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SUMMARY

The flow over a helicopter rotor is an important example of three~dimensional
time~dependent viscous flow. The boundary layers that develop on the rotor blades
play a significant role in that they set loss levels and control retreating blade
stall. Consequently, there 1s considerable interest in developing a numerical scheme
for solving the time-dependent, three~dimensional compressible viscous flow equations
in order to predict such flow fields, and which can be used as an aid in the design of
helicopter rotors.

In order to further investigate the numerical procedure, we have exercised the
computer code that was developed under a previous phase of the current research
program to solve an approximate form of the three~dimensional unsteady Navier-Stokes
equations employing a Linearized Blogk Implicit technique in conjunction with a QR
operator scheme. Results of calculations are presented for several two-dimensional
boundary layer flows including steady turbulert and unsteady laminar cases.

A comparison of fourth order and second order solutions indicate that increased
accuracy can be obtained without any significant increase in cost (run time), The
results of the computations also indicate that the computer code can be applied to
more complex flows such as those encountered on rotating airfoils. Finally, th

geometry of a symmetric NACA four digit airfoil is considered and the appropriate

geometrical properties are computed.



INTRODUCTION

The behavior of boundary layers on wings and bodies has long been of interest
to aerodynamicists. In both steady and unsteady flows, the boundary layers are known
to govern a8 major portion of the losses and to significantly influence the vehicle
lift and moment coefficients. When the flow 1s steady, boundary layer prediction
schemes based on numerical solution to the governing partial differential equations
of motion have reached a high level of sophistication and predictive accuracy, even
in three space dimensions. In unsteady flows, such as are commonly encountered in
rotary winged aircraft, -ome progress has been made in two space dimensions but
little to date has appeared on unsteady three-~dimensional boundary layers,

Two particular problems arise with time~dependent three-dimensional boundary
layers relative to the steady case, : The first of these i1s the rather obvious one of
time integration with its added requirements of transient accuracy coupled with an
increase in the computational labor. The second of these is the so-called negative
cross flow problem, which to some extent has troubled the steady boundary layer
prediction schemes. Kendall, et al (Ref. 1) discuss the negative cross flow problem
for steady three-dimensional boundary layers in a very illuminating fashion. This
particular problem arises when the spanwise component of velocity changes sign and
will be discussed in detail subsequently. Because of the interest by external aero-
dynamicists in swept wing boundary layers where the negative cross flow problem
(in this case flow from tip to root) is not usually encountered, the negative cross
flow problem has not received a great deal of attention to date. However, in transient
flows, particularly those encountered on rotor blades ir forward flight, negative cross
flows are frequently encountered. For instance, the advancing rotor blade has cross
flows of one sign during the first ninety degrees of rotation and these can change sign
over part of the blade during the second ninety degrees.

Thus to be of practical value, time-dependent three-~dimensional boundary layer
prediction schemes require high computational efficiency and transient accuracy
coupled to the ability to treat arbitrary cross flow profiles.

In this report we describe the development of a computer code for the efficient
solution of three-dimensional time-dependent viscous flows on fixed and rotary
aircraft. The Linearized Block Implicit (LBI) technique of Briley and McDonald (Ref. 2)
in coordination with a tridiagonal QR operator scheme (Ref. 3) is employed to solve

the reduced turbulent Navier-Stokes equations which are derived for nonorthogonal
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coordinates in generalized tensor form. The rationale for the choice of this
approach is discussed in detail in Ref, 3 and 4.

The basic assumptions made in the derivation of these equatiuns are that the
pressure does not vary normal to the shear layer and that in the energy equation
the square of the normal velocity is neglected with respect to the other veloecity
components (To = constant). The lattar assumption 1s included only for computational
simplification purposes and is not essential in the analysis, For turbulent flows,
a two-layer mixing length model is employed and its formulation in generalized
tensor notation is given. A novel method is employed for solving the continuity
equation in conjunction with the reduced Navier-Stokes equations. The continuity
equation is split by employing the Douglas-Gunn procedure to obtain a consistent
approximation to the full equation which is then solved as an integral, Results of
several boundary layer calculations are presented and comparisons with experimental
data and other reported computations are made.
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ANALYSIS
Background

Three-dimensional boundary layers occur on the wings and fuselages of both
fixed and rotary wing aircraft, In both types of vehicles, the boundary layers are
important in setting loss levels and determining useful operating ranges. As is
well known, boundary layers are sensitive to pressure gradients. In time-dependent
flow the temporal acceleration terms appear in the momentum equation in a form very
similar to the conventional imposed preessure gradient and so for qualitative evalua-
tion purposes can be regarded as "pseudo" or "auxiliary" pressure gradients. Viewed
in this manner, the temporal acceleration terms can be seen to influence quantities
of practical importance such as skin friction, displacement thickness and the onset
of separation. At the range of frequenciles typically encountered in rotary wing
aircraft aerodynamic problems, it is clear, for instance, from the extensive review
of McCroskey (Ref. 5), that very significant transient boundary leyer effects can
be observed,

In examining the flow problems of practical interest such as loss levels or the
onset of separation it is evident that all three space dimensions must be considered.
In conventional aircraft, the sweep effect is of interest and inherently three-
dimensional. 1In rotar& wing aircraft, in forward flight clearly very substantial
transient changes occur in what might be termed the local sweep angle. However,
generally speaking, the boundary layers remain thin unless catastrophic flow
separation occurs or the flow at the wing or rotor tip is considered.

Conventional boundary layer integration schemes have developed by forward
marching the streamwise veloci.y u in the streamwise x direction and simultaneously
mazching out along the span in the z positive direction. In general, the spanwise
marching scheme does not normally encounter negative w, iL.e., spanwise inflow. This
is very fortunate because it is difficult, indeed it could be argued impossible, to
structure a physically satisfactory unconditionally stable noniterative scheme which
permits forward marching in the spanwise direction with a negative w cross flow.

At least intuitively the problem of negative cross flow implies information being
transferred upstream against the spanwise marching direction. Conventional stability
analyses confirm the inability to forward march into regions of significant negative w.
From experience with attempts to march the two-dimensional boundary layer equations

into a region of separated flow and its obvious relationship to the negative cross



flow problem, it is not surprising that spanwise marching into a negative cross
flow regz n is not accomplished witheut specinl treatment, Recently, conventional
boundary layer developers have been turning to performing an implicit spanwise
construction to remopve the xestriction of only positive cross flows (Kendall, et al,
Refs1), Lin and Rubin (Ref. 6} in thelr predictor~corrector boundary regilon
solutions for flow over a yuwed cone at moderate incidence have also shown that
retaining diffusion in the spanwise direction not only ecliminates the problems
associated with negative cross flows, but improves upon the solutions obtained by
standard three-dimensional boundary layer techniques, Furthermore, boundary
conditions applied at the tip can influence the flow inboard, if required by the
physics of the flow,

For these reasons, the implicit spanwise ronstruction has been a feature of the
three-dimensional duct flow analysis of Briley (Ref. 7) and McDonald and Briley
(Ref, 8). As a consequence of these observations and the need to remove the négative
cross flow restriction, a spanwise implicit formulation seems mandatory for
rotary wing applications and at least desirable for fix~d wing applications,
expeclally as it can be had for a very modest increase in code computational labor.
Based on the experience in Refs. 7 and 8, the spanwise implicit sweep would only
result in a moderate increase in computational effort relative to the explicit
spanwise marching approach., The extension'of the conventional three-dimesional
boundary layer equations to allow spanwise diffusion is easily accomplished, and in
view of the improved physical representation which thus follows, it is recommended
and has been implemented in this effort.

As a matter of course, it has been assumed that normal to the wall an implicit
formulation would be structured. In recent years for boundary layer type problems
there has been little dispute as to the efficiency gains to be had from an implicit
formulation normal to the wall (Ref. 9). However, in the streamwise direction for
steady 2-D flow, the equations are normally forward marched and the implicit
stability obtained entirely from being implicit in the normal to the wall directdion.
In time-dependent flows a similar structure is to be had so that at each time level
one streamwise (explicit) forward marching sweep could be made with two implicit
sweeps in the spanwise and normal directions to give the desired unconditional
stability. As mentioned earlier, the explicit sweep would probably require less
computational effort by about 207 than an implicit streamwise sweep and of course
less storage. However, since the solution is being time marched the opportunity to

take a streamwise implicit sweep at roughly the same cost as the explicit sweep
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does arise. 1If one does perform a streamwise explicit sweep, then the linearization
of nonlinear terms is performed about the known spatial marching level, If an
implicit streamwise structure is adopted, then full time linearization can be
utilized, That is the linearization of the nonlinear terms is performed about the
known time level. As 1s pointed out in Ref. 8, it is easier tov obtain a consistent
high order accurate spatial-temporal linearization by marching in time than in space
(in time the marching derivatives have the form uy whereas in space they are non-
linear and have the form “i"j)' Further, by structuring implicitly in the space
marching direction, small regions of axial reverse flow would be permitted, As a

result of the combined benefits of consistent high order lincarizations and the
inclusion of small separated zones, a streamwise dimplicilt structure is advocated
and has been employed in this effort,

Since a full 3-D spatial integration 1s carried out at each time step of a
transient calculation, spatial accuracy plays a very important role in the overall
efficlency of the numerical method, By choosing a spatial scheme of sufficient
accuracy, one can expect to reduce the total number of grid points to an acceptable
level, However, for the chosen scheme one must account not only for the spatial
diseretization ervors but those introduced as a result of the linearization procedure,
In order to get the most out of a gilven spatial difference formula, the errors
incurred in reprm 2e¥ing nonlinear terms by linear combinations of terms should be
less than ur eqial to the spatial discretization errors, If the linearization intro-
duces a greater error than the spatial differencing, then either a coarser spatial
megh could be used, or iteration, ox some form of linearization dmprovement is called
for, Iteration across a time step is not recommended since this only reduces the
linearization error and computationally costs as much as a complete time step.

Cutting back the time step would be prefereable to iterating to preserve the lineariza-
tion error at some acceptable level, since cutting back on the time step would improve

both the transient error and the linearization error. This point is clearly demonstrated

in Ref. 3. To obtain a linearization, which introduces errors of at most the same
as the spatial difference formulae, a Taylor series expansion about the known time
level can be performed. This process clearly demands a formal block, i.e., coupled,
treatment of the system of equations. For instance, in the streamwise momentum

equation a typlecal term is linearized:

N+ n 4
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tl 14 the old time level n without introducing a first-

n+l

and clearly one cannot lag W
order time error in order to get an uncoupled system, l,e,, w not appearing in
the streamwise momentum equation, Thus, formal linearization and consideration of the
resulting errors iidicate the coupled system ought to be treated from the accuracy
point of view., This is fugther reinforeed when it 1s realized that block, i.e.,
coupled, systems are not computationally expensive (in a relative sense),

Additionally, a second type of approximation arises unconnected with lineariza-
tion but arising from basic coupling terms in the original equations and if indeed
some terms; in an equation are time lagged in order to uncouple the equation system
and these terms are of equal importance to the terms retained, then again an ilterative
updating is called for in order io achieve stability, accuracy and consistency.
This could be termed ad hoc equation uncoupling., Blottner (Ref. 9) has shown that
many iterations around the ad hoc uncoupled set (> 10) are sometimes required in
order to achieve an overall solution accuracy commensurate with the local difference
melecule accuracy.

The linearization technique discussed above is described in Ref., 8, together
with its application to block coupled splitting schemes., Schemes of this general
type are here referred to as "split linearized block implicit" or split LBI schemes,
and are reviewed in detail by Briley and McDonald (Ref. 2).

As a general observation, care is required to obtain acceptable transieat
accuracy for long time integration with conventional finite difference schemes.
A Crank-Nicolson centered time~implicit scheme for instance, although second order in
time, shows quite a dispersion problem (relative to other schemes) on the simple
pure convection problem, However, the problem of transient accuracy is significantly
reduced in the typical bowndary layer problem since the time dependency is con-
tinuously input through boundary conditions and the concern is with relatively
"short! time integrations. The computational problem is more of what the phase lag
of the wall shear iy, relative to the prescribed free stream disturbance, than
concern over the convection velocity of a wave in a shear after a long propagation
time. The interest is in forced osciliations with a minimum scale of the boundary
layer thickness over a few cycles of the motion, just enough to obtain repetition
cyelically. It is, therefore, expected that a significant dispersion problem will
not arise with a conventional implicit scheme.

The governing equations that are considered here are the Navier-Stokes ei;uations,
continuity, energy and the equation of state which are written in{generalized tensor

form for a body oriented coordinate system (boundary layer coordinates). In
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accordance with the boundary layer assumptions, the normal momentum equation is
eliminated and the pressure is specified throughout the viscous layer in its stead,
For the energy equation, constant stagnation temperature To is assumed. This
assumption is a good approximation for the flow fields considered, and is thus
included here only for purpeses of simplification., 1In the analysis that follows,
the full energy equation could equally well have been used. Employing the equation
of state which relates the pressure p to the velocity components u and w by an
algebraic equation, the problem can be re¢duced to one involving only the three
velocity components, u, w and v and three equations, the streamwise and spanwise
momentum equations and the continuity equation. Hence, we consider a block-three
system rather than a block-four system which leads to a significant reduction in
computer time, If the full energy equation were to be considered, a block-four

system would result due to the inclusion of the temperature as an additional unknown.
Coordinate System

Since the goal of this effort.is to solve for the flow over airfoils an under-
standing of the type of geometries to be considered is essential to guide the
cholce of the coordinate system and the structure of the computer code. The coordi-
nate system is not only dependent upon the geometry of the airfoil, but also upon the
approximations that are made to the governing Navier-Stokes equations, ‘As in boundary
layer theory, we also assume that in the approximate form of the Navier-Stokes
equations the pressure is constant normal to the shear layer. Inherent in the
assumptions is that the shear layer is thin. As pointed out by Howarth (Ref. 10)
the boundary layer assumptions lead to the conditions that one coordinate direction
must be normal to the body surface (this being straight) while the other coordinate
directions must lie on the body surface. These conditions uncouple the metric data
on the surface from that in the normal direction. Hence, the metric data for the
surface coordinates are functions of the surface coordinates alone, while the metric
data for the normal coordinate direction are functions of that coordinate alone.
The choice of the surface coordinates is rather arbitrary and is based on considera-
tions such as the ease of construction or the grid distribution on the wing surface.

