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EXECUTIVE SUMMARY

The present program was directed at improving the technology base for
phosphoric acid fuel cells. The initial emphasis was placed on an atmospheric
pressure operation, but later the emphasis was shifted to a pressurized operation.

The following areas were investigated:

o Materials Evaluation and Development

. Component Fabrication Development

. Endurance Testing of New Components and Materials
o Development of Catalysts for Pressurized Operation
. Facility Construction for Pressurized Testing

Significant progress was achieved during the program in improving the
technology of critical cell components. Bipolar plate samples were fabricated
with different resin contents and samples were heat-treated at various
temperatures between 900 and 2700°C to improve their corrosion resistance.
Physical properties of these plates were characterized and their corrosion
behavior was investigated at atmospheric as well as elevated pressure. This
effort has provided a strong data base for optimization of bipolar plates.
Different carbon support materials and heat-treatments were investigated to
impart improved cathode stability for pressurized operation. Initial performance
improvements of 25 to 40 mV were obtained by the addition of vanadium,
tantalum or chromium to the standard platinum-on-carbon cathode. Stability of
these "alloy" catalysts, however, needs to be improved. Short stacks assembled
with heat treated plates were operated for up to 22,000 hours. After
termination of the contract, one of the stacks continued further operation under
in-house funds. These and other highlights of the program are summarized

below.

. Bipolar plate samples containing graphite powder and 30 to 80 wt%
phenolic resin were molded and heat-treated from 900 to 2700°C,
Heat-treatment beyond 900°C resulted in a glassy-carbon/graphite
composite with increasingly improved corrosion resistance. Porosity
measurements, however, revealed that while there was a gradual
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increase in porosity between 900 to 1600°C, a rapid increase in
porosity accompanied the heat treatments at temperatures beyond
~1600°C. Although the transition point was not accurately defined in
this program, it appears that the magnitude of residual porosity can
be controlled to a certain extent by improved mixing (e.g, by
commercial compounding) and/or other manufacturing changes.

Corrosion measurements on these bipolar plates at 1 atm showed that
corrosion rates decreased 3 orders of magnitude when heat-treatment
temperature was increased from 900°C to 2700°C. Tests of corrosion
at elevated pressure agreed with the atmospheric pressure behavior
and suggested that the only apparent effect of pressure would be to
raise the corrrosion potential and lower the operating acid con-
centration. Both of these effects raised the corrosion rates
significantly. Temperature also had a very strong effect on the
corrosion rate. The apparent activation energy was in the range of
35 to 65 kecal/mol.

Development of cost effective fabrication processes for full-scale cell
components continued during this program. Improvements in the
molding operation culminated in the demonstration of a 45 second

pressing eycle for the bipolar plate.

A selectively wetproofed anode backing was developed to provide an
acid inventory control member (AICM). This member can help with
acid expansion and storage during startup and transients. The
member was reproducibly manufactured by simple stamp printing.
Operation of a short stack with this member showed satisfactory
performance.

Eight multicell stacks with heat-treated plates (3 to 23 cells) were
endurance tested during this program. Six of these stacks exceeded
one year of continuous operation. Among these six, two stacks
exceeded 2-1/2 years of continuous operation. This testing demon-
strates a significant confidence level in component durability and
stacking concepts.

Various platinum loadings of the anode and cathode were investigated
in several laboratory-scale cells. A short stack, containing half the
standard platinum loading on both the anodes as well as cathodes,
showed decay rates no greater than those observed with standard
platinum loadings. Feasibility of lower platinum loadings (total Pt
0.35 mg/cm?2) was therefore demonstrated.

The investigation of alternate cathode catalyst supports included
heat-treated Vulean XC-72 and Shawinigan acetylene black. The as-
received Shawinigan, and the heat-treated carbons showed improved
corrosion resistance and a somewhat better endurance (as compared
with the standard carbon) in a limited number of laboratory-scale
tests.
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o Additions of vanadium, tantalum and chromium metals to the standard
platinum-on-carbon catalyst showed 25 to 40 mV improved per-
formance during the initial period which is equivalent to a 5%
improvement in the heat rate. A dissolution of the additives at
operating conditions after several thousand hours operation, however,
diminished the improvements to a certain degree. Stabilization of
these additives is therefore needed. The results obtained so far
suggest that chromium is the most stable additive of the three.

. A pressurized facility for testing short stacks with full size cells was
designed and constructed during the program.
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SECTION 1

MATERIALS EVALUATION AND DEVELOPMENT

The materials effort for this program focused on the development and
evaluation of the bipolar plate. It is the backbone of the fuel cell stack and
must be an impermeable, acid resistant separator for the fuel and oxidant.
ERC's previous programs, EC-77-C-03-1404 and DEN3-67, had determined that
some thermoplastic and thermosetting resins were marginally resistant to 100%
H3PO4 at 185°C and 1 atm pressure. Preliminary testing of the bipolar plates
heat-treated at 9009C in nitrogen were shown to be an order of magnitude more
resistant than nonheat-treated plates. The present program was structured to
extend these initial results by evaluating the effects of material composition
(resin/graphite ratio), final heat-treatment temperature, sample geometry and
test conditions on the physicochemical properties of the bipolar plates. This

effort was divided into the following areas which will be discussed in this

section.
. Corrosion Measurements
. Analysis of Possible Poisons
. Physical Properties Measurements

1.1 Corrosion Measurements

The out-of-cell corrosion measurements on bipolar plates were performed
at atmospheric pressure as well as at elevated pressures. However, the bulk of
the results reported below were obtained at atmospheric pressure while the
apparatus for the pressurized measurements was being developed.

L1.1 Equipment

Atmospheric pressure tests were performed in the cell used on ERC
Contract DEN3-67 (see Figure 1.1). The aparatus consisted ot a Tetlon beaker
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cut to fit in a Pyrex reaction kettle with a Teflon plate cover. Teflon was used
to make the body of the cell and its fittings, and a standard reversible hydrogen
electrode was used as the reference. Test samples were mounted on Teflon
supports with only one surface of the sample exposed to the electrolyte. A Pt
black counter-electrode of the same size was used to ensure uniform current
distribution. Electrical connections were accomplished via a 0.32 em diameter
stainless steel rod covered with heavy wall Teflon tubing. The gold connecting
wire was also covered with heat shrinkable Teflon. The central plug provided

a flexibililty for choosing the proper cell environment.

The vessel for pressurized corrosion testing was purchased from Berghof,
Inc. It is a Teflon lined pressure vessel with appropriate penetrations for gases
and electrical connections as shown in Figure 1.2. The cell design as shown in

Figure 1.3 uses Teflon for all structural components.

A special reference electrode must be used for controlling the potential
since it will be working in 100 to 1039 H3POg4 at 180 to 205°C and 343 to 1013
kPa. No reference electrodes are commercially available to operate in this
environment. Furthermore, a Hy bubbling reference electrode can not be easily
adapted for this use. Therefore, a dynamic hydrogen electrode was used for this
application. A sketch of this electrode is shown in Figure 1.4. It consists of
two platinum black electrodes (A and B). On electrode (A), Hg is evolved under
a constant current of approximately 1 mA/em2. Since O9 is evolved on
Electrode B (anode) it is kept approximately 1.5 c¢m higher than the hydrogen
electrode (A). This avoids diffusion of oxygen to the Hjy evolving electrode.
Both electrodes are housed in a Teflon tube (E) which has a Luggin capillary (D)
at the bottom. The top of this tube is filled with a platinum black catalyst (C)
which is used to recombine the electrolytic hydrogen and oxygen. The water
formed by this reaction maintains the acid concentration in the reference
electrode chamber and also prevents accumulation of Hg in the pressurized
vessel. This reference electrode was frequently calibrated at 1 atm against a
reversible hydrogen electrode and also against a calomel electrode giving only 2
mV hydrogen overpotential through the calibration period.

