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ABSTRACT

The structure of axisymmetric 	 buoyancy-driven convection in a
r.

vertical cylinder heated from below is probed by finite element solution

of the Boussinesq equations coupled with computed-implemented perturbation

techniques for detecting and tracking multiple flows and for determining

flow stability. Results are reported for fluids with Prandtl number of

one and for cylinders with aspect ratio A (defined as the height to radius

of the cylinder) between 0.5 and 2.25. Extensive calculations of the

neutral stability curve for the static solution and of the nonlinear motions

along the bifurcating flow families show a continuous evolution of the pri-

mary cellular motion from a single toroidal cell to two and three cells

nested radially in the cylinder, instead of the sharp transitions found for

a cylinder with shear-free sidewalls. The smooth transitions in flow structure

with Rayleigh number and A are explained by nonlinear connectivity between

the first two bifurcating flow families formed either by a secondary bifurcation

point for A < A* = 0.80 or by a limit point for A > A * 	 The transition

between these two modes may be described by the theory of multiple limit point

bifurcation.
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1, INTRODUCTION

Since the early works of Benard ( 1901) and Rayleigh (1916) for a horizontal
a

fluid layer, the onset and evolution of convective motions ,caused by temperature-
,

induced buoyancy differences have been the focus of extensive theoretical and

experimental research. For geometries with imposed temperature fields that are

purely vertical and heated from below, convection begins at a critical tempera-

ture difference, measured in terms of the Rayleigh number, beyond which the

static fluid is unstable to small amplitude disturbances of the velocity, pressure

and temperature fields. These critical Rayleigh numbers are determined as the

eigenvalues for marginal stability in an analysis constructed from the Boussinesq

equations linearized about the static state.

i

The calculation of the fluid motions that evolve for Rayleigh numbers away

from the critical values requires nonlinear analysis, either by perturbation
a

methods ( Schluter et al. 1965) or by numerical solution of the full Boussinesq

equations. Perturbation methods are only feasible for geometries where at least

part of the boundary is shear-free and eigenfunctions for the field variables,
r

can be written in terms of only a few special functions. Even in these systems

limitations on the range of validity of the perturbation technique confine the

results to flows only slightly perturbed from the rest state, Numerical calcula-

tions have the potential for determining these flows over a much wider range of

Rayleigh number and describing the nonlinear evolution of the structure with

changes in the geometry of the cavity and Prandtl number. The purpose of this

paper is to describe such a numerical study for axisymmetric 	 convection in a

vertical cylinder heated from below.

We report calculations for the form and stability of the steady two-

dimensional flows in a cylinder with rigid boundaries and insulated sidewall.

These flows are computed by combining finite-element methods for solving the

n
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Boussinesq equations with efficient computer-aided schemes for tracking the

evolution and multiplicity of the flow field with changes in parameters, such

as Rayleigh number.

The numerical techniques for calculating solution multiplicity and

stabilityhave been developed as outgrowths of classical asymptotic analysis

of bifurcation in systems of algebraic equations (cf. Keller 1977; Brown and

Scriven, 1980a; Ungar and Brown 1982) and are applied here to the finite-

dimensional equation set that results from the finite-element approximation

to the Boussinesq equations. With this approach, we are able to extend pre-

vious calculations for the flows evolving from rest while simultaneously

determining nonlinear interactions between families of flows. The stability

results presented here are based on a linear analysis of the stability of the

finite-element solutions to small perturbations in the field variables and

are computed by schemes that make use of the connections between the change

of stability of a family of flows and the occurence, of a critical value of

Rayleigh where the flow is locally not unique. These techniques are general

for all disturbances, except those leading to time-periodic bifurcation, and

are much more efficient than the eigenvalue calculations used in previous

studies (Brown and Scriven 1980a; 1980b).

The cataloging of the branching and evolution of multiple flow fields is

a fruitful approach to the description of nonlinear natural convection and the

effect of varying parameters and geometry, as has been recently demonstrated

by the studies of Daniels (1977 & 1979), Tavantis et al. (1978), and Hall and

Walton (1977 & 1979). In this framework, the critical Rayleigh numbers {Ra(i)}

determined from linear stability analysis mark the points of bifurcation between

families of flows and the rest state; the eigenfunctions describe the structure

of the new flows near the respective bifurcation points. A simple eigenvalue

i



.

-3-	 I

Ra M along the static family is then a simple bifurcation point joining

two flow families, the static one and the new family of flows. These flows

exist for some range of Rayleigh number beyond the Ran i) , as shown by asymp-

totic analyses for rectangular cavities (Schluter et al. 1965; Daniel 1977; 	 A

Hall and Walton 1977) and for a cylinder with shear-free boundaries (Liang

et al. 1969; Rosenblat 1982). The critical values (Ral i) } have been obtained
x

for vertical cylinders with. several combinations of rigid and shear-free

boundaries.

Zierep (1959) first calculated these for a cylinder with rigid ends and

shear-free sidewall and found that particular cellular flow structures were

associated uniquely with each critical Rayleigh number. The ordering of the 	 y

set {Ra(')) depended on the aspect ratio (defined as the radius over the

height). Distinct values of n existed where two critical values of Ra were

equal and where two flow patterns were equally likely. These values of Ray-

leigh number are double bifurcation points (Iooss and Joseph 1980) in the full	 i

nonlinear problem and, as shown by Bauer et al. (1975), signal the possibility 	 s`
e

of secondary bifurcation along one of the new flow families for aspect ratios

just slightly perturbed from this special value. Hall and Walton (1979) noted

the existence of double points for the onset of convection in a rectangular 	 j

cavity with rigid sidewalls and shear-free ends and used amplitude expansions

to show the existence of a secondary bifurcation point. Double points are

most simply found for a cylinder with shear-free boundaries all around (Liang

et al. 1969), as demonstrated by the plot of (Ra M ) for axisymmetric modes of

convection as a function of aspect ratio shown as Figure 1. Recently, Rosenblat

(1982) has used approximations formed from truncated eigenfunction expansions to

find secondary steady bifurcation of families of steady flows near double

points between axisymnetric and non-axisymmetric modes for a cylinder with

totally shear-free walls.

S
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The boundary conditions on velocity at the sidewall of the cylinder

R	 have a striking effect on the evolution of the critical values wiVi aspect

ratio and thus on the existence of the double points and secondary bifurcation.

As is shown below, a cylinder with rigid walls exhibits no crossing of the

first and second critical Rayleigh numbers for aspect ratios between 0.5 and

1	 2.75. Instead, the cellular structure of the flow branching from (1) changes

Li	 continuously with varying A. This result is in agreement with the velocity

profiles shown by Charlson and Sani (1970) for the onset of convection in the

same problem and for calculations from an approximate analysis Brown and Stewart-

son (1978) valid for large aspect ratios in a cylinder with rigid sidewall and

shear-free ends. This latter linear analysis formed the basis of nonlinear

studies (Brown and Stewartson 1978 & 1979`) of the effect on the structure of

the bifurcating flow family of the sidewall and imperfections in the insulating

condition along it. Exact calculations of the critical Rayleigh numbers for a

cylinder with shear-free ends were reported by Joseph (1971), but insufficient

information about the velocity component of the eigenfunction was given to deduce

the evolution of the flow structure with A.

Numerical calculations of the finite amplitude flows in a vertical cylinder

have been performed with the three combinations of shear-free and no-slip boundary

conditions mentioned above. Liang et al. (1969) list sixteen finite difference

calculations, all near the critical Rayleigh number, for different combinations

of boundary conditions and including the dependence of viscosity on temperature.

Jones et al. (1976) used time-dependent finite difference techniques to calculate

the flow patterns in a cylinder with shear-free boundaries for Rayleigh numbers

up to 100 Ra c and Prandtl numbers,ranging between 0.1 and the limiting case of

infinity. They found a continuous family of flow fields that developed over this

range of Ra with no qualitative change in the structure of the flow from the

Single toroidal cell predicted from the eigenfunction at Ra=Ra (l) . Charlson and

_= +-	
' ti ,.+irF,t rr.*	 .^°.'1'^^r^s•.wre^c.rv/"	 F .!i"'ft	 -

0
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Sani (1975) have used approximations in terms of eigenfunctions to compute

the finite amplitude flows and stability for a cylinder with all rigid

boundaries, the configuration treated here. They present results for several
a

aspect ratios and Prandtl numbers for Ra up to three times the critical value.

The outline of the paper is as follows. The formulation of the natural

convection problem is presented in §2 and the finite element approximation

and numerical techniques for tracking solution families are reviewed in 93.

