General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

"AN EXTENDED $d_{\text {min }}=4$ RS CODE"

by
H. Deng and Daniel J. Costello, Jr. Department of Electrical Engineering Illinois Institute of Technology Chicago, IL 60616

This wori was supported by NASA under Grant NAG 2-202.

ORIGINAL PAGE IS
 OF POOR QUALTTY

A minimum distance $d_{\text {min }}=4$ extended Reed-Solowon (RS) code over GF (2^{b}) is constructed. The code can be used to correct any single-byte-error and simultaneously detect any double-byte-error. Fast encoding and decoding can be achieved due to some nice features of the code described in the following.

I. CODE CONSTRUCTION

Consider the RS code with generator polynomial given by

$$
\begin{equation*}
g(x)=(x+1)(x+\alpha)\left(x+\alpha^{2}\right), \tag{1}
\end{equation*}
$$

where α is a primitive element of $\operatorname{GF}\left(2^{b}\right)$. The code has minimum distance $d_{\text {min }}=4$, and the parity-check matrix takes the form

$$
\underline{H}_{1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots \cdots & 1 \tag{2}\\
1 & \alpha & \alpha^{2} & \alpha^{3} & \ldots \cdots & \alpha^{n_{1}-1} \\
1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & \ldots \ldots & \alpha^{2 n_{1}-2}
\end{array}\right],
$$

where $n_{1}=2^{b}-1$. The matrix \underline{H}_{1} is modified by adding the identity matrix $\underline{I}_{3 \times 3}$ on the left. This forms a new matrix \underline{H}

$$
\left.\begin{array}{rl}
\underline{\mathrm{H}} & =\left[\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 0 & 1 & \alpha & \alpha^{2} & \alpha^{3} & \ldots & \alpha^{n_{1}-1} \\
0 & 0 & 1 & 1 & \alpha^{2} & \alpha^{4} & \alpha^{6} & \ldots \ldots & \alpha^{2 n_{1}-2}
\end{array}\right] \\
& =\left[\underline{I}_{3 \times 3}\right. \tag{3}\\
\underline{H}_{1}
\end{array}\right] . ~ l
$$

This is a $3 \times n\left(n=n_{1}+3=2^{b}+2\right)$ matrix. Now we show that the above \underline{H} matrix is a parity-check matrix for an (n, n_{1}) extended RS code with minimum distance $d_{\text {min }}=4!$

ORIGINAL PAGE IS OF POOR QUALITY

The following theorem regarding the H matrix of a binary block code still holds true in the case of a nonbinary code [1]. We repeat it here.

Theorem: A code defined by a parity-check matrix \underline{H} will correct single-byteerrors and simultaneously detect any combination of two byte-errors if and only if every combination of three or fewer columns of \underline{H} is linearly independent.

Consider the \underline{H} matrix in (3). It is obvious that

1) \underline{H} contains no zero columns,
2) No two columns of \underline{H} are linearly dependent.

Now we show that
3) No three columns of \underline{H} are linearly dependent.

First note that every conbination of three columns of ${\underset{-1}{1}}$ are linearly independent. Then for $\mathrm{i} \neq \mathrm{j}$ we have
i)

$$
\operatorname{det}\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \alpha^{i} & \alpha^{j} \\
0 & \alpha^{2 i} & \alpha^{2 j}
\end{array}\right|=\operatorname{det}\left|\begin{array}{cc}
\alpha^{i} & \alpha^{j} \\
& \\
\alpha^{2 i} & \alpha^{2 j}
\end{array}\right|=\alpha^{i+j}\left(\alpha^{i}+\alpha^{j}\right) .
$$

Because α is assumed to be primitive, $\alpha^{i}+\alpha^{j} \neq 0$ for $i \neq j$. Therefore

$$
\operatorname{det}\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \alpha^{i} & \alpha^{j} \\
0 & \alpha^{2 i} & \alpha^{2 j}
\end{array}\right| \neq 0
$$

Similarly,

$$
\operatorname{det}\left|\begin{array}{ccc}
0 & 1 & 1 \\
1 & \alpha^{i} & \alpha^{j} \\
0 & \alpha^{2 i} & \alpha^{2 j}
\end{array}\right|=\alpha^{2 i}+\alpha^{2 j}=\left(\alpha^{i}+\alpha^{j}\right)^{2} \neq 0
$$

and

$$
\operatorname{det}\left|\begin{array}{ccc}
0 & 1 & 1 \\
0 & \alpha^{i} & \alpha^{j} \\
1 & \alpha^{2 i} & \alpha^{2 j}
\end{array}\right|=\alpha^{i}+\alpha^{j} \neq 0
$$

ii)