A number of special concerns had to be addressed to ascertain the
reliability of the data collected from these two corrosion ecells. Acid
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concentrations before and after the experiments were checked and found to vary
only a small amount (i.e., 1 to 2 wt%). Samples were corroded for varying
lengths of time and Tafel slopes measured. The Tafel slopes changed as a
function of time, unless the material was precorroded at or above 0.8V for at
least 24 hours. Even with this pretreatment, the corrosion current varied by as
much as a factor of three for similarly prepared material. This variability does
not seem to be related to the experimental technique. Samples could be
removed, washed and returned to the corrosion cell without any change in the
corrosion rate. It therefore appears that the variability is primarily related to

the chemical properties of the samples.

1.1.2 Materials

Most of the materials being studied were molded composites of thermo-
setting phenolic resins and Asbury A-99 graphite which were heated to various
temperatures in nitrogen. Another portion of the study evaluated the corrosion
of heat-treated and nonheat-treated carbon blacks. The composite materials
were dry blended and hot pressed into flat sheets before being cut into small
pieces. The carbon blacks were mixed with 5 to 10% Teflon and rolled into

sheets.

1.1.3 Corrosion Data At 1 Atmosphere

An examination of the corrosion characteristics of individual components in
the bipolar plate (heat-treated phenolic resin and the graphite filler particles)
was reported in ERC's DEN3-67 Final Report. A plot of their current/voltage
relationship is shown in Figure 1.5. Heat-treated resin and graphite appear to
have similar stable corrosion rates which are considerably lower than those for
nonheat-treated molded plates. The heat -treatment to higher temperatures
dramatically decreases the corrosion rate as indicated in Figures 1.6 and 1.7.
Decreasing the rate by three orders of magnitude from 4 x 1072 to 3 x 10-5
mA/em?2  should provide sufficient corrosion protection for 40,000 hours of

operation. These materials, however, have increased porosity when heat-treated
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above 1600°C. This will be discussed in a later section, but the porosity is
important when considering what the best heat-treatment temperature might be.
Based on our present state of information, 1600 or 2700°C should be used for

pressurized operation, while 900°C is satisfactory for atmospherie conditions.

The corrosion conditions have a strong influence on the measured rate. As
expected, temperature and potential have the greatest effect on the corrosion
rate. Activation energies in the range of 50 to 65 keal/mol were measured for
Asbury A-99 graphite (Figure 1.8, Table 1.1) and the heat-treated graphite/resin

composites (Table 1.2).

In addition to the controlled variables, the samples probably had some
variability in themselves. To evaluate this possiblity, samples were cut from a
single large plate and tested individually. The results shown in Figure 1.9
demonstrate that the measured corrosion rate at 0.9V and 190°C in 100 wt%
H3gPO4 for the 900°C heat-treated graphite/resin composite is 0.12 to 0.31
mA/em? and is independent of the location within the large plate. The corrosion
rate decreased and leveled off after approximately 100 hours for most samples
but required 1,000 hours for Sample BL. The reason for the decreasing corrosion
rate is not clearly understood at this time, but is generally observed for all the

corrosion experiments performed in this laboratory.

1.1.4 Study of Pressure, Temperature, and Acid Concentration

Effects on Corrosion

The corrosion rates of 900 and 1200°C heat-treated 30 wt% resin bipolar
plate materials were evaluated at utility fuel cell operating conditions (voltage
0.7 to 1.0 (RHE), pressure 343 to 689 kPa, and temperature 180 to 205°C). The
polarization plot at 689 kPa pressure along with the plots at two other pressures
are compared in Figure 1.10. Similarly, the polarization plots obtained for the
1200C heat-treated 30 wt% resin at various pressures are compared in Figure
L1l.  The results indicate that the effect of applied pressure on the corrosion
rate of the bipolar plate was not very significant. The increase in the applied

pressure decreases the carbon corrosion overpotential resulting in a lower
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Al 4 |BO BI B6 C1
2% 0.312 0.219
ma/cm . (70) (49)
(mils/yr ')
A2 A7 B2 B7 Cc2
A3 A8 B3 BS C3
0.124 0.229
to 0.267 (52)
(28 to 60)
Al A9 B4 B9 Cc4
A5 AlD B5. y B10 cs
0.300 0.276"' 0.312
’ (68) (63) (71)

*190°C, 100 to 102% H;PO,,

+Based on composite density = 1.7 g/cm3
T+

0.9V (RHE), 100 hours

0.7V (RHE) for 112 hours, then 0.9V (RHE) for 98 hours
Data at 210 hours total time.

D2136 |

FIGURE 1.9 CORROSION UNIFORMITY OF 9000C HEAT-TREATED
FLAT PLATE (49 v/o (35 w/o) Varcum 29-703/
A-99 Graphite, Plate 3310)
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corrosion current, but the lower acid concentration at high pressure causes the
corrosion current to increase. The net effect of these variables on the corrosion
rate at the same cathode potential (wrt RHE at pressure) was not significant.
To ascertain this the 1200°C heat-treated 30 wt% resin sample was also
corroded at 1 atm pressure. The obtained polarization plot is compared with the
plots obtained under pressurized conditions (Figure Lll). This comparison also
indicates that the net effect of pressurization on the corrosion rate at the same

cathode potential (wrt RHE at pressure) was not significant.

The corrosion currents and Tafel slopes obtained for the 900 and 1200°C
heat-treated samples at various pressures and temperatures are tabulated in
Table 1.3. Tafel slopes for 900 and 1200°C ‘heat-treated materials vary between
95 to 110 mV/decade at 190 to 200°C. Tafel slopes for the 900°C heat-treated
materials at different temperatures and pressures were found to be about 10
mV/decade higher than the 1200°C heat-treated material. The corrosion current
for the 1200°C heat-treated sample at 0.8V (RHE at pressure), 517 kPa (5 atm)
and 190°C was about an order of magnitude less than the 900°C heat-treated
sample. The experimental data also shows that a decrease in the experimental
temperature by 10°C at 517 kPa (5 atm) pressure and 0.8V (RHE at pressure)
caused a decrease in the corrosion rate by a factor of ~2. These results suggest
that in a fuel cell using 1200°C heat-treated 30 wt% bipolar plate, lowering the
operating temperature by 100C will cause lower corrosion equivalent to

decreasing the cathode potential by 30 mV at constant temperature.

Determination for the 1200°C heat-treated 80 wt% resin sample is being

continued to obtain the corrosion data at various pressures and temperatures.

A second 1200°C heat-treated 30 wt% resin sample was examined. The
corrosion current of the sample is compared with the 900°C heat-treated 30
wt% and previously tested 1200°C heat-treated 30 wt% sample in Figure 1.12.
The corrosion current of this sample at 0.8V (wrt RHE at pressure), 190°C and
343 kPa in 98 wt% of acid in 6.6 x 1073 mA/cm?2 (geom.).

The experiments for 900 and 1200°C heat-treated 30 wt% resin samples
were terminated after passing 1600 and 906 coulombs respectively, l.e., 5% and

2.5% of the sampies were corroded. These samples were inspected visually and
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CORROSION CURRENT AT 0.8 V(wrt RHE AT 343 kPa), mA/cm2(Geom.)

DEN3-205 , F

i Flat Molded Sample
- Exposed Surface Area: 3.23 cm?(Geom.)
Temperature: 190°C
Pressure: 343 kPa (3.4 atm.)
Acid Conc.: 98% HaPO,

900° C Heat-Treated
30 wt % Resin

1200° C Heat-Treated
30 wt % Resin

a. First Sample

10 2 b. Second
i Sample
: \\i
10_3 ! L NSNS | 1 L L g
1 10 100
TIME, hours

D1958a

FIGURE 1.12 CORROSION RATES OF HEAT-TREATED BIPOLAR PLATE
MATERIALS AT 0.8V (RHE) AND PRESSURE
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under a microscope with 50X magnification and found to be defect free and
structurally strong. Acid absorption and weight loss measurements tor these

samples are being conducted.

Pressurized corrosion experiments were performed using the 1600C heat-
treated 30 w/o Varcum 29-703/A-99 graphite material. The effect of pressure
appears to be much greater with this sample than was apparent with the 900°C
material as shown in Figures1.13 to 1.15. Futher work would be required to
verify whether this is an experimental artifact or characteristic of the higher

heat-treatment temperature.

