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ABSTRACT

An analysis of the tangential compliance of elastic bodies in concentrated
contact 1s applied to traction drive elements to determine their torsional
stiffness. Both static loading and rotating conditions are considered. The
effects of several design variables are shown. The theoretical torsional
stiffness of a fixed ratio multiroller traction drive is computed and compared
to experimental values. The analysis shows that the torsional compliance of
the traction contacts themselves is a relatively small portion of the overall
drive system compliance. Comparison is also made to theoretical gear mesh
stiffness.

INTRODUCTION

Traction power transfer occurs in a broad variety of mechanical
mechanisms. Applications range from dry contacts such as a steel railroad
locomotive wheel driving against a steel rail to elastomer coated discs han-
d1ing sheets of paper in computer peripheral equipment. The large number of
commercially available speed and special machinery traction drives are sur-
prising to those unfamiliar with these devices [1]. The bulk of these applica-
tions involve lubricated, steel contacts. Power ratings range from fractional
horsepower to, in a few cases, several hundred horsepower for high speed, high
performance drives. Apart from their adjustable speed ability, traction drives
possess seldom matched high speed, low noise, smooth power transfer

characteristics [2,3].



Power transmitting or speed changing drives are not the only application
which can benefit from traction torque transfer. There is a large class of
position orienting mechanisms for which the zero backlash, low torque ripple
and high torsional stiffness characteristics of traction contacts is particu-
larly well suited. Examples 1nc1ﬁde antenna drive positioners, robotic hinges
and pivots, satellite control moment gyros and a wide class of industrial
servopositioning mechanisms.

While the transmitted power levels in postitioning-type mechanisms are
typically low due to the Tow speed or start-stop nature of these mechanisms,
the peak transmitted torque and required force are often high. Nevertheless,
traction drive contacts can be reasonably sized sincé at these low speeds the
buildup of fatiqgue stress cycles is low and the available traction coefficient
s high. 1Ideally, the mechanism whether made up of traction elements or not,
should operate smoothly under load when motion is required. Furthermore,
hysteresis, breakaway torque and backlash should be at an absolute minimum
while maximizing torsional stiffness between the driving and the driven
element. The requirement for zero backlash and high stiffness is obvious from
a control point of view since a direct, continuous, hard "1ink" between output
and input motion is most desirable.

Traction drives are particularly well suited to satisfy these
requirements. Smooth rollers in driving contact avoid the meshing errors and
torque discontinuities of gear mechanisms as the load is passed between mesh-
ing teeth. Similarly, traction drive rollers are always in driving contact
regardless of direction of tangential loading. Thus backlash is precluded.

The principal purpose of this investigation is to analytically model the
torsional stiffness characteristics of a traction drive contact and to compare

predicted torsional stiffness values to those determined experimentally for a




complete traction drive system. Comparisons between gearset stiffnesses and

those of equivalently sized, traction roller pairs are also made.

NOMENCLATURE
a contact ellipse semimajor axis, m (in.)
a' semimajor axis of static contact locked region, m (in.)
b!' semiminor axis of static contact locked region, m (in.)

b*" semiwidth of rolling contact locked region, m (in.)
b contact ellipse semiminor axis, m (in.)

C compliance, m/N (in./1bf)

C torsional compliance, rad/N.m (rad/in. 1bf)

E modulus of elasticity, Pa (psi)

complete elliptic integral of second kind, argument k
complete elliptic integral of second kind, argument k]
complete elliptic integral of first kind, argument k
gq complete elliptic integral of first kind, argument k]
F tangential force applied to contact, N (1bf)

G shear modulus, Pa (psi)
4

J cross-sectional polar moment of inertia, m4 (in. ")

K ratio of rolling contact locked region semiwidth to contact ellipse
semiwidth

k elliptic integral argument, (1 - bz/az)]/2

k elliptic integral argument, (1 - a""/bz)v2

k torsional stiffness, N.m/rad (in. 1bf/rad)
L length of shaft, m (in.)