In the numerical solution of the flow over an airfnil there are many advantages
to be gained by the judicious choice of coordinates. The most obvious advantage is
that the physical boundaries of a flow region can be represented by coordinate
surfaces. ™his removes the need for fractional cells in general; hence, the compli-

cations and loss of accuracy associated with a boundary interpolation are removed.
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Another advantage 1s that a uniform numerical met':od can be used, The solution can
then be performed with a fixed number of cells in any given direction and with a
uniform meeh spacing. For a rectangular plan form wing a Cartesian csordinate
system would be adequate, However, for more general plan forms such ap = swept wing
a nonorthogonal grid which conforms with the boundaries is preferred since it covers
the entire alrfoil while a Cartesian grid would not.

Another consideration is the selection of a coordinate grid distribution;
the major objective being the resolution of large solution gradients. The approach
taken here is to construct coordinate transformations that contain distributions for
physical nesh points, In this context, the uniform mesh of computational space is
simply mapped into a suitably distributed mesh in physical space. When the trans-
formation contains the mesh point distribution, there is no need to construc! the
apparatus for the discrete approximation of derivatives on a nongniform mesh, This
results in a savings in both computer logic and storage.

Hence, in this work a coordinate system is chosen that conforms with the
boundaries of the physical domain, i.e., the wing surface which in general will be
nonorthogonal, In addition, provisions are made for analytical gvid transformations
(Ref. 11) in each coordinate directicn, in order to suitably distribute grid points
in regions of large gradients.

In view of the type of geometries to be considered and the assumptions made to
obtain the approximate form of the Navier-Stokes equations, a specialized nonorthogonal
coordinat~ system is advocated where the metric tensor which has four independent

components is given by

- -

9y Gp O

0 0 Qa3

The subscripts 1 and 2 refer to the directions on the surface of the body while
subscript 3 refers to the direction normal to the body. Since the metric data in
the coordinate directions on the airfoil surface are not functions of the normal
direction, the metric data in a 1 - 2 gurface above the body are evaluated on the

body surface (Ref. 10), Furthermore, due to the use of nonorthogonal coordinates
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it becomes advantageous to derive the equations in general nonoxthogonal coordinates
employing generalized tensors, Detalls of the gerneralized tengor notation can be
found in Refs, 12, 13, and 4.

An important feature of the analysis to follow is that the governing equations
which are derived, under the prescribed assumptions, are invariant for any coordinate
system or any grid transformation (although, of course, the physical approximatinns
are coordinate dependent), The grid transformations are absorbed into the geometrical
coefficients, leaving the equations unaltered in form. This feature allows for the
construction of the geometric data to be contained in one subroutine with the defini-
tion of the metric data and their derivatives as input,

Other forms of the governing equations for nonorthogonal coordinates which do
not rely on generalized tensor notation were considered, 1.e., such as the steady
three-dimensional boundary layer equations as given by Cebeci (Ref.1l4 ). Since in
that set of equations the only viscous terms retained are these in the normal direction,
any nonorthogonal effects are introduced solely through the convective terms. This
is a direct consequence of the assumptions which decouple the normal goordinate
from the surface coordinates. In those equations, the geometric terms that explicitly
appear are the metrics, hl and h2, the geodesilc ciurvatures kgl and kgz, the angle
between the surface coordinatie lines and an additional nonorthogonal curvature term.
In contrast ko Cebeci's equations, the set of equations considered here, the
approximate form of the Navier-Stokes equations, allow for all the viscous terms to
be retained. A description of thes#¢ terms without generalized tensor notation would
be cumbersome. Hence, the generalized temsor approach was chosen.

In Appendix B the geometric properties cf a surface in three dimensions are
discussed and where appropriate, the generalized tensor equivalents are given.,

In addition, a symmetric (uncambered) NACA four-digit airfoil is considered and the
pertinent geometric coefficients are presented.

Governing Equations

In view of the ultimate goal of this program, to solve an approximate form
of the unsteady three-dimensional Navier-Stokes equations on airfoil shapes, the
governing equations are derived in general nonorthogonal coordinates and are
given in generalized tensor notation.

In the following derivation the governing equations are nondimensionalized as
follows, xi with respect to the characteristic length L, the velocity with respect to
U, density, pressure and temperature with respect to p_, mem2 and Umz/cp respectively

and time with respect to L/Um. Viscosity is nondimensionalized with respect to u_.
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Continuity Equation

Consider the continuity equation wirtten in vector form so that it is indepen-
dent of coordinate system, i.e.,
dp —

where p 1s the density and E is the velocity vector, which can be written

in a covariant basis as

T
AT (2)
where ui is the i~th contravariant velocity component and gi 1s the covariant basis
vector in the xi direction. The velocity vector could have been expressed in a number of
different forms, each with its own attribute. Here for the moment the velocity vector
is expressed in a covariant basis, for simplicity. Subsequently, the velocity vector
will be transformed into its physical components for the numerical solution of the
governing equations. The reason for this is that the contravariant basis exhibits
variation in its components 1f the coordinates are such that the metric varies.
For boundary layer flows, the physical velocity components are roughly aligned with
the coordinates and exhibit no variation with the metric per se. As such, it is
felt that the actual computations are better performed on the pnysical components.

The divergence of a vector is given by

T T S (e S
V:-pg=pu k—(pu Lkﬁ‘pu nk--j%deu Lk (3)

k

where puk is the covariant derivative, puk,k is the partial derivative in the x

direction,kJ is the Jaccbian and Pik is the Christoffel symbol.

Tn Equation 3 two forms of the divergence are presented, one involving the
Christoffel symbol or curvature term directly and the other the Jacobian. The
former is perhaps more restrictive since it requires additional smoothness of the
geometrical quaatities. However, both forms are used depending on which is more
convenient for the given application. For the momentum equations the form involving
the Christoffel symbols is employed in the evaluation of the explicit (lagged) dif-
fusion terms while for the continuity equation the form involving the Jacobian is

used. Thus, the continuity equation can be expressed as

— 4 — (J vy = (o]
ot J ( p u™) k
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Momentum Equations

The momentum equations in vector form can be written as

20 I —— = (5)
PHY -p[—THq-V)q]:V-a
where 0 is the stress tensor.
In generalized tensor notation, Equation 5 becomes
o ki 1= k| = (6)
P[?{*““lx]ewﬂhei
The stress tensor Js defined as
ko _[os 2 FAlsMKe £ (K
o = [p+3ReA]8 * Re € )
ik

where p is the ﬁiscosity, p is the pressure, A is the velocity divergence and €
is the strain tensor, and the Reynolds number, Re, is defined as p _U_L/p,. The
strain tensor expressed in terms of velocity components is

ik _ mK k im
e-umg +umg (8)

k

where gm and gmi are the components of the metric tensor. Employing the fact that

ij = ng and substituting the definition of the strain into the stress tensor,
we obtain

_ff_ uk mi

i il mk
g+ ==-u + g
n? Re m (9)

Substituting Equation 9 into the momentum equation and employing the relationship
kj
g ik =0 (10)

: . -+ .
we obtain for the i-th momentum equation in the e; direction

P[5+l = ="+ § £ o).,

* ™[ ) It o™ ]
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In Ref., 3 it was pointed out that the QR operator scheme requires thav derivatives
in any direction operate on only one variable. In the momentum equation this require-
ment prevents the implicit treatment of certaln diffusion terms that arise due to the
curvature of the body. Although these terms are often treated explicitly anyway the
use of standard finite difference techniques instead of the QR operators would give
one the opportunity to treat these terms implicitly, if so desired, This and the
use of the quasi-linear form of the governing equations are the only major limita-
tions that arise din the QR opprator treatment of the approximate form of the
Navier-Stokes equations. In the usual boundary layer approximations, these explicitly

-1/2) or

treated terms would not appear in the equations since they are of order 0 (Re
smaller, and should, therefore, be of little consequence, In principle, the quasi-
linear and, for instance, the full conservative forr- of the differential equations,

are equivalent, In discrete form, various formulations of the governing equations
exhibit different properties (Ref. 15). In the present problem, no distinet dis-
advantage appears to arise from the required use of a quasi-~linear form of the
governing equations,

The requirement that derivatives in any direction operate only on one variable
would be more restrictive in the treatment of the ‘pressure gradient term in the full
Navier-Stokes equations, The linearization of this term introduces derivatives of
all the velocity components in a given direction. According to the limitatdions of
the QR operator scheme described above, some of these terms must be treated explicitly.
Since an explicit treatment of these terms could reduce the stability bound of the
calculation scheme, an alternate procedure should be considered. This would involve
the addition of an auxillary equatinn relating the pressure gradient term to the
derivatives of the velocity components and would increase the block size of the
system, An assessment of the efficiency of such a procedure has not been carried
out and further work in this area would appear to be warranted.

In the discussion that follows, the governing equations are first split into
an explicit part and an implicit part in accordance with the QR operator requirements.
Thereafter, the resulting equations are cast into "standard form", so that the
equations can be appropriately linearized and treated with the LBI technique.

Since mixed partial derivatives are commonly treated explicitly in orthogonal
coordinate systems, a similar procedure will be used for generalized nonorthogonal
coordinates where the explicit treatment is extended to include mixed second covariant
derivatives. All other second covariant derivatives are retained as implicit.

Although such a procedure would automatically treat more terms explicitly than one does

for orthogonal coordinates, it simplifies the bookkeeping requirements in the
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construction of the computer code, and is thus adopted here, Conversely, retaining
the covariant derivative as a unit (whether implicit or explicit) could prevent
instabilities that may arise due to time splitting, This can occur when two

portions of one term should cancel identically, but do not due to their being
split between two sweeps.

Diffusion Terms

Consider the term
(pu"‘l, ) |k (12)

If j = k the term is retained as implicit, and 1f j # k then it is treated explicitly.
We will consider the case j # k first. Upon expanding the explicit part of the
diffusion term, it becomes

(#U'lj)lk = [/—L(Ui '+ u” 1”'“‘)],k + /J.[Um,] -ru"I"’;’n]I"i

mn

(13)

'/"[Ul,m + unI"lmn] ;T;‘

Note that the first term on the right-hand side of the equation is in conservation form,
Although the implicit equations are treated in quasi~linear form, for the purpose of
evaluating the expliecit terms the most convenient representation is used. The

implicit terms, with j = k become (note there is no sum on j)
(o] yeptul g+ [ (pu™ ), T+ g Dl = e n D]+ (s o+ T
where
'jnj = T™jn Ty = lnn T+ T (1)
and
T = 2p[u Ty + 0 Doy T g, [T 4" T, ) (16)

m=31i+4+1l, n=15- 21 and there is no sum on m and n

Since T;j involves velocity compouents and derivatives in directions other than the
i-th direction, the term is also treated explicitly.

Hence the total diffusion terms for the i-th momentum equation is given in

17
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3 a J il Iy 2 .k kk o)
E}{[c{g“#]”»” +[c'g (,L,]+2,J.I“”)~§lc‘g ,u.P ]u,j
j=l [ (17)

k=l n=l n=l
k#n n#l
where
r I 007
i
=010
(18)
.0 O |
and =2 | | -
Cj = I 2|
i - (19)
L2
and repeated indicies do not indicate summation.
Convective Texms
The convective term for the i-th equation can be written as
I i[i m i]
u'u = pu'fu, +u I, (20)
P |J P '] mj

which becomes upon expansifn ” .

pulu'|;= p2 { P“j“"j*',,,‘_éI P“J”mrni.j* Sinizlpunuj rn',-} (21)
where the last term is nonzero only when j = 3. The full momentum equation is
obtained by substituting Equations (17) and (21) into Equation (11) and treating
the pressure gradient and velocity divergence as explicit terms. Since the pressure
is specified and impressed upon the viscous layer, its specification replaces the

normal momentum equation. Thus, the streamwise and spanwise momentum equations are

the only two retained.

18
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paul 2 ) k Kk

3 oKk i 3k kk | l
+8i[§ 9 Mk PH]U + [éimg /‘Lskjk]uj - '
(22) :

2 Jompal 18 njal
puu q+;z% puu I;ﬂ + Ebgglpll u I;j}

+Z{°k9kk"kk +§9nk[ o', ]|k+§;,gm[/"uk|n]lk &
k#n n#l ;

f(-80)e" [t ]} ]

Energy Equation

The energy equation employed here states that the stagnation temperature is

constant throughout
(23)
The generalized tensor notation q2 is given by
2.0yl
q UUgij

where ui and v’ are the contravariant velocity components. Incorporating the assump-

tions made concerning the coordinate system employed, i.e. :

we obtain

2 _ (ul)z g” + 2u|uzgl2 + (uz) Zgaz+(u3)2 933

Neglecting the term involving (u3)2 with respect to the other terms; and defining

physical velocity components, i.e.

_ ! - 2
p-uh‘ wp-uha

19
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we obtain g
) 2 2 i2
To = T g (up HWp)+ i Wy (2)
This is the form of the energy equation used,

Equation of State

The equation of state assumes a perfect gas and is given by

-
p= ZTPT (25)

Linearizations

The following analyses assume a sef of linear partial differential equations.
However, the continuity equation and the convective part of the momentum equation
are nonlinear, containing terms that involve the product of density and velocity
components, In oxder o overcome this difficulty we employ the linearization procedure
(described in Ref. 8 and reviewed in Appendix A) to linearize the aforementioned terms
by Taylor series expansion about the known time level solution.