The effect of acid concentration an the corrosion rate of bipolar plate
material was evaluated using several acid- concentrations between 100 w/o and
70 w/o H3PO4. The usual totally immersed sample was held for at least 24
hours at 0.8V, 190°C, 75 psia total pressure, and a known acid concentration.
During this time, the corrosion current decreased and then stabilized. The
stabilized corrosion current was taken as the corrosion rate for the specified
acid concentration. The acid concentration was kept constant at the desired
level by starting with a known concentration in the sealed pressure vessel and
letting the pressure increase while heating to 190°C. If the pressure was less
than 75 psia after heating, it was adjusted by adding N9 to the vessel. For the
70% acid case, the total pressure was held at 85 psia. The observed corrosion
currents shown in Figure 1.16 were very substantial. By decreasing the
concentration from 100 to 70% the rate increases 18 fold. This suggests that
if & mechanism for creating low acid concentration in the plate material were
to occur, the plate may corrode very rapidly.

1.2 Analysis of Possible Poisons

Phosphoric acid from each of the corrosion experiments described above
was retained for post-test examination. Visual examinstion revealed that the
acid from 900°C heat-treated materials was discolored. As the heat-treatment
temperature was increased, the discoloration decreased. Acid from experiments
testing 2400 and 2700°C plates showed very slight coloration. Separation of the
colored material by centrifugation was possible, but appeared to be droplets of
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viscous liquid rather than colloidal solid particles. No further characterization
of this liquid was performed. Future work should explore the composition of this
material which is stable in hot phosphoric acid and may be a poison to the fuel

cell electrodes.

1.3 Physical Properties Measurements

In addition to the corrosion measurements described in Section 1.1,
materials heat-treated at different temperatures were characterized by mea-

suring the following properties.

. carbon yield
. density

. porosity

. shrinkage

Heating of graphite/phenolic resin composites in an inert atmosphere
decomposes the resin, leaving a glassy carbon residue. The chemical composition
of this residue is known to vary with the heat-treatment temperature. It may
depend on the amount of decomposition products which are trapped within the
microporosity (<50;x) that is not measured by mercury porosimetry. Average
carbon yields were obtained to assess the changes which may oceur when heating
above 900°C. The values shown in Table 1.4 indicate that there is a
measureable change when heating above 900°C, suggesting that materials are
being removed by the additional heating. The change after 1200°C heat-

treatment, however, appears relatively small.

During the initial 900°C heat-treatment the density of the material
changes significantly. The as-molded material appears to be very close to the
expected theroetical density at all the prepared resin contents. The density of
heat-treated materials as shown in Figure 1.17 increases as the resin (1.3 g/cm3)
is converted to glassy carbon (L.5 g/em3). Heat-treating to 1600°C produces an
additional small change. Going to 2400°C however, significantly changed the

amount of porosity for all of the samples tested. A summary of the data
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TABLE 1.4 CARBON YIELD AT DIFFERENT HEAT-
TREATMENT TEMPERATURES

Heat-Treatment Temperature, °C

Average Carbon Yield, %

900
1200
1600
2400
2700

67
63
62
61
61
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presented in Table 1.5 demonstrates that heating above 1600°C increases the
porosity rather significantly. This probably ocecurs due to the differential
thermal expansion between the graphite and glassy carbon. The analysis of the
mercury porosimetry data indicates that the increased porosity mostly occurs in
pores between 0.01 and 0.09 uym diameter. A graphical presentation of this is
shown in Figures 1.18 and 1.19. These intermediate size pores are very likely
small cracks. Porosity of this kind may be undesirable in the bipolar plates since
it would absorb acid and promote degradation. Note that in Figure 1.18 (30 w/o
resin), the porosity as a function of temperature goes through a maximum. This
maximum is, however, not observed above 50% resin content (Figure 1.18 and
Table 1.5).

During the heat-treating process, th.e mate'rial shrinks differently in the
axial and planar directions. This anisotropic shrinkage may be a reflection of
a basic compositional anisotropy as suggested by the apparent electrical
anisotropy. Shrinkage variations result in bipolar plates that are not exactly the
same size. Dimensional variations must therefore be accommodated by the cell
and manifold seals. A summary of the shrinkage obtained with the composite
plate material is shown in Table 1.6. The material continues to shrink as the
heat-treatment temperature is increased but the change is less for temperatures
in the 1200 to 1600°C range than in the 900 to 1200°C range. This provides an
additional incentive for heat-treating to 1600°C.

1.4 Conclusions

Improvements in bipolar plate materials can be projected from the data
obtained during this contract. Very dense parts can be prepared and heat-
treated to 1600°C. This would decrease the corrosion rate with very little
change in porosity. New manufacturing techniques may produce a composite
material which does not increase its porosity upon heating above 1600°C, thereby
allowing higher heat-treatment temperatures and lower corrosion rates. Ad-
ditional improvements might also be achieved by applying a corrosion resistant

coating.
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- CUMULATIVE PORE VOLUME x 100, cm3/g
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FIGURE 1.18 MERCURY POROSIMETRY OF 30 WT% VARCUM 29-703
RESIN AND 70 WT% A-99 GRAPHITE COMPOSITE
HEAT -TREATED AT DIFFERENT TEMPERATURES
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HEAT-TREATED AT DIFFERENT TEMPERATURES
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TABLE 1,6 SHRINKAGE OF VARCUM 29-703/A-99 MATERIALS FROM
AS-MOLDED TO FINAL HEAT-TREATMENT TEMPERATURE

% SHRINKAGE
LENGTH WIDTH THICKNESS | NUMBER OF
VOL% RESIN | HEAT-TREATMENT | MEAN | S,DEV | MEAN | S.DEV | MEAN | S.DEV SAMPLES, N
TEMP, °C
42 (30wt%) 900 3.321 0.18 3.3271 0.23 5.94} 0.81 68
1200 3.58| 0.17 3.541 0.36 8.71] 0.64 8
1600 3.641 0.20 3.581 0.27 7.511 0.97 20
2400 3.06( 0.31 3.01| 0.42 |-3.53} 2.11 8
2700 3.73| 0.32 3.69] 0.35 2.22] 3.59 20
53 (40wt%) 900 5.13| 0.35 5.12] 0.55 |10.93] 1.30 32
1200 5.52} 0.05 5.55| 0.14 [12.80] 1.30 5
1600 5.66f 0.16 5.78) 0.10 |14.59] 0.66 5
2400 5.01} 0.09 1 4.50| 0.48 [-0.82] 6.25 5
2700 6.08| 0.28 6.241 0.21 4.46] 0.94 5
63 (50wt%) 900 6.87] 0.45 6.93] 0.66 |13.20] 1.20 68
1200 6.97] 0.38 7.221 0.21 }13.79} 1.80 8
1600 7.281 0.30 7.341 0.48 |16.20] 0.72 20
2400 5.36| 0.50 5.12) 0.25 |-0.98]|-1.29 8
2700 7.50]1 0.46° 1 7.32} 0.70 2.14}1 3.05 20
72 (60wtY) 900 9.71] 0.49 9.51| 0.49 [12.60] 1.60 31
1200 10.36] 0.45 9.98] 0.48 |15.58{ 1.23 5
1600 10.28¢ 0.85 [10.00] 0.78 |16.60] 2.50 5
2400 9.60)] 0.78 9.231 0.47 |12.43] 2.28 5
2700 9.521 1.26 9.00}) 0.64 9.56| 1.84 5
80 (70wt%) 900 11.50] 0.57 [11.5 0.74 (15.10] 1.30 30
1200 11.93] 0.28 11.80f 0.97 [16.98] 0.69 4
1600 12.38) 0.90 |12.65| 0.73 118.32] 1.21 4
2400 11.11} 0.59 {10.97] 0.61 6:15| 9.40 5
2700 11.42]1 0.68 |11.23] 0.47 8.001} 3:75 5
87 (80wts) 900 13.20] 0.55 [13.20} 1.00 |16.30§ 1.10 60
1200 13.93] 0.36 |13.60| 0.67 }J18.53} 1.10 6
1600 13.45) 0.60 |13.72] 0.87 |18.78} 0.87 20
2400 13.221 0.63 |13.61{ 0.89 |16.56] 5.02 8
2700 13.23]1 0.86 [13.31| 1.13 }17.59] 1.75 17
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SECTION 2

COMPONENT/FABRICATION DEVELOPMENT

The objectives of the effort deseribed in this section were to improve the
component fabrication techniques by identifying methods which would increase
production rates and/or decrease their expected cost. Three areas were
emphasized which would significantly impact the manufacturing of fuel cell
stacks. Bipolar plates, electrodes, and acid inventory control members were
examined in some detail so that manufacturing recommendations could be made

at the conclusion of this study.

