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STRESS DECAY IN AN ORTHOTROPIC HALF-PLANE
UNDER SELF-EQUILIBRATING SINUSOIDAL LOADING

W. B, Fichter
NASA Langley Research Center
ABSTRACT
The problem of an elastic orthotropic half-plane subjected to sinusoidal
normal loading over the entire straight boundary, apparently first analyzed by
Mansfield and Best, is reexamined. Stresses are calculated for combinations of
material properties which are representative of some unidirectional filamentary
composites, and of (_«:450)S laminates made from the same unidirectional materials.
Plots of the stresses as functions of the distance from the loaded boundary show
that they can differ greatly from their counterparts in the isotropic half-plane
under the same loading. In addition, the stresses in some orthotropic materials
are seen to exhibit oscillatory behavior. How the results bear on the question
of the applicability of St. Venant's principle to orthotropic materials is

briefly discussed.

INTRODUCTION

Various versions of St. Venant's principle have been invoked to justify the
replacement of a given set of "boundary tractions on an elastic body by another
statically equivalent set, usually for the purpose of mathematical simplification.
In essence, the original problem is replaced by a simpler alternative problem and,
under suitable restrictions, the alternative solution is found (or assumed) to be
sufficiently accurate at interior points which are sufficiently far removed from
the affected part of the boundary. Typical of the restrictions involved are
stipulations that the elastic body be simply connected, and that the original set
(hence, the alternative set) of boundary tractions be self-equilibrating. Addi-

tional restrictions are sometimes imposed, depending on the nature of the problem.




How far an interior point must be from the affected part of the boundary
in order for the alternative solution to be "accurate enough" often depends on
a characteristic dimension associated with the set of surface tractions. For
example, Boussinesq has shown that if normal external forces on the plane surface
of an isotropic half-space are confined to a circle of radius €, then the stresses
at the fixed interior point at a distance r > € from the center of the circle are
6)2

of order of magnitude ez, i.e., IO;jI.§ C (7:

and moments of the applied forces are zero (see ref. l).

, when both the resultant force

With a simple boundary-value problem for a half-plane, some aspects of
which were studied in reference 2, the present paper demonstrates that conven-
tional versions of St. Venant's principle can be inadequate when the elastic
body is anisotropic. Exact expressions are given for the stresses in an ortho-
tropic half-plane subjected to sinusoidally varying normal traction on the
straight boundary. Numerical results are obtained for stresses in orthotropic
half-planes which are representative of some unidirectional and (1950)5 composite

laminates, and compared with corresponding results for an isotropic half-plane.

ANALYSIS
The problem is that of a‘linear elastic orthotropic half-plane y > 0
subjected to a sinusoidally varying normal "pressure" over the entire straight
boundary, i.e., the line y = 0. For simplicity, attention is restricted to cases
in which the coordinate axes are lines of material symmetry. For generalized

plane stress the governing equations (see ref. 3) for the half-plane y > 0 are:
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For the boundary tractions given in (4), a separable solution is possible.
Assuming for a}(x, y) the form
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the equations (1) - (5) require that f(y) satisfy the homogeneous equation
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The function f(y) satisfying (6) can have different forms, depending on the
properties of the orthotropic ‘half-plane. The solution forms which are appropriate
to most engineering materials characterizable as orthotropic fall into two cases,
the first of which was treated previously in reference 2:
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Most orthotropic materials with grossly different principal stiffnesses, e.g.,

unidirectional filamentary composites, fall into Case 1.
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The (+45%). laminates considered herein fall into this case.

Then, for Case 1 the stresses have the form
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For Case 2 the stresses are:
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In the isotropic half-plane under identical loading, the stresses are:
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RESULTS AND DISCUSSION

From equations (9) and (10) it is clear that the rates of decay of the
stresses with distance from the surface of the orthotropic half-plane depend
not only on a, the half-period of the sinusoidal loading, but also on the para-
meters >~1 and Ay in Case 1, and on kj and k2 1in Case 2. In both
cases, of course, the parameters are functions of material properties. In con-
trast, as is evident in equations (11), the rates of decay of the stresses in
the isotropic half-plane depend on only a.

To illustrate some of the influences of anisotropy on stress decay, the
stresses 0}(0,y) and T}y(ég,y) have been calculated for the isotropic
half-plane, two unidirectional graphite/epoxy filamentary composite half-planes,
and two (1450)5 graphite/epoxy filamentary composite half-planes. (Two additional
sets of unidirectional half-plane results are obtained by rotating the original
unidirectional materials by 900 with respect to the (x,y) system). The material
properties are listed in Table 1. Materials A and A' (A rotated 90°) are repre-
sentative of a typical graphite/epoxy laminate (see ref. 4); materials B and B'
(B rotated 900) are representative of a unidirectional graphite/epoxy laminate
containing a higher-modulus graphite (see ref. 5). Materials A and B are (+45%)
laminates composed of layers o% materials A and B, respectively.