The density is first eliminated by employing the equations of state and energy,

and thereafter the resulting terms are linearized., These terms are of the following

form
oy )" *8 = (Y8 (eM g *P

Pn \pn 8"

T™h

+ (26)

W 992 2\0 1\ +B
[+ o ] h

n.,Nh QN
+ wna [+ 212 ()] (e +A

tte
n,ngn n+f3
pyne A Y\ p n,ngn
+—-FrT——[2(Tn_TO)+<;:T> P" —Zp\‘l e

where all velocity components are the contravariant ones, and 6 is always a velocity

component, (ul, u2, us) while § can be either a velocity component or a derivative of
. . i

a velocity component. In the case when only one velocity term appears, i.e., pu™,

we set wn = wn+8 = 1,

20
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It is dmportant to note that in the preceeding equations the contravariant
velocity components are used, However, as noted in Ref. 14, it appears advantageous
to solve for the physical velocity components. Therefore, when the governing
equations are subsequently cast into a form amenable to the application of the LBI
scheme, they are transformed so that the physical velocity components appear.

The Turbulence Model

We treat the set of three-dimensional ensemble-~averaged turbulent reduced
Navier-Stokes equations. Ensemble averaging permlts the appearance of low frequency
(relative to the turbulence) time-dependent "mean" flow. It is, therefore, necessary
to specify a turbulence model suitable for this problem.

The approach taken in the present effort assumes an isotropic turbulent viscosity,
Hips relating the Reynolds' stress tensor to mean flow gradients.,

Reynolds stress = #Rey =%~E[ ek - -?3—-8j' A] (27)
Using Favre averaging (Ref. 16), the governing equations then are identical to the
laminar equations with velocity and deasity being taken as meéan variables and vis-
cosity being taken as the sum of the molecular viscosity, u, and the turbulent
viscosity, Hpe

At this point we require additional closure assumptions for the Reynolds
stresses, 1.e., the evaluation of M There are a variety of approaches avaiiable,
from the simpler mixing length models to the more complicated one and two-equation
models. Since the intention here is to verify the code's performance in wall bounded
cases, we chose the mixing length models which have worked well in the past for similar
flow environments (Ref.l7 ). The extension to more complex models could be undertaken
at a later time if warraited. At that time, the LBI procedure that is used for the
solution of the momentum equatiorn could be applied to the k and & equations.

Employing the Prandtl mixing length concept, the turbulent viscosity is

given as R
- 2 %
pr = plie (28)

where % i1s the mixing length, and €* is the mean strain, which for the general case

1s related to the dissipation function.

* = ﬁ (29)
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where ¢ is the dissipation function, In Cartesian tensor notation ¢ is given as
5U| (30)
o —— en e
D = 28” ax] = 2 1y 1y
where

o duj ou
o=z [t o]

du
In the case of two dimensions, ¢ does not reduce directly to Iﬁﬁil (where %q is normal
to the wall) without the additional assumption that the other components are small,

In nonorthogonal coordinates, with generalized tensor notation employed, an
analagous expression can be obtained for the dissipation function, i.e,

» = oy, (s
where ’
j_ Im | jm |
e =g u lm + g u m (32)
After some algebra, ¢ reduces to
LN
= F e g (33)

where ] im |
€y ® %Y | * 0 o [

For computation purposes, ¢ can be expressed somewhat simpler, i,e.

cp___[glmullm+g)mullm]gik uklj (30)

3

On expanding, and recalling that gm = 0m¢ 3, ¢ can be expressed as a summation

3 3 2 2 2 2 2 ) 22
o-f 2o+ B Ea ) Rl el

(35)

33 3
+9,,9 u3|30|3
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As in the Cartesian tensor formulation, ¢ does not automatically reduce to the
dominant shear for two-dimensional boundary layers, Hence, provisions were made in

the computer code that on option retains only the dominant component of the strain,

The mixing length formulation is based on the two-layer model

inner layer l|= ky >

(36)
outer layer zo = o

where y is the normal distance from the wall, D 1s the van Driest damping term

D = | =expl-y*/a*)

and the von Karman constant k = .4 and the van Drilest damping coefficlent A+ = 26,0,
the dimensionless distance y+ is defined as

y+=puﬁ-!

and the friction velocity U, 1s taken as
In the outer layer % is given by

yla

me- 2O

where 8 1s the local boundary layer thickness defined as ,995 ug and A = ,09,

This form of the mixing length has a discontinulty in its first derivative
at the matching point between zi and zo. An alternate form which avoids the dis-
continuity and varies smoothly between the two layers has been proposed by
McDonald (Ref.18 ), and is given by Ky

/= [ootonh (“-Z—‘) 2 (37)
00)
In the turbulent calculations to be presented we ¢ ‘loy Eq. (37).
Spatial Difference Approximations

QR Operator Notation

In this section, implicit tridiagonal finite difference approximations to the
first and second derivatives and to the spatial differential operator are considered.
The QR operator procedure for generating a variety of spatial discretizations is also
introduced. As special cases, standard second-order finite differences, first-
order upwind differences, fourth-order operator compact implicit (OCIL), fourth-
order generalized OCI and exponential type methods are obtained, Since all these
schemes are of the same form (¢f. below), a single subroutine which defines the
difference weights is all that is required to identify the method, while leaving
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the basic structure of the program unaltered, Subsequently, the results of numerical
experiments employing some of these schemes will be presented., The rationale for the
use of the QR approach in the present problem is discussed in deteir dn Ref, 3.

The QR formulation allows for ADI methods and permits the treatment of systems of
coupled equations, i.e,, LBI methods, Although variable mesh schemes can be employed
within the QR framework, it is believed preterable to use analytic transformations to
obtain a uniform computational mesh, hence attention is restricted to uniform meph
formulations.

The general concepts and notation will be introduced for two-point boundary
value problems and then the methodology will be extended to more genery! linear and
nonlinear paraboliec partial differential equations in one dimension., The application
of the QR operator method to multidimensional problems is discussed in the section
pertaining to the LBI scheme.

Consilder the two-point boundary value problem

Tlu) = 30x )y + Bxdu, + clx)u = T(x) (38)

with boundary values u(0) and u(l) prescribed, Derivative boundary conditions,

although not discussed here; can easily be iIncorporated into the framework of the

QR operator notation. Let the domain be discretized so that xj = (3-1)h, 3 =1, 2,

v« v, J+1, and Uj ~ou(xj), Fjov ux(xj), Sj—~ uxx(xj) and h = 1/J is the mesh )

width., The numbering convention was chosen here to be compatible with FORTRAN coding.
Without loss in generality for a(x) # 0, Eq. (38) can be divided by a(x) so that

we may treat instead the following equation

Lu) = u,, + b(x)u, +c(x)u = f(x) (39)

where

b(x) = B(x) /a(x), c(x) = T(x)/&(x) and 1(x) = f(x)/alx)
Substituting the finite difference approximations to the first and second

derivatives v
D Ui =Us
- ST .4 e il S + o(h?
2y, T Fj = u,x)) + 0(h?) (40)
D.D U.. ,-2U; +U;
+ - J~' l J"' =~ 2 /
= = = 3, 7 u, (x;) + O(h?) (41)

into Eq. (39) and rearranging, we obtain

Lud ~S)+ byFy = [? " ’é‘ﬁ‘]“:-' +[°j' ‘Ef]ui ¥ [ L 'g’f,‘]uw -fy G2
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or
Rec
j Re
[' - -E_]U]‘“l + [hzc]'Z]Uj +[ i 'i'-'—éJ--']Uj.H = hij (43)

where ch = hbj is the cell Reynolds number,
Equation (43) can be generalized by introducing operator format, i.e.,
- ¢, + . hela" c +
U 4y Uy F U = DAt +apy +ap ) (44)

where the superscripts (-) minus, (¢) center, and (%) plus indicate the difference
welght that multiplies the variable evaluated at the (j-1), (3) and (§+1) grid points
respectively, and where the rj‘s and qj's for grid point j are functions of h,

bj»l’ bj’ bj+l’ Cy_10 Oy and Cypn” Comparing Eqs. (43) and (44) we can identify
the r,'s and q,'s, viz.,
3 3
rj = 1-Re /2 q; =0
c
r] = hfey -2 q = | (45)
+ "’,0

We now define the tridiagonal difference operators Q and R

o] =G+

(46)
- Cc +
Noting that L(u) = f and substituting Eq. (46) into Eq. (44), we obtain
R[UJ] =h20[f,]= th[L(u)]] (47)

Alternatively by employing the inverse operator Q-l and expression for L(u)j can be

obtained |
u); = —q"!

L{u); 7z Q7 RY, (48)
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For standard central finite differences Q = Q"1 = I, the identity matrix,
(the spatdial operator is given explicitly in terms of Uj—l’ Uj and Uj+1> so that
nothing would appera to have been gained in obtaining Eq. (48). However, in general,
for higher order methods whereas Q is tridiagonal Q-l is a full matrix. Hence,

Eq. (48) provides us with a convenient expression for the spatial operator for a

wider class of difference approximations. The formalism in Eq. (48) is also applicable

for first and second derivatives appearing alone (cf, Ref, 19). It should be pointed
out, however, that Eq, (48) is not the most general formulation since the compact
implicit formulas cannot be combined to yield a single scalar equation relatcing the
spatial operator to the function values (Ref, 19),

In Refs. 3 and 20 a technique due to Berger, et al is described for comstructing
fourth order tridiagonal methods which possess a monotonicity property as the cell
Reynolds number is increased, Rc + o, A brlef description of the method for
deriving generalized OCI schemes is given in Appendix C and the resulting Q and R
coefficients are presented in Table II,

Another family of schemes that can be expressed in QR operator notatiion are the
so-called exponential methods. The idea, originally due to Allen (Ref. 21)
(independently dgrived by Il'in (Ref, 22) and McDonald (Ref. 23)), and employed by
Dennis (Ref. 24) is to set the difference weights so that the numerical solution is
equated to the analytic solution for the locally frozen constant coefficient
equation, The QR coefficients of this exponential scheme is given in Table IIIL.

This method is second order accurate for Rec = 0(l) and becomes first order accurate
as Rc -+ « yhere the scheme reverts to first order upwind differencing.

Another exponential scheme which dis uniformly second order accurate was
developed by El-Mistikawy and Werle (Refs., 25 and 26). The "exponential box scheme
which is incorporated in their solution of the boundary layer equations with strong
blowing, is based on a spatial operator of the form given in Eq. (39). Berger, et al
(Ref. 27) derived the counterpart for an operator of the form given in Eq. (30),
but with ¢ = 0. The Q and R coefficlents are presented in Table IV. Although this
scheme'reverts to second order upwind differences as Rc = =, it does not possess a
discrete maximum principle while the exponential scheme of Allen (Ref, 20) does.

In Table V a centered finite difference scheme is presented which permits the
addition of artificial dissipation to the spatial operator when chl>Rcmax so that

ch] never exceeds Rc__ .
max
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Application to Coupled Nonlinear Parabolic Equations

Before considering the LBI technique, we discuss some of the limitations placed
on the QR operator scheme in solving a system of nonlinear parabolic equations,

Given a system of m nonlinear parabolic equations in m unknowns,

n+! n
m | (U;I -lﬂj)
i=t Q”’”ﬁ At

n+ 3
"Ni (U"uz,....Um,x',xz,xs,') = O

J=1,2,..00, 04

where N?+B is a quasilinear spatial operator, the QR formalism carries directly over

provided that for any equation only one independent variable is operated upon by the

differential operator. For example,

|
alu,w,v) Uy = uy +bluv,wu, +clu,v,w)

is allowed since x derivatives of u only appear, while

O(U,W,V) uy = Uyx + b(u,v,w)ux + C(U;V;W) + d(U,V,W‘)Wx i

is not allowed since x derivatives of both u and w appear. The approximate form of
unsteady Navier-Stokes equations used here, when written in quasi-linear form, falls
within the class of allowable differential operators. Thus, for the problem being
addressed in the present study, the OCI schemes are applicable. Note that within the
splitting approach, non allowable terms in the OCI scheme such as dwx above, may be
split off and treated by a special implicit sweep. Provided care is taken and for
instance the Douglas-Gunn formalism is adhered to, no particular problem arises
other than the cost of an additional implicit sweep which is incurred.

Thus, multidimensional problems and/or more general equation forms can usually
be accomodated by a splitting procedure, which reduces the differential operator to a

sequence of one-dimensional problems which have the appropriate allowable form.
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However, as with standard finite differences, to avoid the cost of additional

implicit sweeps, special procedures must be applied to cross derivative terms, e.g.,

extrapolation or explicit treatment.
Linearized Block Implicit Scheme

Consider a system of nonlinear partial differential equations
D +V (49)

where $ is a vector of unknowns and ¥ 1s a source term vector which is a function of
xl, xz, x3 ard t. Extension to source terms which are functions of $ are discussed
in Ref, (8). ZD is a three-dimensional nonlinear differential operator and the
matrix A appearing in the momentum equations is equal to pI where p is the density
and I the unity matrix.

Equation (49) may be centered abut the n+f time level, i.e. - (n+B) AL =
nAt+BAL = tn+BAt, and written

n+ﬁ[‘—'n+l -n] /At =_'2n+BEI3n+B+ —q-/n+,8 , (50)

where O z B s 1 is a parameter allowing one to center the time step, i.e., B =
corresponds to a forward difference, B = 1/2 to Crank-Nicolson and B = 1 to a backward

difference.

After linearizing Equation (50) by Taylor series expansion in time about the nth

time level by the procedure described in Ref. 8 to give a second-order linearization,

we obtain

A [—-n+l —- ]/At , [a‘) n+B—ED"] —.'Z"ED"*r "\I’,ﬂ-f-ﬁ 513

where /#is the linearized differential operator obtained fromZDby Taylor Series
expansion in time.

The difference between the nonlinear operator D and the linear operator .lis
defined as M" = Dn - 4“. At the intermediate level n + B, ¢n+6 is represented as

&‘)rwﬁ B q)nH I_B)"&)n (52)

Using these relationships and dropping the vector superbar for convenience a two-

level hybrid implicit-explicit scheme is obtained
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Nt .0 + n+f8
AT @My ar: gL O TN + "D M D" ¢ (53)
The vector wn+6 represents all of the terms in the system of equations which are
treated explicitly, More about this will be said later, but for the moment note that
* wn+B may be approximated to the requisite order of accuracy by some multilevel linear
explicit relationship, or approximated by wn with a consequent order reduction in
* temporal accuracy.