2.1 Bipolar Plate Development

Phenolic resin/graphite composites of various compositions between 30 and
80 wt% resin were investigated to optimize the resin content. The molding
trials, however, did not suggest an optimum composition. All resin contents
could be molded quickly, but somewhat different conditions were required to
satisfy dimensional tolerances requirements. The differences in molding
conditions are not expected to affect the cost. Another factor which changes
with resin content is the shrinkage during heat-treatment. Even though the
shrinkage increases with higher resin content, this can be accounted for in the

mold design; therefore, there does not appear to be an optimum resin content.

The molding cycle is a major contributor to the bipolar plate costs. ERC
presently uses a five minute cycle time for compression molding a ribbed bipolar
plate. This is the time spent from placing a preform in the press to removing
the molded plate. To reduce this time, plates were molded using two minute,
one minute and 45 second cycles. Plates molded in 45 seconds released from the
mold easily, had good dimensions, and could be heat-treated satistactorily, thus

a very fast molding cycle was demonstrated.
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2.2 Acid Inventory Control Members (AICM)

Acid volume changes during stack operation must be accommodated by the
cell components. These volume changes depend on gas tlows, cell temperature
and temperature gradients, and the rate of acid equilibration. Transient
operation can be an especially harsh condition. Energy Research Corporation has
been developing a selectively wetproofed anode backing paper which can
accommodate volume changes, store acid, and distribute the acid within a cell.
The basic design of the material is shown in Figure 2.1. Initial development of
this design and technique had been achieved on a previous contract (DEN3-67).
The wetproofed dot pattern allows gas transport to the electrode, while the
interconnected unwetproofed area allows transport of acid across the electrode
face. Variation of dot size and spacing controls the amount of gas transport

to the electrode.

Results of initial efforts to define the reproducibility and uniformity are

summarized in Table 2.1.

TABLE 2.1 AICM REPRODUCIBILITY AND UNIFORMITY

APPLICATOR SAMPLE TYPE NO. OF SAMPLES TEFLON CONTENT, %
2 1 5 30.9 * 2.2
2 20 ' 27.5 ¥ 8.6
4 1 5 32.1 * 2.4
2 19 30.9 * 8.9

Sample Type 1 is a piece of backing paper cut to the exact size of the
applicator and weighed before and after application of the wetproofing agent.
Sample Type 2 is a 2 inch x 2 inch wetproofed piece cut from a 5 inch x 15 inch
backing paper requiring multiple applications. The higher variability of Sample
Type 2 may be caused by variations in the weight per unit area of the fresh

backing or variations in the cut sample.
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Effort is continuing to optimize and characterize these materials in out-of-
cell tests. Although this may define the material capacity, the final test is
whether it performs in an operating stack. This phase of the development was
curtailed because of a substantial reduction in contract funding. Results of a

stack tested with AICM's are described in Seetion 3.

2.3 Electrode Development

Two aspects of electrode manufacturing were evaluated during this
program: a) sintering, and b) platinum loading. Sintering is a very important
operation in the manufacturing of electyodes and one that can be automated
easily. A conveyor oven can be sized to match the production rate required.
This type of oven was used to sinter a number of electrodes which were tested

in 25 cm? cells. The cell performances are summarized in Tables 2.2 and 2.3.

The anodes in Cells 2007 through 2009 were sintered at 340°C to define the
minimum sintering temperature. As expected, the anodes sintered at 340°C
showed evidence of insufficient wetproofing while operating in a reverse mode.
The SiC coated cathodes in these cells were also sintered at 340°C followed by
batch oven sintering at 330°C. Adequate wetproofing was attained because
Teflon sinters at a lower temperature when it is reheated. Cell 2010, which also
exhibited an acceptable performance, contained an anode conveyor-sintered at
350°C, and a cathode with its SiC layer that were simultaneously conveyor
sintered at 3509C. The results of these tests indicate that electrodes and SiC

matrices can be sintered in a conveyor oven at the same time.

Platinum loading of electrodes is one of the primary parameters which
affects fuel cell stack cost and performance. Theoretically, an increased
platinum loading on the cathode results in an increased performance. There-
fore, platinum loading may be optimized to minimize the overall stack cost per
kilowatt,

A series of cells was assembled with low-loaded cathodes to compare with
the baseline cells. Some of these experimental electrodes were prepared at the
0.10 rr:g/cm2 Pt loading level, while others were prepared at the .05 mg/cm2 Pt
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TABLE 2.2 ELECTRODE SINTERING CONDITIONS

CELL DIFFUSION
NUMBER ELECTRODE SINTERING CONDITIONS LIMITATION
No loss as
anode,
moderate
loss as
0
2007 Anode Conveyor Oven, 340°C cathode
Conveyor Oven, 340°C and
Resintered with SiC Laver
L Cathode at 330°C in Batch Oven No ]
Conveyor Oven, 3400C and
Resintered at 3300C in
T
2008 Anode Batch Oven No
Convevor Oven, 340°C and
Resintered with SiC Layer
Cathode at 330°C in Batch Oven No
20 mv cell
loss as
anocde,
severe loss
Anode Convevor Oven, 340°C as cathode
2009 =
Conveyor Oven, 340°C and
Resintered with SiC Layer
Cathode at 330°C in Batch Oven No
o}
2010 Anode Conveyor Oven, 350°C No
Conveyor Oven, 350°C
Electrode and SiC Layer
Cathode Sintered Tocether No
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TABLE 2.3 CELL TESTING SUMMARY

CELL NO. 2007 2008 2009 2010
TEST OBJECTIVE
Vulcan Vulcan Vulcan ’Vulcan
Catalyst Catalyst Catalyst Catalyst
CELL CHARACTERISTICS
ANODE
Type Rolled Rolled Rolled Rolled
% TFE 40 40 40 40
Loading ,mg Pt/cm? 0.28 0.30 0.25 0.42
CATHODE
Type Rolled Rolled Rolled Rolled
$ TFE 40 40 40 40
Loading,mg Pt/cm? 0.56 0.56 0.56 0.47
CELL
N o]
TEMPERATURE, ©C 180 180 180 190
ANODE BACXING % FEP 34 37 33 35
CATHODE BACKING % FEP 33 33 33 38
PEAK PERFORMANCE
IR-FREE, mV
Air 100 mA/cm? 707 711 697 716
200 mA/cm?® 664 663 643 674
0, 100 mA/cm? 767 771 752 779
200 mA/cm? 729 733 703 743
02 Gain 100 mA/cm? 60 60 55 63
200 mA/cm? 65 70 60 69
PRESENT PERFORMANCE Terminated 500 Hrs. Terminated 400 Hrs.
IR-FREE, ) 600 mV 642 mV 200 mV
Air 200 mA/cm (cell Short) ( Cell Short) |( Cell Short) 674 mV
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level. Different electrocatalyst batches were utilized in preparing the
respective cathodes. The catalyst batches are designated as either A, B, C or
D. The peak performance level for each of the experimental cathodes is shown
in Table 2.4.