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & \alpha^{i} \\
0 & 0 & \alpha^{2 i}
\end{array}\right|=\alpha^{2 i} \neq 0 . \\
& \operatorname{det}\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & \alpha^{i} \\
0 & 1 & \alpha^{2 i}
\end{array}\right|=\alpha^{i} \neq 0 . \\
& \operatorname{det}\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & \alpha^{i} \\
0 & 1 & \alpha^{2 i}
\end{array}\right|=1 \neq 0
\end{aligned}
$$

Therefure no three columns of \underline{H} are linearly dependent.
4) Not all combinations of four columns in \underline{H} are linear independent. For exainple,

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\alpha^{i}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\alpha^{2 i}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
\alpha^{i} \\
\alpha^{2 i}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From 1), 2), 3), and 4) we conclude that the extended (n, n_{1}) = ($\mathrm{n}=2^{\mathrm{b}}+2, \mathrm{n}_{1}=2^{\mathrm{b}}-1$) RS code defined by the parity-check matrix in (3) has $d_{\text {min }}=4$.

From (3) we see that the \underline{H} matrix satisfies the following important considerations for an optimum code that can be used for correcting single-byteerrors and detecting double-byte-errors.

1) \underline{H} is in systematic form, hence \underline{G} - the generat - matrix is also in the systematic form:

$$
\underline{G}=\left[\underline{H}_{1}{ }^{\mathrm{T}}: \underline{\mathrm{I}}\right]
$$

This suggests that encoding and decoding can be implemented in parallel.
2) The first nonzero element of every column of \underline{H} is the unit element $\alpha^{0}=1$. (The advantage of this will be seen later.)
3) For a systematic code with $d_{\text {min }}=d$, each column of ${\underset{H}{1}}$ must contain at least d-l nonzero elements. In (3), each column of ${\underset{H}{1}}^{\text {contains ex- }}$ actly $d-1=4-1=3$ nonzero elements. So \underline{H} con ains the minimum possible number of nonzero elements.
4) The number of nonzero elements in each row of \underline{H} is equal.
3) and 4) simplify the implementation of the encoder and the decoder.
II. ERROR CORRECTION AND ERROR DETECTION.

The code described above has $d_{\min }=4$. Therefore it can correct single-byte-errors and simultaneously detect any double-byte-error.

1) Single byte error correction

Suppose a single error of value e occurs at byte position i. Then the syndrome is given by

$$
\underline{s}_{i}=\underline{e}^{\mathrm{h}}=\left[\begin{array}{l}
\mathrm{s}_{0} \tag{4}\\
\mathrm{~s}_{1} \\
\mathrm{~s}_{2}
\end{array}\right]
$$

where \underline{h}_{i} is the $i-$ th column of $\underline{H}, 0 \leq i \leq n-1$. Note that the first nonzero element of every column of \underline{H} is a unit element α^{0}, and e $\alpha^{0}=$ e. Therefore the error value e is given directly hy the first nonzero element of the syndrome. The location of the error byte is reduced to finding a column \underline{h}_{i} of \underline{H} which satisfies the identity

$$
\begin{equation*}
\mathrm{e}_{-\mathrm{h}}=\underline{s}_{\mathrm{i}} . \tag{5}
\end{equation*}
$$

This can be done in the following way.

Check the elements of the syndrome \underline{s}_{i} to see

1) if $s_{0} \neq 0, s_{1}=s_{2}=0$, then $i=0$,
2) if $s_{1} \neq 0, s_{0}=s_{2}=0$, then $i=1$,
3) if $s_{2} \neq 0, s_{0}=s_{1}=0$, then $i=2$.

Otherwise, from

$$
\underline{e h}_{i}=e\left[\begin{array}{c}
1 \\
\alpha(i-3) \\
\alpha^{2(i-3)}
\end{array}\right]=\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2}
\end{array}\right],
$$

we have

$$
\alpha^{i-3}=\frac{s_{1}}{s_{0}}=\frac{s_{2}}{s_{1}},
$$

and i gives the error byte location, $3 \leqq i \leqq n-1$.
2) Double-byte-error detection

Because the code is double-byte-error detecting, the sum of any two syndromes corresponding to two single-byte-errors e_{i} and $e_{j}(i \neq j)$ is not equal to any single-byte-error syndrome $s_{k_{k}}$, that is,

$$
\underline{s}_{i}+\underline{s}_{j} \neq \underline{s}_{k} \quad \text { for } \quad i \neq j
$$

Using this property, double-byte-error detection can be done in the following way. If

$$
s_{i_{1}}=0, s_{i_{2}} \neq 0, s_{i_{3}} \neq 0, \quad \text { where } i_{1}, i_{2}, i_{3} \varepsilon(0,1,2),
$$

or if

$$
s_{0} \not \equiv 0, s_{1} \neq 0, s_{2} \neq 0 \quad \text { and } \quad \frac{s_{1}}{s_{0}} \neq \frac{s_{2}}{s_{1}}
$$

then a double-byte-error is detected.

REFERENCES

1. S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.