The l'erator‘4f is now expressed as a sum of convenlent, easily invertible sub-
operators ,Z = 41 + .4’2 P ‘lm‘ In the usual ADI framework these suboperators
are associated with a specific coordinate direction. Further, it is supposed that
these suboperators can be expressed in the QR notation introduced earlier. Writing

wn+8 and M™" as a single source term Sn+6, Equation (45) is written as

A @™-2"] /- Bl2+ 2] w2 [ @™ 2" +[£0+ L0420 @" + "B -

To solve this system efficiently it is split into a sequence of easily invertible
operations following a generalization of the procedure of Douglas and Gunn (Ref. 19)
in its natural extension to systems of partial differential equations., The Douglas-

Gunn splitting of Eq. (54) is written as the following three-step procedure
A @*-0"] /bt = BL(DT-B") + [ L]+ LD+ L] D"+ s"HB
J[eof] /a1 B[ -0 BL S ) ¢ [24212T] 00 4 50 O

A'[er @] /o= pa[@" -2 + LT[ O™ -2"] + gL [0M 0"

+[LY+ L2+ 2] ] D"+ s"HF
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which can be transformed to the alternative form
[a"- 2187 [@% -] = st[£"+2) +£]] D" + ars"*P

[An _ A?BJ-’;] [cpm(_q)n] (56)

A& -]

[a"- 21847 | [@""-2"] = A" P**-a"]

If the intermediate levels are eliminated, the scheme can be written in the so-called

factored form
=) =1
(An —BA?I?)(A") (An ‘ﬂ-Afl{gn)(An)' (An"B A‘l.[sn)(d)n“ _q)n) ,
A2 42, +2,") D"+ ars™P
At this point it becomes necessary to consider the structure of the operators

11, 42 and ‘4 3¢ It will be recalled from the one-dimensional scalar problem
that use of the QR format greatly facilitated the introduction of a wide variety of

(57)

spatial difference formulae., It follows that in the extention to multidimensions
undertaken here, the use of the QR formulation results in the appearance of the

inverse operator Q"l with the sub-blocks of the 4 12 42, 43 operators. In

order to implement the scheme the inverse operator Q"1 must be cleared. Accordingly,
the scalar operator Q is generalized to the vector operator 61 with (diagonal) sub-
blocks jS. In this generalization j = 1, 2 apply to the momentum equations and j = 3
applies to the continuity equation. The i subscript is associated with the coordinate
directions of the ‘di operators. The discretization results in one diagonal sub-block
for each grid point for each of the three 6i' Each intermediate step of the algorithm
is now premultiplied by the 61 assocliated with the ‘41 implicit operator. Writing the
product operator 3i ‘éi as Li’ the inverse operators are thus removed and the scheme

is written, once again dropping the vector superscript for convenience
[0,8" - a1 8L7][ @%- @] = A1, @+ At [22+2 ] @"+ prqs"+B
[QZA" - AtBL é"][cp**. cp"] - QZA"[CD* _ q,n]
[st A"~ A1BL :] [q)***_ cI)"] . QSAn[CID** _ q)n] (58)
2, ®"=0,7 R, D" 2®"=0,7'R, ®"

P+l H*R¥* 4 o(A13)
30



ORIGINAL PAGE i3
OF POOR QUALITY

With the removal of the inverse operator Q~l, the question of the proper intexr-
mediate level solution boundary conditions can be addrescsed. As is pointed out by
Briley and McDonald (Ref. 2), the proper intermediate level boundary conditions may be
derived by running through the intermediate steps in reverse order, Defining a
boundary condition operator 82 after linearizing the appropriate physical boundary

condition by Taylor series expansion in time as
n n+| n
B (P") = glt, ")

and applying this operator to the algorithm defines the boundary conditions as

B, Q, A"[d)** - d>"] [ By QA" - AtBBs"La"] [cp***- d)"]

(59)

]

Blo, A" @* - @"] = [Blla,a" - A1gefL [ @ - 2"

Note that unless B:Lz commute (an unlikely event except with Dirchilet boundary
conditions, where Bg = I) the exact boundary conditions cannot be derived., A number
of possible strategies are possible at this point aimed at various levels of approxi-
mation to B;Ln} For the present, the term AtBB?L2[¢ - @n] is neglected. This
introduces an error of order O[At(¢ ~ ¢7)] into the solution but note that this error
disappears at steady state where ¢#%% = ¢*% = ¢*%, Neglect of the AtBBng [¢ - ¢"] term
is, of course, equivalent to applying the physical boundary conditions on the inter-
mediate level variables.

This completes the general derivation of the algorithm and attention is now
given to the specific forms of the Lg operators including the rather special form
of the component operator for the continuity equation.

It is worth noting that the operator ZD or ,ggcan be split into any number of
components which need not be associated with a particular coordinate direction. As
pointed out by Douglas and Gunn (Ref. 19), the criterion for identifying sub-operators
is that the associated matrices be "easily solved" (i.e., narrow-banded). Thus,
mixed derivatives and the complicating terms which might inhibit the use of OCI can be
treated implicitly within such a framework, although this would increase the number
of intermediate steps and thereby complicate the solution procedure.

An inspection of Eq. (58) reveals that only the linearized operators L?, Lg and

Ln appear. Indeed, the computer code employs this feature by evaluating these three

3
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operators before the first sweep, storing them and accessing them as needed in the
subsequent three sweeps., In addition, the terms arising from the nonlinear terms are

nt+f as they appear, allowing for an efficient evaluation of

immediately absorbed into S
the terms in the differential equations.

The spatial operators appearing in the differential equations are 42, “42 and
,4! g must be identified at least formally in order to isolate the coefficients that

are to be used in the construction of the Q and R operators. The operators

2, 2, g can be represented “in standard form at each grid point, i.e.,
ngn n n n n n
= + + +
£, % q)l,ll ulchl,l %3 (bl omd)a + °|5¢3 (60)

In Eq. (60) the first subscript of ¢ indicates the velociity component (associated
with the corresponding direction and " , " indicates a derivative. The subscripts of
the azj refer to the direction (i) and the term in the equation (j) respectively.
Note that the equation is in quasi~linear form, since the coefficients of the
derivative operators need to be identified, for use with the QR operator technique
employed here. Alternate schemes have been proposed by Leventhal (Ref. 28) for
equations in conservation form but are not considered here. In the following section,
a description will be given of how this entire operator is discretized by employing
the QR operator format, and how the discretization is incorporated into the LBI
framework in order to solve the system of equations (58).

The continuity equation is considered first. Since it is a first-order partial
differential equation it does not have the standard form of Eq. (59). Furthermore,
in the linearization process p has been eliminated in favor of the ui velocity
components so that the continuity equation has become an equation for the three
velocity components, and not demnsity.

An inspection of the system of equations under consideration reveals that
substantial savings can be realized if the equations are partioned appropriately.
This is in keeping with the observations of McDonald and Briley (Ref. 8) who noted
that skillful partioning of the resulting matrix can lead to significant decreases in
computation time. Due to the use of a boundary layer coordinate system, the normal
velocity appears only in conjunction with terms associated with the normal "3"
direction in the two momentum equations. Hence, in the first two sweeps one is
required to solve only for the two corresponding velocity components the streamwise
and spanwise momentum equation without the need of considering the continuity equation.
However, on the third sweep where all 3 velocity components appear, cne must solve

all 3 equations. This strategy reduces the solution procedure to the inversion of
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two 2 x 2 block matrices and one 3 X 3 block matrix rather than three 3 x 3 block
matrices which leads to a substantial reduction in computation time. If the full
Navier-Stokes equations were considered (including a normal momentum equation)

the aforementioned partioning could not be applied since the normal velocity would
appear in all three sweeps.

The question that arises is how to appropriately split the continulty equation,

since it is solved only on the third sweep. Here again the Douglas-Gunn formulation

leads to the appropriate choice. The continuity equation written in congervation

form is,
op 1 90 1 -
TRl ["””]'O (61)

After linearizing and eliminating p, the increment form is obtained

A Ad™ + 8" AW™ + _A_'é 9 [v"A"Au"*' + g Awm"‘rpnAv"“]

J Ox3
__ At o [ AtB @ O T OO S TP T TP XY
- J W[JPU ] 5 Wr("" +u A)AY T+ (u B )Aw ] (62)

d
._..E. =z [(Pn " w"B")Aw"”*-(wnAn)AuM]

where all, the veloicty components are the contravariant components u = u, w =y

and v = u3. J. is the Jacobian and

n _ Pn n n
A" = T [g”u + glaw]

n. P n n
B" = = [gzzw +g,,u ]

By employing the Douglas-Gunn procedure, Equation (62) is represented as a third
sweep equation, and a consistent approximation is obtained to the continuity

; . 1 . . .
equation, i.e., the x” derivative term is evaluated at the * level and the x2 derivative
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term is evaluated at the *% level. The values of the intermediate derivative terms
are obtained after the solutdion of the first two sweeps of the twe momentum equations,
Note that these terms do not contain the normal velocity, The equation can thus be

written in symbholic form

Aau™'+ B " Aw™+ A'B 9 [J{A"v"Au""+ v"a"Aw"*'+p" Av""}]
Frel (63)

ool 2 )] e L {1 |

Since the only term involving v is in the x3 derivative term, one can directly

integrate the equation with respect to x3, i.e.

‘ A
'[5 [A" Au™ 4 BnAwmq dx3 + At%—!-[v"‘AnAun”-i- v" BnAw"H +p A N+l ]

S e B T BT

The next section describes how this is done very easily via the QR operator scheme,
The concept of integrating directly the continuity equation is not now. Davis (Ref. 29)
in his coupled procedure for the solution of two-dimensional steady boundary layer
equation used a trapezoidal rule to integrate the continuity equation. Weinberg
(Refs. 30 and 31) also used a fourth order Simpson integration scheme to solve the
compressible boundary layer equations. Such procedures are stable and offer a viable
alternative to approximating the derivatives by finite differences. Note that
conceptually the continuity equation in integrated form is treated on each sweep

of the Douglas-Gunn splitting, although in actuality this can be viewed as having

the same form as each sweep and the integration operator can be incorporated into

the .{?and ZD difference operators, and as a result the stability and consistency

of the original splitting dis retained.

Implementation of the LBI Scheme Employing .
the QR Operator Technique

Consider the third sweep of Equation (57) in which both momentum equations and

the continuity equation are solved. The momentum equations are in the form
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[A" - By ]ad ™™ = Aap* 60

where A¢#%% is the column vector of unknowns, u, v, w., BHere it has been implicitly
assumed that the equations have been appropriately normalized and that the contra~
variant velocity components have been sultably transformed into their physical
components, Employing physical components, (¢f. Ref, 32) leads to a better behaved
solution since these components are not unduly influenced by geometrical variations.

For the streamwise momentum equation one obtains

Ly APz Augyt Upy Auyy 03580 + 05 AW + 0y (65a)

while for the spanwlse momentum equation one obteins

27 ™™™ Ayt byy By + byghw + besAv + beyAu (65b)

where superscript #%% has been omitted from Au, Av and Aw. Now in Equation (65a),
the first three terms on the right~hand side are approximated by the operator

equivalent
Q-' R 66
Au,33+ Q%Au,3 +033Au = -——-'A "2 Au (66)

h X3
so0 that
-1
n w»x_ Q 'RAu

L 8P = — + 058w + 0y B (67)

2
Axy

Similar approximations are made for Equation (65b)., After substituting Equation (66)
into Fquation (64), and multiplying thru by Q, one obtains for the streamwise

momentum equation
[Q,p" - BXR,]Au - BAIQagsAw~BAQAs5AV = Q'pnAu** (68)
where A = At/Ax,”
Similarly for the spanwise momentum equation, one obtains
[o,p" - BAR,] AW — BB1RD,s AV - BAIADs Au = 0, p" AWH* (69)

The same type of procedure is employed for the continuity equation. Since the
continuity equation involves only first derivatives, they can be represented as
d - Q—c'Rc
6x3 AX3 (70)
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The operators Qc and Re are constructed to approximote the welghts associated with
cither a second oxder trapezoidal rule or a fourth order Simpson's nule, i.c,

Trapazoldal rule

oo ah
rgo=0 , 18 ==l rt=
Simpson's rule 0 =_|3_’ q(é;_g_ ,q:-—'-%—
rgo==l, 1§ =0 g =

The discretized continuity equation thus becomes
n n A8 - n.n nn n
S byt sB"Bu+ = Ro[9"V"8u + ug""Aw + 3 Fav ] = RHs (71)
where RHS contains all the terms due to the linearilzation procedure and the terms

evaluated at the * and #*% levels, Multiplying thru by Qc and setting w = At/AxB,
the equation reduces to

[acu &7+ BuR, A" | Au + [ @B + BwRuB™" | Aw + [ Burgp"] AV = aRHS)  (72)
The resulting matrix derived from Equations (67), (68) and (71) becomes a block

3 tridiagonal matrix (Q and R are tridiagonal operators) with each sub block taking
on the form

. — - —

[ Q,p" -~ BXrR, ][ -BAtQags ][—BAto,om] .AJ Q,{ ™)

[ -Botagbs ][ opr"-mr, o] | fau] - factan®

[0gua + Buw Ry AV [ uB" + B RIEWY [BuR, o ]_J Av—] Q,(RHS)

L.

This matrix is dnverted by standard LU decomposition.
Boundary Conditions and Initial Conditions

The type of boundary conditions employed in the solution of the approximate form

of the Navier-Stokes equations are described in this section, On the body surfaze no-
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slip is prescribed for all the velocity components. At the auter edge of the viscous
layer the magnitudes of the streamwise and spanwise velocity components are also
prescribed, However, the value of the normal velocity component is not set, but
rather computed as part of the numerical solution as is the practice in standard
boundary layer procedures.

At the inflow boundaries, (upstream) velocity prcfiles are fixed, while extra=
polation conditions are employed at the outflow boundaries (downstream), Further
discussion of this matter is given in the section of numerical results,

The intermediate boundary conditions employed on the first two sweeps are the
physical ones., For steady multidimensional problems, the imposition of physical
intermediate boundary conditions did not impair the quality of the solutions
obtained. These results are in keeping with the analysis of McDonald and Briley
(Ref, 2) for second order spatial schemes, For the unsteady cases considered
physical intermediate boundary conditions have algo been used without any apparent
difficulty.