The links between bifurcations in the families of steady flows and the stability

of each flow are established in §4 and the criteria for exchanges of stability
t

are presented. Results of calculations of the onset of convection and the

evolution of the flow families are represented in §5-7

a

^r_
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n

2. FORMULATION

We study the axisymmetric two-dimensional flows in a rigid vertical

cylinder of height L and radius R filled with a fluid that has constant

thermal diffusivity a and kinematic viscosity v. The two ends are taken

to be isothermal with the lower one held at a temperature AT above the

temperature Tc of the upper surface. Two different thermal conditions are

examined for the cylindrical sidewall; either it is assumed to be a FMfect

Insulator or it is taken as a perfect conductor so that a linear temperature

profile exists along this wall connecting the temperatures at the top and

bottom ends. Both conditions were studied in Charlson and Sani (1970 and

E;
1975) and the later case is included here for comparison to their calcula-

tions.

The dimensionless forms of the Boussinesq equations that govern the

temperature 6(r,z,t), pressure p(r,z,t) and velocity v(r,z,t) fields are

7-v_=0	 (2.1)

at + v - 17v = -op + Prv2v + RaPr 6 2.Z (2.2 )

aeof + v_- 06 = D2 6	 ,	 (2.3)

where v is the gradient operator in cylindrical coordinates and e z is the

unit vector in the vertical direction. The variables (v_,p,6) have been put

in dimensionless form by scaling lengths with the height of the cylinder L,

velocity with a/L, pressure with pa 2/L2 , time with L 2/a and temperature as

(T(r,z,t)-Tc)/oT, where T(r,z,t) is the dimensional temperature field and p

is the density of the fluid. The Rayleigh and Prandtl numbers appear in eqs.

(2.1-2.3) and are defined as

x

i^

'a
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Ra : a gL 3AT/av	 , Pr = v/a	 , (2.4)

where 0 and g are the coefficient of thermal expansion and acceleration of

gravity, respectively..

The boundary conditions for the velocity field are

yr = V  = 0	 0<r< A	 r	 z=011 (2.5)

v = v	 = 0	 ,	 r=	 A	 ,	 0<z<l	 ,
r	 z

(2.6)

yr = avz/ar = 0	 r = 0	 ,	 0<z<l (2.7)

where AaR/L is the aspect ratio.	 When the sidewall	 is insulated the

boundary conditions on temperature are

e	 0	 0<r<A	 ,	 z- 1	 , (2.8)

e= 1	 0<r< A,	 z= 0	 , (2.9)

'6/ar = 0	 r - 0	 ,	 0<z<l (2.10)

The thermal boundary conditions for a cylinder with a perfectly conducting

sidewall	 are the same as eqs. 	 (2.8-2.10), except the condition evaluated

at r =	 A	 eq.	 (2.10), is	 replaced by

e= 1-z	 ',	 r=	 A	 ,	 0<z<l (2.11)

For either set of thermal conditions the entire equation set has the

static solution

v = 0	 8 = 1-z	 p = po + RaPr(z-z 2/2)	 , (2.12)

from which the convective motions branch. 	 We will represent these flows

by Nusselt numbers defined as
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^2 (A v 8Nu e ^	
u cz 

r d 	 ( 2.13)

where the temperature gradient is evaluated along either the top (N u ) or

bottom (Nu) ends of the cylinder.

0
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3, NUMERICAL METHODS

3.1 Calculation of Steady Flows

Finite element methods are well established for solving the steady and

transient Boussinesq equations and boundary conditionso. We use a method for

mixed-order polynomial interpolation of velocities, temperature, and pressure

that has been proposed before (see Zienkiewicz et al. 1976, Huyakorn et al.

1979, Taylor and Ijam 1979). The fluid domain (04r<A, 0<z<l) is first divided

into equally spaced quadrilateral elements. On this discretization, tha com-

ponents of velocity and the temperature are approximated by expansions in terms

of biquadratic polynomials {40(r,z)) as

vr(r,z,t)	 N	 u j (t)	 N	 u^ 	 N
s

 us

v (r,z,t)	 _ I	 v (t) ^'(r,z) +	 I	 vjS ^j (r,z) +	 v^	 (r,z)
j=1

f► ;r,z,t)	 ej(t)	 e^	 eJ(t)

(3.1)
where the limits on the summations represent types of nodes in the elemental

discretization; N i is the.number of nodes in the interior of the domain,

Ne represents the nodes along the top and bottom ends of the cylinder, and

Ns is the number of nodes along the sidewall. Each biquadrati: function OJ(r,z)

is defined to have a value of one at the node with which it is associated and

to be zero at all other nodes. Because of this definition, the coefficients

';uj (t), vj (t), ej (t)) represent the values of the field variables at the loca-

tions of the nodes. The boundary conditions on temperature and velocity specify

many of these coefficients and reduce the number of unknowns that must be compu-

ted, with the exact number depending on the choice of thermal boundary condition.

The remainder of the analysis is presented for the case of the sidewall being

insulated. Then eqs. (2.8-2.10) set the coefficients (u^,v^, 
e
j, j=1, ...Ne

_ a ^ _	 ^ r .,^. i► 	 ^ctr r.i^	 ems..... ^-.,-^-.+r -.^.t.w..

t

^a

4
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and (us,vsl , j u1, ... Ns •

The pressure is approximated by the expansion in terms of bilinear

polynomials (ipJ (r,z) } as

M
p(r,z,t,) 

= J'1 p
i (t)YJ (r )z)	 (3.2)

where M is the number of vertex nodes in the finite element mesh. Each

function TI (r,z) is defined so that it has a value of one at the Jth

vertex node and is zero at all others. More details of both sets of basis

functions are available in many references (e.g. Thomasset 1981).

The weak forms of the field equations are formed by applying Galerkin's

method to eqs. (2.1-2.3). Each field equation is weighted with the basis

function corresponding to the finite element expansion for the appropriate

field variable and is integrated over the fluid domain:

ate D i v- e,R dA = - ^0 1 [ek • v_-7v + #k -vp - Pr4+v 2 v - RaPre(ez•ek^dA

k-r,z	 i=l, ,.. N i	 (3.3)

t ^ i a dA - 
fV
	 [0 2 6 - V-79 ] dA	 i=1 , ... N i +N s	(3.4)

A 

0 = ( `Y v-v dA	 , i-1, ... M .
	

(3,5)

The final forms of the residual equations are derived by applying the divergence-

theorem to eqs. (3.3, 3,4), by substituting in the expansions (3.1, 3.2), and by

incorporating the boundary conditions for temperature and velocity. After these

simplifications, the residual equations are reduced to the nonlinear ordi.ary

differential equations

0

a
a

r-
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2vr	 av	 ^	 avk	 I d^	 ^ ^^ dA _ t^ ( -v	 - v	

r 
_ °P -Pr	 r)f	 j=1 ,;t o

f	 r ^ar	 z 2z	 ar	 r 2r
`	 y	 V

i a v	 i a v 1
- Pr( r a r - 

aaz - 
,z )SdA	 i=1 , —N

i ► (3.6)

Ni dv	
{4i -v 8vz - 

v 

avz 
-=Pr	

avz
O3 dA	

( r 2r	 z z	 z	 - RaPr e)
J=1 	 a	 a	 r 2r

- Pr	 'z

av z + 2^i avz

ar 2r	 az)
} dA , i=1,	 Ni , (3,7)

Ni
+NS 

:2 (D'^	 (3 dA =	 { ' -v 8 EE - v ae _ n ae _ a0'	 dA
^J=l d  ,D	 r r	 z az ) r ar2z az^

	

i=1, ... N i +N s ,	 (3.8)

2v
0 =	 Y^ 3(r 

Dr	 r
)+ 2z ) dA - 0	 i=1, ... M .	 (3.5)

This set is compactly represented by the notation

M ^ = R(x;Ra, Pr,A)	 (3.10)

where x is the vector of unknown coefficients

x  = ( u l , u 2 ,
 
... u N1 , v l , v2 ,... VN1) 6 1 9 e2 , ... a Ni+Nc ,P l ,p2 ,...PM ) ,

(3.11)

and the vector R represents the nonlinear algebraic equations that compose

the right hand sides of eqs. (3.5-3.8). The mass matrix M is sparse and has

components that are integrals of products of basis functions, but is mathema-

a
r,

v:s , .	 -are+ :	 .rigid:.- .s.®• ,.w.w.^r .^,. ±^.^ .m_ 	 -^^^.

r

8
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tically singular because of the absence of time derivatives from the continuity

equation.

Steady state solutions of the natural convection problem are found by solv-

ing the N t = (3N i + Ns + M) equations

R(x;Ra) = P.	(3.12)

for given values of the parameters. We calculate families of solutions to eq.

(3.11) by combining Newton's iteration with continuation methods (Kubieck 1976) i
for approximating the sensitivity of the solution vector x on Rayleigh number.