N contact normal load, N (1bf)

q constant

R effective radius of curvature, m (in.)

r rolling or transverse radius, m (in.)
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T torque, N.m (in. 1bf)
U solid body surface speed, m/s (in/s)
X solid body surface motion, m (in.)
Greek
a effective radius ratio
r geometric displacement function
3 static tangential displacement of one body, m (in.) solid body
o solid body angular displacement, rad
x elasticity parameter
" maximum traction coefficient
v Poisson's ratio
%, maximum surface contact pressure, Pa (psi)
Subscripts
i system elements
x,y reference planes
1,2 contacting bodies
ANALYSIS

Tangential Force on Concentrated Contact

When two elastic bodies are brought into contact and loaded under a system
of forces, deflections occur. When the load is a normal force, the deformation
and contact area are given by the classical theory of Hertz. Addition of a
tangentlal force produces a relative def]éct1on of the bodies in the tangential
direction. A magn1f1ed view of the contact under these conditions is shown in
Fig. 1. If the bodies are rollers or balls which are allowed to rotate under
these forces, fresh unstrained hateria] passes through the effective contact
region which increases the relative displacement of the bodies. A presentation

of this problem and discussion of several classical solutions is given in [4].




Previous numerical and analytical solutions are reviewed in [5]. To set the
ground work for the approach adopted here, a brief overview of the theory and
prior solutions to this problem will be given. First, the case of dry contacts
will be addressed.

The problem is treated as a boundary value problem in elasticity. The
conditions to be satisfied are described in detail in [6]. In simplified
terms, the first constraint is that the addition of a tangential force to the
contact does not alter the Hertzian normal pressure distribution. Secondly,

all of the assumptions inherent to the Hertzian solution are retained, includ-

ing nonwarping of the contact surface, bodies not too closely conforming in the

contact area, body radii large in comparison with contact dimensions, and like
elastic properties of -the two bodies. Thirdly, the contact region is divided
into two zones: one with "microsiip" or relative motion between the mating
surfaces, and one where the two surfaces are "16cked“ together. 1In the slip
region, the applied shear stress (traction force per unit area) 1s assumed to
reach its 1imiting value, proportional to a constant traction coefficient, u,
times the local normal pressure in accordance with Coulombic fiction. Within
the locked region, the applied shear stress is less than u times the normal
pressure. OQutside of the Hertzian contact area, traction is zero. The local
deflection of a point on the surface with respect a distant point in the body
is constant over the locked region, and varies over the slip region and out-
side the contact area. Far away from the contact, the strain is zero.

These considerations apply equally to the two cases of interest: static
loading, and rolling under an applied tangential load. Historically, the
tangential deflection problem of a rolling contact under tangential load has
recelved greater attention [7,12]. Deformation in a steady rolling contact is
viewed from a stationary coordinate system with the origin at the center of
contact. Material of each contacting body flows through the contact region
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under a strain field which is invariant with time. The static case, which is
static only in the sense there is no roiiing (forces and deflection can vary
with time) has been treated by itself [6,13,16]. However, 1ittle work has
been conducted for the "start-up" condition which represents the transition
between the static condition and rolling [17,18]. 1In addition to the distinc-
tion between static and rolling, most of the solutions are also restricted in
other ways, e.g: small values of s1ip, no spin, no transverse forces, line
contact, etc.

The distributions of traction which result from these studies is shown, in
general, in Fig. 2(a) for static contact and in Fig. 2(b) for rolling contacts.
The traction distribution profiles are representative of those in the plane of
rolling (x-z plane) of an elliptical contact. Line contacts have also been
treated with similar results [7,8]. The solid 1ines in Fig. 2(a) and 2(b)
represent the traction distribution at some arbitrary overall applied traction
force. Traction is limited to u times the local Hertzian pressure (the semi-
circular shaped 1ine). This limiting traction defines the region of slip
within the contact. The broken line in Fig. 2(a) represents the traction dis-
tribution which would occur if no slip took place anywhere in the contact.

This is physically impossible since infinite tractions would have to be
sustained at the contact perimeter.

The shape of the locked region is one of the key elements in all of the
published solutions. 1In the classical, elastic solution of the static case
[6,16], the resulting locked region is (for elliptical contacts) an ellipse,
smaller than and similar in shape to the contact ellipse, Fig. 2(c). The
reason for this can be seen in Fig. 2(a). Since the infinite traction at the
contact boundary cannot be sustained, slip begins at the boundary, and
progresses inward as the applied tangential force is increased. For steady
rolling contacts, it s generally accepted [4,5] that the locked region
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exists at the leading edge of the contact with respect to the rolling motion.
However, the exact shape has been subject to debate. Experimental evidence
(10] indicate that the most 1ikely shape is similar to that shown in Fig. 2(d).

Tangential Displacement

Static Joading. - For two contacting bodies under normal and tangential

loading, the tangential surface deflection, é,vof the locked contacting region

qf one body with respect to points distant in that same body is given by [16].

