORMATC(’FMP ERROR :°,15,’ AT ICODE=’,12,’ FROGRAM ABORTED’)
GO TO S0

ICODE=ICODE+1
CALL MWRITF(IDCB,IER,BUF7,1416)
IF (IER.LT.0) GO TO 9

WRITE(1,30) INAME
FORMATC‘DATA FROM SEGMT WAS WRITTEN TO FILE “/,3A2)

CALL CLOSECIDCB, IER)
END

BLOCK DATA

COMMON/C1/BUF1(1200)
COMMON/C2/BUF2(16)
COMMON/C3/BUF3(17)
COMMON/C4/BUF4(400)
COMMON/CS/BUFS (506>
COMMON/C6/L1,L2,11,1R1S,IR2E,INSTH
COMMON/C?7/BUF7(708)

END




c . <{830610.1607>
FTN4,L
PROGRAM EPCYC
c
Cxx#»%THIS PROGRAM ASSEMBLES THE SUN/PLANET AND PLANET/RING STIFFNESS FUN
c
COMMON/C8/RNCPE(S0),PST1E(S0),PSI2E(50),QECS,50),TPSECS,S0),

4CMSECS50) , ANGE (8)
COMMON/C9/RNCPI(50),PSI11(50),PS121¢50),Q1(5,50),TPSI(S,S

&CMSI(50),ANG1(8)

COMMON/C10/ PSI1S(50,3),KGE(S0,3),PSIP(50,3),K61¢50,3),

& REPE(3) ,REPI(3),DUMMYC10)
COMMON/C11/VRATEX(S0,3) ,VRATINCS0,3)
COMMON/C12/TPECS0,3),TPICS0,3)

DIMENSION ITIME(CS),KGDATAC3) ,KEXDAT(3),KINDAT(3), ITDATACS)
DIMENSION ISHARE(3) PSIIEX(SO) »PSI2EX(50),PSIL1INC50),PSI2INCS0)
REAL KGE,KG1
DATA KEXDAT/2HEX,2HDA,2HTA/, KINDAT/2HIN,2HDA,2HTA/
DATA KGDATA/2HKG,2HDA,2HTA/, ITDATA/2HST,2HDA,2HTA/
DATA ISHARE/2HSH,2HAR,2HE /
DATA TGS,TGP,TGR/14.,28.,70./, P1/3.1415927/
c
WRITEC1,1)
1 FORMATC’LU FOR OUPUT DEVICE?”)
READCL,®) LU
CALL EXEC(11,ITIME)
WRITECLU,2) ITIMECS),ITIMEC4),ITIMEC3),ITIMEC2),ITIMECL)
2 FORMATC/’EPIC2 EXEC START AT “,I15,4C’:*,12)/)
c
CALL TRANRCKEXDAT,8)
CALL TRANRCKINDAT,9)
CALL TRANRCKGDATA,10)
CALL TRANRCITDATA,11)
CALL TRANRCISHARE,12)
c

11

12

14
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DO 6 1=1,50

PSIL1EXCI)=PSI1ECI)> - Pl/2.
PSI2EX(CI)=(3.%P1/2.) - PSI2E(CI)
PSI1INCI)=(2.%P1/360.)%C-PSI11CI))
PSI2INCI)=(2.%P1/360.)%C-PSI2ICI))
CONTINUE

WRITE(1,11)

FORMATC’LIST EXDATA AND INDATA? [Y/NY _%>
READ(C1,12) IPICK

FORMAT CALD

IF CIPICK.EQ.1HN) GO TO 14
WRITE(LU,13)> ANGE,ANGI,

& (I,PSI1ECI),PSI2ECI),TPSEC2, 1) » TPSE(3,1),CMSECI) ,RNCPECI),
& I,PSILICI),PSI21C1),TPSIC2,1), TPSI(3,1),CMSICI),RNCPICI),I=1,50)
13 FORMATC’ANGE’,8F13. 7/'ANGI’,8F13 7//50(2(¢15,2F9.7,3E11.5,F9.6)/))

WRITE(1,15)
FORMAT(/’0OPTIONS: 1-KGE 2-GPSE 3-KGI
&’ S-RELIST 6-NO CHANGE‘/

&“ENTER CHANGES [»%INCLUDE DATA POINTS FOR OPTIONS 1-dmx]

READC1,%) ICHNG,NUM

4-GPSI’,

>

=

CT.
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G0 TO (160,165,170,175,6,19), ICHNG
160 WRITE(C1,161) CMSEC(NUM) ,RNCPECNUM
161 FORMATC’CURRENT VALUES:/,2E15.7,//ENTER NEW VALUES’)
READC1,%) CMSE(NUM) ,RNCPECNUM)
GO TO 180
165 WRITE(1,161) TPSE(2,NUM),TPSE(3,NUM)
READ(1,%*) TPSE(2,NUM),TPSE(3,NUM)
G0 TO 180
170 WRITE(C1,161) CMSI(HUM) ,RNCPI(NUM)
READC1,%) CMSI(NUM),RNCPICNUM)
GO TO 180
175 WRITE(1,161) TPSI(2,NuM),TPSI(3,NUM)
READC1,%) TPS1(2,NUM),TPSI(3,NUM)
180 WRITE(1,181) NUM,TPSE(Z,NUM),TPSE(B,NUM),CMSE(HUM),RNCPE(NUM),
& TPSIC2,NUM) ,TPS1(3,NUM) ,CMST CNUM) ,RNCP I CHUM)
181 FORMATC’NEW VALUES @/,14,2(3F10.1,F10.7,4X))
GO TO 14

19 DO 20 I=1,50
IF (GE(C4,1).G6G7.1.0) GO TO 21
20 CONTINUE
21 1EPE=I
ITPE=50-1EPE
Do 22 1=1,50
IF (Q1¢4,1).6T.1.0) GO Tu 23
22 CONTINUE
23 1EPI=I
ITPI=S0-1EPI
WRITE(1,24) IEPE,IEPI
24 FORMATC’1EPE,IEPI’,215,’ CHANGE? [Y/N1’)
READ(C1,12) IPICK
1F CIPICK.EQ.1HN) GO TO 28
WRITE(1,25)
25 FORMATC’ENTER NEW VALUES FOR IEPE AND IEP1‘)
READC1,%) IEPE,IEPI
WRITE(1,26) IEPE,IEPI
26 FORMATC’NEW VALUES FOR IEPE &IEPI’,216)
WRITE(CLU,27) IEPE,IEPI
27 FORMATC”IEPE,IEP1”,215)

28 PRS =ANGI(1)
PRE =ANGI(2)
PRSP=ANGI (5)
PREP=ANGI (61
PR =2%P1 - ANGE(3)
RATE=(PRSP-PREP)/ (PRS-PRE)
PRP =PREP + RATE*(PR-PRED
PRPP=PRP - PIl/2.

DO 30 I1=1,50
IF (PRPP.GT.PSI1INCI)) GO TO 32

30 CONTINUE

31 HALF=(PSI1INCI-1) - PSILINCI))I=®0.5 + PSILINCID
IF (PRPP.GT.HALF) I=I-2
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MRITEC1,32) PRS,PRE,PRSP,PREP,PR,RATE,FRP,FRPP, I
32 FORMAT(’PRS, PRE, PRSP, FPREP, PR, RATE, PRP, PRPP, I*/
& 8F11.7,15)

33 WRITEC1,34)
34 FORMATC’WHICH SUN/PLANET/RING TO BE CONSIDERED?
& LHIT *"4* TO SKIP1%)
READ(1,x) ISPR
IF CISPR.GT.3) 60 TO 36
REPECISPRY=FLOATCIEPE)
REPICISPR)=FLOATCIEPI)

DO 35 J=1,50
PSISC(J,ISPRI=PSIL{EX(1) - PSIL1EXCJ)
PSIP(J,ISPRY=PSI1INC1) - PSILINCJ)
K=J
IF (K.GT.IEPE-1) KsK-IEPE+%
KGE(J, ISPR) =CMSE (K)
IF (CMSECK).LT.2.5E5) KGECJ,ISPR)=S5.ES
L=l+J-1
IF (L.GT.IEPI-1) L=L-IEPI+1
KGI(J, ISPRI=CHSI(CL)
IF (CHMSICL).LT.2.SES) KGICJ,ISPR)=5.E5
VRATEX(J, ISPR) =RHCPE (J)
VRATINCJ, ISPRI=RNCPICL)

35 COHTIMUE

36 HEWTH=0
00 37 J=1,50
TPE(J,2)=0.
TPE(J,3)=TPSE(3, )
TPI(J,2)=0.0
L=le+J-1
IF (L.GT.IEPI-1) NEWTH=1
IF (L.GT.IEPI-1) L=L-IEPI+1
TPI1(J,3)=TPSI(3,L)
IF (NEWTH.EQ.1) TPI(CJ,3)=TPSI(2,L)
37 COHTIMUE

HRITE(1,40)

40 FORMATC’ANY FURTHER REVISIONS? [Y/HY _*)
READ(1,12) IPICK
IF C(IPICK.EQ.1HY) GO TO 33

42 WRITE(1,43)
43 FORMATC’LIST DATA FILE KGDATA? [y/81 _

READ(1,12) IPICK

IF C(IPICK.EQ.1HN) GO TO 46

WRITE(1,44)
44 FORMATC’LU NHUMBER OF GUTPUT DEVICE?’)