The details of these methods are laid out in Ungar and Brown (1982) and only
r

points important to the developments in §4 are included here.

Starting from a first approximation to the solution vector x (0) , Newton's

method forms iterates as

x^ i}l) = x (i) - 60+1)  = x ( ' ) - - 1x(i) 	 Ra)	 (3.13)

where J is the Jacobian matrix of the equation set (3.12), i.e. JiJ a M i /axe .

The Jacobian matrix is asymmetric and has nonzeroes banded about the main diagonal

because of the limited overlap of the finite element basis functions. The system

of linear equations

J 6 (i+1) = -R(x(i);Ra)
	

(3•l4)

is solved by Gaussian elimination with diagonal pivoting using the frontal routine

of Hood (1976) to minimize the amount of computer memory necessary to perform the

calculations.

The first guess of the solution vector for a Rayleigh number RR+ARa different

from Ra, where x(RR) has been calculated before, is approximated as

i



(3.17)
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x (0) (Ra 0+ARa,Pr,A) = x(Ra o ,Pr,,A) + XRa- Ra ,	 (3.15)

where the tangent vector 
4a 

is calculated from the linear set that results

from taking the directional derivative of eqs. (3.12) along the solution

family

J(R&o,Pr,.l)4a = -(3B/Aa)Ra
0	

(3.16)

which is solved simultaneously with the last Newton iteration.

w
3.2 Calculation of Limit Points, Bifurcation Points and Multiple Flow Fields 	 M

Continuous families of flow fields are calculated by combining Newton

iterations with cont ,;nvation methods as long as the flows are uniquely speci-

fied by Ra and no bifurcations to other families occur. The non-uniqueness

with respect to Ra in a single family appears near a limit point Ra Q where

the family reverses direction in Ra. Classical perturbation methods are well 	 i' l

known for analyzing both limit and bifurcation points and have berzo adapted by

several researchers (Keller 1977, Rheinboldt 1970, Brown et al. 1980) for im-

plementation in numerical algorithms; the methods used here follow techniques 	 f
}

developed by Keller (1977). 	 v

Calculations near bifurcation and limit points are performed effectively

by introducing an amplitude parameter a defined so that each family of flows 	 }.

is uniquely specified as (x(e), Ra(e)) in the neighborhood of the singular

point fixed at e = 0	 Following perturbation methods used in classical bi-

furcation analysis, the solution vector x and parameter Ra are expanded as

)

I

x(c

Ra(e

ek [I(k)

k=0 k '
	

Ra (k)
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where the components (
&
(k) , Ra (k ^ are determined from the nonlinear equation

set	 (3.12) expanded to the appropriate order of e	 .	 The sets governing the

corrections (x (l) , Rao ) ) and (2L(2) , Ra (2) ) are

Rx (x(0); Ra ( 0 ))K(1) = `%a(x(0); Ra(0))Ra (1) ,	 (3.18)

RX (x(0); Re(0))x(2) _ -RxxX-(1)x(1) - 
2R

xRa ( X (0); 
Ra(0))L(l)mil)

" a(x(0);Ra(0))Ra(2) - BRaRaRa2 )
(3.19)

In eq. (3.19), Rxx is the (N txNtxNt )-dimensional matrix with components

{max } ilk = aR' /axjaxk	 RxRa is the (N t x N t )-dimensional matrix with (RxRaij

all /"axe Aa ; and 
RRaRa 

is the vector with (RRRaRa)i 	
^a2 R

i
/aRa 2 . This last

vector is zero for the Bousinesq equations. The (N t x N t )-dimensional matrix

Ix appearing in eq. (3.18) and (3.19) is identical to the Jacobian matrix

evaluated about the solution at the singular point. Terms in the expansion

(3.17) can be computed once a suitable definition of E is selected; different

definitions are used here for handling bifurcation and limit points.

Riks (1972) first introduced and Keller (1977) refined the idea of intro-

ducing the pseudo arc-length s for yielding local 	 representations of the

members of a solution family, even in the neighborhood of a limit point, and this

is a suitable definition of the amplitude parameter e, that is e a s - so .

For computing around limit points, we introduce the arc-length evaluated from

the known solution (x(so) , Ra(so)) through an additional residual equation

RN	 - (s-so ) 2+11x(s)	 x(so)112 +^Ra(s)-Ra(so )1 2	(3.20)
t+1

Nt

where 1151^ is the R2-norm of x, i.e. (jxj _ I x2 . The tangent vector

(xm, Ram) for implementing continuation is computed by solving eq. (3.18)

:. i °"^	 • Ny^'Y !`	 ill.. ^'^^...^..^"i1/,T/'.'^,^^,.,+r,^...

R

r
,R

k

N

r.

u
N
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augmented with the linearization of eq. (3.20) about the known solution

(s-s o ) + dT2L(l) + (Ra(s) - Ra(so )) = 0	 1

where d i =_ aRN 
t +1

/'Ox i . The (Nt+l)-dimensional matrix formed from eqs.

(3.18) and (3.21) is nonsingular at limit points (Keller 1977) and so the

nonlinear set (3.12) augmented with eq. (3.20) is solved by Newton's method,

The limiting value of Rayleigh number Ra. a Ra(s.) is determined from the

criterion Ra (1) _ (dRa/ds) s	0. At Ra - Ra. the right hand side of eq.

(3.18) vanishes and 
x{1) 

is determined as the solution of the homogeneous

set and the orthogonal i zati on condition (3.21); the solution of this problem

is discussed in the next section.

At values of Ra for bifurcation the Jacobian matrix is singular and the

tanqent vector xRa has multiple values. For simple bifurcation points only

one eigenvalue of J passes through zero and bifurcation is detected by moni-

toring the sign of the determinant of J . The null vector z corresponding to

the zero eigenvalue and its adjoint vector x satisfy

J(x(Rac ); Ra c )a = 0 , JT (x(Ra c ); Racy = 0 , zTY = 1	 (3.22)

where J  is the transpose of J and is also banded. The 	 null vectors are

calculated by Gaussian elimination with partial pivoting as implemented in

the frontal routine. The singularity of J and the non-uniqueness of the null

vectors are accounted for by ignoring the last row in the upper triangular

C+

4

u

i

r

matrix and by setting the N t-th element of z and Y to unity; these vectors

are later normalized so that 11z	 y	 = l

The continuation vector x (1) written in terms of E , is decomposed at
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Ra - Ra c into components in the null space and range of J as

x(1) _- z^ + Az ,	 (3.23)

where z is the null vector, A is an as-yet undetermined constant and z^ is the

particular solution of eq, (3.18) that contains no component of z , i.e. that

satisfies Zzo - 0 . Because the right hand side of (3.18) is homogeneous in

Ra (l) , z  : Ra (1) c where c is the particular solution of

J(x(Ra c ); Rac )c = -aRa (x(Ra c ); Ra c )	 (3.24)

that is orthogonal to y. Equation (3.25) is solvable only if

Y RRa (x(Ra) c ; Rac ) = 0	 (3.25)

that is, the vector Rya must be in the range of J. Bifurcation between the two

solution families is guaranteed when Ra c is a simple eigenvalue and eq. (3.25)

is satisfied (see Keller 1977 and Iooss and Joseph 1980).

The tangent vectors to the base and bifurcating solution families are

determined from (3.23) after A and Ra (l) are computed from the definition of

e and the solvability condition for the second-order problem (3.19). For analyz-

ing simple bifurcation points in a flow family (x(e), ti(e)) we use the amplitude

definition

E = AyT (x(e) - 1(0)) + Ra (1) (Ra(e) - Ra(0))	 (3.26)
	

r

where A and u (1) are associated with the solution family along which a is being

defined. At first order in a eq. (3.26) requires that

1 ' A2 + Ra0 ) .	 (3.27)
	

F

l ?;
{

t.
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The solvability condition for the second-order problem is

A2Cl + 2ARa (l) C2 + Ra 
2

1)C3 = 0

where

Cl a 
YTRxx

zz 	
'

C2 
a 

YTR-xxCZ + YTaxRaZ

C3 - 2Yl 
RxRai + I —Rxxcc

(3.28)

(3.29)

where the arguements of the derivatives of R are the same as in (3.19). Equa-

tions (3.27) and (3.28) are the same bifurcation equations derived by Keller

(1977). The two pairs (A,Ra (l) ) are calculated as roots of these equations

once the coefficients {Ci', are determined at the bifurcation point Ra = Ra c .

We approximate derivatives of the form Rxxab using the difference formula

Y_ Rxx (x(0); Ra(0)ab = y,T [Rx (x(0) + da; Ra(0)) - R x (x(0); Ra(0))]b/d , (3.30)

where d is a small positive constant, taken here as 10 -3 . The matrix R
xRa is

calculated exactly.