5=%,%|:‘-(-%)2/3]r (n
where
(1 - w/k%) F + we/k?, a > b (2)
= {w(2-v)/4, a=0b (3)
(1 - v+ vk F, - vg k2, a<h (4)

and where & and & are complete elliptical integrals of the first and

second kind, respectively, of argument:

k = (1 - b2ra%)1”/? (5)
and dﬁ and 61 are similar integrals of argument:
ky = (1 - a?nd)! /2 (6)
The complete elliptical integrals are defined:
- /2
F - f (1 - k2 sin? )72 gy (7)
0
/2
£ - f (1 - k% s1n® )12 dp (8)
0

The values of & and & can be determined from tables, or by us1ng.the
simplified, curve-fitted equations from [19] summarized in the Appendix. Note

that the parameter I 1is only a function of Poisson's ratio, v, and the
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contact ellipticity ratio, a/b. The dimensions of the locked region are given

FxY1/3
(-5)

where a' and b' are the semidiameters of the locked ellipse in the y and

by

o lm
"
U‘IU‘

x directions, respectively [16].

for the case of a ;phere on a flat (a = b), Eq. (1) was tested against
experimental values of & [13]. Predicted deflections exceeded measured
values by less than 10 percent.

Rolling contact. - Two contacting bodies which are rolling with a normally

steady velocity and tangential load will experience a small, relative velocity
difference known as creep. This velocity difference s due to the state of
elastic strain in the surfaces as the roller material is swept through the con-
tact region. Material is tangentially stretched and compressed, or vice versa,
without gross sliding. Creep is of great engineering importance because the
product of creep and tangential force is a measure of the power loss.

0f the many theoretical investigations preformed [5,18], one study used
photoelastic techniques to verify the shape of the locked region in a tangen-
tially loaded, rolling contact [10]. An approximate analytical approach was
used in which an elliptical contact is divided into strips oriented parallel to
the rolling direction (“"strip-theory"), to which the line contact results of
[7,8]) are applied. The resulting locked region is "lemon-shaped", as shown in
Fig. 2(d). The center of this locked region lies at a distance, x, from the

y-axis equal to (b - b"). This distance can be determined from:
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The value of creep is then determined from:

b“
wab (1 -v)(] -“b‘) (1)

where K = b"/b

CIE
o |w
g

where ay = -Sgl—:—ggl—

u (U] + U2)/2
and U] and U2 are the solid body surface velocities of the two rolling
bodies. This predicted creep rate from Eq. (11) agrees with test data gen-
erated on a sphere rolling on a flat surface [7] to within ten percent,
(average) as iliustrated in Fig. 3. Also included on this figure are the pre-
dictions from [9, 12]. This particular Kalker model [12] is a linear one being
valid only for the initial portion of the creep curve.

Application to Traction Rollers

Application of Eqs. (1) and (11) to traction rollers is complicated by two
factors, due to the pivoting rather than translating action of the contact.
First, unlike bodies acting purely tangentially, the deflections of bodies
pivoting about their axes of rotation under tangential load are not everywhere
exactly parallel as assumed in Egs. (1) and (11). However, this effect is
Judged to be very small due to the orders of magnitude difference between the
rolling radii and the size of the contact. This difference will therefore be
neglected in keeping with other studies of contact creep.

The second, more significant effect, is the pivoting action of the contact
due to tangential loading which causes fresh unstrained material to enter the
contact region unlike translation. For the purely parallel motion case as

shown in Fig. 1, the same points on the bodies' contacting surfaces remain



strained when the bodies are trénslat1ng in equal and opposite directions.

This can be simulated for rollers, if equal and opposite torques are applied
such that the "locked" region in the center of the contact doesn't move and
remains under the line of centers as shown in Fig. 4(a). However if the center
of the driven roller is fixed so that it cannot rotate as a solid body, then
the deflection will appear 1ike the exaggerated view in Fig. 4(b). Since
roller surface material on either side of the contact will tend to approach and
_ retreat relative to the other roller surface, the tangential motion tends to
sweep material in and out of the contact as if it were rolling. This implies
that the locked region will move toward the leading edge of the contact. This
situation is similar to but not strictly the same as in steady rolling, since
steady rolling is associated with - a steady level of torque while here the
tangential load is continuously increasing along with the "wind-up" of the
driven roller.

For the static deflection of two simple rollers, as in Fig. 4(b), this
rolling or "wind-up" motion effect is quite small, typically two orders of
magnitude smaller than the contact diameter and can be safely ignored.

However, if the output of the drive mechanism is allowed to move or if there
is considerable windup of mechanical components downstream of the traction
contact to be analyzed, a non—neg1191b1e rolling motion will be superimposed
on the contact's static displacement.