READ(1,x) LU

HRITE(CLUY, 45) IEPE,IEPI,(J,(PSIS(J,K),KGE(J,K),K-1,3),

& J, (PSIPCJ,L),KGICJ,L),L>1,3),J=1,50)
45 FORMAT('IEPE,IEPI',215/50(12,3(F10.6,F10.1),IG,S(FIO.G,FIO.i)/))
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46 WRITE(1,47)
47 FORMATC’LIST DATA FILE STDATA? [Y/NI _’J

READ(1,12) IPICK

IF CIPICK.EQ.1HN) GO TO 50

WRITE(1,44)

READ(C1,%) LU

WRITE(CLU,49) (J, (VRATEX(J,K) ,K=1,3),J, (VRATIN(J,L),L=1,37,J=1,50
49 FORMAT(S0¢2CI13,3F10.4,5X3/3)

S0 WRITEC1,51)
51 FORMATC’LIST DATA FILE SHARE? (Y/N] _%)
READ(C1,12) IPICK
IF CIPICK.EQ.1HN) GO TO 56 .
WRITE(L,44)
READ(C1,%) LU ,
WRITECLU,55) ¢I,TPECI,2),TPECI,3),KGECI, 1),
& 1,TP1¢1,2),TPICI,3),KGIC],1),1=1,50)
S5 FORMAT(S0(IS,3F10.1,14,3F10.1/))
56 WRITE(1,57)
S7 FORMATC’WRITE TO FILE KEXDAT? [Y/NI _*)
READ(1,12) IPICK
IF CIPICK.EQ.1HY) CALL TRANKCKEXDAT,8)
WRITE(1,58)
S8 FORMATC‘WRITE TO FILE KINDAT? [Y/N] _%)
READ(1,12) [PICK
IF CIPICK.EQ.1HY) CALL TRANWCKINDAT,9)
WRITE(1,59)
S9 FORMATC’WRITE TO FILE KGDATA? (Y/N1 _*)
READ(1,12) IPICK
IF CIPICK.EQ.1HY) CALL TRANWCKGDATA,10)
WRITEC1,61)
61 FORMATC’WRITE TO FILE ITDATA? LY/NI _*)
READ(1,12) IPICK
IF CIPICK.EQ.1HY) CALL TRANWCITDATA,11)
WRITE(1,65)
65 FORMATC‘WRITE TO FILE SHARE? [Y/N] _*)
READ(1,12) IPICK
IF CIPICK.EQ.1HY) CALL TRANWCISHARE,12)

END
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c
c
c

SUBROUTINE TRANRCINAME, IB)

COMMON/C8/BUF8(708)

COMMON/CS/BUF9(708)

COMMON/C10/BUF10(616)

COMMON/C11/BUF11(300)

COMMON/C12/BUF12(300)
c

DIMENSION IDCB(144), INAME(3)

DATA ICODE/1/
c

CALL OPENCIDCB,IER, INAME,0,-99,36)

IF (IER.GT.0) GO TO 13
c
9 WRITE(C1,10) IER,ICODE, INAME
10 FORMAT(’FMP ERROR :7,15,” AT ICODE=’,12,* ON FILE “,3A2/

& ‘PROGRAM ABORTED”)

CALL EXEC(S&)
c

13 ICODE=ICODE+1
IF (IB.EQ.8) CALL READF(IDCB,IER,BUFS)
IF (IB.EQ.9) CALL READF(IDCB,IER,BUF9)
IF C(IB.EQ.10) CALL READF(IDCB,IER,BUF10)
IF (IB.EQ.11) CALL READF(IDCB,IER,BUF11)
IF (IB.EQ.12) CALL READF(IDCB,IER,BUF12)
IF (IER.LT.0) GO TO 9

-WRITE(1,30) INAME
30 FORMATC“DATA FROM “,3A2,‘ WAS READ’)
S0 CALL CLOSE(CIDCB,IER)

RETURN

END




- O O
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SUBROUTINE TRANWCINAME,IB)
COMMON/C8/BUF8(708)
COMMON/C9/BUF9(708)
COMMON/C10/BUF10(616)
COMMON/C11/BUF11(300)
COMMON/C12/BUF12(300)
DIMENSION IDCB(144),INAME(S)
DATA 1CODE/1/

CALL OPENCIDCB,1ER,INAME,0,-99,36)
IF CIER.GT.0) GO TO 13

WRITE(1,10) IER,ICODE, INAME

FORMATC’FMP ERROR :°,15,° AT ICODE=‘,12,” ON FILE s ,3A2/
PROGRAM ABORTED?)

CALL EXEC(6)

ICODE=ICODE~+1

IF (IB.EG.8) CALL WRITFCIDCB,IER,BUF8,1416)
IF (1B.EQ.9) CALL WRITFCIDCB,IER,BUF9,1416)
IF C(IB.EQ.10) CALL WRITF(CIDCB,IER,BUF10,1212)
IF ¢1B.EQ.11) CALL WRITFCIDCB,IER,BUF11,600)
IF CIB.EG.12) CALL WRITF(CIDCB,IER,BUF12,6J0)
IF (IER.LT.0) GO TO 9

WRITE(C1,30) INAME

FORMATC’DATA FROM EPIC2 WAS WRITTEN TO FILE ‘,3A2)
CALL CLOSECIDCB,IER)

RETURN

END

BLOCK DATA
COMMON/C8/BUF8(708)
COMMON/C9/BUF3(708)
COMMON/C10/BUF10(616)
COMMON/C11/BUF11(300)
COMMON/C12/BUF12(300)

END
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c {830611.1140>

FTN4,L
PROGRAM [NTEG

c

CxxxxxTHIS PROGRAM INTEGRATES DIFFERENTIAL EQUATIONS OF MOTION FuR A NINE

Cxxxx*D.0.F. PGT USING A 4th ORDER RUNGE KUTTA TECHNIQUE

c
COMMON/CIO/PSIE(50,3),KGE(SO,S),PSII(50,3),KGI(50,3),REPEC3),
& REPI(3),RBCS,RBCP,RBCR,TOUT,ANGLE(6)
COMMON/C11/VRE(50,3),VRI(50,3)
COMMON/013/XIC18),DXICIS),NE,NP,NRK,IP,LPP,ISTORE,JEP,NCT
COMMON/C14/TIME(C400) ,RESULT(15,400) ,ENDPT

DIMENSION IEPE(3),PSIEPE(3),IEPI(3),PSIEPI(3),PHICB),ALPHA(3)
DIMENSION PSPP(B),PSPPD(3),PSPPDD(3),KGPE(S),KGPI(3),TRE(3),TRI(3)
DIMENSION CGPE(B),CGPI(3),GPTFE(3),GPTFI(3),ITIME(S),DFE(3),UFI(3)
DIMENSION PSIAE(3),PS!AI(B),RBCPP(3),RBCRP(B),KDATC3),IDAT(3)
DIMENSION CRME(3),CRMI(3), INAME(3)

REAL M,JD,JS,JP,JC,JR,JL,KDS,KLS,KG,LDS,LLS,KEG,KSUN,MSUN

REAL KGE,KGI,KGPE,KGPI

DATA PI/3.1415927/, INAME/2HTR,2HAN,2HW /

DATA N1,N2/1,2/, KDAT/2HKG,2HDA,2HTA/, IDAT/2HST,2HDA,2HTA/

C 3626 ¢

DATA DP,PHID/S.0000000,22.5/, DELS,DELR/2%.01/

DATA ES,EP,ER/3%30.E6/, PRS,PRP,PRR/3%.285/

DATA GAMAS,GAMAP ,GAMAR/3%.288/, ZETAK/.050/

DATA FWS,FWP,FWR/3%1.0/, RD,RL/1.5,1.5/, ZETAS,ZETAG/.005,.1000/
DATA TGS,TGP,TGR/25.,24.,73./, TIN/4500.0/

WRITE(1,1)
1 FORMATC’ENTER LU FOR QUTPUT DEVICE’)
READ(C1,%) LU
WRITE(1,3)
3 FORMATC’PRINT INTERMEDIATE RESULTS? [Y/N1’)
READ(1,4) IWRIT
4 FORMAT (A1)
CALL EXECC(C11,ITIME)
WRITE(CLY,2) ITIMECS) ,ITIMEC4) ,ITIMECS3) , ITIMEC2) ,ITIMECL)
2 FORMATC’FINAB EXEC START AT?,15,4C*:7,12))

CALL TRANRCKDAT,10)
CALL TRANRCIDAT,11)

6 PHIR=PHID®P1/180.
PDS=TGS/DP
PDP=TGP/DP
PDR=TGR/DP
RPCS=0.5%PDS
RPCP=0.5%PDP
RPCR=0.S%PDR
RC=RPCS+RPCP
CP=P1/DP
BP=CP%COS(PHIR)
RBCS=RPCS%COS(PHIR)
RBCP=RPCP%COS(PHIR)




DO ODOODOOOOO0O0O0

c
c
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RBCR=RPCRxCOS(PHIR)
PITCHE=2.%P1/TGS-

PITCHI=2.%P1/TGP

D0 7 I=1,3

IEPECI) =IFIX(REPECID)

IEPICI) =IFIXCREPICID)
PSIEPE(CI)=PSIECIEPECI))
PSIEPICI)=PSIICIEPICID)

PHICI) =PSIEPE(I)%(CI-1)/3.
ALPHACID =PI - PHIR - (I-1)=2.%PI/3.
CONTINUE

WRITE(1,10)

FORMATC’ENTER VALUE FOR KSUN, MSUN, CSUN AND INPUT RPM‘)
READ(C1,%) KSUN,MSUN,CSUN,RPMIN

IF(JS.EQ.0.) JS=.S5%GAMASHPI®FWS®RPCS¥%4/386.
IFCJP.EQ.0.) JP=.SxGAMAPXPIXFWP®RPCPX%4/366.
IFCJR.EQ.D0.) JR=J.%JP + JP%(3IB6./((RPCPxx4)%(RPCR®%2)))
IF(JD.EQ.0.0) JD = 50.%JR

IF(JL.EQ.0.0) JL = S0.%JR

IFC(LDS.EQ.0.0) LDS = 6.