Flows in the bifurcating families are calculated by Newton iteration with

an initial approximation given by eq. (3.17) 	 The amplitude a is picked to be

large enough that the iterations converge to a flow in the new family. When

Ram is zero the new family evolves either super- or sub-critically and we

search values of Ra both above and below Ra c for new flows using first approxi-

mations composed entirely of the null space. Either super- or sub-critical bi-

furcation (Ra (l) = 0) occurs when C 1 =0 ; see eq. (3.28).
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4. BIFURCATION AND STABILITY

g The relative stability of flows in individual families to small perturba-

tions of the velocity, temperature, and pressure fields can change only at bi-

furcation and limit points in families of steady flows and at Hopf bifurcation

points that mark the beginning of time-periodic motions. The discretized form

of the Boussinesq equations (3.10) is a convenient framework for developing

simple criteria for accessing the exchange of stability at the steady bifurca-

tion and limit points detected by methods outlined in §3.2 . In this Section,

we use ideas presented by Iooss and Joseph (1980) to extend earlier stability

results developed by Szeto (1978).	 I

The stability of a steady flow (x(Ra), Ra) is analyzed with respect to

small perturbations to the field variables represented in the same finite element

bases presented in §3.1 as

x(t;Ra) = x(Ra) + u(t) = x( Ra) + ue6t ,	 (4.1)	 ^i

where the vector u is independent of time. Linearizing eq. (3.10) for the

evolution of a vector described by (4.1) gives the generalized eigenvalue problem
	 al.

for stability

amu = Rx (x(Ra) ; Ra)u	 (4.2)	
a
1

where Rx (x(Ra); Ra) is the Jacobian matrix of R evaluated about the steady

solution. The stability of this flow can be completely determined by computing

the eigenvaiues of eq. (4.2); however, repeated eigenvalue calculations are not

feasible for the large matrices that result from the finite-element approximations.

Instead, we develop stability criteria for the case when an eigenvalue a is zero

at Ra = Rac and passes through zero as Ra is varied past Ra c along the primary

1
O
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flow family. The criteria focus on determining the sign of the derivative

(da/dRa) at Ra = Ra c .

The adjoint eigenvalue problem to (4.2) is

R (x (Ra); Ra)e - QMTe
	

(4.3)

where a is the adjoint eigenvector and Q is the complex conjugate of a -

At Ra = Ra c , a is zero and the eigenvectors are the null vectors in eq. (3.22)

with u=z ands  — y.

4.1 Exchange of Stability at a Limit Point

Consider a family of flows parameterized by the amplitude a as (x(e), Ra(e))

near a limit point at Ra = Ra c and corresponding to e = 0 . Expanding the

eigenvalue and eigenvector in eq. (4.2) for small e, taking the inner-product

with respect to y , and evaluating at e - 0 yields

[
d3a 1 	 ^TRxxx 1 )Z + (ZRxRaz)Ra

e 	

(4.4)

 e=0	 ^T

where the derivatives of R are evaluated at 6(0) and Ra(0). At a limit point,

Ra (l) is zero, x (1) = Az and (4.4) reduces to

A.

f

A(XTRxx22)
[Lcr]

dea=0	 (YTMz) —
(4.5)

The constant A is most efficiently eliminated from (4.5) by introducing eq.

(3.26) as the definition of a which gives A = 1	 Equation (4.5) is simplified

further by introducing the solvability condition for the second-order problem xi

4

(3.19) evaluated at the limit point; 	
n

}

Ra (2) = Y 
Txzz	

(4.6)

RRay-

.42•'i ..." . , ,yriv i.% ..il{'aL'^e^v .^ww^` F e!,a.i„.. ."`. „
— '—	 —	 w...,.. +.. . ^-ten..........,
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e

Substituting (4.6) into (4.5) gives the criterion for evaluating stability

	

'	 at a limit point as

T
Y- 

R

C Jeno	 Y Mz

We evaluate the sign of Ra (2) from flows and their corresponding value

of a on both sides of the limit point and calculate the ratioY
T
R /ZMz

!.1

	A	 using the adjoint null vector determined from eq. (3.22). The criterion

(4.7) has been derived by Szeto (1978) and by Ungar and Brown (1983) using
.a

an alternative approach.

4.2 Exchange of Stability at a Bifurcation Point

Equation (4.4) gives the direction for the crossing of the eigenvalue

through zero at either a bifurcation or limit point. Along the primary

family, we assume that Ra (l) is not zero and (4.4) is rewritten in terms

of the coefficients in the bifurcation equation (3.28)

C

dQ	
AC  + C2Ra 1

e=0	 (Y Mz )

as first presented by Szeto (1978). The criterion (4.8) can be evaluated

along either the primary or the bifurcating family using the pairs (A,Ra(l))

determined as roots of eqs. (3.27, 3.28) and is sufficient for determining

exchanges of stability unless Ra (l) is zero, that is, unless the bifurcation

is super- or sub-critical. Then da/de = 0 along the bifurcating family and

stability is determined by the second-derivative (d2o/de2)e= 0 . Szeto (1978)

has developed a formula for this coefficient that involves the third derivative

.^ ^,^- , y.a :.r "' ",.iilht=`ego-..^.:.^^^ y!'tF •^ -r„x

(4.8)

F	 ^^

4

r

P	 ^

t

k
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Rxxx evaluate at the bifurcation point, a difficult quantity to calculate.

Instead of using this result, we develop a more easily evaluated criterion

based on the approach of Iooss and Joseph (1980) of linking the shapes of

the bifurcating families to the exchange of stability along the primary

family.

2. Super- and Sub-Critical Bifurcation Points

The equation set (3.10) is recast into local form expressed about the

known, primary solution family (X(e), Ra(e)) by defining the new vector

w(e) a x(e) - x(e) and the equation set

dt
= f(w; Ra(e)) = R(w + x(e); Ra(e)) 	 Ra(e))	 (4.9)

	
4

Equations (4.9) have the steady solution w(e) - 0 and the vector f(w; Ra(e))

also satisfies the conditions

k
af	 (0; Ra(e)) = 0	 ,	 (4.10)

9 Ra

for all values of k.

The form of the bifurcating family is analyzed by constructing an ex-

pansion in E of w(e) and Ra(e) similar to eq. (3.17). In this local form,

the first-order corrections are governed by

fw(w(e);	 Ra(e))w,e(e)	 + Ra e (e)Ua (w(e); Ra(e)) = 0	 (4.11)

with the subscript a standing for partial differentiation. When quantities

in eq.	 (4.11) are evaluated at tKe bifurcation point (e = 0) this equation

is analogous to eq. 	 (3.18)	 . However, the condition eq. (4.10) with	 k = 1

then reduces (4.11) to a homogeneous equation for w (0) __w(1) (0) which has
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a component only in the null space of the Jacobian matrix f (0; Ra(0)) a
A	 /1

fx (x(0); Ra(0)) . Hence, the tangent vector, in local form is, in some

sense, strictly normal to the primary flow, that is

we(e) - z + 0(e)
	

(4.12)

The stability of the flows along the bifurcating family ()i(e), Ra(e)) is

resolved in terms of an eigenvalue problem form by perturbing these steady

solutions as w(t;e) = w(e) + leyt , where the magnitude of 1 is small.

This eigenvalue problem is

fw(w(e); Ra ( e ))j	 Y( e)ML 	 >
	

(4.13)

and its adjoint is

fT (w (e); Ra. (e)).*	 (4.14)

where ^ is thi adjoint eigenvector.

An equation for the eigenvalue y(e) valid for any flow in the bifurcating

family is derived by forming the inner product between ^, and the first-order

problem (4.11) and by using the relationship

*Tfrve 2 , *w£ = Y(e)MT *w£ 	( 4.15)

Then y(e) is given by

Y (e) = -Ra e (e)

	

	 w+ 	 (4.16)
M 
z* 

A useful criterion for assessing stability at sub- or super-critical bifurcation

points is derived by expanding the right hand side of (4.16) for small a using

the result (4.12) and the relationships Ra e (e) = Ra (l) . + Ra (2)e + 0(e2 ) 9
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»23,.
w•+

i

.''	 y + O(e) 0 and 
fRa (W(e); Ra(e)) ` 

fwRa(°.; Ra(o)z c+ O(e2)

% Ra(x(0); Ra(0))ze+ O(e2 )	 Then eq. (4,16) reduces to

11, Ra(x(0).1 Ra
(0))ze2 

+ p ( e 3 )	 4»1Z'Y(e)	 -Ra (2)	
Mz	

(	 )

which is re-written in terms of the slope of the eigenvalue Q along the

primary flow family as

Ra 
2 

(da/de )e 0 2	 3
Y^ e ^ _ 

Ra e- e 0	
e + 0(E )	 (4,18)

s

where (dRa/de) e _0 is the slope of the primary family at the bifurcation

point and (da/de)e=0 is the slope of the critical eigenvalue. The result

(4.18) is equivalent to the Factorization Theorem derived by Iooss and

Joseph (1980) and gives the stability of the bifurcating family in terms

of its evolution near the bifurcation point and the exchange of stability

along the primary flow family.

s

d

k

c

s :..	 . -e.r: ^ ^{ 	 .^rim`^i.r. .a..^+^'3
'` _F ',^.-ter. -., ^.
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5. CALCULATION OF THE ONSET OF CONVECTION

The critical values of Rayleigh number where steady flows branch from

the static state have been calculated by monitoring the determinant of the

Jacobian matrix evaluated about this state, This determinant is plotted on

Figure .2 for a cylinder with A-0,5 and insulated sidewall, as calculated with
D

a mesh composed of four elements in each of the axial and radial directions.