This time-dependent, "start up" problem has not been treated in the
1terature very often. Numerical solutions appear in [17,18] for calculating
the traction distribution of a line contact for start-up rolling under constant
tangential load. The numerical results show that the static traction distribu-
tion (Fig. 2(a)) completely transforms into a steady rolling distribution

(Fig. 2(b)) when the distance rolled is equal to one contact width, 2b.
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Since the creep developed is governed by the traction distribution, it 1is
reasonable to conclude that static displacements dominate the motion during
the initial interval of rolling. Beyond a distance rolled of one contact
width, the creep relations then govern displacements. Between the start of
rolling and steady rolling, there is some combination of static and creep
displacements. For purposes of this investigation, combining the static and
creep displacements in a linear fashion, is expected to provide a reasonable
engineering approximation during start up motion.

Deflection and Compliance

To calculate the total deflection of a pair of traction rollers, there-
fore, the static case of Eq. (1) will be used, coupled with an approximation
of the rolling component. Based on the previously stated assumptions, Eq. (1)
can be divided by the rolling radius in order to determine the static angular
deflection in radians of the roller surface with respect to 1ts hub. The tan-
gential force, Fx' can be replaced with applied torque, T, divided by rolling
radius, r, to relate it to torsional load. Making these substitutions, the

static torsional angular displacement of one body becomes:

2/3
_ 3uN T ‘
@ = 1 ¢a B - 6 - ;ﬁ?) ] r (12)

An expression for torsional compliance is easily found by taking the partial
derivative of deflection given in Eq. (12) with respect to torque. The tor-

sfonal compliance of one roller, then, is:
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Alternately, the torsional stiffness, kT’ of a traction roller is defined as
the reciprocal of the compliance.

To approx1m;te1y account for the rolling induced within the contact in
question or transmitted to it, Eq. (11) can be modified. Normally creep is
defined using surface velocities U] and UZ' However, the relevant

factor is not the rate of motion but the motion itself. At constant torque,

rolling occurs, and over some small time interval t:

AU AX/t  aX ] 2 (14)
u - X/t - X~ (X] + X2)/2
where Xy and Xp are the surface motions. Thus Eq. (11) becomes
B _ 3N b"
X = Gwap (1700 (1 -p7) (15)
Eq. (15) can be related to angular motion by:
X, /r. - X, /r
a6 171 2' "2 (16)

] '.(X]/r] + X2/r2)/2

In the results which follow, the deflection based on the rotating com-
ponent given by Eq. (16) will be combined with the static component given by
Eq. (12) to provide an engineering approximation of deflection during startup.
This ¥s not strictly correct in comparison wath an exact solution due to the
differing shapes and locations of the locked area as the statically strained
contact transforms into the rolling one. However, as will be seen, the amount
of rolling introduced into an otherwise static contact s normally quite small,
and thus should have a small effect on contact displacement or compliance.
Other factors, shch as roller size or the choice of a value for the 1imiting
traction coefficient will have a much larger effect.

This 1s especially true for the zero torque crossing region where posi-

tioning mechanisms spend the bulk of their time "hunting" for position.
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Knowledge of contact compliance in this region is of obvious importance for
best dynamic response. The superposition of static and rolling compliance
near zero torque will introduce 1ittle error, since the contact s in a near
total state of e]astié strain (negligible internal slip). In any case, contact
compliance (slope of dfsp]acement curve) is expected to be much less sensitive
to either elastic or inelastic rolling than displacement since the total con-
tact strain must be constant and, at all times, globally equal to the applied
traction whether the contact is static or rolling.

An understand1ng of the combination of static (eq. (12)) and creep
(eq. (15)) deflections can be obtained using a simple model. The model
consists of a pair of rollers in traction contact in which the output shaft of
the driven rollers is "grounded" through a shaft (of torsional stiffness GJ/L)
attached to fixed structure as shown in Fig. 5. As torque T 1s applied to
the input roller, the wind up of the shaft causes the output roller to rotate
through an angle eo. Because of rolling creep the input roller must move
through a greater angle ec given by E£q. (16). This rolling deflection
is shown in Fig. 6, for two arbitrary output shafts having dimeters of 1.4 cm
(0.55 in.) and 4.4 cm (1.73 in.) and a length of 2.5 c¢cm (1.0 in.). Note that
the deflection due to the larger shaft is barely apparent in Fig. 6. However
as output shaft wind up increases with smaller shaft diameter or GJ/L, the
rolling deflection increases somewhat. Simultaneously, the contact is being
statically strained by the increasing torque resulting in an additional angle
.es in accordance with Eq. (12). This static displacement s not affected
by shaft wind up. The net effect on the input roller deflection is the simple
summation of ec and eS as shown by the total 1ine in Fig. 6. It
¥s clear from this example that the rolling deflection component for even an

unusually torsionally soft shaft (d = 1.4 cm) 1s quite small relative to the
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static strain component, as discussed previously. The contact compliance is
simply the slope at any point along the total deflection curve.