IF(LLS.EQ.0.0) LLS = 6.

GDS = 30000000./C2.%(C1. + .285))

GLS = 30000000./C2.%CL. + .285))

RL = RD = SQRT(TGR/TGS)

KDS = (PI®((2.%RD)%x4)%GDS)/(32.%LDS)

KLS = (PI%((2.%RL)®x4)=%GLS)/(32.%LLS)

CDS = (2.%ZETAS®SQRTCKDS)I/SQRT((JD+JS)I/(JDXJSI)
CLS = (2.%ZETAS®SQRT(KLSII/SARTCCIL+IRI/ (UL%JIR))
CSUN= 2.%ZETAK™SQRT(KSUNXMSUN)

MSUN=JS/ (RPBS%%2)
JD = S,
Js = .04

MSUN = .015
JP = .033
JR = 2.
JL = 5.
KDS = 8.8SES
KLS = 8.85ES

CDS = 0.65
cLs = 3.5
CSUN = .04

CexxxxSET UP EQUIVALENT GEAR SYSTEM

c

RVALU = TGR/(TGR+TGS)
RPMIN = RVALUXRPMIN
RPMOUT = (TGS/TGRIXRPMIN
TOUT = (TGR/TGSO=TIN

DOMGAD = 2.xPIx%(RPMIN/60.)
DOMGAS = DOMGAD
OOMGAP = (TGS/TGP)*DOMGAS
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DOMGAR = (TGS/TGR)I®DOMGAS
DOMGAL = DOMGAR

c
CYCLE = 2.%PI/TGS
PERIOD = CYCLE/DOMGAD
DT = 0.0
c
WRITE(1,20) PERIOD
20 FORMAT(’PERIOD OF PITCH CYCLE:’,F11.7,’ SECONDS‘/
& ‘ENTER NUMBER OF INTEGRATION CYCLES AND STEPS PER CYCLE‘)
READ(C1,%) NCTR,STEP
DDT=PERIOD/STEP
WRITE(1,21) DDT
21 FORMATC(’TIME STEP ‘,F10.7//ENTER ADDITIONAL PITCH’,
& ’ CYCLES AND HOW OFTEN TO SAVE RESULTS’)
READ(1,%) LSAVE,JSAVE
NCT=NCTR+LSAVE
WRITECLU,22) NCT,PERIOD,DDT,JSAVE
22 FORMATC*INTEG CYCLES:”,I4,* PERIOD:,F3.7,7 TIME STEF:/,F9.7,
& ’ EVERY”’,14’th CYCLE SAVED’)
c
CALL POSIT(LU,KSUN,ALPHA,TGS,TGR)
c
OPSID = TIN/KDS
DPSIS = 0.0
DPSIR = ANGLE(1)
DPSI1 = ANGLE(2)
DPSI2 = ANGLE(3)
DPSI3 = ANGLE(4)
DPSIL = DPSIR - TOUT/KLS
c
DPSIDD = DOMGAD
DPSISD = DOMGAS
OPSI1D = DOMGAP
DPSI2D = DOMGAP
DPSI13D = DOMGAP
DPSIRD = DOMGAR
DPSILD = DOMGAL
c
WRITECLU,S5006) T6S,TGP,TGR,DP,PHID,
& RPCS,RPCP,RPCR,RC,RBCS,RBCP,RBCR
5006 FORMAT(C’TGS,TGP,TGR ‘»3F5.1,7 Pd’,F7.3,* PHI’,F5.1/
& ‘RPCS,RPCP,RPCR,RC',4F14.7/'RBCS,RBCP,RBCR ’,4F14.7)
WRITE(LU,S5001) JD,JS,MSUN,JP,JR, JL, KDS,KLS,KSUN, CDS,CLS,CSUN,
& PSIEPE,PSIEPI, IEPE,IEPI, RPMIN,RPMOUT,TIN,TOUT
5001 FORMATC’JD, JS,MS,JP,JR,JL”,6F10.6/
& ‘KDS,KLS,KSUN /,3F11.1/
& ‘CDS,CLS,CSUN ,3F11.7/
& ‘PSIEPE),PSIEPIY *,6F10.7/
& ‘IEPESY, IEPI4 ‘,315,5X,315/
& ‘RPMI,RPMO,TI,TO “,5F10.3)

WRITE(CLU,S002) DPSID,DPSIS,DPSII,DPSIZ,DPSI3,DPSIR,DPSIL,

& DPSIDD,DPSISD,DPSI1D,DPSIZD,DPSI3D,DPSIRD,DPSILD
S002 FORMATC/’INITIAL POSITIONS AND VELOCITIES, DRIVER, SUN, PLANETS’,

& ’ (1,2,83), RING, AND LOAD‘/7F11.7/7F11.5//)
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PSDP = DPSID
PSSP = DPSIS
XS = ANGLE(S)
YS = ANGLE(6)
PSPP(1) = DPSI1
PSPP(2) = DPSI2
PSPP(3)> = DPSIJ
PSRP = DPSIR
PSLP = DPSIL

PSOPD = 0.
PSSPD = 0.
PSPPD(1) = 0.
PSPPD(2) = 0.
PSPPD(3) = 0.
PSRPD = 0.
PSLPD = 0.

NP = 0

NRK = 1

J =0

Lc = 0

LP = 0

TSP = 0.0
TEP = TTOTAL
PRI = DDT

PT = TSP

IP = 0

LPP = 0

ILP = 0
ISTORE = 0
DELTAT = DDT
SSTEP=0.
JURIT=0
NTH=0
NWRIT=0
1SAVE=JSAVE
INDEX=1
EXTRA=PITCHE/STEP

ARGE=DPSIS/PITCHE
NC=IFIXCARGE) =+ 1
IF (NC.GT.NCT> GO TO 5060
NC=IFIXCARGE + EXTRA) + 1

DO 295 J=1,3

PSIAE(J)=CARGE-FLOATCIFIXCARGE)II®PSIEPE(J) + FHICD
IF (PSIAECJ).GT.PSIEPE(J)) PSIAE(JI=PSIAE(Y)

- PSIEPE(D)
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DO 280 I=2,lEPECJ)
IF (PSIAECJ).LE.PSIE(I,J)) GO TO 285
280 CONTIHUE
285 KGPE(JI=KGE(I-1,4) + (KGE(I,J)-KGE(I-1,J))!(PSIAE(J)-PSIE(I-1,J))/
& (PSIECI,J)-FSIECI-1,J))
IF (PSIAECJ).GT.PSIECIEPECJ),J)) KGPE(J) =KGECIEPECJU) +1,J)
IF (KGPECJI.LT.0.) WRITE(C1,286) J,PSIAECJ),KGPECY)

286 FORMAT(‘EX>0./,13,F10.7,F10.1)
CGPE(J)-(Z.!ZETAGKSQRT(KGPECJ)))/SQRT((RBCS!n2)1J54(RBCP§§2)/JP)
TRE(J)=VREC(CI-1,J) + (VRE(I,J)-VRECl-i,J))!(PSIAE(J)-PSIE(I-i,J))/

& (PSIECI,JU)-PSIECTI~1,J))
IF (PSIAECJ).GT.PSIECIEPECJ),JU)) TRECJI=VRECIEPE(J) +1,J)

c
PSIAICJ)=PSIAECJIXTGS/ TGP
IF (PSIAICJ).GT.PSIEPICJ)) PSIAICJI=PSIAICJ) - PSIEPICY)
c
DO 290 I=2,1EPICJ)
IF (PSIAICJ).LE.PSIICI,J)) 60 TO 291
290 CONTINUE
291 KGPICJI=KGICI-1,J) + (KGICI,JI-KGICI-1,J))mCPSIAICII-PSIICI-1,4))/
& (PSIICI,J)-PSIICI-1,4))
IF C(PSIAICJII.GT.PSIICIEPICJ),JD) KGPI(JI=KGICIEPICJ)+1,d)
IF (KGPICJI.LT 0.) WRITE(C1,282) J,PSIAECJ),PSIAICJII,KGPICJ)

292 FORMATC’IN. < 0.7,13,2F10.7,F10.1)
CGPI(CJI=(2.RZETAGXSQRT (KGPI(J))) /SQRT((RBCSX%2) / JP+ (RBCR®X2) / JP)
TRICJI=VRICI-1,J) + (VRICI,JI-VRICI-1,J)In(PSIAICJII-PSIICI-1,4))/

& (PSIICI,Jd-PSIICI-1,4))
IF CPSIAICJI.GT.PSIICIERPICJYY,J) TRICJI=VRICIEPICJI+1, )

c TRECJ)=TGP/TGS )
c TRICJI=TGR/TGP

295 CONTINUE

296 CONTINUE
c
c

Cxx=muGEAR PAIR TRANSMITTED FORCE, EXTERNAL AMD THTERNAL MR pee xexe n s xe 2o X6
Cc
CMFE=Q.
CMF1=0,
FX=0..
FY=0.
TOUT =90.
TORQUE=0.
DO 300 1=1,3
RBCPP(1)=RBCS®TRE(CI)
CRME(CI) =RECS®PSSP - RBCPPCI)=PSPP(I)
IF (CRME(CID.LT.0.0) 60 TD 302
301 GPTFE(I)-CGPECI)!(RBCS!(PSSPD*DOMGAS)7-
(RBCPP(I)x=PSPPD(CI) + RBCP%DOMGAP) «
XSDO=®COSCALPHACI?) + YSDESINCALPHACID)Y) +
KGPE (1) (RBCS*(PSSP+DT®DOMGAS) -
(RBCPP(II®PSPP(CI) + RBCPXDTXDOMGAP) +
XS%COSCALPHACI)) + YSESINCALPHACID))
GO TO 30S
302 IF (ABSCCRME(CI)).GT.DELS) GO TO 303
GPTFECI)=0.0

e e
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GO TO 305
303 GPTFECI)=CGPE(I)X(RBCS%(PSSFD+DOMGAS) -
(RBCPP(I1)=®PSPPD(1) + RBCPXDOMGAP) ~+
XSD%COSCALPHACI)) + YSD®SINCALPHACIZO) +
KGPE (1) = (RBCS%(PSSP+DT%DOMGAS) -
(RBCPP(I1)%PSPP(I1) + RBCPxDT=DOMGAP) + DELS
XS%COSCALPHACI)) + YS®SINCALPHACI)))D
305 CMFE=CMFE+GPTFECI)
FX=FX + GPTFEC1)®COSCALPHACI) - PI)
FY=FY + GPTFECI)®SINCALPHACI) - PID