TABLE 2.4 PERFORMANCE OF CELLS WITH VARIOUS CATALYST LOADINGS
USING Hg9 AND AIR

Cathode Average Peak Average Loss
Cells Catalyst Loading, Performance mV

mg/cm2 mV @ 200 mA/cm2  Actual Predicted

2024, 2025 A 0.50 673 0 0
2026, 2027 C 0.11 615 58 60
2036, 2037 B 0.11 623 50 60
2039, 2040 A 0.10 608 65 64
2033, 2034 D 0.05 576 92 97

As shown, the actual performance losses due to the lower Pt loading did
correlate reasonably well with the losses which are theoretically predictable. A
summary of performance characteristics of these cells is shown in Table 2.5.
From the peak performance data it appears that the amount of platinum on the
carbon support (2, 5 or 10%) may alter the observed performance. It must be
kept in mind that when the electrode loading is kept constant and the percent
platinum on the carbon varies, the electrode thickness changes, leading to a high
internal ohmic resistance. Thus the 5% platinum catalyst may provide a better

thickness, porosity, and platinum particle size.

The lower percent platinum on carbon is generally assumed to decrease the
platinum particle size and increase the performance. Finding the optimum of

these variables is very difficult and can be easily confused by other variables.
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The trend however, suggests that a 5% catalyst may produce a better electrode
structure. The decay rates observed tor these cells are within the range
normally observed. There appears to be only a slight trend toward a lower rate
with the 2% catalyst. Thus, there does not appear to be any major detrimental

or beneficial effects of the low cathode loading.

Variations of anode platinum contents are not expected to alter cell
performance to any great extent. However, if there were any anode poisons
present in the system, the low loading could have resulted in significant
decreases in initial performance and decay rates. The data shown in Table 2.6
demonstrates that this does not occur. Poisons, therefore, did not appear to
affect the performance. The loss ot performance (6 to 8 mV/1000 hrs) observed
may be associated with a slow poison reiease, but this is clearly a speculation

at this time.

Combining the low loaded anodes and cathodes did not show any particular
problems. The performance and decay rates as shown in Table 2.7 were as
expected. This demonstrates that the basic trade-off of platinum loading, cell
performance,and cost can be made without any major detrimental problems with
the initial performance. Effects of carbon monoxide poisoning were not
evaluated with these low loaded electrodes due to programmatic constraints.
The carbon monoxide is expected, however, to have a greater effect as the anode

loading is decreased, and may limit the level at the anode.

A stack test with low-loaded electrodes is described in Section 3.
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SECTION 3

NEW COMPONENT AND CELL ASSEMBLY TESTING

Testing of new materials and new components in multicell stacks was the
primary objective of the effort deseribed in this section. Long-term stability of
these materials and components was critical for their acceptance as viable
candidates. The four components listed below were tested to provide a basis for
further development. Each will be described in this section along with the stack

results,
P nonheat-treated bipolar plates
‘ heat-treated bipolar plates
. acid inventory control member

. low platinum loaded electrodes

3.1 Multicell Testing of Bipolar Plates

Bipolar plates have been manufactured for a considerable time using a
phenolic resin/graphite mixture. This material had reasonably good electrical
properties and short-term resistance to phosphoric acid. Out-of-cell and stack
testing on ERC's NASA Contract DEN3-67 demonstrated the poisoning effect of
this nonheat-treated composite. A heat-treatment of this composite at >900°C
produced a more conductive and corrosion resistant plate which did not appear
to poison the fuel cell. This development improved the fuel cell performance
by at least 80 mV, as shown in Figure 3.1. However, only 5,000 hours of testing
had been achieved during that program. Stacks with heat-treated plates ( No.
620, 621, 431 and 432) and nonheat-~treated plates (No. 428, 429, and 430) were
continued on test during the present DEN3-205 program. In addition, a 23-cell
stack (No. 433) containing heat-treated plates (molded ribs) was built and
operated for 1,500 hours.
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Testing of nonheat-treated plate stacks continued during this program for
an additional 2,000 to 3,000 hours. All stacks with the nonheat-treated plates
had significant blockage of both the acid addition and flow channels after ~4,000
hours of operation. Upon disassembly of Stacks 428, 429, and 430, the nonheat-
treated plates were found to be soft and swollen, primarily along the edges and

corners,

Upon disassembly of Stack 432 (with heat-treated plates after 4,240 hours),
the plates were very hard and were not swollen. There were, however, two soft
spots on the cathode plates in Cells 1 and 2. Discoloration of the plate in these
areas suggested that a crossleak had been present. Disassembly of Stack 433
also indicated that the plates were not attacked except at a hot spot that had
existed in Cell 20 during most of the 1,500 hours of operation. The plate was
slightly soft but not swollen in the hot spot region. This suggests that the
corrosion process has a large activation energy, which is consistent with the
values of 55 to 65 kcal/mol obtained in the out-of-cell test reported in Section
1, Table 1.3. Local hot spots may not only increase the corrosion rate, but also
increase the degradation rate of the Teflon wetproofing in the backing paper.
This could allow acid migration to the plate and result in corrosion. The mild
corrosion apparent in Stack 432 suggests that the 900°C heat-treated bipolar
plate may be satisfactory for long-term operation at 1 atm.

Operation of Stack 431 with heat-treated plates had achieved over 22,000
hours of operation by the completion of this program*. The degradation rate
after 16,000 hours of operation had increased significantly. The stack was kept
in operation, but observation of the stack faces during a manifold change
indicated that the backing paper was sagging into the gas flow channels. The
corners of the plate in Cell 5 were also becoming soft and limiting the ability
to replenish the acid. This softness of corners appears to be associated with low
density areas produced during molding. It seems apparent that the 900°C heat~
treated plates will require additional development for use in stacks beyond
~15,000 hours. These improvements would include molding the plates with denser
corners and edges, some surface treatment and/or higher temperature heat-
treatment.

* The stack was operated further under in-house funds.
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Post-test observation for Stacks 431 and 433 also indicated that the backing
paper was crushed under the bipolar plate ribs within about 3 inches of the
periphery. The center of the backing paper was not as heavily erushed. This
is typical of long-term cells and was evident when the stack faces of Stack 431
were examined during a change of manifolds. After 19,000 hours of operation,
the backings of Stack 431 were cracking and expanding into the gas flow
channels. Thus is seems apparent that either the compression of the stack must
be reduced or the strength of the backing paper needs to be improved for

operation longer than ~15,000 hours.

The materials limitations just described are also reflected in Stack 431
performance, as shown in Figure 3.2 and Table 3.1. Replenishment of acid seems
to be required about every 3,000 to 4,000 hours and, therefore, a blockage of the
fill channels can be deleterious. This was not a problem with Stack 431 until
after 16,000 hours when the average decay rate increased from 2 to 12 mV/1000
hr. Cell 5 was not responding to acid additions and the decay rate increased
from 2 to 36 mV/1000 hr. Acid management is, therefore, crucial for long-term

operation.

Optimum stack performance also requires good seals and low stack
resistance. Bipolar plates must be flat to achieve these objectives and it is most
important for stacks with many cells. Optimization of seals was not part of this
program. The high resistance (9.4 mQ/cell) of the 23-cell stack (No. 433), may
be a result of nonuniform compression due to warpage of the bipolar plates.
This may also account for the 30 mV lower performance as compared with the
5-cell stack (No. 431). The resistance and open circuit voltage shown in Figure
3.3 responded to acid addition, indicating good acid transport to the cells and

electrodes.

The acid fill channel and seal design used in Stacks 431 and 433 is shown
in Figure 3.4. This design allows contact of the matrix and cathode to the fill
channel so that there is ample opportunity for the components to wick acid
across the inside seal. Apparently this arrangement was still effective after
18,000 operations of operation, as shown by the responsiveness of the cell

performance and open circuit voltage of Stack 431 to acid addition.
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3.2 Stack Testing of Acid Management Control Member (AICM)

There are several aspects to acid management which require operational or
component solutions. The AICM was designed to address the following

situations:

L Acid expansion and contraction during start-up, transients, and upsets.

2. Acid transport and lateral distribution in the anode backing to
minimize resistance and gas diffusion.

3. Acid storage to decrease the performance loss betwen acid additions
at normal maintenance intervals of approximately 4,000 hours.