Other Considerations

The present analysis pertains to dry contacts. Introduction of lubricant
to essentially static or slow turning contacts should have 1i1ttle effect,
except on reducing the magnitude of the 1imiting traction coefficient. This
is because the surface traction will still be borne by surface asperities.
However, the analysis is invalid for steady rolling with lubrication since the
pressure distribution is no longer Hertzian and the traction distribution is
no longer as assumed but builds with increasing shear as the lubricant film is
swept through the contact area [20]. Furthermore, the modulus, G, is some
combination of the film-disc system, though at high pressures on steel discs
it is primarily governed by the discs [21].

As in the basic Hertz problem, the elastic constants of the two rolliing
bodies have been assumed to be the same. If they are not, then the normal and
tangential traction distributions are not independent. For normal loading
alone, tangential displacements are produced in each body which will be unequal
if the elastic properties are not the same. The difference in these natural
tangential displacements are resisted by friction. Similarly, applied tangen-
tial fract1on will alter the normal pressure distribution. The relative effect
is related to the traction coefficient, u, and an elasticity parameter equal
to

(1 - 21:.|)/G.l - (1 - 2'02)/(52
(1 + v])/G] + (1 + ”2)/62

(7)

K =

It has been suggested that for practical values of « < 0.4 and w < 0.2,
the effect of different elasticity constants on the normal pressure distribu-

tion and the extent of slip would be small (4].
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RESULTS AND DISCUSSION

Varibles Effecting Compliance

To 11lustrate the effects of some of the variables in Eqs. (12) and (13)
on static traction roller compliance, a parametric study was conducted.
Traction roller contacts can have a broad variety of available maximum traction
coefficients, normal loads, ellipticity ratios and applied loading. The rela-
tive effects of these variables are important to the designer of a traction
drive mechanism which requires a certain level of torsional stiffness. For a
given application, usually defined in terms of driven torque load and overall
ratio requirement, each of the parameters in Egs. (12) and (13) can be
adjusted, though not totally independently. Besides stiffness, the designer
may'cons1der size, weight, fatigue 1ife and efficiency. 1In each of the four
figures which follows, only the relevant variable is changed while the others
are held constant.

The effect of tangential force on the relative compliance and deflection
of a typical roller pair are plotted in Fig. 7. In this figure, 100 peréent
Fx corresponds to the slip point. Relative deflection and compliance are
arbitrarily normalized at Fx = 0.5 uN. Note that the compliance rises from
i1ts initial value equal to (2 - v)r/2«Ga at Fx =0 to infinity at Fx
= 1.0 uN. At this upper point, of course, the rollers will totally slide over
each other.

The effect of normal load is shown in Fig. 8. Relative deflection and
compliance are normalized at N = 2Fx/u. As is apparent from Eq. (13), its
effect on compliance 1s the same as the effect of 1/Fx. Figure 8 shows
that increasing normal load causes a small reduction of contact torsional
deflection thus improving stiffness. Since contact normal load and applied

traction force increase simultaneously in traction mechanism designs equipped
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with an automatic loading mechanism, the stiffness increase due to normal load
tends to offset the loss in stiffness due to applied torque.

Large variations in stiffness and deflections can be achieved through the
choice of the contact geometry. Figure 9 shows the effect of ellipticity ratio
on tangential compliance and defliection. Since the contact ellipse dimension
'a' appears explicitly in the equations, the figure was plotted by choosing
rolling radii, then varying the transverse radii to produce different values of

"a and a/b. As shown in Fig. 9, both deflection and compliance are reduced for
contacts narrow in the direction of rolling.

Another important variable 1s the available traction coefficient, u. The
value of u 15 more dependent on material and surface environment than on
geometry. The effect of u on tangential deflection and compliance is as
shown in Fig. 10. In many situations, the value of u 1s not precisely known,
but must be deduced from available data on similar contact conditions. Ffor a
small change in assumed y, the‘effects are small, as long as the applied
traction force does not cause the point of gross sliding to be approached.