R N o > N

RBCRP(I)=RBCP%TRI(1)
CRMI(I) =RBCP%PSPP(1) - RBCRP(1)XPSRP
IF C(CRMICI).LT.0.0> GO TO 307
306 GPTFICI)=CGPICII™(RBCRP(IIXPSRPD + RBCR®DOMGAR -

& RBCP%(PSPPD(I)+DOMGAP)) «

& KGPIC1)%(RBCRP(I)%PSRP + RBCRxDT®DOMGAR -
& RBCP®(PSPP (1) +DT*DOMGAP))

GO TO 310

307 IF CABSCCRMI(CI)).GT.DELR) GO TO 308
GPTFICI)=0.0
GO TO 310
308 GPTFICI)=CGPICII®CRBCRP(IIXPSRPD + RBCRXDOMGAR -
& RBCP%(P3PPDC1)+DOMGAP)) +
& KGPICI)®(RBCRP(CI)®PSRP + RBCRXDT%DOMGAR -
& RBCP%(PSPP(1)+DT%DOMGAP) - DELR)
310 CMFI=CMF1+GPTFICI)
TOUT =TOUT + TINXTRECII®TRICI)/3.
TORQUE=TORQUE + GPTFI1(I)=RBCRPC(I)
300 CONTINUE
Cc
CommMTHE EQUATIONS OF MO T T O/N 000060600 060 0 30 30 30 2630 306 36 30 06 0 306 26 36 206 6 0 06 06 206 0 20206 0620 0606 06 0 20 26
c

c
PSDPDD=(-CDS%((PSDPD+DOMGAD) - (PSSPD+DOMGAS))
& ~KDS®((PSDP.+DT%DOMGADY - (PSSP+DT®DOMGAS)) + TINI/JD
c
c
PSSPDD=(-CDS®((PSSPD+DOMGAS) - (PSDPD+DOMGAD))
& -KDS%( (PSSP+DT=DOMGAS) - (PSDP+DT%DOMGAD))
& -(RBCS%CMFE) ) /JS
c
XSDD=(-CSUN®XSD -KSUN%XS +FX)/MSUN
c
YSDD=(-CSUN%YSD -KSUN%YS +FY)/MSUN
c
C

DO 312 I=-1,3
PSPPDD(I1)=(RBCPP(I)®GPTFE(CI) + RBCPXGPTFICI))/JP
312 CONTINUE

PSRPDD=(-CLS*((PSRPD+DOMGAR) - (PSLPD+DOMGALID
& -KLS*((PSRP+DT*DOMGAR) - (PSLP+DT%DOMGAL)J)D
& -TORQUED /JR




PSLPD
&

IF (NR
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D=(C-CLS®((PSLPD+DOMGAL) - (PSRPD+DOMGAR))
-KLS®((PSLP+DT%DOMGAL) - (PSRP+DT®DOMGARY) -TOUT)/JL

K.EQ.1)> GO TO 320

315 CONTINUE

WRITE
¢ PSRP
&

(LU,5010) OT,PSDPDD,PSSPDD,XSDD, YSDD, (PSPPDDCIY,1=1,3),
DD,PSLPDD,PSDPD,PSSPD,XSD,YSD, (PSPPD(1),1=1,3) ,PSRPD,PSLPD,
PSDP,PSSP,XS,YS, (PSPP(1),1=1,3),PSRP,PSLP

S010 FORMAT(FS.7,2F13.7,2E15.7,5F13.7/9X,2F13.7,2E15.7,5F13.7/

c

316

OOO0OOO0

320

&

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CcALL
CALL
DO 31
CALL
CALL
CONTI
CALL
CALL
CALL
CALL

WRITE
& PSRP
&

DPSIS
GO TO

DPSID
0PSI1
DPS12
DPSI3
DPSIR
DPSIL

DPSID
DPSIS
DPSI1
DPSI2
OPSI3
DPSIR
DPSIL

T =0

9X,2F13.7,2€E15.7,5F13.7)

RKUTACDT,DDT)

MOREK (PSDP,PSOPD,DDT)

MOREK (PSDPD,PSDPDD,DDT)
MOREK (PSSP ,PSSPD,DDT)
MOREK(PSSPD,PSSPDD,DDTY
MOREK (XS, XSD,DDT)

MOREK (XSD,XSDD,DDT)
MOREK(CYS,YSD,DDTY
MOREK(YSD,YSDD,DDT)

6 I=1,3

MOREK(PSPP(I) ,PSPPD(I),DDT)
MOREK(PSPPD (1) ,PSPPDDCI),DDT)
NUE

MOREK(PSRP,PSRPD,DDT)

MOREK (PSRPD,PSRPDD,DDT)
MOREK(PSLP,PSLPD,DDT)

MOREK (PSLPD,PSLPDD,DDT?

(LU,5010) DT,PSDPDD,PSSPDD,XSOD, YSDD, (PSPPDD(I),1=1,3),
DD,PSLPDD,PSDPD,PSSPD,XSD,YSD, (PSPPD(C1),1=1,3),PSRPD,PSLPD,
PSDP,PSSP,XS,YS, (PSPP(I),1=1,3),PSRP,PSLP

= PSSP + DT=DOMGAS
275

= PSDP + DT=DOMGAD
= PSPP(1) + DT=DOMGAP
= PSPP(2) + DTxDOMGAP
= PSPP(3) + DT=DOMGAP
= PSRP + DTxDOMGAR
= PSUP + DT=DOMGAL

D = PSDPD + DOMGAD
D = PSSPD + DOMGAS
D = PSPPD(1) + DOMGAP
D = PSPPD(2) + DOMGAP
D = PSPPD(3) + DOMGAP
D = PSRPD + DOMGAR
D = PSLPD + DOMGAL

T
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SSTEP=SSTEP+1.

EFTORQ=0.

Do S020 1=1,3

DFECI)=GPTFECI)

DFICI)=GPTFICI)

EFTORQ=EFTORQ + DFICI)®RBCP=TRICI)
5020 COWTINUE

c
IF CIMRIT.EQ.1HY) WRITE(CLU,5007) T,(DFECI),I1=1,3),CDFICI),1=1,3),
& XS,YS
5007 FORMAT(F9.7,2X,3F7.1,2X,3F7.1,2X,2F10.7)
c
JTH=IFIX(NC/2.)

IF (JTH.LT.JHRIT) GO TO 6004
CALL EXECC(C11,ITIME)D
WRITEC1,6003) HC,ITIMEC4),ITIMEC3),ITIME(2)
6003 FORMATC’START “,14,’th INTEGRATION CYCLE @ ’,12,2(’:",12))
JURIT=JHRIT+1
6004 IF C(HC.LE.NCTR) GO TO 315

IF CISAVE.NE.JSAVE) GO TO S009
1SAVE=0
TIME CINDEX) =T%=DOMGAS/PITCHE
RESULT (1, INDEX)=KGPE(1)
RESULT (2, INDEX) =KGPE(2)
RESULT (3, INDEX) =KGPE(3)
RESULT (4, INDEX)=DFE(1)
RESULT(S, INDEX)=DFE(2)
RESULT(6, INDEX)=DFE(3)
RESULT(7,INODEX)=KGPI(1)
RESULT (8, INDEX) =KGP1(2)
RESULT(9, INDEX) =KGPI (3D
RESULT(C10, INDEX)=ABS(DFI(13)
RESULT(11, INDEX) =ABS(DFI1(2))
RESULT(12, INDEX)=ABS(DFI(3))
RESULT (13, INDEX) =XS
RESULT (14, INDEX)=YS
RESULT (15, INDEX) =EFTORG
INDEX=INDEX+1
IF CINDEX.GT.400) GO TO S058
5009 ISAVE=ISAVE+1

NTH=NTH+1

IF (NTH.NE.1) GO TO 5026

CALL EXEC(11,ITIME)

WRITECL1,5025) NCTR,ITIME(S),ITIMEC4),ITIMEC3),ITIMEC2), ITIMECLD
5025 FORMATC/’CONCLUDE’, 14,/ CYLES OF INTEGRATION AT’,15,4C’:’,123//7)

HRITE(1,1)

READ(1,x) LU

HRITECLYU,5025) NCTR,ITIMECS) , ITIMEC4) ,ITIMEC3),ITIMEC2), ITIMECL)

GO TG S027

S026 ITH=IFIX(NTH/S0.)
IF CITH.LT.KWRITY GO TO 315




c

c

S027

5029
5050

5058
5059
S060

6000
6001

6002
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IF (LU.EQ.1)> WRITECLU,5007)> T,(DFECID,1=1,3),(DFICI),i=1,3),XS,YS
IF (LU.EQG.6) WRITE(LU,5029) T,ARGE,(DFECI),1=1,3),(DFICI),1=1,3),
& XS,YS

FORMAT(F9.7,F13.5,3X,3F8.1,3X,3F8.1,3X,2F12.7)

NWRIT=NWRIT+1

GO TO 315

WRITE(CLU,5059)

FORMAT ( “»»xx%INDEX 1S GREATER THAN 400, INTEGRATION IS CONCLUDED’)
CONTINUE

INDEX=INDEX-1

WRITEC1,6001) ARGE,SSTEP, INDEX

FORMAT(F9.2,’ PITCH CYCLES COMPLETED’,F8.1,’ INTEGRATION CYCLES‘/

&I14,’ DATA VALUES SAVED, WRITE RESULTS TO DATA FILE? [Y/N] )
READ(1,4) IWRIT

IF CIWRIT.NE.1HY.AND.IWRIT.NE.1HN) GO TO 6000

ENDPT=1NDEX=1.