This mesh leads to a set of 224 nonlinear equations. The calculations were

performed with Pr-1,0, however the critical values of Rayleigh number deter-

mined are independent of Prandtl number. Although the determinant of J is

extremely small in an absolute sense, its roots in terms of Ra are clearly

seen in Figure 2 and can be systematically refined by numerical bisection.

In most cases, we located the roots of det(J) to within ±5 in Rayleigh number.

The lowest three critical values (Rail) , Ra.2 ) , Ra^3) ) calculated here

are compared in Table I to results reported by Charlson and Sani (1970) for

cylinders with insulated sidewalls and aspect ratios between 0.5 and 2.70.

The meshes used in our calculations were varied so that the size of the elements

remained essentially constant over this -ange of aspect ratio. The finite

element results agree well with those of Charlson and Sani, even for these

relatively coarse discretizations. The structure of the flow field also is

represented on , Table I by the number of toroidal roll cells in the axial and
r

radial directions; for example, 2R denotes a flow with two toroidal cells

nested radially in the cylinder. For small A, our ordering of the second and

third critical Rayleigh numbers does not agree with Charlson and Sani, who

didn't report flows with more than one cell in the axial direction.

I

^1
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Increasing the number of elements in the mesh lends to more accurate

results for the values of Ra c and the corresponding eigenfunctions, This

point is demonstrated by Table IT where the lowest two critical values

(Ra( 1) , Ra (2 ^ are listed as a function of mesh for a cylinder with an in-

sulated sidewall and A-1.0. Both values varied by less than 0.6% for meshes

of between 44 and 8x8 elements. The values of Ra at the first several bi-

furcation points are plotted on Figure 3 as a function of aspect ratio.

The structure of the flow fields that evolve from these critical values

are indicated by contours of the streamfunction shown for each curve and

plotted more exactly on Figure 4. The flow field originating at the lowest

value of Ra c evolves continuously with A from a single cell, to a two, and

then to a three cell flow; see the plots for the lowest values of Ra c on

Figure 4.

For the calculations presented here with no-slip boundary conditions on

all surfaces, there were no crossings of the curves of the lowest two values

of Ra c ; the only sharp interchange of the ordering of two bifurcating families

was found between the second and third critical values near A_A c =0.715 . The

second critical point Ra (2) = Ra(3) for this aspect ratio was a second-order

critical point with two 'linearly independent eigenfunctions and hence had a

Reisz Index of one (see Iooss and Joseph 1981). The role of this point in

the nonlinear evolution of the fluty structure is brought out in §7.2.
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6. FINI'T'E AMPLITUDE FLOW FIELDS; A=1.0

.

The finite element approximations and computer-aided methods for

tracking multiple solutions to algebraic equations have been used to

calculate flow fields in the families emanating from the lowest four

critical values of Rayleigh number for a cylinder with aspect ratio

A= 1.0 and an insulated sidewall. Here and throughout the remainder

of this report the fluid is taken to have a Prandtl number of one. Flow

ffields in each family close to Ra c were found by using the first approx-

imation eq. (3.23) with the corresponding eigenvector. Experience from

weakly nonlinear analysis of Rayleigh-Benard problems (Schluter it al.;

Rosenblat 1962) and other finite amplitude calculations for the cylind-

rical geometry (Liang et al. 1969; Charlson and Sani 1975) suggested that

the bifurcating families evolve supercritically in Rayleigh number (towards

increasing Ra). We searched for, and always found, the new flow families

at(Ra-Ra c)greater than zero near Ra c . The direction of the flows (either

up or down along the centerline of the cylinder) in a particular family

was arbitrary and pointed to two distinct families evolving from each bi-

furcation point. Both were computed by changing the otherwise arbitrary

sign of the constant A in eq. (3.23).

The flow families computed with a 44 mesh are represented on Figure

5 as a plot of the average Nusselt number between the top and bottom surfaces

of the cylinder as a function of Ra. Since the sidewall was insulated, the

heat fluxes through the top and bottom should have been the same and these

two Nusselt numbers should have been equal. As discussed below, the discre-

tization error in the finite element approximation prevented this condition

M

t	 u

t

k

a

E

E
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from being satisfied.	 Flows composed of a single roll 	 cell moving either

up (lU) or down (10) along the centerline developed for Ra> Ra c ; sample

streamlines and isotherms from the 1D family are shown in Figure 6. 	 At

large values of Ra-Rac these flows developed a small secondary vortex in

the upper corner of the cylinder which grew with increasing Ra. 	 This

secondary flow was found only for values of Rayleigh beyond those calcu-

lated bit Charlson and Sani 	 (1975).

The flow families that bifurcated from the second critical value

Ra( 2) had two cells nested radially.	 Again there were two families of

flows that differed only by the direction of the axial motion along the

centerline;	 we called these the 2RU and 2RD families, where the 2R desig-

nation represented the radial structure of the flow. 	 Sample streamfunctions

and isotherms for flows in the 2RD family are displayed as Figure 7.	 As the

Rayleigh number increased the purely radial orientation of the cells was

lost and the flow evolved toward the same cellular configuration shown in

Figure 6 for the 10 family. e
'

Neither the (1D, 1U) or the (2RD, 2RU)families existed for Ra beyond

I

a critical value Rai=2.3x104 , where the two families connected to form a con-

tinuous solution curve; the value Ra=Ra i is a limit point.	 The arguments

for evaluating linear stability put forth in §4 show that the static solution

lost stability at Ra = Ra (l) , as found by Charlson and Sani 	 (1970), and that

the lU and 10 flow families were stable. 	 These flows lost stability

at the limit point. 	 The flows in the 2RU and 2RD families were all unstable.

The stability of the flows in each familiy is shown on Figure 5 by solid
f

(stable) and dashed (unstable) curves. d

The flow families that bifurcated from the third Ra^ 3) and four Ra

j
^;	 J

i
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critical values are also shown on Figure S. Flows in the families evolving

N	 from Ra (3) had three radially nest cells (3RU and 3RD) and , passed quickly

through a limit point in Rayleigh number. The flows associated with Ra (4)	 !

had two roll cells stacked axially on top of each other. We called these

{	 families 2ASD and 2ASU, where the 2A designated the two axial cells, S stood

for the plane of reflective symmetry through z=1/2 which divided the cells,

and the D and U described whether the flow in the top cell was down or up

along the centerline. Interestingly, these families were connected by a sec- .

ondary bifurcation point on the 2ASU family. Two other points of secondary
s

bifurcation were also located on the 2ASD family, but because of the 2ASD

flows were already unstable, the flow families evolving from these critical

points were not calculated.

The nonlinear connection of two families that appeared to be distinct in

linear analysis was an important result of the results for A7-1.0 and was found	 {

at all values of aspect ratio. We pause here to show that this phenomena was

f

not an artifact of the coarse finite element approximation, but was indeed

present for calculations with finer meshes. This point is made by examining

Figure 8 where the results of tracking the 1D and 2RD flow families are shown

for four different finite element discretizations; clearly, all three sets of 	 ,l

calculations were in qualitative agreement and the 6x6 and 8x8 meshes gave very

similar results, indicating convergence of the calculation with mesh refinement.

We also attempted to compare the Nusselt numbers calculated for flows in

the 10 family near the critcal value Ra (l) with those reported in Charlson and

Sani (1975), but found the Nusselt numbers reported there to be much smaller
i

than either the values we calculated or the values reported by Jones et al.

(1976) for cylinders with large aspect ratio and shear-free sidewalls. Another
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comparison between our calculations and those of Charlson and Sani was made

by calculating the flows that evolve from the lowest critical Rayleigh number

for a cylinder with A-1.0 and a perfectly conducting sidewall. The Nusselt

numbers evaluated at the top and bottom surfaces are plotted for this case

in Figure 9 for two finite element grids along with the numbers reported by

Charlson and Sani (1915). The sets of calculations are in good agreement,

with the finite element results converging to those of Charlson and Sani for

the finest mesh used. The 10 family reached a limiting value of Ra for a

cylinder with conducting sidewalls, jest as it did for the perfectly insulated

case; this case is discussed in more detail in another pub"l ication (Brown et-al.