As might be expected, roller size has a strong effect on torsional
stiffness. Consider two situations where the radius can be varied. The first
is one where contact conditions are held constant, (1.e., Fx' N and a/b

are constant) thus torque scales with radius. Equation (13) reduces to

: _
Cr « — (18)
T arz

For constant a/b, the contact semimajor ax1s_ a is related to N and r by:

a« (Nr)]/s (19)

and the transverse radil scale with the rolling radii. Substituting Eq. (19)
into Eq. (18), noting that N 1is constant, and replacing "r" with "size"

ylelds the general size-stiffness relationship:
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ky (size)'/3 (20)

One should note that contact Hertzian stress, g, can be related to load and
radius by

L N1/3 23 (21)

Since, for this case N 1is fixed, the effect on stress will be:

/3

o « (size)~? (22)

)
The second case is where transmitted torque and the ratio of Fx to uN
are kept constant. To maintain constant torque as the rolling radius changes
requires N « 1/r. From Eq. (19), with a/b again constant, the ellipse

size s constant. Thus Eq. (18) becomes:
K 2
1< (size) (23)

and from Eq. (21) it follows that:
9, « 1/(size) (24)

The foregoing cases show that contact torsional stiffness will more than double
for a 40 percent increase in roller size.
Hysteresis

A major advantage of a traction positioning mechanism is the complete lack
of backlash. However, due to the fact that inelastic displacements (slip)
occur in certain portions of the contact, some hysteresis will be present dur-
ing torque reversals [13,15]. If the rollers of Fig. 5 are positively torqued,
then negatively torqued and finally brought back to the original maximum posi-
tive torque, a hysteresis loop is generated as shown in Fig. 11. The two loops
shown correspond to two maximum torque amplitudes of 20 and 60 percent of the
torque to cause gross slip, respectively. Equations for the deflections around
the loop along with energy loss are given in (14]. The eﬁergy loss is repre-
sented by the area bounded by the hysteresis loop. These losses which are
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guite small, steadily increase as the applied torque approaches the torque that
will initiate s1ip. Note that in Fig. 11, the tips of the loops for each
Fx/uN value define the initial load curve (similar to Fig. 7).

Traction Brive

Using the present analysis, experimental torsional compliance data of a
fixed ratio traction drive was analyzed. The test drive consisted of a 14:1
ratio high performance multiroller traction drive [22] of the configuration
shown in Fig. 12. The sun roller and ring roller of the planetary configura-
tion serve as input and output (or vice versa) with the nonorbiting planet
roller bearings carrying the reaction torque. This traction drive was designed
to carry 593 Nm (5250 in. 1b) on the output shaft at 3250 rpm as either a speed
increaser or reducer. For normal operation it is lubricated with a synthetic
traction oil1. It is equipped with a torque responsive roller loading mechanism
which controls the normal loads on the rollers so that a constant FX/N s
maintained above some adjustable threshold. Below the threshold, the normal
loads are constant. For stiffness testing the preload mechanism was defeated
and a fixed normal load was set. A fixed normal load is realistic, because a
traction positioning mechanism that hunts about zero torque (positive and
negative) would be operating below the threshold of variable preload.

For stiffness testing, a residual traction oil film from previous perform-
ance testing was left on all components. The roller preload was set at 75
percent of the maximum available load. The drive was mounted in its usual
housing, and the input (high speed) shaft to the sun roller was rigidly held.
Torque was abp]ied in small steps by either a lever arm with deadweights or a
hydraulic jack for negative or positive torque, respectively. A torque meter

was installed in between the loading arm and the low speed shaft attached to
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the ring roller. Tangential deflection of the traction drive was measured at
a radial lug on the outside diameter of the ring roller by means of a dial
indicator.

The results of two torque sweeps are shown in Fig. 13. The loading in
each case began at zero torque, was stepped up fo a maximum, then stepped down
through zero to a negative maximum. As can be seen by the trend across zero,
there is no backlash (1.e., no discontinuity in the displacement/torque curve).
Also apparent from the data is the existence of some hysteresis. Taking all
the data as a group, the deflection is nearly linear with torque, at an aver-

5 N.msrad (1.6x10% 1n. 1b/rad) at the

age st1ffhess of approximately 1.8x10
ring roller.