IF C(IWRIT.EQ.1HY) CALL TRANMW

IF (IWRIT.EQ.1HN) WRITE(CLU,6002)

FORMATC(’RESULTS NOT WRITTEN TO DATA FILE’)

END
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SUBROUTINE POSITC(LU,KSUN,ALPHA,TGS,TGR)
COMMON/C10/PSIE(S0,3),KGE(S50,3),PS11(50,3),KGI(50,3),REPE(S),
& REPI(3>,RBCS,RBCP,RBCR,TOUT,C(6D
COMMON/C11/TRE(S50,3),TRI(50,3)
DIMENSION A(6,6),B(6),ALPHA(3) ,FE(3),FI(3)
xxxxmaxxxexxnxx! D0 NOT FORGET THESE PHASE ANGLES
REAL KGE,KGI,KSUN
INTEGER PHIE(3),PHII(3)
DATA PHIE/1,12,23/, PHII/1,10,19/

NPLAN=3
N=6
00 1 I=1,N
DO 1 J=1i,N
ACl,Jd=0.
B(I)=0.
C(IJ>=0.
1 CONTINUE
DO S 1=1,3
TREC(PHIE(I),1)=2.0
TRICPHIICI),I)=2.5
S CONTINUE

xxxxASSEMBLE LOWER-TRIANGULAR STIFFNESS MATRIX AND TORQUE VECTOR

OO OOOO0O

SIGMA=0.

ACL,1)=0.

SUMXX=0.

SUMXY=0.

SUMYY=0.

ER =0,

D0 2 I=1,NPLAN

c SIGMA=SIGMA+KGIC(PHII(I), D

AC1,1)=AC1,1) + C((RBCPRTRICPHIICI),I))»=x2)=KGI(PHIICI),I)
SUMXX=SUMXX + KGECPHIECI),I>%(COSCALPHA(I))x=x2)
SUMXY=SUMXY + KGECPHIE(1),I)%COSCALPHACI))®SINCALPHACI))
SUMYY=SUMYY + KGECPHIECI1),I)®(SINCALPHACI))mx2)

ER=ER + TRECPHIECI),ID®TRICPHIICID,I)

(¢}

NERESE

ACJ,1)=-RBCR®RBCP=KGI (PHIICI), 1D

ACJ,J)= RBCP®RBCP®(KGE(PHIECI),I)+KGIC(PHII(I),IJD
A(S,J)=-RBCP®KGECPHIE(I), I)=COSCALPHACI))
A(6,J)=-RBCPRKGE(PHIECI) ,1)®SINCALPHACID)D

OO0 O0

ACJ,1)=~(RBCPXTRICPHIIC(I),I)) = RBCP % KGI(PHIIC(CI),I)
ACJ,J)=((RBCS®TREC(PHIECI), 1)) %x2)%KGECPHIE(CI), 1)

& . (RBCP»x2)%KGI (PHIICI), I)
ACS,J)=-(RBCSETRECPHIECI), I)>%KGECPHIECI) , 1)%COSCALPHACID))
AC6,J)=-(RBCSXTRECPHIE(I),I))%KGECPHIECI), ID®SINCALPHACI))

2 CONTINUE

o

A(1,1)=RBCR®RBCRXSIGMA
A(5,5)=KSUN + SUMXX
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A(6,5) =SUMXY
AC6,6)=KSUN + SUMYY
B(1)=-TOUTXCER/ (NPLANXTGR/TGS))
¢
cxxxxxF ILL SYMMETRIC NxN STIFFNESS MATRIX
c
DO 10 I=1,N-1
DO 10 J=I+1,N
ACI,J)=ACJ, 1)
10 CONTINUE
c
c WRITECLU,11) CCACI,J),J=1,N),BCI),1=1,N)
11 FORMATC/6(F9.1,5F12.1,F10.1/3)
c
CxxxxxPERFORM GAUSS ELIMINATION
c -
DO 40 I=1,N-1
DO 30 J=I+1,N
DIV=-ACJ,13/ACI, 1D
DO 20 K=I,N
ACJ,KI=ACJ,KI+DIVEACT,K)
20 CONTINUE
BCJI=BCJII+DIVRBCI)
30 CONTINUE
c WRITECLU,11) CCACL,M),M=1,N),BCL),L=1,N)
40 CONTINUE
c
CxxxuxPERFORM BACK-SUBSTITUTION
c
CCN =B CHD /ACH,ND
DO 60 Il=1,N-1
1=N-11
SUM=BCI)
DO 50 JJ=1,N-1
JeN+1-JJ
SUM=SUM-CCJI®ACT, J)
S0 CONTINUE
CCII=SUM/ACT, )
60 CONTINUE

TI=0.
TO=0.
DO 65 1=1,3
F1¢1)=CRBCP®TRICPHII(I),1)®C(1) - RBCPXC(I+1)) ® KGICPHIICD),I)
FECI)=CRBCS®TRECPHIEC1), I)%CCl+1) ~ C(SI®COSCALPHACII) -
) CCEI®SINCALPHACI))) = KGECPHIE(I),I)
TI=TI - RBCSx®FE(I)
TO=TO + RBCP®TRICPHIICI),ID®FICI)
65 CONTINUE
WRITECLU,70) CTRECPHIECI),;I),TRICPHII(I),1),1=1,3), (CCId,I=1,N)
70 FORMATC’EXTERNAL, INTERNAL TRANSMISSION RAT10S‘/3(2F10.6,5X)/
& ‘RING, PLANET ROTATIONS, AND SUN CENTER DISPLACEMENT’/6E13.6)
WRITE(LU,75) FE,FI,TI,TO
75 FORMATC’EX MESH FORCES’,3F8.2,2X,’IN MESH FORCES‘,3F8.2/
& *INPUT TORQUE’,F9.2,10X, EFFECTIVE OUPUT TORQUE’,F9.2/)
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RETURN
END

SUBROUTINE RKUTA(T,DT)
COMMOH/CiB/XI(18),DXI(18),HE,NP,NRK,IP,LPP,ISTORE,JEP,HCT
NE = 0

NP = NP + 1

NRK = 0

IF(NP.EQ.5> NP = 1

IF(NP.EQ.1) GO TO 1

IF(NP.EQ.2) RETURN

IFC(NP.EQ.3) GO TO 2

IFCNP.EQ.4) NRK = 1

RETURN
DT = DT/2.
T =T+ DT
RETURN

T =T+ DT
DT = 2.%DT
RETURN

END

SUBROUTINE MOREK(X,DX,DT)
COMMOH/CI3/XX(18),DXI(18),HE,NP,NRK,IP,LPP,ISTORE,JEP,HCT
NE = NE + 1

GO 7O (1,2,3,4),NP

XI(NEY> = X

DXI(NE)> = DX

X = X + DXxDT

RETURN

DXICNE) = DXICNE) + 2.xpX
X = XICNE> + DX»DT

RETURN

DXICNE) = DXI(NE) + 2.=%DX
X = XICNE) + DX»DT

RETURN

DXICNE) = (DXICNE) + DX)/6.
X = XI(NE) + DXI(CNE)*DT
RETURN

END




(9]

13

30
S0

(2]

i0

i5

20

25
26

30
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SUBROUTINE TRANRCINAME,IB)
COMMON/C10/BUF10(616)
COMMON/C11/BUF11(¢300)
DIMENSION IDCB(144),INAME(3)
DATA I1CODE/1/

CALL OPENCIDCB,IER,INAME,1,-99,36)

IF CIER.GT.0) GO TO 13

WRITE(C1,10) IER,ICODE, INAME

FORMATC’FMP ERROR :’,15,’ AT ICODE=‘,12,’ ON FILE ’,3R2/
PROGRAM ABORTED’)

CALL CLOSECIDCB,IER)

CALL EXEC(6)

1CODE=ICODE+1

IF C1B.EQ.10) CALL READF(IDCB,IER,BUF10)

IF C(1B.EQ.11) CALL READF(CIDCB,IER,BUF11)

IF (IER.LT.0) GO TO ©

I1CODE=ICODE~+1

WRITEC1,30) INAME

FORMATC’CATA FROM *,3A2,’ WAS REAC’)

CALL CLOSECIDCB,IER)

RETURN

END

SUBROUTINE TRANW
COMMON/C14/TIMEC400) ,RESULT (15,4000 ,ENDPT
DIMENSION IDCB(144),IRAME(3),ITITLE(64),BUF(15)

ICODE=1
N=IFIXCENDPT)

WRITE(C1,10)

FORMATC’ENTER DATA FILE NAME®)

READ(1,15) INAME

FORMAT (64A2)

WRITEC1,20)

FORMATC/ENTER HEADING LESS THAN 129 CHARACTERS’)
READC1,15) ITITLE

WRITECL,15) ITITLE

CALL OPENCIDCB,IER, INAME,1,-99,36)

IF CIER.GT.0) GO TO 30

WRITE(1,26) lER,ICODE

FORMATC‘FMP ERROR’,14,’ AT ICODE=‘,I14//FROGRAM ABENDED”’)
ICODE=ICODE+1

CALL WRITFCIDCB,IER,ITITLE,S4>

IF CIER.LT.0) GO TO 25

ICODE=ICODE+1

CALL WRITFCIDCB,IER,ENDPT,2)