The question of proper intermediate boundary conditions for fourth order
methods until recently has not been resolved., Failrweather and Mitchell (Ref. 33)
developed nonphysical intermediate boundary conditions for a fourth order solution
of Laplace's equation, and showed that, in general, the use of noncorrected, i,e.,
physical boundary conditions leads to a loss in steady state accuracy for their
method. As pointed out by Fairweather and Mitchell (Ref. 33), their scheme is
inconsistent. It is this inconsistency that requires one to use appropriately derived
intermediate boundary conditions in order to recover a steady state solution indepen-
dent of time. However, if a consistent scheme were to be used, e.g. Douglas-Gunn,
then physical boundary conditions can be applied without any loss in steady state
accuracy, including fourth order generalized OCI schemes. These conclusions
generalize the results obtained by Briley and McDonald (Ref. 2) for second order
finite difference methods to higher order schemes and to those schemes that can be
cast into a QR operator framework. However, using physical intermediate boundary

conditions is expected to decrease the overall temporal accuracy to f£irst order.
The Computer Code

The type of numerical algorithm employed as well as its formulation has a
marked impact on the structure of the computer code. One needs to consider both
the number of CPU operations as well as the memory requirements. Usually, the
number of operations can be reduced at the expense of increasing the amount of

storage. However, for three-dimensional problems the accessible fast (small core)
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memory bhecomes a severe limitation even in the case where the code has not been
modified to optimize the operation count,

The storage requirements for the solution of the approximate form of the three-
dimensional Navier-Stokes equations for even modest size grids (e.g. 30 x 30 x 30)
exceed the available small core memory of a machine like the CDC 7600, One must then
resort to either mass storage devices such as disks or slow access wemory (large core).

In using such devices hoth access time and transfer rates must be considered,

When small amounts of data are being transferred frequently then access time becomes a
significant factor. Therefore, a combination of strategies must be employed in order
to optimize both access time and transfer rate,

An investigation of the operation count of the LBI shceme in conjunction with
the QR operator technique leads to the conclusion that the most significant fraction
of time 1s spent in computing the macrix coefficients, i.e. the linearization coeffi-
clents and difference weights, This amount far exceceds the time required for the matrix
inversion. Hence, it 1s worthwhile to optimize the calculation of tlhiese coefficients,
and if possible store their values. This procedure was accomplished by storing the
operator coefficlents .42 and ,41; as they were computed in the first sweep on the
right-hand side of the differential equation, On the second and third sweeps.gfg
and zg were accessed respectively and were not recomputed. It was for this reason
that the formulation of the LBI scheme referred to the linearized operators,‘! 2‘5
instead of the z; g's on the right-hand side of the equation.

In order to minimize data transfer, the code was constructed to have iu memory
one plane of data at any given time. Recall that 1-2 planes are parallel to the
surface while the 3 direction is normal to the surface, During the solution procedure,
which is described below, the firsﬁ and second sweeps are conducted on 1-2 planes,
evaluated in sequence in the 3 direction from the surface to the outer edge. The
third sweep is conducted on 1-3 planes evaluated in sequence in the 2 direction,

A problem arises in two dimensions during the first sweep, in that only the 'l'
or streamwise direction is required yet 'l-2' planes must be solved sequ,ntially. This
means that only 'l' lines are solved in the first sweep since the '2' direction is
essentially passive, and thus leads to unnecessary data transfer. In order to
alleviate this inefficiency the code was modified so that in two dimensions the
equations would be solved 'in core' in the 'l-3' plane on both sweeps. At the same
time, additional modifications were introduced that resulted in a significant speed
up of the code. These include specialized hard wired 2 x 2 and 3 x 3 block matrix
multipliers and inverters, and an efficient addressing ioutine for spatially

deper’ent wvariables. As a result of including these modifications, the CPU time for
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two-dimensional problems was reduced by nearly an order of magnitude, The run time

for a two-dimensional turbulent calculatilon is ,00063 sec per grid point per time step
and for a laminar two-dimensional calculation is ,N0055 sec per grid point per time step.
Although there are still additional modifications remaining to be incorporated into

the code, it is believed that the major gains in efficiency have already been obtained.

The general structure of the computer code will now be described. After the
input section and the initialization of data e.g. geometry, grid transformations,
flowfield, etc. the actual construction of the difference operators is begun. The
first derivatives of the velocity components and viscosity are obtained for the entire
flow field and stored for ready access when needed for the computation of the appre-
priate terms in the governing ec¢:ations. Thereafter the terms that are to be treated
explicitly are evaluateu and abi rbed dnto the function s”.

The operators 41, ,42 and 43 are then computed, These are used to
evaluate the appropriate Q and R coefficients which are then stored for easy retrieval
during each of the ADI sweeps,

In the first sweep the matrix resulting from the application of the .{?l
operators for the streamwise and spanwise momentum equation is solved as a 2 x 2
coupled system. The solution of this system, the * level quantities, are then used
to construct the right-hand side of the second sweep equations and to evaluate the
appropriate % level term in the continuity equation. At this point the f‘?z operator
is accessed and again a 2 x 2 system of equations for the streamwise and spanwise
momentum equation is solved. The #* level quantities are then used to construct the
right-hand side of the third sweep equations as well as the appropriate terms in the
continuity equation. For the third sweep equations which consist of the two momentum
equations and the continuity equation, the ,4!3 operator is accessed from memory. The
resulting 3 x 3 system of equations is solved for the tliree velocity components.

After the primary variables are evaluated, the theromodynamic quantities, density,
temperature and viscosity are computed. The procedure is then repeated at the following
time steps.

It is noteworthy that the scheme just described operates on vectors, i.e, lines

of data, Therefore, it could show promise for vectorized machines.

39



Numerical Results

In this section we describe results of numerical computations that were ob-
talned by exercilsing the computer cele discussed previously. The objectives of
these calculations are; ¢~ demonstrate the viability of the code in performing two
dimensional steady turbulent flow calculations as well as in computing two dimensdional
unsteady flows, to compare second order finite differences with fourth order methods,
to discover any limitations of the solution procedure and to indicate what modifications
would be recommended to improve the code's performance,

In meeting these goals initial calculations were performed with the fourth order
generalized OCI scheme, Model one and two dimensional problems were considered,
progressing to the solution of the laminar boundary layer equations. These calcula-
tions which included both the Blasius and Howarth flows were used to validate the
fourth order generalized OCI option as well as the code modifications described in
the previous sectdion.

At this point the choice of the specific calculations to be considered was
addressed. The first set of calculations consisted of two turbulent cases; zero
pressure gradient (Weighardt Flat Plate (Ref. 34)) and adverse pressure gradient
leading to separatien (Newman Airfoll (Ref. 34)). These cases were chosen due to
the reliable experimental data that are available with which comparisons can be made.
The second set of calculations treat the laminar two dimensional oscillating flow
over a flat plate. Here again there is abundant information (theoretical as well as
computational) with which to make meaningful comparisons.

Two-Dimensional Steady Turbulent Flow
Weighardt Flat Plate

The first case we consider is the turbulent flow over a plat plate with zero

pressure gradient. Flow conditions were specified to match with the experimental data

of Weighardt (Case 1400 in Ref. 34), viz.
u

e

R
e

108 ft/sec.

661,190/ft.

]

The computaticnal domain was chosen with the inflow boundary located at
x = ,6135 ft and the outflow boundary located at x = 13.1232 ft, while the outer
edge was set to a constant value of y = .25 ft for all x. In order to resclve the

sublayer two types of grid transformation were employed, a Roberts type (Ref. 11)
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which is essentially a hyperbolic tangent function and an Oh type (Ref. 35) which
is constructed from a series of complimentary error functions. In the streamwise
direction a uni.urm grid distribution was employed. The total grid distribution
consisted of 36 points in each direction.

At the inflow boundsary the velocity profiles are required to be specified.
These were obtained directly from Weighardt's data by using a Coles' law profile
(Ref. 34) i.e.

u |/ Yur 2mix) . 2 (__7[._)1_ -
'Tfr = 'E'n(_ﬁ")"' C+ —x—sin 5 8) Wall~Wake Law
(73)
+ -t
y =u laminar sublayer
where
yu u =
y+ = UT , u+ = -—u-; Ur TW /P

and m(x)/k is evaluated from the condition thatu = u_ at y/é = 1. 1In Eq. (73) the
constants k and C are set at .41 and 5.0 respectively. This leaves two free parameters,
T, (or Cf) and 6, which must be chosen to completely specify the profile. In (Ref. 34)

tabulated values of C_ and § are given, which are evaluated from curve fits of the

f
experimental data as a function of streamwise position. The values corresponding to i

x = .6135 ft are
.004138

le]
i

.015472 ft.

i

Once the streamwise velocity profiles are obtained the normal velocity can be
determined by approximating du/dx and then integrating the continuity equation. :
In the calculation procedure the flow was assumed incompressible and in the |
streamwise direction the boundary layer option was employed, i.e. streamwise dif- i
fusion terms were dropped and a backward difference approximation was used for the
streamwise convective terms. In the direction normal to the wall both second order
finite differences and the fourth order G/OCI schemes were exercised. The full form of
the dissipation function is used in the evaluation of the turbulent viscosity since
in this case it did not have any perverse behavior. In the Newman airfoil calculation
to be discussed shortly, however, the use of the full dissipation function adversely
influenced the behavior of the solution. The solutions were obtained by marching in

time until a steady state was reached.
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The second order and fourth order calculation required 42 and 43 iterations
respectively to converge, where a convergence criterion of e:wlO"5 was employed and €
corresponds to the maximum change in a primary variable (u,v) over a range of time steps.
The total run time for the fourth order G/OCI calculation was 35,28 sec on a CDC 7600
computer which reduces to ,00063sec per grid point per time step,

The skin friction distribution, Cp as a function of distance along the plate is
presented in Figure 1. A comparison between the experimental data and both computa-
tions shows good agreement over most of the plate, with the major discrepancy appearing
near the upstream boundary. There are two reasons for this. First, there is an
incompatibility between the inflow profiles (obtained indirectly from experimental
data) and the velocity profiles downstream of the inflow plane, which are obtained
by the numerical solution of the governing equations. There ds no direct method of
avoiding this inherent error other than refining the mesh in the streamwise and
normal directions in the vicinity of the inflow plane. This would allow any errors
that are generated at the boundary to damp out several grid points downstream.

Another method that could be used relies on completing two computations; the first
beginning upstream of the inflow plane and extending downstream of it, and the second,
the one of interest, on the actual computational domain. In the second calculation
for the inflow profiles, one uses the profiles computed from the first calculation at
the corresponding x location. Although such a procedure is not always applicable, it
was used successfully for the Newman Airfoil Case (described below).

The second cause of the discrepancy, and probably the more serious, was the lack
of resolution of the velocity profile at the upstream plane. Recall, that the top
boundary was prescribed at some fixed constant height for all streamwise locations.
The extent of the normal distance 1s based upon the consideration that at the down-
stream boundary the velocity profile should be totally contained within the computa-
tional domain. As a result at the upstream boundary the "boundary layer' occupies a
small portion of the entire normal extent, leading to a lack of resolution there.

This prcblem can easily be remedied by introducing a y/§ transformation which accounts
for boundary layer growth and assures equal resolution in the normal direction for

all x locations. In view of the benefits of this type of transformation it is
recommended that the computer code be modified to include a y/$§ transformation

on option.
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Despite the shortcomings discussed above, the errors near the inflow boundary
die out rapidly and for the remainder of the flow field computations are in excellent
agreement with the data, The velocity profile at x = 11,44 ft. (of Figure 2), also
shows that good agreement was obtained between the computations and experiment.

In Figure 1, the increased accuracy of the fourth order generalized OCI scheme
is evident. However, there were qualitative differences between the second order and
fourth order solutions. The streamwise velocity profiiles obtained by second order
finite differences were smooth throughout the entire boundary layer. In contrast to
this behavior the fourth order generalized OCI solutions tended to have slight wiggles
near the outer edge of the boundary layer even though in theory the generalized OCI
scheme should not if certain inequality constraints are satisfied. Unfortunately,
near the outer edge these condit:ions are violated allowing for the observed behavior.
We believe that the wiggles are due in part to high order numerical differentiation
of the turbulent viscosity which possesses a sharp knee in the wake region of the
layer, It is well known that higher order derivatives of rapidly varying functions
introduce noise, and it is this noise which we believe we are witnessing. Laminar
flow calculations have demonstrated that oscillatory behavior is not exhibited near the
outer edge even for very coarse meshes, It i1s, therefore, felt that in order to obtain
turbulent solutions commensurate with laminar solutions additional investigations of
'smoothing' procedures for the turbulent viscosity should be undertaken, and appropriate
grid distributions be considered.

As a final note, the computation of Cf is discussed. Second order finite dif-
ferences employ a three-point second-order one sided difference. A comparable formula
accurate to fourth-order requires a five-point one-sided difference. As a result of
the grid transformation employed, the formula encompasses points relatively far from
the wall, and hence the computed Cf will be in error. Instead, for the reported

results in Figure 1, a three-point, one-sided formula was used which gives more accurate

values than the five-point scheme. Such behavior is not uuncommon in computing one-

sided derivatives (cf. Ref. 36).
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Newman Airfoil Case

The Newman airfoil flow (case 3500 ~ series 2, Ref., 34) is considered next. It is
more interesting and more difficult than the flat plate case due to the adverse pres-
sure gradient present which leads to flow separation near the trailing edge. Indeed,
the only meaningful numerical results obtained were those computed by second-order
finite differences, The fourth-order calculations computed on the same grid were
inaccurate and exhibited excessive oscillations near the outer edge of the computational
domain. An explanation is suggested for the obseryed behavior, and a discussion of the
computed results is presented,

In the computations a 36 x 36 grid was employed. In the streamwise direction
which extends from % = 2,958 ft. to x = 4.926 ft. the spacing was uniform, while in the
normal direction which extends from the wall to a fixed outer edge at y = .35 ft.,

a Roberts type stretching was used. The stretching parameter was chosen so that at
the inflow plane the first grid point would be located within the sublayer (y+ = 1,75).
The Reynolds. number for the flow was 769,231 per foot.