1983).

t
i

0
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7. EVOLUTION OF NONLINEAR FLOW STRUCTURE WITH ASPECT RATIO

The double point found between the second and third critical Rayleigh num-

bers at A_Ac =0.715 (see Figure 3) hints that the nonlinear structure of the

steady flows may undergo qualitative changes with varying aspect ratio. In

this Section, we report results for aspect ratios between 0.5 and 2.00 for a

fluid with Pr = 1.0 in cylinders with insulated sidewalls. The enormous number

'	 of calculations (almost 1500) needed to carry out this study has necessitated

using the coarse finite element meshes listed in Table I for each value of

A. Although calculations with these meshes may have errors in the overall

heat balance of as much as ten percent for a few of the more vigorous flows,

the checks of accuracy for A=1.0 discussed in §6 and mesh refinement of several
r

of the calculations reported in this section give confidence that the quali-

tative behavior of the flow fields are correct.

i

7.1 The case A=0.5

The flow families that evolved from the lowest two values of Ra c are	 a

represented on Figure 10 for A=0.5 and Pr = 1.0 . Just as for the cylinder

with A=1.0, flows composed of a single roll cell (lU and 10 families) developed 	 .+

for Ra > Ra (l) up to a limiting value of Rayleigh numbers Ra =- Ra t	Repre-

sentative streamlines for flows in the 1D family are shown in Figure 11 and

again developed a small secondary cell in the upper corner of the cylinder

which intensifies with increasing Ra up to Ra i . The evolution of the 10 and

lU families past the limit point differed from the structure for the same flow

families with A= 1.0 discussed in §6.

For A--0.5, the flow fields that bifurcated from Ra=Ra( 2) had two cells

stacked axially (2ASU and 2ASD) and also evolved toward higher values of Ra;
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flows in the 2AUS family are shown in Figure 12. The plane of symmetry

between the two cells was broken at secondary bifurcation points to new

flow families, as indicated on Figure 11. The new flows branching from

the 2ASU family are denoted as 2AUU and 2AUD, where the first U in both

labels indicates that the top cell was circulating upward along the center-

line and the suffices U and D indicate whether the top (U) or bottom (D)

cell was the strongest. Members of the 2AUD family are displayed in Figure

13 to show that velocity fields away from the secondary bifurcation point

had so large a bottom cell that the top one was pushed into the upper right

hand corner of the cylinder and that the flows closely resembled those in

the 10 family. As implied by this remark, the 1D and 2AUS families were con-

nected along the solution curve that lead to the limit point Ra=Rae.

The stability of the flows in these two families was determined entirely

on the basis of the results for the stability of the flows emanating from

the static state, the numerical calculation of Rai' as a simple limit point

and the connectivity of the flow families. As shown on Figure 11, only the

lU and 1D flow families are stable in the sense described in 94.

7.2 Flows near the double point: ABA c=0.715

The double point at A = A c=0.715 between the 2A and 2R families marked

the first change in the flow structure from that shown for Im0.5 . The flows

computed for aspect ratios of 0.71 and 0.72, which bracket this double point,

are represented in Figures 14 and 15. For 10.71, the first two families have

lU and 2A flow patterns and are connected at a secondary bifurcation point

along the 2ASU branch, as was the case for A = 0.50 . The only change in the

single-cell flows between A=0.5 and 0.71 was the development of a pair of

limit points in this family and the creation of a new segment of stable flows; 	
r
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this Eehavior is depicted in Figure 14. At Ir0.71 a secondary bifurcation

point was found along the 2ASD family (two symmetric axial cells with the

top cell flowing down at the centerline) and the flows evolving from this

point evolved continuously with increasing Rayleigh number into 2RU and 2RD

flows.

Changing the aspect ratio so that I>Ac did not alter the connectivity

of the 1U, 1R and 2ASU families, but switched' the order of appearance of the

2R and 2A families and moved the secondary bifurcation point from the 2ASD

to the 2ASU branch. The change of the secondary bifurcation point as the

apsect ratio passes through the double point A =A 
c  
is anticipated from the

asymptotic theories of Bauer et al. (1975) and Keener (1976) for bifurcation

near such a second-order singularity. The connectivity between the 2R and

2A flow families was not forecasted, although a similar structure occurred

in the reaction-diffusion problem studied by Keener (1976). Figure 16 shows

the evolution of the 2A and 2R families that we conjecture as A is varied

through Ac . Because of the connectivity between the two families and the
	

i

switching of the secondary bifurcation point from the 2ASD to the 2ASU fam-

ilies only the 2AU; and 2AD flows are thought to exist at A exactly equal to

Ac .

7.3 Change in Flow Family Connectivity by Multiple Limit Point Bifurcation

Varying the aspect ratio between 0.72 and 1.00 resulted in the loss of

the secondary bifurcation point pictured in Figures 14-16 and the connectivity

of the first two flow families shown in Figure 5. Evidence for the cause of

this transition is displayed in the structure of the 2R and 2A flow families

for A=0.75 and 0.85 shown in Figure 17. At the lower aspect ratio the con-

nectivity between the 2R and 2A was essentially the same as discussed for

1, - Ĵ
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A-0.72. However, at M0.85 the 2R and 2A flow families were no longer con-

nected and the two secondary bifurcation points along the 2ASU family were

found to Join a single family of flows. The 2R flows evolved continuously

into the single-celled flows.

The differences in structure between A-0.75 and 0.85 suggests that the

flows emanating from the secondary bifurcation points interacted for A- A ,

0.75 < A < 0.85 , in a way that replaced the coupling between the single-_

cell and 2A flows and resulted in the formation of continuous paths between

the IU, 1D, 2RU and 2RD branches. Multiple-limit-point bifurcation, as dis-

cussed by Decker and Keller (1980), is a possible mechanism for this transi-

tion. The transitions through a multiple-limit-paint are sketched in Figure

18; here, the limit points in the 211 and 2AU families would coalesce at A=A

and exchange connectivity, thereby leading to the structure shown for A>Ac,

S

7.4 The case A=2.0

Increasing the aspect ratio beyond Pr A did not change the conr !•;ctivity	 p

of the flow families bifurcating from Ra (1) and Ra (2) shown for A=0	 (see	 {

Figure 15). At large aspect ratio both families were composed of f' s with

two radially nested cells, which only differed in relative intensir, stream-

lines for sample flows in both families are shown in Figure 20. The flow

patterns in two families that evolve. from Ra (l) and Ra( 2) both have two radial

cells but differ according to whether the inner or outermost cell is the most

intense.. Near the limit point, Ra=R t=3.2x104, the two families converge with the

outer cell driving the weaker inner cell to the centerline of the cylinder.

A second set of flows bifurcating from Ra (3) and Ra (4) were also calcu-

dated and evolved as a continuous loop with three radial cells (3R) in the

h.
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first family and four cells (0) in the second. 	 The coarse 10x4 mesh made

it difficult to accurately resolve these velocity and temperature fields at

Rayleigh numbers much above the critical values. 	 The qualitative structure

of the 3R and 4R flow families is most probably accurate; however, calcu-

lations with more refined meshes are needed to accurately calculate the

value for Ra at the limit point.

Starting from an initial approximation and continuation vector calcu-

lated for a flow belonging to the family that bifurcated from Rai l) , the

Newton iterations converged to a flow in a new family. 	 We tracked the

family from this starting point and found it to evolve as a closed loop or

isola which was not connected by bifurcation points to any other flows. 	 Flows q

throughout the isola were composed of a dominant cell with motion up along

the centerline, with a small counter-clockwise vortex in the lower corner of
4j

A

the cylinder.	 Sample streamlines along both the upper (with respect to

Nusselt number) and lower branches of the isola are shown in Figure 21. 	 The

limit points which connected these two families mark changes in the relative

stability of the two families, but the absolute stability of these flows could

not be determined without either an understanding of the mechanism for creation
^I
i

of the isola from flow families originally connected to the static family or

numerical	 calculation of the eigenvalues in eq. 	 (4.2).