IF CIER.LT.0)> GO TO 25

DO 60 I=1,N
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BUF(1)=TIMECI)
DO 40 J=2,16
BUF (J)=RESULT(J-1,1)
40 CONTINUE
ICODE=I1CODE+1
CALL WRITF(IDCB,IER,BUF,32)
IF (IER.LT.0) GO TO 25
60 CONTINUE
DUMMY=999,
ICODE=ICODE+1
CALL WRITFCIDCB, IER,DUMMY,~1)
IF (IER.LT.0)> GO TO 25
WRITECL,70) INAME
70 FORMATC’RESULTS FROM FINAB SUCCESSFULLY WRITTEN TO DATA FILE
& 3A2)
CALL CLOSECIDCB, IER)
STGP
END

BLOCK DATA
COMMON/C10/BUF10(616)
COMMON/C11/BUF11(300)
COMMON/C13/BUF13(36), IBUF13(8)
COMMON/C14/BUF14(6401)

END
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c <830611.1003>
FTHN4,L
PROGRAM FORCE
c
cx*e¥xxTHIS PROGRAM PERFORMS THE STATIC ANALYSIS FOR A PGT
Cxx»xx ]NCLUDES STATIC MESH AND TOOTH LOADS AS WELL AS SUN GEAR DISPLACEMENT
c
COMMON/C10/PSIE(S0,3) ,KGE(S50,3),PS11(50,3),K61¢50,33,REPE(3),
& REPI1(3),RBCS,RBCP,RBCR,TOUT,C(6)
COMMON/C11/VRE(50,3),VRI(S0,3D
COMMON/C12/TPSE(50,3) ,TPSI(50,3)

DIMENSION ITIME(S),KGPE(3),KGPI(3),IEPE(3),IEPI(3),PSIEPE(3)
DIMENSION 1GCB(192),PSIEPI(3),PHI(3),PSIAE(I),PSIAI(3),ALPHACI)
DIMENSION V1(2),V2(2),V3(2),V4(2),XTIC(2),YTIC(2),XMAJ(2),YMAJ(2),
$YLAST(2) ,NPOINT(2),TREC3),TRI(3),KDAT(3),IDAT(3),PSIC200),
¢VAL(C2,200),1SHR(3) ,FE2(200) ,FE3C200) ,F12(200),F13¢200)

REAL KGE,KGI ,KGPE,KGPI,KSUN

DATA P1/3.1415927/, KDAT/2HKG,2HDA,2HTA/, 1DAT/2HST,2HDA,2HTA/
DATA ISHR/2HSH,2HAR,2HE /

DATA DP,PHID/S.000,22.5/
DATA TGS,TGP,TGR/25.,24.,73./, RPMIN,TIN/1000.,4500.0/

DATA NPOINT/1,5/, XTIC(2),YTIC(C1),XMAJC2),YMAJCL),YLAST/6EX0./

WRITE(1,11D

11 FORMATC’ENTER -LU FOR GUTPUT AND ID,LU FOR GRAPHICS DEVICE‘/
&’1-CRT 2-PRT; 1,1-CRT 2,57-4PP*)
READC1,%) IU,I1D,LU

3 FORMAT(AL)
WRITE(1,4)

4 FORMATC’WHICH PLOT? 1-X,Y vs PSI 2-X vs Y 3-MESH FORCES’)
READ(1,%) NTH

CALL TRANRCKDAT,10)
CALL TRANRCIDAT,11)
CALL TRANRCISHR,12)
IF (ID.EQ.1) CALL SCREN(V1,V2,V3,V4)
IF (ID.EQ.2) CALL FOUR(V1,V2,V3,V4)

6 PHIR=PHID%PI/180.
PDS=TGS/DP
PDP=TGP/DP
PDR=TGR/DP
RPCS=0.5%PDS
RPCP=0.5%PDP
RPCR=0.5%PDR
TOUT=TIN%(TGR/TGS)
RBCS=RPCS%COS(PHIR)
RBCP=RPCP%COS(PHIR)
RBCR=RPCR¥COS(PHIR)
0o 7 1=1,3
IEPECI) =IFIX(REPECID)
IEPICI) =IFIX(REPICID))
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PSIEPE(I)=PSIECIEPEC(I))

PSIEPICI)=PSIICIEPIC(CI))

PHICI) =PSIEPECI) = (I1-1)/3.

ALPHA(ID=P1 - PHIR - (I1-1)x2.%P1/3.
7 CONTINUE

PITCHE=2.%P1/T7GS

PITCHI=2.2P1/TGP

WRITE(1,8) TGS,TGP,TGR,TIN,I1EPE,IEP]

8 FURMAT(’TGS,TGP,TGR,TIN,IEPEi,IEPIi',2X,3F6.1,F8.1,2(2X,313))
HWRITE(1,9)

9 FORMAT(’ENTER SUN SUPPORT STIFFNESS, START CYCLE, NO. CYCLES, -,
& “IHTERVALS PER CYCLE“/‘[4 VALUES REQD] > "
READ(1,2) KSUH,ARG,NCT,DIV
DPSI1S=PITCHEXARG
NCT=NCT+IFIX(ARG)

WH1=ARG
W2=FLOATC(NCT)
WRITE(1,273)
273 FORMATC(’ENTER W3, W4 AND YTIC SPACIHG’)
READ(1,x) KW3,H4,YTICC2)
XTIC(1)=-.1
XMAJ(1)=10.
YMAJ(2) =2,

CALL PLOTR(IGCB,ID,1,LU)

IF (ID.EQ.2) CALL LimiTcrecs,o0.,193.5,5.5,261.5)
CALL CSIZE(I1GCB,2.1,.7,0.)

CALL PENCIGCB,1)

IF (NTH.EQ.2> GO TO 110

DO 105 I=1,1

CALL VIEWP(IGCB,V1(I1),V2(1),V3CI),V4CI))

CALL WINDHCIGCB,H1,H2,H3,H4)

DO 105 J=1,2

CALL FXDCIGCB,NPOINT(J))

CALL LAXES(IGCB,XTIC(J),YTIC(J),HI,HS,XMAJ(J),YMAJ(J),.S)
105 CONTINUE

GO TO 120
110 CONTINUE

TC=(W4-W3) /4.

IF (ID.EQ.1) CALL VIEWP(IGCB,58.,142,.,14.,98.)

IF (ID.EQ.2) cALL VIEWP(16CB,25.,85.,35.,95.)

CALL WINDWCIGCB,H3, 4,3, N4

CALL FXDC(IGCB,4)

CALL LGRIDCIGCB,-TC,TC,N3,H3,2.,2.)

120 CONTINUE
DELTA=PSIEPEC1)/DIV
ITOTAL=IFIX(DIV)+1
NTIME=0
ICTR=1
XOLD=k1




c
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286

230
291
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ARGE=DPSIS/PITCHE

DO 295 J=1,3
PSIAE(J)=CARGE-FLOATCIFIXC(ARGE)II®PSIEPE(J) + PHIC(J)
IF (PSIAEC(J).GT.PSIEPE(JU)) PSIAE(JI=PSIAE(J) - PSIEPECJ)

DO 280 1=2,IEPECJ)

IF (PSIAE(J).LE.PSIE(I,J)) GO TO 285

CONTINUE
EINCRM=(PSIAE(CJI-PSIE(I-1,J))/(PSIECI,JI)~PSIE(C]I-1,U))
KGPE(JI=KGE(I-1,J) + (KGECI,J)-KGE(CI-1,J))%EINCRM

IF (PSIAECJI.GT.PSIECIEPECJUI,J)) KGPECJI=KGE(IEPE(J)I+1,J)
TRE(J) =VRE(I-1,J) + (VREC]I,J)-VRE(I-1,J))%EINCRM

IF (PSIAECJ).GT.PSIECIEPECY),J)) TREC(JI=VRECIEPE(J)+1,J)
IF (J.NE.1) GO TO 286

GPSE3 =TPSE(CI-1,3) + (TPSECI,3)-TPSE(CI-1,3))%EINCRM

IF (PSIAECJ).GT.PSIECIEPE(J),J)) GPSEI=TPSE(IEPE(J)+1,3)

PSIAI(J)=PSIAECJIRTGS/TGP
IF (PSIAICJ).GT.PSIEPICJ)) PSIAICJI=PSIAICJ) - PSIEPI(J)

DO 290 I=2,I1EPICJ)

IF (PSIAICJI.LE.PSIICI,J3) GO TO 291

CONTINUE
DINCRM=(PSIAIC(JI-PSIICI-1,42)/(PSIICI,J)-PSIICI-1,J))
KGPIC(JI=KGICI-1,J) + (KGICI,J)-KGI(I-1,J))=DINCRM

IF (PSIAICJI.GT.PSIICIEPI(JY),JI) KGPICJI=KGICIEPI(J)+1,0).
TRICJ) =VRICI-1,J) + (VRI(I,JI-VRI(I-1,J))xDINCRM

IF (PSIAICJI.GT.PSIICIEPICJY),J)) TRICJII=VRICIEPICJI+1,0)
IF (J.NE.1) GO TO 292

GPSI3 =TPSI(I-1,3) + (TPSI(I,3)-TPSI(1-1,3))%DINCRM

IF (PSIAICJI.GT.PSIICIEPI(J),Jd) GPSI3=TPSECIEPI(J)+1,3)
CONTINUE

CONTINUE

CALL POSITCIU,ALPHA,KSUN,KGPE,KGPI,TRE,TRI',TGS,TGP,TGR)

PSICICTR) =ARGE

IF (NTH.EQ.3) GO TO 296

VAL(1,ICTR)=C(5)

VAL(2,ICTR)=C(6)