Initial flow computations revealed that the results were sensitive to both the
external velocity distribution and the upstream velocity profile. Differentiating the
velocity data given in Ref. 34 directly for use in the computation of the pressure
gradient was found to work best. Numerically differentiating analytical curve fits
to the external velocity distribution introduced errors in the pressure gradient and
were thus discarded. 1In order to eliminate incompatabilities caused by a mismatch in
the inflow conditions and the numerical solution, a preliminary calculation was per~
formed on a 21 x 36 grid in the domain 2.759 < x < 3.2, and the computed profiles at
x = 2,958 were used as upstream conditions for the primary calculation. Since the
pressure gradient in the upstream region was mild, there was no difficulty in obtaining
a converged calculation for the 21 x 36 grid (the calculation converged in 21 iterations).
However, the '"boundary layer" form of the dissipation function was used since with that

form the solutions behaved better near the outer edge of the computational domain.

In Figure 3 the computed skin friction distribution is presented and compared to
the experimenti.) data. The agreement is good for most of the airfoil with the exception
of the trailing edge region where the second-order calculation predicts separation up-~
stream of the actual separation point. However, for the shape factor, H = ¢ /B (cf. Fig.4)

the agreement between data and computations is not as good, with the numerical results
underpredicting the data. A lower value of H signifies that 8 is too small, 6 is too

large or a combination of the two. In any event, the lack of agreement in H means that

the velocity profile shape is incorrect. Two effects were considered to account for



this discrepancy; lack of spatial resolution and turbulence modeling. As discussed in
the previous section, the inability to account for boundary layer growth leads to a
spatial resolution problem. This effect manifests itself particularly near the upstream
boundary where the boundary layer is thinnest. Since the major discrepencies in this
case lie near the downstream boundary, where the boundary layer is thickest, poor grid
resolution caused by the lack of a y/§ transformation is not a predominant factor for
the observed behavior. Of course, grid resolution could be a real concern, but only in
how it affects the numerical scheme in resolving regions of large gradients, il.e, the
knee in the viscosity profile, In order to investigate the effect of turbulence model-
ing, a series of calculations were performed using a modified version of Cebeci's
turbulent boundary layer code (Ref. 37) which uses Keller's Box scheme. This code per-
mitted us not only to investigate turbulence modeling effects, but afforded us with a
means of comparing our computational procedure with a different method, and running a
gseries of mesh refinement studies.

The modified Cebeci code was checked out by computing the Weighardt case. After
successful completion of this calculation, the Newman Airfoil case was attempted, In
running the Newman Airfoil anamolies appeared which were not present in the Weighardt
case., The computed skin friction coefficient exhibited oscillations in the streamwise
direction. Since the "mean" C; curve compared well with our calculations for x > 3.5 ft.
and since our intent was to investigate the effects of turbulence modeling and grid re-
finement, we did not pursue the anamolous behavior. Even though oscillation in Cf were
observed, we believe that they do not invalidate the conclusions to be drawn. The
calculations were performed with 36 points in the streamwise direction (matching our
calculations), and either 36, 60 or 100 points in the normal direction, which was
stretched by a logarithmic transformation.' It is important'to point out that these

calculations were performed in similarity variables so that the growth of the boundary

layer was taken into account,

The results of the Box Scheme calculations were rather surprising. For the
calculations using either Cebeci's two layer mixing length model (Ref. 14)
or McDonald's model, the Cf distribution varied insignificantly from our second-order
finite difference solution shown in Figure 3. For the comparison, the oscillating
part was neglected and a mean Cf curve was considered. Neither was there much
improvement with the use of a finer mesh indicating that 36 point is probably sufficient
to resolve the flow. The major diffecences between Cebeci's model and Equation 37
are that in Cebeci's model, the outer layer mixing length is proportional to 6*, while
in Equation 37 it is proportional to &, and in the Van Driest damping Cebeci includes

a term that accounts for the pressure gradient.
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The effects of these differences were considered next, In order to investigate
the effect of pressure gradient terms in the Van Driest damping, the correction term
was Included in McDonald's model (Eq. 37). The results of the calculation with 36
points in the normal direction revealed that there was a significant shift of the Ce
curve upward toward the data, with much better agreement obtained with the data,
However, the oscillation still persisted. Why that term did not have a similar effect
in Cebeci's mixing length model we cannot answer, and therefore, we believe further
investigation is warranted.

In comparing the shape factor, the H distribution exhibited different behavior.
These results are shown in Figure 4 which presents H as a function of x. It is apparent
that the calculations using Cebeci's mixing length give better agreement with the data,
Since the skin friction distribution did not compare as well, the good agreement of the
shape factor with data must be related to the overall shape of the velocity profile.
Hence, the velocity profiles obtained from Cebecl's model and from Eq. 37 were compared
with data at x = 4,509 ft., (cf Fig, 5) to discover how the turbulence model effects
the shape and thus H, Although the profile using Cebeci's model fits the data more
closely, the shape of the velocity profile appears to be in error, Therefore, the
good agreement for H shown in Figure 4 may be fortuitous. TFurther investigations
beyond the scope of the present effort would be necessary to draw additional conclusions.

The following conclusions can be drawn from the calculations employing the Box
Scheme:

(a) Mesh resolution in the normal direction was not a significant factor in

the observed results,
(b) Choice of turbulence model can have a significant effect on the solutions,

In view of the above, the inclusion of a one-~equation and/or a two-equation turbulence
model in the computer code is recommended in any future effort.

Until now, we have neglected to say anything about the fourth~order calculations.
The results obtained for a 36 x 36 grid exaggerated the mild oscillations in the
velocity profiles observed in the Weighardt case. The inequality constraints required
for nonoscillatory behavior of the generalized OCI scheme were violated. In order to
satisfy these constraint conditions, more grid points, better transformations or both
are necessary. It is, therefore, recommended that further investigation be performed

in this area.
Two-Dimensional Unsteady Flow

The unsteady flow case considered is that of a nonzero mean flow with a sinusoidal

unsteady component superimposed upon it, i.e.
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ue(t) = ugl1 +Acoswt) (74)

where u, is the mean flow velocity, A is the dimensionless amplitude of the periodic
part and w is the circular frequency., For the case of laminar flow over a flat plate,

Lighthill (Ref. 38) obtained expressions for the skin friction coefficient in the limit

of low and high reduced frequency.

0.332 4 A(0.498coswi - 0.849wx/ugsinwt)  wx/ug <<I

o - (75)
”2—\/'-‘; "}

0.332 4 Alwx/ug) 2 cos(wt + m/4) wx/ug >> |

It is convenient in the flow analysis to calculate the phase engle between the
external velocity and a boundary layer property (i.e, skin friction coefficient) as a
function of streamwise location, x = X, The derivation of the phase angle is

presented below,
Consider an unsteady flow with an external velocity field that is a function of

Xx and t
Uglx,t) =ux) (1+Acoswt) (76)

and which has associated with it a boundary layer property f(x,t)., Denoting the
average value of a function by a super bar (7), the average external velocity at

point X, is defined as

T(xg) = 17 f;tﬁuTo(xo,t)dt = ~'T— _/;w[uo(xo)] [|+A cos w?] di (77)
{ |

or
U(xy) = uglxg) (78)
where T = 2n/w is the period of oscillation ant tl is a reference time from which
averaging begins. Similarly, the average value of the function f becomes
n+T

Flxg) = =+ _{ flxo,1) df (79)
|
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Here we have tactly assumed that the flow has rcached a pseudo-steady state and
initdal transients have died out, Tor the cases considered here, such a state is
reached after one period so that by, = T,

The function £(x,t) 1s now expressed as a periodic function with frequency w,
il.e,

F(x,1) = Tlxg) + Beos[ wh + ¢xo)] (80)

where ¢(xo) is the phase angle between u_ and £ at point x = X

e

In order to determine the phase angle, the following integrals are evaluated

f|+T
ot L [ (uelrort) = uging))« (f(xg,1) = F(x0)) df (81)
cos ¢(x° - BAUo(Xo)
and
+T
B2 = %f‘ (flxgit) = T(xg)) 2 dt (82)

’l

The character of the flow field is governed in part by the amplitude of oscil-
lation, A. Ackerberg and Phillips (Ref, 39) have shown that for A sufficiently small
A < .3 no backflow will occur, However, for larger wvalues, A > ,3 regions of reverse
flow will appear over the plate, predominantly near the downstream boundary. The
occurrence of reverse flow at the downstream boundary has serious implications on the
numerical solution of the governing equations, and will be discussed in greater
detail below.

For the case considered in this report, A was chosen so as to avoid reverse
flow from occurring, while the other input quantities were specified by numerical

considerations (see below). Hence, the input data employed in the calculation are

u = ,10
o
A= ,125
w = 51/2

XU = .1
XD = 3.6

Re = 666,667

i
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Before deseribing the particulars of the calculations, a general discussion
of the solution procedure, its features, and its assoclated constrainty will be given,
The solution proceduxe for the unsteady case follows along the same lines as for the
steady case, with the essential difference being that in the unsteady case, the
solution ig advanced in real time with the time step chosen from considerations of
temporal accuracy rather than rate of convergence. Whereas in the steady case, all
boundary conditions are time invariant, for the oseillating flow the velocity distribu-
tions at the upstream and outer edge boundaries change with time. Th.t# is no dif-
ficulty in applying the outer edge velocity boundary condition since the velocity
_distribution 4s simply that which is given in Eq., (74). The upstream boundary is
more troublesome, If the upstream boundary is located at x = O, then at that point
the boundary layer is of zero thickness and hence in transformed brundary layer
coordinates remains fixed. In that case, the upstream inflow boundary condition remains
Blasius independent of time, However, if the upstrean boundary is located at some
small, but finite, distance downstream of the leading edge, the velocity profile will
change with time. Since the calculations were conducted in the physical plane rather
than in the transformed plane, the upstream boundary was required to be placed at a
small finite value of x. Hence, in order to account for the varying upstream boundary
layer profile a method used by Singleton and Nash (Ref. 40) was employed, viz. the
upstream boundary was scaled by the new edge velocity at each new time level, This
procedure fixes the values of the flow variables at the upstream boundary, and permits
the use of function conditions (necessary for well posedness) but as a result also
introduces errors there.

By solving in the physical plane, boundary layer growth couid not be very satis-
factorily accounted for. This resulted in having the outer edge fixed at y = 0.037 ft.;
the choice of this distance being predicated upon the necessity to accommodate the
boundary layer at the downstream boundary. In Figure 6 the computed phase angle ¢ is
presented and compared with Cebeci's calculations (Ref. 41), and to the low and high
frequency predictions of Lighthill (Ref. 38). Both second~order and fourth-order
caleulations are shown, for B = 1. The agreement of our computations with the other
predictions is very good for a'z_.B. For small x there is a discrepancy due to the
implementation of the upstream boundary condition described above, and the lack of a
y/8 transformation, This effect was studied in greater detail at a lower frequency,

w = m/2 and were compared to the calculations of Murphy (Ref. 42).
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In Figurce 7 sccond-order snlutions with B = 1 and g = 1/2 (Crank Nieolson) are
compared to Cebeci's results. The Crank Nicolson calculation gives larger values
of ¢ than both the results for B = 1 and Ref, (41), Since Murphy's and Prenter's
higher order calculations (Ref, 43) show the smme trend, this would appear to
indicate the improved accuracy og the Crank Nicolson scheme.

As A is incrcased, Phillips and Ackerberg (Ref., 39) show that reverse flow
will occur duzing the cyecle over some portion of the flat plate, including the
downstream boundary. Although unsteady boundary layers permit regions of reverse
flow, there is a difficulty in applying appropriate boundary conditions if at the
downstream boundary fluid is entering the computational domain rather than exiting it.
In an attempt to remedy this situation, Ackerberg and Phillips argue that since
disturbances travel at some finite speed then at a distance sufficiently far down~
stryeam the flow will not have felt the disturbances generated at the leading edge
and would, therefore, appear to be that which would exist on an infinite flat plate,
The solution to that problem is well known, i.e. Rayleigh flow. Hence, they suggest
that the Rayleigh solution be set at the downstream boundary (function condition)
consistent with the corresponding x and t.

We investigated the behavior of our numerical scheme for a problem where reverse
flow occurs, A = ,3. The boundary conditions described in Ref. (39) were used for
the solution of the full equations and central differences with artificial dissipa=-
tion was employed in the streamwise direction. The calculations were run for two
cyeles, but the transients had not as yet died out completely, The results which
we are not presenting at this time (since they are of a preliminary nature) indicate
that there was no difficulty in the computations even when there were large regions
of reverse flow. Future work will be aimed at conducting a more comprehensive study
in this very dmportant area, Additional effort will be extended on turbulent

unsteady flows.

50



f

3
3
4
(o

CONCLUSTONS

In this report we have presented results obtained by exploiting the computer code
developed under a previous phase of the research effort to solve an approximate form of
the time-dependent Navier-Stokes equations. Both two-dimensional turbulent and unsteady
laminar cases are considered. The governing equations that are solved are more general
than the conventional boundary layer equations, notably in the inclusion of streamwise
and spanwise diffusion terms, although the pressure is still imposed by the external
flow, 2s in conventional boundary layer theory. The computer code incorporates the split
LBI scheme in conjunction with OR operator scheme that permits a variety of spatial dif-
ference schemes, including standard second~ovder finite differences, exponential type
methods and fourth-order OCI techniques, In the split LBI scheme, an implicit sweep is
performed in each spatial coordinate direction. A careful ordering of these sweeps
permits an uncoupling of the continuity equation from the system in the first two
implicit sweeps., Thus, on the first twc sweeps the (tridiagonal) system block size is
reduced from 3 x 3 to 2 x 2 with a resulting cost savings. On the last sweep of each
time step all the equations in the system are linearly coupled and 3 x 3 blocks must be
eliminated.