Although additional optimization may be desirable, the state-of-the-art AICM
(see Section 2) was tested in a stack to establish a baseline and identify areas
for improvement. A 3-cell stack (No. 620) was built with 5 inch X 15 inch heat-
treated bipolar plates and incorporated anode electrodes which had the
selectively wetproofed backing papers (AICM). The primary objective was to
determine if the wetproofing was sufficient to prevent excessive wetting of the
anode backing, leading to a diffusion polarization. The performance shown in
Figure 3.5 demonstrates the expected peak performance of 0.675 V at 100
mA/em2 and 180°C on Ho/air. Although the open -circuit voltage and
performance were responsive to acid additions at 3,400 and 6,400 hours, further
additions resulted in a performance loss. Upon disassembly, the plates were
found to be cracked. Extensive corrosion of cathode plate- surfaces was found
in the areas which appeared to have discolored. This discoloration was
attributed to hot spots that occur when the anode and cathode gases mix. The
bipolar plates were from a very early batch of heat-treated plates and may have
been porous. Since that time, different resins and new molding procedures have
improved the density. The cracked plates, however, probably allowed extensive
crossleaks to occur, which caused the localized overheating. Over 10,000 hours
of operation was still achieved with an average decay rate from the peak
performance of ~12 mV/1000 hr. The amount of acid added during the operation
of this stack was monitored, but the numbers are not representative because of
cell design considerations. The AICM does not appear to need any extensive
manufacturing changes, however, additional testing would be desirable with the
improved plates which were available at the end of this program.
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3.3 Low-Loaded Electrodes

Powerplant costs and performance can be affected by the amount of
platinum used in the electrodes. This program examined the effect of platinum
loading and the results from single 25 em? cells are reported in Section 2 of this
report. The next large test vehicle used by ERC for evaluation was a 3~cell,
5 inch x 15 inch stack. A 3-cell stack (No. 621) was assembled using heat-treated
bipolar plates and electrodes containing ~0.12 and ~0.25 mg Pt/em? in the
anodes and cathodes respectively. The matrix was MAT-1 and the seals were
ERC's standard Teflon. The stack responded to acid additions as indicated in
Figure 3.6, again confirming the fast transport of acid with the cathode and

matrix exposed to the acid fill channel.

Performance of this stack was slightly higher than expected with a peak
of 0.66 V on Hg/air at 180°C. The stack had a reasonable performance for about
15,000 hours with a decay rate of approximately 6 mV/1000 hr. per cell @ 100
mA/em2. This decay behavior was within the range of standard cells (2 to 8
mV/1000 hr). After 15,000 hours of operation, the stack performance was
decaying at a faster rate. A broken current collector and higher crossleak of
Hg across the cell may have contributed to this decay. At 18,200 hours of
operation, the performance of this stack dropped significantly after a hydrogen

supply interruption.

Post-test analyses showed that one of the terminal bolts connected to the
current collector was broken in two pieces, making it impossible to connect the
stack back to the load. Bipolar plates were found structurally strong and the
ribs were intact, showing no sign of corrosion. However, large cracks were
detected on the bipolar plates, mainly at air exits. The anodes and anode
backings of the stack were found to be wet. The cathode and cathode backings
were dry. Matrices of the cells appeared dry. Acid channels were also dry,
hard, and slightly clogged.

3.4 Conclusions from Stack Testing

The primary objective of this program was to demonstrate long-term

endurance of 900°C heat-treated bipolar plates and to identify areas for
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improvement. The summary of stacks in Table 3.2 demonstrates the achieve-
ment of this objective. Especially Stack 431, which has achieved over 22,000
hours of operation and is continuing to be operated under in-house funds.
Although there was not sufficient time or funding to test the improved bipolar
plates available at the conclusion of this program, it seems reasonable to expect
even longer life with less softening and channel blockage from these materials.
Improvements in plate flatness, thickness uniformity, and density should lead to
a decrease in the occurrence of cracked plates and crossleaks.

The long-term testing also revealed that low-loaded electrodes can indeed
operate with the present components without being poisoned by long-term
degradation produets. If any poisons still exist in the components, they continue
to produce effects very early in the opera.tion, as they did with nonheat-treated

bipolar plates.

AICM testing revealed the need to seal the edges of the anode AICM
backing so that acid does not weep out. As might be expected, the acid addition
procedure may also require modification to maintain a partially filled AICM.

These procedures remain for future development.

Post-test examination of the backing papers suggested that this component
lost its strength with time, possibly due to corrosion of the fiber bonds.
Improvements in its strength without sacrificing porosity would definitely be

desirable.
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SECTION 4

HIGH PRESSURE TECHNOLOGY DEVELOPMENT

Large phosphoric acid fuel cell powerplants are expected to be pressurized
to achieve greater efficiencies. The pressurization also results in compact
reactors, heat exchangers and ducting. The higher pressure operation, however,
poses additional constraints on technology development. The increased pressure
may lead to an increased corrosion of the carbon catalyst support and bipolar
plate materials. Improved and cost-effective catalyst materials are desirable
for an efficient powerplant operation. Some of these issues are addressed in this
section. The construction of a pressurized stack facility was also initiated

during this program.

4.1 Development of Electrodes Suitable for Pressurized Operation

Three aspects of electrode development were investigated:
L Development of more corrosion resistant catalyst support materials.
2. Investigation of heat-treated platinum catalysts.

3. Development of alloy catalysts for greater performance and stability.

Results obtained in these areas are summarized in Sections 4.1.]1 to 4.1.3.

4.1.1 Development of Catalyst Support Materials

Corrosion characteristies of different support materials were compared in
out-of-cell corrosion tests as well as in laboratory-scale cells at high operating
potentials. In addition, 8 laboratory cells were operated under normal conditions
to compare long-term decay associated with different catalyst supports.
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Out-of-Cell Corrosion Characteristies

The corrosion characteristies of the following catalyst support materials

were evaluated at atmospheric conditions to establish a preliminary ranking:

. As-received Shawinigan carbon black (acetylene black)
. Shawinigan carbon black, heat-treated at 1800°C

. Vulean, XC-72 carbon black, heat-treated at 1800°C

. Vulecan, XC-72 carbon black, heat-treated at 2500°C

The test apparatus and procedure used for these samples are discussed in
Section 1. The samples were corroded initially at 1.05V (RHE) for 100 hours and
then a slow sweep polarization test was cdnducted. The potentiostatic corrosion
rates (mA/mg) at 1.05V (RHE) are compared in Figure 4.1. The heat-treated
samples have comparable corrosion rates and are about three times less than the
as-received Shawinigan. The Tafel slope and the Critical Corrosion Potential (a
potential above which corrosion current increases rapidly) measured during sweep
polarization are reported in Table 4.1. The Tafel slopes for these samples are
comparable to each other and lie between 95 and 111 mV. The critical corrosion
potential for as-received Shawinigan is somewhat lower as compared with the
heat-treated Shawinigan. In an earlier study,* an as-received Vulcan XC-72
support showed the corrosion rate (mA/mg) at 0.8V of 7 to 10 times greater than
an as-received Shawinigan carbon black. This may have been observed because
Shawinigan is a pure carbon relative to XC-72 or to incomplete stabilization. It
should also be noted here that if one compares the corrosion rates in terms of
mA/(em2 of real surface area), the comparison may be somewhat different.
However, the overall qualitative rating (in terms of stability) may remain as

follows:

Vulean XC-72 (as-received) less than,
Shawinigan (as-received) less than,
Vulean (1800 HT, 2500 HT) and

Shawinigan (1800 HT)

* Christner, L. and George, M., "Electrode Optimization for Phosphoric
Acid Fuel Cells, "Final Report for DOE Contr. No. DE~AC-03-78ET13114,
Energy Research Corp., Danbury, CT, 1981.
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FIGURE 4.1 CATALYST SUPPORT CORROSION CURRENT AT 1.05v (RHE)
(190°C and 100 Wt% H3POq)
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TABLE 4.1 CORROSION CHARACTERISTICS OF VARIOUS
CATALYST SUPPORT MATERIALS
Acid Conc.: 100-102% H;PO, Temperature = 190°C Pressure = 1 Atmosphere
Critical*
Heat- Tafel Slope Corrosion
Treatment mV/Decade @ 190°C Potential, V Corrosion Current
Sample Temperature sweep Tafel Anod Cath @ 1.05 Vv and 190°C
°C Sweep Sweep mA/mg
Vulcan 1800 95 1.06 1.08 -3
%C-72 4,6 x 10
Vulcan 2500 111 1.19 1.25 -3
XC-72 6.0 x 10
Shawinigan As- 100 1.02 1.04 -
Received . 15 x 10-3
Shawinigan 1800 110 1.24 1.28 4.6 x 10-3

*Critical corrosion potential is a potential above which the corrosion current
_increases rapidly.
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Stress Testing in Laboratory Cells

The as-received Vulcan and Shawinigan materials were further stress tested
at ~875 mV cathode potential in laboratory-scale cells (Cells 2083 and 2085) for
approximately 1,850 hours (Il weeks). The purpose of these cells was to
intentionally corrode the catalyst support, and see the effect of such a corrosion
on cell performance. The results also provide information on cell performance
decay under part-load conditions where operating potentials are expected to be
high.