GO TO 297

VAL (1,ICTR)=KGPEXABS(C(2)%RBCP - C(S)®COSCALPHAC1)) -~

C(6I=SINCALPHAC(1)))

VAL (2, ICTRI=KGP1(1)%(C(2)%RBCP - C(1)®RBCR)

FE3CICTR)=(GPSETI/KGPE(1))=VAL(1,ICTR)

FE2CICTR)=VAL(1,ICTR)-FESCICTR)

WRITE(1,2960) PSICICTR),GPSE3,KGPE(L),FE2CICTR),FE3(CICTR),
VAL (1,1CTR)

FISCICTR)=(GPSI3/KGP1(1))=VAL(2,ICTR)

FI2CICTR)=VAL(2,ICTR)-FI3CICTR)

WRITE(C1,2960) PSICICTR),GPSI3,KGPI(1),FI2CICTRY,FI3CICTR),
VAL(2,1CTR)

2960 FORMAT(F11.7,2F11.1,3F10.2)
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DPS1S=DPSIS+DELTA

IF C(IPICK.EQ.1HY) WRITECIU,298) ARGE ,KGPE,KGP1, (VALCI,ICTRY,I1=1,2)
FORMAT(F4.2,5X,3F10.1,5X,3F10.1,5X,2F15.7)

ICTR=ICTR+1

IF CICTR.GT.ITOTAL) GO TO 398

G0 TO 275

CONTINUE

IF (NTH.EQ.2) GO TO 410

FMAX=-1E10

FMIN=1E10

DO 409 I=1,1

CALL VIEWPCIGCB,V1(I),V2(I),V3CI),V4C1))
CALL WINDW(CIGCB,W1,KH2,W3,HN4)

CALL LINECIGCB,0)

DO 399 U=1,ITOTAL

IF (J.EQ.1) CALL MOVECIGCB,PSICJ),VALCI,J))
CALL DRAWCIGCB,PSI(J),VALCI,J))

IF (VALC(CI,J>.GT.FMAX) FMAX=VALCI,J)

IF CVALCI,J).LT.FMIN) FMIN=VALC1,J)
CONTINUE

IF (NTH.EQ.1.0R.I1.EQG.2) GO TO 402
FEXMAX=-1.ES

" FINMAX=-1_ES

400

401
402

406

407
409

410

420

CALL LINECIGCB,2)

DO 400 J=1,ITOTAL

IF (J.EQ.1) CALL MOVECIGCB,PSICJ),FE2CJ))
CALL DRAWCIGCB,PSI(CJ),FE2(¢J))

CONTINUE

CALL LINECIGCB,1)

DO 401 J=1,ITOTAL

IF (J.EQ.1)> CALL MOVECIGCB,PSI(J) ,FE3CJ))
CALL DRAWCIGCB,PSICJY,FE3CJI)

IF (FE3(J).GT.FEXMAX) FEXMAX=FE3(J)
CONTINUE

IFCNTH.EQ.1.0R.1.EQ.1) GO TO 408

CALL LINEC1GCB,2)

D0 406 J=1,ITOTAL

IF (J.EQ.1) CALL MOVECIGCB,PSICJ),FI2¢CJ)) -
CALL DRAWCIGCB,PSICJ),FI2¢J))

CONTINUE

CALL LINECIGCB,1)

DO 407 J=1,I1TOTAL

IF (J.EQ.1) CALL MOVECIGCB,PSI(J),FI3CJ))
CALL DRAWCIGCB,PSI(J),FI3CJI)

IF (FI3CJU).GT.FINMAX) FINMAX=FI3(J)
CONTINUE

CONTINUE

GO TO 430

DO 420 I=1,ITOTAL

IF (1.EQ.1) CALL MOVECIGCB,VALC1,1),VALC2,1))
CALL DRAWC(CIGCB,VAL(1,1),VALC2,1))

CONTINUE.
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430 CONTINUE .
WRITE(1,440) FMAX,FMIN,FEXMAX ,F INMAX
440 FORMATC’MAX, MIN MESH LOADS” ,2F10.2/ FEXMAX,FINMAX’ ,2F10.2)
CALL PENCIGCB,0)
CALL PLOTR(CIGCB,ID,0)
CALL EXEC(®)
END

SUBROUTINE TRANRCINAME,IB)
COMMON/C10/BUF10(616)
COMMON/C11/BUF11(300)
COMMON/C12/BUF12(300)
DIMENSION IDCB(144), INAME(3)
DATA ICODE/1/

CALL OPENCIDCB,IER,INAME,1,-99,36)
IF CIER.GT.0) GO TO 13
S WRITE(C1,10) IER,ICODE, INAME
10 FORMATC/FMP ERROR :’,15,’ AT 1CODE=‘,12,’ ON FILE ’,3A2/
& *PROGRAM ABORTED’)D
CALL CLOSECIDCB,IER)
CALL EXEC(&)
13 ICODE=]1CODE+1
IF (1B.EQ.10) CALL READF(IDCB,IER,BUF10)
IF CIB.EQ.11) CALL READF(IDCB,IER,BUF11)
1F CIB.EG.12) CALL READF(CIDCB,IER,BUF12)
IF (IER.LT.0) GO TO 8
1CODE=ICODE~+1
WRITE(1,30) INAME
30 FORMATC/DATA FROM ‘,3A2,‘ WAS READ’)
S0 CALL CLOSECIDCB, IER)
RETURN
END
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SUBROUTINE POSITC(LU,ALPHA,KSUN,KE,K1,TRE,TR1, TGS, TGP, TGR)
COMMON/CiO/PSIE(50,3),KGE(SO,S),PSII(SO,S),KGICSO,S),REPE(3),
& REPI(3),RBCS,RBCP,RBCR,TOUT,C(6)

DIMENSION A(6,6),B(6),ALPHA(3) ,TRE(3),TRI(3),FE(3),FI1(I)
DIMENSION KE(3),KI(3)

REAL KSUN,KE,KI,KGE,KGI

NPLAN=3

N=6

DO 1 I=1,N

DO 1 J=1,N

ACl,J)=0.

B(I)=0.

C(l1)=0.

1 CONTINUE

DO 5 1=1,3

TRECI)=TGP/TGS

TRICI>=TGR/TGP

S CONTINUE

c
CxwxxxASSEMBLE [OWER-TRIANGULAR STIFFNESS MATRIX AND TORQUE VECTOR
CxuxxXASSEMBLE LOWER-TRIANGULAR STIFFNESS MATRIX AND TORQUE VECTOR
c

AC1,1)=0.

SUMXX=0.

SUMXY=0.

SUMYY=0.

ER =0.

DO 2 I=1,NPLAN

AC1,13=AC1,1) + C(CRBCPRTRICIDI%%2)%KI(C1)

SUMXX=SUMXX + KECI)®(COSCALPHACI))=%2)

SUMXY=SUMXY + KE(1)%COSCALPHACI))®SINCALPHACI))

SUMYY=SUMYY + KECII®(SINCALPHACI))x%2)

ER=ER + TRECII=XTRI(CI)

c
J=1+1
ACJ,1)=-(RBCP%TRI(CIJ) = RBCP x KI(CI)
ACJ,J)=((RBCS®TRE (1)) %%x2)%KECI) «

& (RBCP»%2) %K1 (1)
A(S,J)=~-(RBCSRTREC1))I®KECI)%COSCALPHACI))
AC6,J)=-(RBCSXTRECIDIXKE CII®SINCALPHACI))

2 CONTINUE

c

A(S,S5)=KSUN + SUMXX

A(6,5) =SUMXY

A(6,6)=KSUN + SumMyy

BC1)=-TOUT=(ER/ (NPLANX(TGR/TGS)))
c
CxxmxxFILL SYMMETRIC NxN STIFFNESS MATRIX
c

DO 10 I=1,N-1
DO 10 J=I1+1,N
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ACI,JI=ACJ, DD
10 CONTINUE
c WRITEC(LU,11) (CACI,J),J=1,N),BCI),I=1,N)
11 FORMAT(/6(F9.1,5F12.1,F10.1/3)
c
Cxxxxx¥PERFORM GAUSS ELIMINATION
c
DO 40 I=1,N-1
DO 30 J=1+1,N
DIV=-ACJ,1d/ACI, 1D
DO 20 K=I,N
ACJ,KI=AC(J,KI+DIVRACT,K)
20 CONTINUE
B(J)=BCJ)+DIVEB(I)
30 CONTINUE
c WRITECLU,11) C(CACL,M),M=1,N),BCL),L=1,HN)
40 CONTINUE
c
CrxsexxPERFORM BACK-SUBSTITUTIOHN
c
CCNI=BCN)>/ACHN,N)
DO 60 II=1,N-1
I=N-11
SUM=B(I)
DO 50 JJ=1,H-1
J=N+1-JJ
SUM=SUM-CCJI*ACI,JD
50 CONTINUE
CCI)=SUM/ACI, 1D
60 CONTINUE

TI=0.
T0=0.
DO 65 [=1,3
FICI)=CRBCP:TRICII®C(1) - RBUPRC(I+1)) x KICI)
FECI)=(RBCSHTRECIDH®C(I+1) - C(S5)nCOSCALPHACID)) -
& C(BIXSINCALPHACIJY) x KECID
TI=TI - RBCSRFE(I)
TO=TO + RBCP:TRICII®FIC(CID
65 CONTIHNUE
WRITE(LU,70> (TRECI),TRI(I),1=1,3), (CCId,I=1,MD
70 FORMATC’EXTERNAL, INTERNAL TRANSMISSIOH RATIO0S//3(2F10.6,5X)/
& RING, PLANET ROTATIONS, AND SUN CENTER DISPLACEMENT’/6E13.6)
WRITECLU,75) FE,FI,TI,TO0
75 FORMATC’EX MESH FORCES’,3F8.2,2X,“IN MESH FORCES’,3F8.2/
& s INPUT TORQUE’,F9.2,10X, EFFECTIVE OUPUT TORQUE’,F9.2)