Results of computation indicate that the procedure is viabla [t more complex
problems of interest. Higher ourder methods can yield more accurate results although
care must be taken for turbulent flows when coarse grids are employed. For unsteady
flows, the method is extremely efficient as a result of the noniterative nature of the
algorithm, Future efforts will be aimed at incorporating a y/é§ transformation, which
will eliminate some of the difficulties encountered and will make the code more robust.
Further investigations of appropriate turbulence models is also recommended with the

one equation k-% model given priority.
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APPENDIX A
Linearization Technique

A number of techniques have been used for implicit solution of the
follpwing first-ordev nonlinear scalar equation in one dependent variable

¢(x,t):

3¢/ a1 =F(gp) a6(e)/ox (A1)

Special cases of Eq. (Al) include the conservation form if F(¢) = 1, and
quasi-lineaz flow if G(¢) = ¢. Previous implicit methods for Eq. (Al)

which employ nonlinear difference equations and also methods based on two-
step predictor-corrector schemes are discussed by Ames (Ref. 44, p. 82) and
von Rosenburg (Ref. 45), p. 56). One such method is to difference nonlinear
terms directly at the implicit time level to obtain nonlinear implicit
difference equations; these are then solved iteratively by a procsdure such
as Newton's method., Although otherwise attractive, there may be difficulty
with convergence in the iterative solution of the noiilinear difference
equations, and some efficiency is sacrificed by the need for iteration. An
implicit predictor-corrertor technique has been devised by Douglas and Jones
(Ref. 46) which is applicable to the quasilinear case (G = ¢) of Eq. (Al).
The first step of their procedure is to linearize the equation by evaluating

n+1/2 using either

n+l ar

the nonlinear coefficient as F(¢n) and to predict values of ¢

the backward difference or the Crank-Nicolson scheme. Values for ¢
n+l/2

e
then computed in a similar manner using F(¢ ) and the Crank-Nicolson scheme.
Gourlay and Morris (Ref. 47 ) have also proposed implicit predictor-corrector
techniques which can be applied to Eq. (Al). In the conservative case (F = 1),
their technique is to define é(¢) by the relation G(¢) = ¢é(¢) when such a
definition exists, and to evaluate é(¢n+1) using values for ¢n+1 computed by

an explicit predictor scheme. With G thereby known at the implicit time level,

* are computed

the equation can be treated as linear and corrected values of ¢n
by the Crank-Nicolson scheme.
A technique is described here for deriving linear implicit difference

approximations for nonlinear differential equatioris. The technique is based
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on an expansion of nonlinear implicit terms about the solution at the known
time level, tn, and leads to a one-step, two-level scheme which, being linear
in unknown (implicit) quantities, can be splved efficiently without iteration.
This idea was applied by Richtmyer and Morton (Ref. L5, p. 203) to a scalar
nonlinear diffusion equation. Here, the technique is developed for problems
governed by ¢ nonlinear equations in & dependent variables which are functions
of time and space coordinates. The technique will be described for the three~
dimensional, unsteady equations.

The solution domain is discretized by grid points having equal spacings
in the computational coordinates, Ayl, Ay2 and Ay3 in the.yl, y2 and y3
directions, respectively, and an arbitrary time step, At. The subscripts i, j,

k and superscript n are grid point indices associuted with yl, yz, y3 and t,

respectively, and thus ¢2 i,k denotes ¢(y%, y?, yi, cn), It is assumed that
1Jd

the solution is known at the n level, t", and is desired at the (n+l) level,

o+ . \ . .
" 1 At the risk of «n occasional ambiguity, one or more of the subscripts

is frequently omitted, so that ¢n is equivalent to ¢: A%
y.J
The numerical method employed is quite general and is formally derived for

systems of governing equations which have the following form:

OH(P) 3t = D(P) +5(P) - (A2)

where ¢ is a column vector containing 2 dependent variables, H and § are

column vector functions of ¢, and D is a column vector whose elements are
spatial differential operators which may be multidimensional. The generality
of Eq. (A2) allows the method to be developed concisely and permits various
extensions and modifications (e.g., noncartesian coordinate systems, turbulence
models) to be made more or less routinely. 1t should be emphasized, however,
that the Jacobian 3H/3¢ must usually be nonsingular if the ADI techniques as
applied to Eq. (A2) are to be valid. A necessary condition is that each
dependent variable appear in onz or more of the governing equations as a time
derivative. An exception would occur if for instance, a variable having no
time derivative also appeared in only one eguation, so that this equation could

be decoupled from the remaining equations and solved a posteriori by an alter-

nate method.

54



The linearized difference approximation is derived from the following

implicit time-difference replacement of Eq. (A2):

(H"""'-H”)/At ___B[z)(¢n+l)+sn+l]+('_m[2(¢n)+sn] (A3)

u

where, for example, Hn+1 H(¢n+1). The form of 2 and the spatial differ-
encing are as yet unspecified. A parameter B(0 £ R £ 1) has been introduced
so as to permit a variable centering of the scheme in time, Equation (A3)
produces a backward difference formulation for B = 1 and a Crank~Nicolson
formulation for B8 = 1/2.

The linearization is performed by a two~step process of expansion about
the known time level t" and subsequent approximation of the quantity

(8¢/at)ﬁAt, which arises from chain rule differentiation, by (¢n+l - ¢™). The

result is
HYH = i+ (0170 )" ("' -9 + 0(a1)° (Aba)
st =54 (9573 )" (" -4 ") +0l AN (A4b)
D) = D"+ D/agle™ -¢M +olan? (Adc)

The matrices dH/9¢ and 35/5¢ are standard Jacobians whose elements are defined,
for example, by (3H/3¢) z aH /3¢ The operator elements of the matrix

3D /3¢ are similarly ordered, 1 e., (aﬂb/a¢) = ijq/3¢r; however, the
intended meaning of the operator elements requlres some clarification. For

+ .
ntl ¢n) is understood to mean that

the gtP row, the operation (32 /3¢) (¢
{a/a:fb [6(x,y,2, £)1)°at is computed and that all occurrences of (8¢, /at)"
arising from chain rule differentiation are replaced by (¢n+1 - ¢ )/At

After linearization as in Egs. (A4), Eq. (A3) becomes the followlng linear

implicit time-differenced scheme:

55



(0H" /9N "t =™ /A1 =D (¢M) +8" + B (3D /0 +3s"/ad)(dNFI-¢") (A5)

Although Hn+l is linearized to second order in Eq. (A4), the division by At
in Eq. (A3) introduces an error term of order At, A technique for maintaining
formal second-order accuracy in the presence of nonlinear time derivatives is
discussed by McDonald and Briley (Ref. 8), however, a three-level scheme
results. Second-order temporal accuracy can also be obtained (for B = 1/2) by
a change in dependent variable to ; £ H(¢), provided this is convenient, since
the nonlinear time derivative is then eliminated. The temporal accuracy
is independent of the spatial accuracy.

On examination, it can be seen that Eq. (A5) is linear in the quantity
(¢n+l - ¢n) and that all other quantities are either known or evaluated at
the n level. Computationally, it is convenient to solve Eq. (A5) for
(¢n+l - ¢n) rather than ¢n+l. This both simplifies Eq. (AS) and reduces
roundoff errors, since it is presumably better to compute a small 0(At) change

in an 0(l) quantity than the quantity itself. To simplify the notation, a
new dependent variable y defined by

Yz=gp—gn . (A6)
is introduced, and thus wn+1 = ¢n+1 - ¢n, and ¢n = 0. It is also convenient

to rewrite Eq. (A5) in the following simplified form:

(a+ a1 L)¥" ! = At [2 (") 457 (472)

where the following symbols have been introduced to simplify the notation:
A= 0H" /3P —Bn10s i) (A7b)
L=-pB(32D/0¢) (A7¢)

It is noted that .[(w) is a linear transformation and thus .[(0) = 0. Further-

more if ./(¢) is linear, then .f(&) = —ﬂfb(w).
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Spatial differencing of Eq. (A7a) is accomplished simply by replacing
derivative operators such as B/Byi, Gz/ayiayi by corresponding finite
difference operators, Di' Di. Henceforth, it is assumed that D and L have
been discretized in this manner, unless otherwise noted.

Before proceeding, some general observations seem appropriate. The
foregoing linearization technique assumes only Taylor expandability, an assump-~
tion already implicit in the use of a finite difference method. The governing
equations and boundary conditions are addressed directly as a system of coupled
nonlinear equations which collectively determine the solution. The approach
thus seems more natural than that of making ad hoc linearization and decoupling
approximations, as is often done in applying implicit schemes to coupled
and/or nonlinear partial differential equations. With the present approach,
it is not necessary to associate each governing equation and boundary condition
with a particular dependent vzriable and then to identify various 'nonlinear
coefficients'" and "coupling terms" which must then be treated by lagging,
predictor-corrector techniques, or iteration. The Taylor expansion procedure
is analogous to that used in the generalized Newton-Raphson or quasi-
linearization methods for iterative solution of nonlinear systems by expansion

about a known current guess at the solution (e.g., Bellman & Kalaba, Ref. 48).

However, the concept of expanding about the previous time level apparently

had not been employed to produce a noniterative implicit time~dependent scheme
for coupled equations, wherein nonlinear terms are approximated to a level of
accuracy commensurate with that of the time differencing. The linearization
technique also permits the implicit treatment of coupled nonlinear boundary
conditions, such as stagnation pressure and enthalpy at subsonic inlet
boundaries, and in practice, this latter feature was found to be crucial to

the stability of the nverall method (Ref. 49).
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GEOMETRIC PROPERTIES OF AIRFOILS

In this section we consider the vector properties of curves lying on a surface
and relate them to their tensor equivalents. In particular a NACA four-digit airfoil
section is considered, and its geometric properties are computed in vector and tensor
form,

BASIC CONCEPTS

Consider a radius vector r drawn from an inertial reference frame 0 to a point
P lying on a surface 3 (cf, Figure B-1). The tangent vector to the curve on the surface

passing through P in the x, direction is given by

i
=, 0T (B-1)
'ei axi

Figure B-1
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The unit tangent vector is

.
= s (B-2)

where 8y 1s the arc length in the Xy direction, But from the chain rule, we obtain

or OF dsi .4 %% ¢ §
aX; ds ax, idxi J

By definition Bsi/axi = h,, the metric, so that

{?
-
t = -—l... ....._.ah

B~3
b “ax (no sum on i) (B-3)

The curve passing through point P in the direction Zi has a curvature Ei
associated with 1t which is given as

A A A
- at; at; ax; I ot
Ki 8 — = B e —
I 9s; ox; Ods; L
I 9 I a7
7 3 (% ax) (8-6)

~ - oh oF I O°F
+

T B S S
ox;

ma oxj dX; hiz

The unit principal normal to the curve point at P is in the direction of ﬁ and !
denoted by n n,, while the unit normal to the surface N, at point P, is given by the

cross product of the two tangent vectors at point P

?x?-=ﬁﬁn¢

(B-5)
where ¥ is the angle between tl and tz, i.e,
WREI Ay
1 9% hy 9xp
so that
sin - cos® ¢ 'h—:ﬂ'z[gn 922~ 9122] *0
1
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where 817 859 and 8, are the metric coefficients.
and .
hihy = v/9),9,,

The vector normal to both '51 and N is called the binormal, B,. Hence the curvature

~

Ki can be represented by two components, one in the direction of N , and one in the
Y

direction of Bi (cf. Figure B-2). These components are called the normal curvature

Kn, and the geodesic curvature ﬁg respectively

8
Kn = K'N= Kcos 8
(7)

——

Kq =K'B =Ksin®

where 6 is the angle between n and N.

3>
>

@>
7

N
e, out of page
Figure B~-2

DESCRIPTION OF NACA FOUR-DIGIT AIRFOIL

st mbn e i 00 Mottt SR MR A e 8 v R bt 0 v L .

Consider an inertial reference frame in Cartesian coordinates
X" = (%1, %2, %3) or equivalently (%, 3, 2)
Attached to the airfoil is another Cartesian coordinate system given by

xi = (xla xz’ X3) or (x, y, 2)

(cf. Figure B-3).
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x|

Figure B-~3

The coordinate x is inclined at an angle o (the angle of attack) with respect
to X. In Figure 4 a two-~dimensional airfoil is shown where @ and @ denote the leading
and trailing edges, respectively.

I
bl

Figure B-4
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The chord LT has length

c=({xy=x )% +(yr —y )?)2 (5-8)
and in general can be a function of z the spanwise coordinate,
The thickness distribution for a NACA four~digit airfoil is given by
Yy . t/c < ~ ~2 ~3 s 4
£ = ..:.2_0.{00 / % 0, % +a,x"+a,x" +a,X } (B-9)

where %=x/c (cf Ref. 50), For a cambered airfoil the thickness distribution is
added onto the mean camber line. In the following, we will assume a symmetric
uncambered airfoil with the mean line lying on the x axis,

Hence the designation of the airfoil which is considered is NACA 00XX,
where XX refers to the thickness ratio t/c. In order to obtain a single valued
Y = (yt/c) function, the polar angie 8 will be introduced (cf. Figure B-5).

|

Figure B-5
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The following relationships hold

= L=
x = =c/2 cosp+e/2= Z.(1-cos ) (5-10)
~_ ) S ._L —-
Xz -5 =7 cos ¢)
¢ = 0 leading edge o 2 ¢ 2y upper surface
$ = 1 trailing edge r s ¢ 2 or lower surface
Hence, Equation (9) becomes
y ~ t/¢ ~
-EL =y = 759(4” (B-11)

where g(¢) is the polar representation of the term in the brackets in Equation (B-9)
and t and c can be functions of z. Defining g(¢) = g(¢)/.2 and t(z) = t(z)/c(z)

¥y, becomes
A
PERIFIL1EY (B-12)
The coordinate x can also be represented as a function of z and ¢, i.e,
k= B2 (1 cos b = c(D) ()
and conversely ¢ can be represented as a function of x and z
- o[- 2%
¢ = cos [' c(z ]
The relationship between the (%,y) and (x,y) coordinate systems is
x | - (T o
< F —é-{(x-—xl_)cosa (y yl_)sina} (B-13)
y - ' ..,..__ , —_—-
=~ 7 {( X )sina + (Y yL)cosu}
alternatively
X | [< '
— =z — 4%  +xXC05a t+tysina
C c { L } (B-14)
y_ ol (< el
—c-- -E-{yL+)'COS(! XSlﬂO}

Given a radius vector from the origin of the (%,y,z) frame,
A NLD
1+7) +7ZK

T=X
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for the particular system under consideration
X=x+clZ) t(g)cosa + 1(z) g(¢) sina

e (B-15)
AN
7=7, + HZ)gld)cosa - c(z)f(d) sina
Hence % ="g'(-z"¢)
=7 (B-16)

Y =V(Z,¢)

and the surface coordinates will be lines of constant ¢ and constant z.
In general on the surface we can write in symbolic form
— - A - RN B
r=%(, 21 +7(P,Z)] +7Tk (B~17)

The tangent vectors along the lines ¢ = constant and z = constant can be computed

by differentiating the radius vector with respect to the coordinate line, d.e.