We attempted to trace the evolution of the Isola by numerically con-

tinuing solutions in the loop for A =2.0 at given Rayleigh numbers (Ra=1.0x104

and 4x104 ) to lower values of aspect ratio. 	 An isola	 was successfully lo-

cated for A=1.8 . 	 Attempts to locate the isola at 1 1.4 resulted only in
I

calculation of flows in the 2R family. 	 At this aspect ratio families of

single-cell and 2R flows bifurcating from Ra M and Ra (2) were connected at

a limit point RaaRa.=5.8x10 4 , which this value for Ra. was significantly h

higher than calculated for either 1=1.0 or 2.0
7
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The flow fields calculated for Ra-1.0x104 and 4.0404 with 1.4<A<1.8
l

are shown in Figure 22 and seemed to indicate that a continuous path in
a

the solution space was traced. This result and the decrease in Rae between

aspect ratios of 1.4 and 2.0 gave credence to the idea that the isola was

created by the creation of singular points along the 2R family, The only

candidate seemed to be the pinching of the loop to a point of self-intersection

and finally to separation. This mechanism for isola generation has been docu-

mented in models from reaction engineering (Uppal et al. 1976) and leads to

the interesting conjecture that one branch of the isola may be composed of
r	 '

stable flows. We have not tried to analyze the creation of the isola beyond

{	 Y
the results reported here. Again, finer finite element meshes may be necessary

x

to resolve this detail=
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8. DISCUSSION

The most significant finding of this study was the connectivity pre-

dieted between families of axisymmetric flows which originated at adjacent

critical Rayleigh numbers. A continuous path of axisymmetric flows was

found for all aspect ratios tested between 0.5 and 2.00 . The details

of the path, i.e. whether it involved only a limit point or included sec-

ondary bifurcation, did depend on aspect ratio. Imperfections in the ther-

mal boundary conditions, which introduce radial temperature gradients, rup-

ture both the primary and secondary bifurcation points calculated here, as

described by the analysis of Hall and Walton (1976), The connectivity be-

tween the first and second axisymmetric families then is by a limit point

along a continuous path for 0.5<A<2.70 .

Connectivity between bifurcating families has not been detected in the

previous asymptotic analyses of convection in either rectangular slits (Full

and Walton 1979) or cylinders with shear-free boundaries (Rosenblat 1982).

Both analyses focused on values of aspect ratio for semi-simple double points. i

The first two double points between axisymmetric flows are represented on

Figure 1 for a cylinder with shear-free boundaries. Neither of these second-

order critical points exists for a cylinder with no-slip boundaries, as shown 	 a

on Figure 3. We believe the imperfection in the spectrum of the linearized

problem caused by varying the boundary conditions on the tangential velocity

plays a major role in establishing the connectivity between solution families

observed here, but not seen in calculations for cylinders with shear-free

sidewalls (Jones et al. 1976; Brown 1983). A systematic asymptotic study of

convection in cylinders with slightly sticky boundaries is underway.

The calculations presented where are only the first step toward a compre-

hensive understanding of convective transitions in a cylinder heated from below.
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Three-dimensional and time-periodic flows are almost unexplored theoretically.

Nonaxisymmetric convection modes are known (Charlson and Sani 1971) to be most

dangerous at large and small values of A of a rigid cylinder. Even when an

axisymmetric mode is the first to bifurcate, as is the case for Pr-1.0 and

A-1.0, three-dimensional convection may dominate after a secondary bifurcation,

as demonstrated by a few calculations in Charlson and Sani (1975) for a cylinder

with conducting sidewails. Three-dimensional convection patterns and time per-

iodic flows have been reported by Olson and Rosenberger (1979) for gases in a

cylinder with t:1/6 heated from below for Rayleigh numbers 5.86 times Ra(l)

The numerical value of Ra for the onset of oscillations is no doubt a function

of both aspect ratio and Prandtl number.

The strategy presented here for computing steady flows and analyzing non-

linear structure and stability generalizes to the study of three-dimensional

flows by the finite element method and to other numerical approximations for

computing two-dimensional convection which incorporate Newton's method for

solution of the full set of residual equations (van Steeg and Wesseling 1978;

McDonough and Catton 1982). Only the availability of large, fast super -

computers limits this approach, as it did for the pioneering calculations of

Charlson and Sani (1975). Nonaxisymmetric calculations are now feasible in

geometries where the boundary conditions allow spectral representation of the

azimuthal dependence of the field variables. New numerical approximations that

are a hybrid of spectral and finite element approximations are being developed

for calculating steady three-dimensional convection in a cylinder.

Just as in asymptotic expansions based on eigen-modes, care must be taken

to access the range of validity,of the numerical appoximation at large values

of IRa -Rac 1 or when the flow pattern involves multiple cells. Spurious steady
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solutions to discretized equations have been reported in several studies

(Schrieber and Keller 1983; Chang and Brown 1983; Yeh et al. 1983) when

the numerical approximation, either finite difference or finite element,

cannot resolve boundary layers and separation in a flow field. Similar

numerical artifacts can result at low values of (Ra-Ra c J when the finite

element approximation is insufficient to resolve multiple flow cells; this

limitation has restricted our calculations to A less than 3. Spectral de-

compositions are better suited to calculations at large A.

The authors are grateful to the Materials Processing Program of the

U.S. National Aeronautics and Space Administration and to the Information

Processing Services at Massachusetts Institute of Technology for support

of this work. Y. Yamaguchi was supported by Mitsubishi Chemical Industries

Ltd.

a• , w.	 iar ter,. ../iCiGx^I^i^ +^..++^'° ^,__^""°`'..-.-.. ^. __
	 i O



A

REFERENCES

Bauer, L., Keller, H.B. and Reiss, E.L. 1975 Multiple eigenvalues lead to
secondary bifurcation. SIAM Review 17, 101-122.

Benard, H. 1901 Les tourbil ans cellulaires dans une nappe liquide
transportant de la chaleur par convection en r6gime permanent. Ann.
Chim. Pte. 23, 62-144.

Brown, R.A. 1983 The structure of axisymnetric steady convection in a ver-
tical cylinder. In Nonlinear Dynamics (ed. V. Hlavacek). New York;
Gordon and Breach.

Brown, R.A. and Scriven, L.E. 1980a The shapes and stability of captive
rotating drops. Phil. Trans. R. Soc. Lond. A297, 51-79. 	 r

G

Brown, R.A. and Scriven, L.E. 1980b The shape and stability of rotating li-
quid drops. Proc. R. Soc. Lond. A371, 331-357.

Brown, R.A., Scriven, L.E., and Silliman, W.J. 1980 Computer-aided analysis
of nonlinear problems in trans ort phenomena. In New Methods in Non-
linear Dynamics (ed. P. Holmes . Philadelphia: SIAM.

Brown, S.N. and Stewartson, K. 1978 On finite amplitude Benard convection in
a cylindrical container. Proc. R. Soc. Lond. A360, 455-469.

k

Brown, S.N. and Stewartson, K. 1979 On finite-amplitude Benard convection in
a cylird rical container. Part II. SIAM J. Appl: Math. 36, 573-586.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford:
Oxford Press.

Chang, C.J. and Brown, R.A. 1983 Radial segregation induced by natural con- 	 ti.

vection and melt/solid interface shape in vertical Bridgman growth. J.
Crystal Growth, in press.

Charlson, G.S. and Sani, R.L. 1970 Thermoconvective instab'J,ity in a bounded
cylindrical fluid layer. Int. J. Heat Mass Transfer 13, 1479-1496.

Charlson, G.C. and Sani, R.L. 1971 On thermoconvective instability in a
bounded cylindrical fluid layer. ;nt. J. Heat Mass Transfer. 14, 2157-
2160.

Charlson, G.S. and Sani, R.L. 1975 Finite amplitude axisymmetric thermo-
convective flows in a bounded cylindrical layer of fluid. J. Fluid Mech.
21, 209-229.

Daniels, P.G. 1977 The effect of distant sidewalls on the transition to finite
amplitude Benard convection. Proc. R. Soc, Lond. A. 358, 173-197.



4	 .

Davis, S,H. 1967 Convection in a box: linear theory. J. Fluid Mech. 30, 465-
478.

Decker, D.W. and Keller, H.B. 1980 Multiple limit point bifurcation. J. Math.
Anal, Appl. 75, 417-430.

Hall, P. and Walton, I.C. 1977 The smooth transition to a convective regime in
a two-dimensional box. Proc. R. Soc. London A358, 199-221.

Hall, P. and Walton, I.C. 1979 Benard convection in a finite box: secondary
and imperfect bifurcations. J. fluid Mech. 90, 377-395,

Hood, P. 1976 Frontal solution program for unsymnetric matrices. Int. J. Num.
Meth. in Eri nng. 10, 379-399.

Huyakorn, P.. Taylor, C., Lee, R. and Gresho, P. 1978 A comparison of various
mixed-interpolation finite elements in the velocity-pressure formulation
of the Navier-Stokes equations, Computers and Fluids6, 25-35.

Iooss, G. and Joseph, D.D. 1980 Elementary Stability and Bifurcation Theory.
New York: Springer-Verlag.