Two control cells (Cells 2084 and 2082) with the same cathodes were
operated at normal operating potentials (~660 to 680 mV, 200 mA/em?2). The
Vulecan-type cathodes contained 40% PTFE and Shawinigan-type cathodes
contained 30% PTFE. Cathodes with these levels of wetproofing had exhibited

acceptable stability in the past at normal operating conditions,

All four cells were operated at normal conditions (200 mA/em?2 on air) for
a minimum period of 400 hours. During this break-in period, the cells were
allowed to reach peak performance. The stressed cells were operated on oxygen
at ~875 mV and on a once-a-week basis, performance was checked at 200
mA/em?2 on both air and oxygen to determine the cell performance. The control
cells were operated continuously at 200 mA/em2 on air. The peak performance
of all eells was within -3.5 to +4.5 mV of each other. The oxygen gains at peak
performance were 75 + 5 mV, thus showing comparable wetproofing. The weekly
performance levels for both the stress and eontrol cells are shown in Table 4,2,
The "0" time data corresponds to performance levels just prior to initiation of
the stress testing.

The performance changes during the stress test period are summarized in
Table 4.3. While additional repeat cells are needed to obtain definitive

conclusions, the following observations may be made from the data:
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. There is indeed a significantly greater decay in all the cells operated
at ~875 mV. If one assumes that performance changes at 20 mA/em?
are indicative of inherent catalytic activity, a significant portion of
the decay appears to be related to changes in the activity. Oxygen
gain, indicative of diffusion polarization, registered only a small
increase for the stressed cells. The observed changes in activation
polarization may be related to carbon corrosion leading to a loss of
platinum or to a greater platinum coarsening at the higher cathode
potential. The former mechanism is more likely.

. Based on the limited data, it appears that Shawinigan black is a
somewhat better candidate support for higher pressure and tem-
perature operation where higher cell voltages are expected. Also,
Shawinigan black has far less impurities as compared with Vulean XC-
72. '

Long-Term Endurance Testing of Different Supports

Four cells (No's. 2067, 2068, 2065 and 2066) with heat-treated Vulcan and
Shawinigan supports were endurance tested and their performance behavior was
compared with that of standard Pt/Vulean XC-72 supports. Table 4.4
summarizes the peak and final performance of the above mentioned cells along

with standard cathode cells.

Two of the cells (No's. 2067 and 2068) had cathodes with Vulean supports
heat-treated at 1800°C and wetproofed with 35% PTFE. The other two cells
(No's. 2065 and 2066) had cathodes with Shawinigan supports heat-treated at
1800°C and wetproofed with 25% PTFE. The wetproofing levels were chosen on
the basis of past experience, but further optimization may be necessary as
evidenced by the somewhat high oxygen gains for these electrodes. The standard
cells (No's. 2024, 2025, 1490 and 2084) had cathodes with as-received Vulcan
support, wetproofed with 40% PTFE. As can be observed in Table 4.4, the IR-
free peak performance on air at 200 mA/em?2 for the standard cells was 682 +
13 mV. The peak performance for the cells with heat-treated cathodes was on
the lower end of the standard cells, 673 + 3 mV. Thus there is a reasonable basis
for comparison of their long-term behavior. Peak performance for all the cells
described here was achieved in a normal break-in period of 100 to 400 hours.
The observed decay rates at 20 mA/em2 (Og) and 200 mA/em? (Og and air) are
summarized in Table 4.5. As can be seen in this table, the air performance
decay rates for heat-treated supports are somewhat lower than the cor-

responding decay rates for standard cells. The trends are reversed for 20
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TABLE 4.5 SUMMARY OF DECAY RATES OBSERVED FOR DIFFERENT

CATALYST SUPPORTS IN 25-cm’ CELLS

std Pt/Vulcan
2024

2025
1490

2084

Pt/Vulcan 1800

mv/1000 hr (first 5000 hrs)

2067

2068

Pt/Shaw 1800
2065

2066

20 mA/cm? 200 mA/cm? 200 mA/cm?
02 0, Alr
6 7 6
8 8 6
5 4 3
5 6 6
9 6 2
10 5 4
8 5 3
11 6 5
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mA/em?2 (09) decay rates. The differences in the internal structure of
electrodes and acid film thicknesses for the standard and the unoptimized heat-
treated electrodes may be responsible for this reversal in trends. On the basis
of 200 mA/em? air performance and the results of out-of-cell and stress tests,
however, heat-treated carbons appear preferable to the as-received Vulecan
Support.  Further testing, and post-test characterization is recommended to

clearly differentiate and rationalize the behavior of different supports.

4.1.2 Investigation of Heat-Treated Platinum Catalyst

The standard cathode utilizes as-received Vulecan XC-72 as the support
material, and no special post-catalyzation treatment is employed. As shown in
Section 1, decay rates for this type of cathode vary between 3 and § mV, and
greater decay rates may be expected at a higher pressure and voltage. In the
previous section, we discussed the improved catalyst support for minimizing the
performance decay. In this section, we will discuss the possibility of stabilizing
the catalyst by a post-catalyzation heat-treatment. The possibility of improving
the initial cell performance by such a treatment was also investigated.

The standard Pt/Vulean catalyst was heat-treated in a N9 atmosphere at
900°C. The possible benefits of the heat-treatment are threefold:

L The platinum crystalline size increases and approaches a near-
optimum size.

2. The carbon support becomes somewhat better stabilized and some of
the impurities may be removed.

3. Variability of the carbon surface and surface groups is minimized.

The platinum surface area of the sintered electrode for this batch
(designated as CAT-6-A) was 60 m2/g Pt 8 compared to a normal surface area
of 120 m?/g Pt. Performance of two 25-em2 cells (No's. 2061 and 2062) tested
with this catalyst is shown in Table 4.6. The initial performance of these two
cells was in the same range as the typical standard cells (See Table 4.4, Cells
2024, 2025, 1490 and 2084). Cell 2061 was terminated voluntarily after 5,856
hours, showing an overall performance decay rate of ~3 mV/1000 hr, The
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performance decay for Cell 2062 was considerably greater because of a gas
crossover in the cell. Other cells operated at ERC, with a similar heat-treated
cathode, have shown results similar to Cell 2061 (within the variability range).
Thus the heat-treated Pt-on-Vulcan catalyst appears only marginally better than

a standard, unheat-treated cathode.

4.1.3 Development of "Alloy" Catalysts

Alloying the platinum catalyst with nonnoble metals may improve the
oxygen reduction activity and possibly also improve the catalyst stability.
Performance improvements of approximately 25 mV were sought under this
program. Binary "alloys" were prepared using three alloying elements (vanadium,
tantalum, and chromium) with varying compositions. The alloys or intermetallic
compounds were prepared by impregnating suitable chemicals on a platinum-
supported-on-Vulcan catalyst.