- _dr _ 0% » ay &
b dp c34>t o l
- or %X A "0V A A
The unit tangent vectors are
- — A+,_, A
? o Xl Yol (B-18)

¥
x
)
+
<l
-
n

e” lle H"iz +'.z. (B-19)

The metric coefficients become

=
- N
n
']
1
|
n
+
|
n

¢ (B-20)
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and
9127 X4 %y + Yy ¥z
if ty and t, are orthogonal, 819 E 0

The normal to the surface is obtained from the cross product of the surface unit

tangent vectors A A A
tyx1, = Nsiny

where ¥ is the angle between £y and ty.
In order to obtain siny, the dot product of the unit tangent vectors is employed

?, -?azcosw

or

H I
i

T‘.;[iz +yg) 1k] - #T[~4>i+~¢>

ylelding the following relationship
cosw=-——l—-[i Xyt Vo ¥ ]
hyhy L2797 Y294
Employing the expression
sing =, /1-cos?y

and with Some aigebraic manipulation the desired result ig obtained,

e
; o .2 (B-21
siny = h‘hz{gngiz 9, } )

In the case where ¢ and z are orthogonal to each other, J = H@ and 81y = 0, or

xix¢+y.z.¢ =0
or

A3 =yz=0

The normal to the surface can now be computed

z
A/ 91922792

— —_ —_ - B
ﬁ = [ —7¢? + X¢? —-(x¢yz - Yé Xi)k] (8-22)
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From Equations (B-4) and (B-20), the curvature can be obtained in the ¢ direction
(1 directica)

(B~23)

or
- N A A _ A
+7z) +k] + L [Xzzi+ Yz-zl] (B~24)

The geodesic curvatures can now be computed .
— —— A
Kg =K, B, = =K (1 xN)
” ~ [a] |
where t,, K, and N are given by Equations (B-18), (B-22), and (B-23).

After some algebra, we obtain

R T
th ) hh,"hzsm;p(x‘#’y‘f"# Yo Xp) (V2 Rgp =Xz ) (B-25)

Similarly Kg becomes
2

| S o
KQZ:" h,4h24sinq/ [(X¢Yf_Y¢X'{)(Yz'XzZ"Xzyzz-)+(X¢ "zz+Y¢ y.zz)] (B-26)
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We will now consider a NACA 4 digit ailrfoil and further assure XL is a constant

(non swept trailing edge).
derivatives

From Equation (15) we can obtain the appropriate

X = x_+cld)figp)cosa + HZ)gld)sina

;4’ = c(i)f¢cosa + tq¢sina

i¢¢ = ccosafd,d)-& 1sinag¢¢

(B-27)
Xz = ¢zfcosa + t; gsina
X5 = C33 fcosa + 133 gsina
y=y_+ t(i)g(cb)cosa - c(Z) fig)sina
74, = g¢1cosa - f¢csina
Y’M’ = g¢¢tcosa - f¢¢,csina (B-28)

¥; =gcosat;

Yzz = Qcosats

For a rectangular plan form c and t are

- fsmaci

7 fsina C33

constant so that

0
u
@]

Ny

z

7; =0

Ni

Substituting Equations (B-27) and (B-28) into Equations (B~18) to (B-24) the appropriate
geometric quantities can be obtained specialized for a NACA 00XX airfoil.
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For the present code, the curvature terms are not used directly. Instead, the
metric coefficients, gij’ the Jacoblan, J, and thea Christoffel sy~ '~ls, PE& (cf Ref. 4)
are used. These geometric functions are presented below,

Metric Coefficients:

9, = 2R+l
922" hzz' Xz 2495 % 41
9 = Rk ¥ Yo¥7 (B-29)
933" |
g2 = x¢2 + y¢2 + w? w = Ry¥g - Vg¥;
Basis vectors
- A _na
e - 4)(. + n
€, = X T+ Vo) +K (B-30)
5, - L5 e ngd - o)
and
§ = &/h , 8= e/hy, €= e (B-31)
Christoffell Symbols (27 components)
N3« i Iy ® Fg=0
Ty = Ty = O {B-32a)
ri=o, i=1,2,3
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N el Tieg) ¢ GrRg - ReRg)R - Rg)

T e 7 (lag = TRgg)
(B~32b)
N = T« 7 (g¥gs ~ Vo %es) 3
r2§ = "%(i¢7 "7#,22'1-)
- - - - -2, 2
03 o 0 e e {00y Tyt Ryag) - wgRy" 54

L _.-1% {w(i¢7¢i~9¢ Vgz )~ g (,-(4)2 * 74’2)}

I3 s 5 (RgTag ~ Tg%ee )
03 e 5 (gigr = Ty Rgn)

T2 = -_jl-(-i&#i'ii = Y¢ yi’i)

These terms can be specialized for a NACA four digit airfoil by substituting
Equations (B-27) and (B-28) into Equations (B-29) - (B-32).

69




ORIGINAL PAGE 1g

OF POO
APPENDIX C R QUALITY

Generalized Operator Compact Implicit Schemes

In this section a procedure for generating generalized OCI schemes is reviewed.

Given

L(u) = u,, + b{x)u, +clx)u

an expression relating L(u) and u is sought in the form
| ,
rz RYj a(Lu)) + 7

where Tj is the truncation error and Q and R are tridiagonal displacement

operators., The maximum accuracy attainable is fourth oxrder, i.e., Tj n O(h4).

=,C,+ -yC,y+

Expanding Eq. (20) in terms of qj and rj

we obtain,

, | | LT, ¢ '
Tt r Ruj-Q(LU)j ® —h_z“[rjuj-l iy +rl+ui+']

- + (c-2)
- [a] (tudjy + a5 (o)) + qf (L), ]
A Taylor series expansion yields for Tj
- 10 1t () 2. (2) l 3 (3)
T =Ty u(xj) +Tu (xj) + Tju (x,) + Tu (xj) 3

+ Tf u{4)(x]) + Tj5 U(S)( x]) + Tjsu(s)(x}) + O(h5)
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where superscripts in parentheses denote derivatives with respect to x, and

where
| -
| - -
TJ' " [(rj* - - h{qyb, + QT by + qrbj+|) - hz(q]‘cw - q]c‘j-l)]

Tf —lz—-(rf +rj")-(qj~ + qf-i-qj")

- h® -
-hla) by = ay byy) - ——(aje, +ajep)

| h
PRV ISUURER L LTI

|
- (V'2)! (qr + (’I)VQJ_) + hz(Qj+CJ+l + (")VQ}-CJ_') v = 3,4’5'6

- 0
For second order central finite differences we set T =T

yields, when q? = 1 and q; = q; = 0, the following relations

c - 2, _ c

rp s o) hlgfe, +gpe) +gcp)
+- - - -
rj rj = hbj = RCJ

r. +rf=2

which recovers Eq. (45), i.e.,

C=_ 2

T 2+hcj
fj ='_RCJ/2
‘.
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To obtain the fourth order operator compact implicit scheme we again set
TO = Tl = T2 = 0 to obtain three expressions for r;,c,+ in terms of the
q;,c,+’ (note that q , q+ # 0 and qc is not necessarily unity), i.e.,
C o (et - 2(q "~ c +
= ol e hiege +aje; +affey,) (c-5a)

rj* - rj' = Rc]—lqj- + RCJQJ'C + ch*lqj+ + he'a(qj'*cle + qj"cj_') (C-5b)

r;' + rJ' = z(q,' +Q? +qf) +2[ch+,qr - RcJ_,qJ'] + ha(qj*cjﬂ + qj'c]_,) (c-5¢)

Now T° and T must be set to evaluate q5’°’+
method requires T3 = T“ = 0,

. The standard Swartz OCI

(=)= [y + ey o] - [af -] -

- (Cc-5d)
- h*(afcp - aiep)
—--l----(r+ +r7) - -l-[ Re;,,qi - R —] L [ *4+q7]:=0
54 7 T8 L) J-19j 2 L9y 791"
- ha(qj+cj+| + qucj-l) (C-5e)

and results in a leading truncation error of the form (Kh(s) + 35(6))h4. Substi-
tuting (C-5b) and (C-5¢) into (C-5d) and (C-53) rg and rg can be eliminated and a
system of two equations in qg and q? with q; as a parameter is obtained. The

parameter q? is proportional to the determinant of the system. The values of
q-.,C,+
J

and r;’c’+ are presented in Table I.

As shown in Ref. 20 a cell Reynolds number stability condition exists
for the Swartz OCI scheme, i.e., for Re 2 ,/12 nonrealistic or oscillatory
solutions will be obtained. In order to eliminate this restriction one can

4 (3) (4)

relax the conditions T3 =T =0, and allow the coefficients of u
to be of O(ha).

and u
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-+ By expanding q;’c’+ in a series in Re

B 3

g q7r Ot . ¥ ACT R (C-6)
o ms=o M J

}ﬂ 12 parameters, A;’c’+ m= 0, 1, 2, 3, are introduced. The equations for

! 3 = O(hé) and T4 = O(ha) yield 5 linear relations, leaving at one's disposal
"6 free'" parameters plus a factor.
These parameters can be set according to some criteria that would yield
certain desirable properties for the difference equations. The following

constraints are prescribed
+ - C
q] 20:‘1] >O,q‘>0

c -
aby 2 Ay by +afby,
(c-7)

; and h is sufficiently small so that
' 'Obj-b,'l-bj‘” >O Ond 2'+ hcj"/bj‘l>o
t for j=2,...,Jand CJSO

These conditions assure that R is diagonally dominant and Q is invertible for

all R,. Further details are given in Ref. 27. The significance of this

approach is that ¢ne can construct a scheme possessing certain desired proper-
ties by employing a set of preassigned rules, This is contrary to usual practice,
in which a scheme is chosen, and then its properties are determined. Although

the computational effort in computing the q and r coefficients is not cheap,

the actuzl percentage of the total cost is minimal. This has been borne out

in actual computations.

The q and r coefficients for the generalized OCI scheme described in

Ref. 27 are given in Tabie II.
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TABLE I, ~ OPERAYOR COEFFICIENTS FOR STANDARD
OPERATOR COMPACT IMPLICIT SCHEME

q]n =6 - 5Pj + 2Pj+| " PiPin

60 +16pyy - 16p).; = 4pj Py

Fal
[ ]

6+ 5p) - 2p) = PP}

o e a7 (1 5 pp) +af () -2y 9f (14 )+ rae

Ceaf (1) Faf(1+ e)) o (14 2 py, )+ iagtey,

-
—
L]

where

Py = hbj

78




wvhere

s

m

77" = (TJ'H

0
3

a————

8

O'lz(l()""l"j”"rj_" O'.SO

ORIGINAL PAGE (S
OF POOR QUALITY

TABLE 11, -~ OPERATOR COEFFICIENTS FOR GENERALIZED
OPERATOR COMPACT IMPLICIT SCHEME

q"' - 64‘[p‘-—3]Rc, -9-[pz]!'@!c,z
qy = 60 +[10p, |Re; + [pa]re] + [x)upa]Re)

q“ =6+ [p‘+3]Rc, + [p'-fpz]ﬁc_:J2 + [pJRcf

pp=3 ,p,"0, py- max[wr 7’2]

)pz lp‘-ﬁ?r T, = f5~2pz+(az—i)p'-3(Tj,l+a'2)+77!
(0] 2p‘-0220
(2p,~0,)%/8  2p-0,<0

o’I?_O

o

77'2'

(T'| 1]”) _ Cj-1
c
l ]~
p4-"§'-[l+'rj”] Ty Ty = Py = T, + T, +2'rj,(2+hb“)p2

with h sufficiently small so that

vhere

lObj~bJ_,-bM >0 ond 2+th,,’/bM>o for J»2,...,Jand c)s0

Tj"l - b]'|/bj » le" - b)‘l/b, ond RCJ - hbj

- + . .
T rg. 1y given in TABLE 1
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TABLE III,- OPERATOR COEFFICIENTS FOR
ALLEN SOUTHWELL EXPONENTIAL SCHEME

-
]

- —Rej _ "Rej
. Re; e /(I e )

1u

rj“' ch /(l-e"ﬁcl)

-ch+ cj

o=
q =0
Qj°='
Qj+=0
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TABLE IV. -~ OPERATOR COEFFICIENTS FOR EL-MISTIRAWY WERLE
EXPONENTIAL BOX SCHEME

= prexpl=p7) / [! - ew(-p')]
r]* . p*/[l-exp(wp*)]

rjc = - 407

a = (1-r])/(2p7)

qf = {rff-1) /(2p*)

9y oy +af

where

- ! {
P = e e o PP Tl )

and

py = b,
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TABLE V, - OPERATOR COEFFICIENTS FOR SECOND ORDER

FINITE DIFFERENCES WITH ARTIFICIAL VISCOSITY

-
ht

-—
e
1]

= -2+ ¢t

[+S

where S
S
t

and Rec;

n

_ Remox

Ich|

= hb:

J J

fou !chl < RCmax

Rcmox/z for ch

[+

j H

r., r
3 ),

> Rcqu

~Reax 72 for ch < =R¢max

+ - c .+
r. . . .
i ql’ qj; QJ

reduce to standard finite differences.

where Rcmax is the maximum allowable cell Reynolds number
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