Jones, C.A., Moore, D.R., and Weiss, N.D. 1976 Axisymmetric Convection in a
Cylinder. J. Fluid Mech. 73 353-388.

Joseph, D.D. 1971 Stability of convection in containers of arbitrary shape.
J. Fluid Mech. 47, 257-282.

Keener, J.P. 1976 Secondary bifurcations in non-linear diffusion re.,.tion equa-
tions. Stud. Appl. Math. 55, 187-211 (1976).

Keller, N.B., 1980 Two new bifurcation phenomena. In Applications of Nonlinear
Analysis in the Physical Sciences (ed.-H. Amann, H. B-ae-T y,—K. Kircchgassner).

New York: Pitman.

Keller, N.B., 1977 Numerical solution of bifurcation and nonlinear eigenvalue
problems. In Applications of Bifurcation Theory (ed. P.H. Rabinowitz).
New York: Academic Press.

Kelly, R.E. and Pal, D. 1976 Thermal convection between nonuniformly heat hori-
zontal surfaces. Proc. 1976 Heat Transfer and Fluid Mechanics Inst.
Stanford: StanfordUniversity Press.

Kubicek, M. 1976 Dependence of solution if nonlinear equations on a parameter.

ACM Trans. Math. Software 2, 98-107.

Liang, S.F., Tidal, A., and Acrivos, A. 1969 Buoyancy-driven convection in
cylindrical geometries. J. Fluid Mech. 86, 239-256.

McDonough; J.M. and Catton, I. 1982 A mixed finite difference-Galerkin procedure
for two-d -insional convection in a square box. Int. J. Heat Mass Transfer
25, 1137-1146.

4

;



I

Olson, J.M. and Rosenberger, F. 1979 Convective instabilities in a closed
vertical cylinder heat ,d from below. J. Fluid Mech. 92 609-629.

Rayleigh, Lord 1 r416 On convection currents in a horizontal layer of fluid
when the higher temperature is on the under side. Phil. Mal. 32, 529-
546.

Rheinboldt, W.C. 1978 Numerical methods for a class of finite dimensional
bifurcation problems. SIAM J1 Numer. Anal. 15, 1-11.

Riks, E. 1972 The application of Newton's method to the problem of elastic
stability. J. Appl. Mech. 39, 1060-1065.

Rosenblat, S. 1982 Thermal convection in a vertical circular cylinder. J.
Fluid. Mech. 122, 395-410.

Schluter, A., Lortz, D. and Busse, F. 1965 On the stability of steady finite
amplitude convection. J. Fluid Mech. 23, 129-144.

Schreiber, R. and Keller, H.B. 1983 Spurious solutions in driven cavity cal-
culations. J. Computat. Physics 49, 165-172.

Steeg, J.G. van and Wesseling, P. 1978 Solution of the Boussinesq equations
by means of the finite element method. Computers and Fluids 6, 93-101.

Szeto, R.K.N. 1978 The flow between rotating coaxial disks. Ph.D. thesis,
California Institute of Technology.

Tavantis, J., Reiss, L. and Matkowsky, J. 1978 On the smooth transition to
convection. SIAM J. Appl. Math. 34, 322-337.

Taylor, C. and Ijam, A.Z. 1979. A finite element numerical solution of natural
convection in enclosed cavities, Comp. Meths. Appl. Mech. Engng. 19, 429-
446.

Thomasset, F. 1981 Implementation of Finite Element Methods for Navier-Stokes
Equations. New York: Springer-Verb ag.

Ungar, L.H. and Brown, R.A. 1982 The dependence of the shape and stability of
captive rotating drops on multiple parameters. Phil. Trans. R. Soc. Lond.
A306, 347-370.

Unger, L.H. and Brown, R.A. 1983 Cellular interface morphologies in directional
solidification. Physical Review submitted.

Uppal, A., Ray, W.N. and Poore, A.B. 1976 The classification of the dynamic
behavior of continuous stirred tank reactors - influence of reactor residence
time. Chem. Engng. Sci. 31, 205-214.

Yeh, P.-W., Kim-E., M., Armstrong, R.C., and Brown, R.A. 1983 On the Deborah
number limit for calculation of Maxwell fluid flowing through an axisymmetric
contraction. J. Non-Newtonian Fluid Mech. to be submitted.



t

Zie-"%iewiez, D.C., Gallagher, R.H. and Hood, P. 1976 Newtonian and non-
Newtoniari viscous incompressible flow. Temperature-induced flows.
Finite element solutions. In The Mathematics of Finite Elements and
Applications - 2 (ed. J.R. Whiteman). London; Academic P ess.

Zierep, J. 1963 Zur Theorie der Zellularkonektion V., Beit. Physik Atmos.
36, 70-76.

I



FIGURE CAPTIONS

Table I. Comparison of first three critical Rayleigh numbers calculated

by finite element analysis with values reported by Charlson and

Sani (1970) for cylinders with aspect ratios between 0.5 and

2.75 and insulated sidewalls. The mesh was adjusted to conform

with the aspect ratio of the cylinder.

Figure 1. Schematic of critical Rayleigh numbers {Ra(i)l as a function of

aspect ratio A for a cylinder with shear-free boundaries. Each

curve is associated with a particular flow structure and the

ordering of the modes is interchanged by crossing the critical

values Ac

Figure 2. Determinant of the Jacobian matrix evaluated about the static

state as a function of Rayleigh number for A=0.5 and for a 40

finite element mesh. The cylinder has insulated sidewalls.

Figure 3. Lowest several critical Rayleigh numbers for a cylinder with in-

sulated sidewalls as a function of aspect ratio A.

Figure 4. Contours of streamfunction for the eigenfunction corresponding

to the lowest three critical values of {Ra ( ' ) i for aspect ratios

between 0.5 and 2.75.

Figure 5. Families of axisymmetric flow fields in a cylinder with insulated

sidewalls for A=1.0 and Pr=1.0 . Stable flows are shown by solid

(	 ) curves and unstable flows by dashed ( --- ) ones.

Figure 6. Representative streamlines and isotherms for flows in the 1D

family that occur before, the limiting value of Ra for h=1.0 .

Figure 7. Representative streamlines and isotherms for flows in the 2RD

Zamily for A=1.0	 Each of these flows are unstable.
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Figure 8. Families of 1D and 2R0 flows in a cylinder with insulated side-

walls computed with four different finite element girds;	 r=1.0

and Pr=1.0	 .

Figure 9. Nusselt numbers at top and bottom surfaces of a cylinder with
r

perfectly conducting sidewall; A=1.0 and Pr=1.0	 .	 Finite ele-

ment results for two meshes are shown along with the results of

Charlson and Sant (1975).
t..

Figure 10. Families of axisymmetric flow fields in a cylinder with insulated

sidewalls for A=0.5	 and Pr=1.0 .	 Stable flows are denoted by

solid (	 ) curves and unstable flows by dashed	 (---) ones.

Figure	 11. Representative streamlines and isotherms for flows in the 10

family that occur before the limiting value Rai

Figure 12. Representative streamlines and isotherms for flows in the 2ASU

family. 

Figure 13. Streamlines and isotherms for members of the 2AUD family which

show the evolution of the flow field with changing Ra into the

10 family; compare with Figure 11.

Figure 14. Families of axisymmetric flow fields in a cylinder with insulated

sidewalls for A=0.71 and Pr--1 .0 . Stable flows are denoted by

solid (--) curves and unstable flows by dashed ( --- ) ones.

Figure 15. Families of axisymmetric flow fields in a cylinder with insulated

sidewalls for A=0.72 and Pr=1.0 .

Figure 16. Evolution of flow families between families with two axial and

two radial cells as aspect ratio is varied through Ac.

Figure 17. Structure of 2ASD, 2ASU , and 2R flow families for A--0.75 and 0.85

Pr = 1.0
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Figure 18. Evolution of multiple-limit point bifurcation with varying aspect s

ratio through A=A* which is proposed as the mechanism for separation 	 a

of the 2R and 2A flow families.

Figure 19. Families of axisyrrrnetric flow fields in a cylinder with insulated

sidewalis for A=2.0 and Pr-1.0 .

Figure 20. Representative streamlines for flows in the 2RU families for A=2.0

and Pr-1.0 ; the six sets of contours (a-f) follow the evolution of

the flow from Rai l) around the limit point at RamRaR=3.2x10

Figure 21. Representative streamlines for flows in the isola found for A-2.0

and Pr=1.0 ; the six sets of contours (a-f) follow the evolution of

the flow from the branch with higher values of average Nusselt num-

ber to the lower branch.	
s

Figure 22. Streamlines of flows tracked for Pr=1.0 and Rayleigh numbers of

1.0x104 and 4.0x104 with changing aspect ratio.
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