OO0

RETURN
END
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SUBROUTINE FOUR(BACK)

DIMENSION BACK(8),VALU(S8)

DATA VALU/2%x22.,2%65.,71.,26.,91.,46./

DO 10 I=1,8

BACK(I)=VALUCI)

WRITE(1,20)

FORMAT(/ENTER V1,V2,V3,V4 > .0
READ(1,%) BACK(1),BACK(3),BACK(5),BACK(7)
RETURN

END

SUBROUTINE SCREN(BACK)

DIMENSION BACK(8),VALU(80)

DATA VALU/2%20.,2%195.,54.,5.,98.,49./
DO 10 I=1,8

BACK(I)=VALUCI)

RETURN

END

BLOCK DATA

COMMON/CL0/BUF10(616)
COMMON/C11/BUF11(300)
COMMON/C12/BUF12(300)

END
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c <830511.1038>
FTN4,L
PROGRAM DRAK1
c
CxxxxxTHIS PROGRAM EXAMINES AND GRAPHS THE USER SPECIFIED LATA FILES
CxxxxxGENERATED BY PROGRAM INTEG
c
COMMON/C15/TIME(400) ,RESULT(3,400)
DIMENSION 1GCB(192),1TITLEC16),INAME(3)
DATA 1D,LU,LS/1,1,0/
DATA V1i,V2,V3,V4/15.,185.,75.,99./
DATA N1,N2/1,1/, W3,W4/0.,1300./

WRITE(C1,100)

100 FORMATC/ENTER ID,LU FOR PLOTTING DEVICE 1[(1,1),(2,573} » )
READC1,%) ID,LU '
CALL PLOTR(CIGCB,1D,1,LU)

Cc 1IF CID.EQ.2) CALL LIMIT(CIGCB,0.,66.,0.,100.)

WRITEC1,101)

101 FORMAT(’ENTER CHARACTER SIZE > .0
READC1,%) CHAR
CALL CSI2ECIGCB,CHAR,.75)

10 CALL TRANRCINAME,ICR)

WRITE(L,11)
11 FORMATC’ENTER FIRST, LAST DATA POINTS, XDIV, YDIV)
READ(1,%®) ISTRT,ISTOP,XDIV,YDIV
Wi=TIMECISTRT)
W2=TIMECISTOP)

12 WRITE(L,1)

1 FORMATC’/ENTER NUMBER OF THE VARIABLE TG BE PLOTTED [1-31’,
& # ENTER 15 FOR XvsY’)
READ(1,%) I

WRITE(C1,2) V1,V2,V3,V4,HW1,W2,H3, W4
2 FORMAT(’VIEWP:’,4F7.1/“WINDK:* ,4E14.6/
& /CHANGE PARAMETERS? [Y/N1l > _9)
READ(1,3) IPICK
3 FORMAT(AL)
IF C(IPICK.NE.1HY) GO 7O 9
WRITE(1,4)
4 FORMATC(’CHANGE VIEWPORT? LY/NI > _*)
READ(1,3) IPICK
1IF CIPICK.NE.1HY) GO TO 6
WRITE(1,5)
S FORMATC/ENTER NEW VALUES FOR V1,V2,V3,V47)
READ(1,%) V1,V2,V3,v4
6 WRITEC1,7)
7 FORMAT (’CHANGE WINDOW? LY/NY > _")
READ(1,3) IPICK
IF CIPICK.NE.1HY) GO TO S
WRITE(1,8)
8 FORMATC’ENTER NEW VALUES FOR W3,W4 CENTER Wi,W2 FIRST IF 1=15)')
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IF (1.NE.15) READ(1,%) W3,k4
IF (1.EQ.15) READC1,%) W1 ,W2,WN3,W4
9 CONTINUE

CALL VIEWP(IGCB,V1,V2,V3,V4)
CALL WINDWCIGCB,W1,K2,W3,H4)

Al=(W2-W1)/XDIV
A2=(WN4-W3D/YDIV
A3=W1
A4=W3
WRITE(1,15) N1,N2
15 FORMAT(’DECIMAL PLACES ON LABELS:‘,214/
& ‘CHANGE? [Y/NY > _9
READ(1,3) IPICK
IF (IPICK.EQ.1HN) GO TO 17
WRITE(C1,16)
16 FORMAT(’ENTER VALUES FOR DECIMAL PLACES (2 REGD)”)
READ(1,=) Ni,N2
17 CALL FXDCIGCB,N1)
CALL LAXESCIGCB,A1,0.,A3,A4,1.,0.,.5)
CALL FXDCIGCB,H2)
CALL LAXES(16CB,0.,A2,A3,A4,0.,1.,.5)

IF (1.EQ.15) GO TO 21
D0 20 J=ISTRT,1STOP
IF (J.EQ.ISTRT) CALL MOVECIGCB, TIMECJ) ,RESULTCI ,J))
CALL DRAMCIGCB,TIMECJ) ,RESULTCI,J))
20 CONTINUE
GO TO 23

21 DO 22 J=ISTRT,ISTOP
IF (J.EQ.ISTRT) CALL MOVECIGCB,RESULT(1,J),RESULT(2,J))
CALL DRAW(IGCB,RESULT(1,J),RESULT(2,J))

22 CONTINUE

23 CONTINUE
WRITECL,24)

24 FORMATC’DIGITIZE? [Y/N) > _®
READ(C1,3> IPICK
IF CIPICK.EQ.1HN)> GO TO 30
WRITEC(1,25)

25 FORMATC’POSITIOH CURSOR AND HIT ANY KEY’)

CALL DIGTZ2CIGCB,XPT,YPT)
WRITEC1,26) XPT,YPT

26 FORMAT(/“COORDINATES OF CURSOR’,2F10.6/)

G0 TO 23

30 WRITE(1,31)

31 FORMAT(’REDRAW? [Y/HN > _%
READ(1,3) IPICK
IF CIPICK.NE.1HN) GO TO 12
WRITE(1,32)

32 FORMATC’/PLOT NEW DATA SET? [Y/Nl > D)
READ(1,3) 1PICK
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IF CIPICK.NE.1HN) GO TO 10

WRITE(1,39)

FORMAT (‘LABELS? [Y/NY > _")
READ(1,3) IPICK .

IF C(IPICK.NE.1HY) GO TO 60

CALL VIEWP(IGCB,0.,200.,0.,100.)

CALL WINDW(IGCB,0.,200.,0.,100.)

CALL CSIZE(CIGCB,S.0,.75)

CALL MOVE(CIGCB,70.,56.)

CALL LABEL(IGCB)

WRITE(CLU,41)

FORMAT(’SUN/PLANET MESH FORCES (TYP)’)
CALL MOVE(16CB,70.,6.)

CALL LABELCIGCB)

WRITE(CLU,42)

FORMATC’PLANET/RING MESH FORCES (TYP)’)
WRITE(1,45)

FORMATCENTER GRAPH TITLE [32 OR LESS CHARACTERSI’)
READ(1,46) ITITLE

FORMAT(16A2)

CALL MOVE(IGCB,140.,95.)

CALL LABEL(CIGCB)

WRITECLU,46) ITITLE

CALL PENCIGCB,0)

CALL PLOTR(CIGCB,1D,0)

CALL EXEC(6)

END

SUBROUTINE TRANRCINAME, ICR)
COMMON/C15/TIME(400) ,RESULT(3,400)

DIMENSION IDCB(144),INAMEC3),ITITLE(E4),BUF(16)
DATA ITITLE/G64%2H /, ICODE/1/

WRITE(1,5)

FORMATC’READ FROM NEW DATA FILE? LY/NI > _D
READC1,6) IPICK

FORMATCA1)

IF CIPICK.EQ.1HN) GO TO 17

WRITE(C1,10)

FORMATC’ENTER DATA FILE NAME > _4
READC1,15) INAME

FORMAT(64A2)

WRITE(1,16)

FORMATC“ENTER CARTRIDGE HNUMBER > |9

READ(C1,%> ICR

CALL OPENCIDCB,IER,INAME,1,-99,ICR)
IF (IER.GT.0) GO TO 30

WRITE(1,25> IER,ICODE

FORMATC‘FMP ERROR’ ,14,’ AT I1CODC=“,I14/’PROGRAM ABENDCD’)

CALL EXEC(®)
ICODE=ICODE+1
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CALL READF(IDCB,IER,ITITLE)
IF (IER.LT.0) GO TO 20
WRITE(1,15) ITITLE
ICODE=ICODE~1
CALL READF(IDCB,IER,ENDPT)
IF C(IER.LT.0)> GO TO 20
WRITE(1,40) ENDPT
40 FORMAT(F6.1,’TIME VALUES STORED’/
& ENTER NUMBER TO ACCESS > _.N
READ(1,x) ISTOP
WRITE(1,41)
41 FORMAT(C/’1-EX STIFF 2-EX FORCE 3-IN STIFF 4-IN FORCE”,
¢ ‘ 5-X,Y MOVE; TORQUE’/’ENTER DATA SET TO GRAPH
READ(1,%> ISET
00 60 I=1,ISTOP
1CODE=1CODE+1
CALL READF(1DCB,IER,BUF)
IF CIER.LT.0) GO TO 20
TIMECI)=BUF (1)
D0 S0 J=1,3 °
K=(3%ISET) - 2 + J
RESULT(J, I)=BUF (K)
S0 CONTINUE
60 CONTINUE
CALL CLOSECIDCB, IER)

RETURN
END

c

c
BLOCK DATA
COMMON/C1S5/BUF15(1600)
END
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