The components within the drive which contribute to stiffness (or com-
pliance) were analyzed. The main contributors included the traction contacts,
planet reaction bearings, planet bearing posts, sun roller input shaft and the
spline used to fix the sun shaft. The low speed shaft was not included since
it was not part of the measurements. Compliance calculations of the planet
reaction bearings and the spline on the sun roller shaft were based on formulas
appearing in [23,24], respectively. The planet bearing posts and sun roller
shaft were idealized and treated with a standard strength of materials
approach. 1In analyzing the individual cqntacts and other components in the
drive, it should be noted that their individual stiffness values must be
mu1t1p11ed by the speed ratio between the component and the low speed shaft
squared in order to obtain the effective stiffness at the low speed shaft.

This well known effect for drive systems is due to the fact that torque 1is
multiplied by ratio and angular deflection is divided by ratio, hence stiff-
ness changes by (rat1o)2.

The calculated low speed shaft effective stiffnesses of each set of

components are listed in Table I for an applied torque of 282.5 N.m (2500 in.
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1b) and a traction contact normal load 75 percent of maximum. A maximum avail-
able traction coefficient u = 0.2 was assumed for all traction contacts.
Drive stiffness was found to be insensitive to moderate variations of u (see
Fig. 10). For the three different contacts, the value of Fx/uN ranged from
0.15 to 0.17. When the stiffnesses are expressed as equivalents at the output
shaft, the components can be treated as torsional springs in series. The total

stiffness then s given by

0 1
al-
Ky DRIVE = ; (kr ) (25)

The contribution to deflection of each component is graphically depicted in
Fig. 14 over the range of torques. It is important to point out, that the com-
pliance of the traction rollers themselves account for only 2.3 percent of the
total compliance of this traction drive. The sun shaft and the planet bearing
posts were the most torsionally soft elements.

Comparison of calculated and experimental values reveals an underestima-
tion of the drive's measured torsional compliance by about 44 percent. The
authors expect the major portion of error to lie in simplifying assumptions
made about the geometry of the sun shaft and bearing posts since these com-
ponents largely dictate drive compliance.

Comparison to Gear Set

Using the stiffness analysis developed herein, the stiffness of a roller
pair was calculated and compared to two spur gear pairs. The gear pairs used
were from the NASA spur gear test rig [25] and a gear pair analyzed in [26].
Table II gives the dimensions of the gears. The compliance of the first gear
set was calculated in [27] using the method presented in [28], the compliance
of the second was calculated in [26]. These methods take into account the

local Hertzian normal compliance, tooth beam bending, undercut and fillet
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bending and shear, and foundation flexibility. The calculated stiffnesses are
also shown in Table II.

As a comparison, roller pairs of comparable size were chosen to carry the
same tangential load. The dimensions of the roller pairs are given in Table
II. The resulting torsional stiffnesses were calculated from Eq. (13) for the
roller pairs. The results are shown in Table II. For these two examples, the
traction roller pairs exceed the corresponding gear pair stiffnesses by approx-
imately 5 and 2 times, respectively. Neither the gears nor the traction
rollers were optimized for best stiffness nor for fatigue 1ife, and the effects
of support bearings and shafts were not considered. The theoretical fatigue
11fe of the traction roller pairs were quite substantial, being approximately
97 000 and 40 700 hours respectively at 1800 rpm according to the methods of
[29]. The results of the comparison indicate that comparatively sized traction
rollers can be stiff relative to gear sets.

SUMMARY OF RESULTS

Tangential compliance theory of two contacting bodies was applied to the
case of nonlubricated traction rollers. The conventional assumptions for
Hertzian contact were employed. An approximate technique for including static
and rolling torsional deflections and compliances was developed. The effects
of tangential force, normal load, ellipticity ratio, traction coefficient and
size on contact stiffness were examined. Traction contact hysteresis effects
were also discussed. A torsional compliance analysis of a complete traction
drive system was performed and compared to measurements. A comparison was also
performed of the stiffness of spur gears and equivalently sized and loaded
traction drive rollers.

The following results were obtained:
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(1) Traction drive contacts have relatively high torsional stiffness.

In the two cases examined, equivalently sized and loaded traction rollers were
approximately 2 and 5 times stiffer than comparable gear sets.

(2) Traction contact stiffness increases with an increase in normal load,
available traction coefficient and ellipticity ratio or a decrease in tangen-
tial force.

(3) At constant traction force, torsional stiffness is proportional to
the 7/3 power of roller size, holding normal load and ellipticity ratio
constant.

(4) The traction contacts themselves are considerably stiffer than the
bearings and other structural elements in a complete traction drive system.
These contacts accounted for only 2.3 percent of the total compliance of the
traction drive analyzed.

