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OF POOR QUALITY

A minimum distance dmin - 4 extended Reed-Solo-won (RS) code over GF(2 b ) is

constructed. The code can be used to correct any single-byte-error and

simultaneously detect any double-byte-error. Fast encoding and decoding can be

achieved due to some nice features of the code described in the following.

A

I. CODE CONSTRUCTION

Consider the RS code with generator polynomial given by

g ( x ) = (x+l) ( x+a ) ( x+a2 ) ,
	 (1)

where a is a primitive element of GF(2 b ). The code has minimum distance

dmin = 4, and the parity-check matrix takes the form

1	 1	 1	 1	 ••••••	 1

H 1 =	 1	 a	 a2 a 3 ......	 a l	 ,
n -1

(2)

2n -2
1	 a 2 a4 a6	......	 a	

1

where n l = 2b-1. The matrix H 1 is modified by adding the identity matrix

I 3x3 on the left. This forms a new matrix H

1	 0	 0	 1	 1	 1	 1	 ••••••	 1

n -1
H=	 0	 1	 0	 1	 a	 a2 01 3 	••••••	 a l

2n -2
0	 0	 1	 1	 a 2 a4 a6 ......	 a 1

7 3x3 : HI	 (3)

This is a 3xn(n = n 1 +3 = 2b+2) matrix. Now we show that the above H matrix is

a parity-check matrix for an (n, n l ) extended RS code with minimum distance

d	 4!
min

1
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The following theorem regarding the H matrix of a binary block code still

holds true in the case of a nonbinary code [1]. We repeat it here.

Theorem: A code defined by a parity-check matrix H will correct single-byte-

errors and simultaneously detect any combination of two byte-errors

if and only if every combination c-f three or fewer columns of H is

linearly independent.

Consider the H matrix in (3). It is obvious that

1) H contains no zero columns,

2) No two columns of H are linearly dependent.

Now we show that

3) No three columns of H are linearly dependent.

First note that every combination of three columns of H 1 are linearly independent.

Then for i # j we have

i)	 1	 1	 1	 al	 0)
i

	det 0	 al	 C)	 det	 = al+j (al + ai).

	

0	
a 2 CL 2 J	 a 2 C1 J

I

Because a is assumed to be primitive, a l + ai $ 0 for i # j. Therefore	 j

	

1	 1	 1 	 -	 {

	det 0	 al	 a i	0.

	

0	
a 2 a2j

Similarly,	
0	 1	 1

2

	

det 1	 al	 ai	
a2i + a 2 = (a i + a l ) # 0

0 a 2 a 2

and

	

0	 1	 1

j
	det 0	 al	 a	 = a 

i 
+ a

j
 # 0.

	

.1	
a 2 

CL 2j

2

i•
i
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	1 	 0	 1

	

det 0	 1	 al
	 = a21 0 0.

	

0	 0	
a2i

	

1	 0	 1

	

det 0	 0	 a l	= al # 0.

	

0	 1	 CL 

2i

	

0	 0	 1

	

det 1	 0	 OL	 = 1 # 0.

	

0	 1	
a2i

Therefure no three columns of H are linearly dependent.

4) Not all combinations of four columns in H are linear independent. For

ex=ple,

1	 0	 0	 1	 0

0	 + a l	1	 + CL 2i	 0	 +	 a l	=	 0

0	 0	 1	 CL 2i	 0

From 1), 2), 3), and 4) we conclude that the extended (n, n1)

(n = 2 
b 
+2, n 1 = 2 

b_ 
1)  RS code defined by the parity-check matrix in (3) has

d	 = 4.
min

ii)

M

From (3) we see that the H matrix satisfies the following important con-

siderations for an optimum code that can be used for correcting single-byte-

errors and detecting double-byte-errors.

1) H is in systematic form, hence G - the generat - matrix is also in

the systematic form:

G = [ H1T
	

I ]
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This suggests that encoding and decoding can be implemented in parallel.

2) The first nonzero element of every column of H is the unit element

a 0 = 1. (The advantage of this will be seen later.)

3) For a systematic code with dmin ' d, each column of H 1 must contain

at least d-1 nonzero elements. In (3), each column of H 1 contains ex-

actly d-1 - 4-1 - 3 nonzero elements. So H contains the minimum

possible number of nonzero elements.

4) The number of nonzero elements in each row of H is equal.

3) and 4) simplify the implementation of the encoder and the decoder.

II. ERROR CORRECTION AND ERROR DETECTION.

The code described above has dmin = 4. Therefore it can correct single-

byte-errors and simultaneously detect any double-byte-error.

1) Single byte error correction

Suppose a single error of value a occurs at byte position i. Then

the syndrome is given by

s0

s i = ehi =	 s l	 (4)

s2

where h i is the i-th column of H, 0 < i < n-l. Note that the first

nonzero element of every column of H is a unit element a 0 , and

e a0 = e. Therefore the error value a is given directly by the first

nonzero element of the syndrome. The location of the error byte is

reduced to finding a column h i of H which satisfies the identity

eh i = sue .	 (5)

This can be dome in the following way.

4
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Check the elements of the syndrome s i to see

1) if s 0 #0, s l =s 2 =0, then i=0,

2) ifs l #0, s 0 =s 2 =0, then 	 =1,

3) if s 2 #0, s 0 =s l =0, then i=2.

Otherwise, from

1 i-3)
	

s0
eh i 	e a	 sl

a2(i-3)
	

52

we have

i-3	 s 	 s2
a =s0

=si

and i gives the error byte location, 3 	 i `= n-1.

2) Double-byte-error detection

Because the code is double-byte-error detecting, the sum of any two

syndromes corresponding to two single-byte-errors e  and e  (i	 j)

is not equal to any single-byte-error syndrome s 	 that is,

S. + S. #	 for	 i # j.

Using this property, double-byte-error detection can be done in the

following way. If

s i = 0, s 	 # 0, s i # 0,	 where	 i l , i 2 , i 3 	 £(0, 1, 2),

1	 2	 3

or if

	

l	 2s 0 # 0, s l # 0, s 2 # 0	 and	
s # s

	

0	 1

then a double-byte-error is detected.

5
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