A complete list of the twelve catalyst batches prepared during this
program is shown in Table 4.7. The table also lists the intended atomic
percentage of the alloying element, surface area of the active material, lattice
parameter and other characteristics, whenever measured. In some cases,
corrosion testing and differential calorimetry were also performed to char-

acterize the stability of these catalysts.

A total of 29 laboratory-scale cells with different "alloy" electrode
structures were assembled and tested during the program. A goal of 5,000 hours
of testing at 1 atm was set for these cells. The cells were operated at 200
mA/em?2 on air, but for comparison of catalytic activity, IR-free performance at
20 and 200 mA/em2 on Og was measured periodically. Although, the
measurement of ohmic resistance is somewhat uncertain, the IR-free per-
formance at 20 mA/em? (Og) appears to be a reasonable indicator of inherent
catalytic activity. The catalytic activity of the "alloys" was compared with that
of a standard platinum-on-Vulean catalyst. Because of the experimental nature
of these electrodes, not all of the electrode structures provided acceptable
performance or endurance levels. Performance behavior of a selected number
of eells is includedinTable 4.6. Results of the platinum-vanadium, platinum-

tantalum and platinum-chromium catalysts are discussed below.
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Platinum-Vanadium Catalysts

Four batches of this type of catalyst, CAT-1-A, CAT-2-A, CAT-3-A and
CAT-9-A were prepared. Although the preparations were carried out with the
intention of obtaining specific atomic percentages, the sintered electrodes
showed compositions similar to Pt3V. The measured lattice parameter and
structural analysis confirmed that a Pt3V intermetallic was formed by these
preparations. Electrochemical Area (ECA) measurements showed catalyst
surface areas of 50 to 100 m2/g on the basis of platinum weight. An accelerated
corrosion test in 100% H3POy4 at 0.9V (RHE) and 190°C showed that 87% of the
alloying element from CAT-2-A was dissolved after 50 hours.

Cell testing showed that initial activity (as measured by IR-free voltage at
20 mA/em?2 on Og) was as much as 40 mV greater than a typical Pt/Vulcan cell.
A lifegraph of Cell 2054, assembled with CAT-2-A is shown in Figure 4.2 along
with a "typical" lifegraph of a baseline cell. After 5,000 hours of cell testing,
this cell appears only marginally better than the baseline performance. The
reason for the greater decay in activity as compared to the standard Pt catalyst
appears to be related to dissolution of the alloying element, as discussed above.

Upon disassembly, only trace amounts of vanadium were found in the cathode.

Platinum-Tantalum Catalysts

Four batches of this type of catalyst, CAT-4-A, CAT-5-A, CAT-8-A and
CAT-12-A were prepared. Reasonably high surface areas were obtained with
these preparations. Tantalum is expected to be more corrosion resistant to
phosphoric acid as compared with vanadium. The accelerated corrosion testing
showed that while tantalum was more stable as compared with vanadium,
approximately 65% of Ta dissolved in 50 hours.

Cell testing of different catalyst batches with Tantalum as the alloying
element showed as much as 30 mV improvement in initial activity over the
"standard" cathode activity, but at 5,000 hours, the electrode activity was only
slightly better than the standard (Table 4.6). Oxygen gains were reasonable all
throughout, indicating an acceptable level of wetproofing. An example of cell
performance behavior with catalyst CAT-4-A is shown in Figure 4.3.
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Platinum-Chromium Catalysts

Four batches of this catalyst, CAT-7-A, CAT-10-A, CAT-l-A and
CAT-13-A were prepared during the program. The Electrochemical Area (ECA)
of Batches CAT-7-A and CAT-10-A was~75 mz/gpt, but Batch CAT-13-A showed
only a 40 m2/gpt surface area. X-ray diffraction measurements showed the
lattice parameters of 3.88 and 3.91 for Batches CAT-10-A and CAT-1-A

respectively, indicating that an alloy was indeed formed.

Some electrodes with this type of catalyst were wetproofed with 40%
PTFE (Cells 2063 and 2064) but showed high oxygen gains. Therefore, most of
the electrodes were wetproofed with 459% PTFE. Initial activity with these
catalysts were as much as 30 to 35 mV better than the standard activity. A
signigicant portion (~1/2) of this activity édvantage was still observable for some
of the cells at 5,000 hours, as shown in Table 4.6 and Figure 4.4. Thus it appears
that among the alloying elements tested, chromium is the most promising
candidate. Further optimization of this preparation procedure, electrode

fabrication and long-term testing are, therefore, recommended.

4.2 Pressurized Test Facility Development

High pressure stack technology development requires the capability for
testing full size plate multicell stacks. Since component behavior can be tested
reasonably well in 3 to 5 cell stacks, as it has been done for 1 atm operation,
a facility was designed for this size stack. Only a brief deseription will be
provided in this section for the rather complex system required for testing at
pressure. The operating variables such as pressure limit, current, air and fuel
flow, temperature, ete., were chosen somewhat arbitrarily, since an optimum
had not been identified. Initial component testing did not require this
knowledge; however, future systems to obtain engineering design information
would need to be more specifically oriented toward a particular fuel cell system
design.
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The pressure vessel as shown in Figure 4.5 was designed for operation up
to 120 psia with all penetrations through the flat bottom flange. Ease of access
to the connections and the stack was achieved by setting the height of the
flange at 36 inches. This was very important during the system check-out when
plumbing and wiring modifications were necessary. Flexible connections were
also made between the self-contained control panel (see Figure 4.6) and the

pressure vessel which resulted in a compact and accessible system.

A schematic of the system is shown in Figure 4.7. The control scheme
uses mass flow controllers in conjunection with pneumatic differential trans-
mitters and controllers to keep the system at the set point. Using the vessel
pressure as reference, the anode and cathode streams were controlled to the
desired pressure differential by adjusting the rate at which gas exited the
system. A summary of the basic operating characteristics is shown in Table 4.8.

A process control and automatic data acquisition system was assembled
which monitored several operating parameters continuously. The basic features
included in this test facility are outlined below:

Operation

« 100 to 1000 kPa and 50 to 200 mA/em? testing

. Data scanning and recording by an automatic data aequisition system
. Unattended round-the-clock pressurized operation

. Reactants simulating actual fuel cell operating compositions

Safety and Stack Protection Features

. Stack overheating protection

. Low cell-voltage protection

. Electric power failure protection |

. Hg level monitor in the vessel and room

. CO monitor in room

. Autor1)1atic shutdown (maintaining differential pressures of + 13 em of
water -
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Controlled Operating Parameters

Vessel pressure (pneumatic control)

Current (manual)

Temperatures: air, fuel, cooling and cell (temperature controller)
Fuel compositions (manual)

Air and fuel flow rates (manual)

Cathode to vessel and anode to vessel differential pressures
(pneumatic control)

Water level in the condenser water trap (automatic)

Performance Measurements

The design
below.

Cell Voltage
Temperature distribution

Pressure drop across stack in all streams (only one stream per test)

details of some of the important subsystem components are discussed

Pressure Vessel: A pressure vessel fitted with a blind flange was
designed according to the ASME code to Oé)erate at 2200 kPa and
1779C and to test up to 52-em tall 1200-cm? (12 inech x 17 inch) size
fuel cell stacks. The vessel was made of carbon steel; the vessel
bottom and the flanges were faced with SS-316.

Pressure Fittings: Voltage leads, thermocouple wires and solid
conductors penetrating into the pressure vessel from the test panels
are to be sealed against the operating pressure of the vessel. Conax
type sealant glands are commercially available.  An alternate,
simpler means for sealing electrical wires, thermocouples and solid
conductors was developed and successfully implemented.

Fuel Humidifier: Dry fuel (a mixture of Hg, CO and CO39) was
humidified to simulate the fuel composition obtained from a fuel
processor. A positive displacement pump was used in combination
with an electrically heated vaporizer.
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. Data Acquisition System (DAS): A Kaye Instruments scanner was
used for reading the measured variables (current, flow rates,
temperatures, voltages, pressure, and differential pressures). An
Apple II Plus microcomputer was used for data recording and data
manipulation. The system used a floppy disk for data storage.

Facility check out and stack operation could not be performed during this
program because of a reduction in funding.
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