(5) Experimentally determined drive system stiffness was 44 percent lower

than that predicted.
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Appendix - Summary of Curve-Fitted Equations For Elliptic Integrals

A simplified procedure for calculating the complete elliptic integrals for
use in Hertzian contact problems appear in [19]. For bodies 1 and 2 in con-
tact, planes x and y are the respective planes of maximum and minimum
relative curvature for the bodies. These planes, are mutually perpendicular.
They are also perpendicular to the plane which 1s tangent to the contacting
bodies' surfaces at the point of contact. Planes x and y should be chosen

so that the relative curvature in plane x 1s greater than in plane vy, thus:

+ > + (26)

The direction of rolling is always assumed to be along the x-axis. The effec-

tive radius is given by:

;-=%+-;— (27)
X y
where
R B I
Rx r1x r2x
(28)
L S
Ry My Moy
The radius ratio x 1is defined as:
R
a=§1 (29)
X

The contact ellipticity can be calculated from

2/

a’b = (a) (30)
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The complete elliptic integrals can be calculated from

= % +qlna | (31)
€=1+qla (32)

where q = /2 - 1.
For the above assumptions and calculations, a/b > 1 and b 1is in the rolling
directton.

If the assumption of rolling in the x direction causes equation (26) to
be violated, then a/b < 1 and implies rolling will be in the direction of a.
For this case, if the x-axis is sti1] taken to be the rolling direction, Egs.

(29) and (30) will sti1l apply. Then

-qIna (33)

& =1+ qa (34)
Note that in Eq. (29) o« > 1 if Eq. (27) is satisfied and o < 1 if it is not.
The curve fitted equations yield elliptic integrals within a 2.1 percent error
and the ellipticity ratio within a 3.8 percent error for values of o between

0.07 and 100.
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TABLE I. - TOTAL STIFFNESS OF MULTIROLLER TRACTION

ORIVE AT RING TORQUE = 282.5 Nem (2500 in.1bf)

ROLLER NORMAL LOAD 75 PERCENT OF MAX.

Components Effective stiffness at ring

N-m/rad [(in.1bf/rad)

Traction contacts 1.37 x 107) (1.21 x 108)
Planet reaction bearings 2.93 x 108{ (2.59 x 107)
Planet bearing posts 7.47 x 109[(6.61 x 108)
sun roller shaft 7.73 x 105[(6.84 x 106)
sun roller spline 1.29 x 107/ (1.14 x 108)
Total 3.20 x 105] (2.83 x 106)

TABLE II. - SPUR GEAR AND TRACTION ROLLER DATA AND STIFFNESS COMPARISON

Spur gears Case 1 Case 2
Number of teeth 28 26
Diametral pitch 8 8
Pressure angle, deg 20 14.5

Pitch diameter, cm (in.)
Tooth width, cm (in.)
Tangential load
at pitch point, N (1bf)
Torsional stiffness, N-m/rad
(in. 1b/rad)

8.890 (3.500)
0.625 (0.250)

1518 (341.1)

1.47 x 105 (1.32 x 106)

8.255 (3.250)
2.540 (1.000)

4306 (968. 1)
7.04 x 105 (6.23 x 106)

Traction Rollers

Ro11ing diameter, cm (in.)

Available traction coefficent

Normal load, N (1bf)

E1lipticity ratio

Contact semimajor dia., cm (in.)

Tangenttal load, N (1bf)

Torsional stiffness, N-m/rad
(in. 1b/rad)

8.890 (3.500)
0.2

15180 (3411)
5.8

.452 (.178)
1518 (341.1)

7.06 x 105 (6.25 x 106)

8.255 (3.250)
0.2
43060 (9681)
18.2
1.35 (.532)
4306 (968.1)

1.38 x 106 (1.22 x 107)




Figure 1. - Tangential deflection 6 of bodies in contact under

combined normal N and tangential Fy loads,
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RELATIVE DEFLECTION AND COMPLIANCE

RELATIVE DEFLECTION AND COMPLIANCE
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Figure 7, - Effect of tangential load on static torsional
deflection and compliance. N and p are fixed,
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Figure 8, - Effect of normal load on static torsional
deflection and compliance, Fx and u are fixed,
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Figure 9. - Effect of ellipticity ratio on static torsional
deflection and compliance, Rolling radii fixed,
transverse radii varied,
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Figure 10, - Effect of available traction coefficient on
static torsional deflection and compliance, Fx and
N are fixed,
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Figure 13, - Traction drive torsional deflection as a
function of ring torque. Sun input shaft fixed,
roller normal load set at 75 % of max.
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