Figures 1 and 2 contain graphs of cry(O,y) in the isotropic (I) and the
four unidirectional half-planes. (Note that the stresses in the unidirectional
half-planes fall into Case 1.) When the applied loading is normal to the fiber
direction (Materials A and B), ay(o,y) in the unidirectional materials differs
only moderately from its counterpart in the isotropic material. However, when
the loading is parallel to the fibers (materials A' and B'), the differences are
pronounced. For example, in Figure 2(a), which is for the higher-modulus graphite,

0}(0,y) in the isotropic material decays to 20% of its maximum value at




{Ey = 3, but in material B' only to 38% of its maximum value at %Fy = 8,
evincing large differences in decay rate with distance from the boundary.

Material-related differences are also evident in Figures 1(b) and 2(b),
where 'Txy ({%,y) is graphed for the five half-planes. Results for the iso-
tropic and orthotropic half-planes differ in the magnitude and location of the
maximum shear stress, and in rate of decay with distance from the boundary.
Typically, maximum shear stress is greater in the orthotropic material when the
loading is normal to the fibers (materials A and B), and its location is somewhat
nearer the surface. The decay rates in the three half-planes are comparable.

On the other hand, when the loading is parallel to the fibers (materials A'
and B'), the maximum shear stress is lower in the orthotropic material, and the
peak occurs somewhat farther from the surface. In addition, the rates of decay
with distance from the surface are markedly different. In Figure 2(b), for
example, the shear stress in the orthotropic material is still at nearly 50%
of its maximum value at %E.y = 8. In contrast, the shear stress in the isotropic
material falls to 50% of its maximum value at %{y =~ 2.6, after having attained
a much greater maximum value.

An additional material-related phenomenon is evident in the stresses com-
puted for the two (iASO)S laminates (which require a solution of the form given
by Case 2) and graphed, along with results for the isotropic case, in Figures 3
and 4. Besides exhibiting different decay rates, the stresses in the (iASO)S
laminates are seen to oscillate, behavior which is, of course, evident in
equations (10).

It should also be noted that large decay-rate differences can exist not
only between isotropic and orthotropic materials, but also between orthotropic
materials within the same case. This phenomenon appears to be most strongly

E
influenced by the material property ratio _zg.




With regard to the applicability of St. Venant's principle, another set of
surface tractions which is statically equivalent to the present system is the
set of zero tractions, which leads directly to the trivial problem of an un-
stressed half-plane. Though in the isotropic case it might still be argued
that, at a distance greater than 2a from the surface, all stresses are (more or
less) negligible and, hence, comparable to the trivial solution, this argument
clearly would not hold for some of the orthotropic materials considered here,

especially the unidirectional materials under loading parallel with the fibers.

CONCLUDING REMARKS

The examples presented herein illustrate only one of several pitfalls
associated with a facile invoking of St. Venant's principle, and only one of
the reasons that the principle is difficult to state generally enough to be
widely applicable yet specifically enough to be maximally helpful. In the simply
connected body, at least, the problem is more one of quantity than quality, since
most statements of the principle contain such forgiving phrases as “"sufficiently
far removed" and “"essentially the same;" however, the analyst is sometimes asked
to justify its use numerically. When the required numerical values are easily
obtained, the principle is largely superfluous. Only when the calculations are
difficult does the analyst have a vital interest in the principle's applicability
which, in such cases, is difficult to establish. The present solution suggests
that, at least in problems involving some orthotropic materials, the utility of

traditional forms of St. Venant's principle can be quite limited.

REFERENCES

1. Sokolnikoff, I. S.: Mathematical Theory of Elasticity, 2nd Edition,

McGraw-Hill, New York, 1956,




Mansfield, E. H., and Best, Doreen R.: The Concept of Load Diffusion
Length in Fibre Reinforced Composites. Aeronautical Research Council
C.P. No. 1338, London, 1976.

Lekhnitskii, S. G.: Anisotropic Plates, 1956, (Translated by Tsai, S. W.,

and Cheron, T., C 1968 by Gordon and Breach, New York).

Stroud, W. Jefferson; Greene, William H.; and Anderson, Melvin S.: Buckling
Loads of Stiffened Panels Subjected to Combined Longitudina]>Compression

and Shear: Results Obtained with PASCO, EAL, and STAGS Computer Programs.
NASA TP 2215, January 1984,

Greszczuk, L. B.: "Stress Concentrations and Failure Criteria for Ortho-
tropic and Anisotropic Plates with Circular Openings," in ASTM STP-497,
1972, pp. 363-381.




TABLE 1 - HALF-PLANE MATERIAL PROPERTIES

of material B

Material Ex, psi By, psi Vxy G, psi

19 x 100 1.89 x 109 0.38 0.93 x 100
Unidirectional
graphite/epoxy

A 1.89 x 106 19 x 106 0.038 0.93 x 106

94 x 100 3.6 x 100 0.25 1.6 x 10°
Unidirectional
graphite/epoxy

B! 3.6 x 106 94 x 106 0.01 1.6 x 106

A ((+45%)  Laminatey | 3.20 x 10° | 3.20 x 10° | 0.718 | 4.93 x 106
of material A

B ((+45%) Laminatey | 6.01 x 10° | 6.01 x 105 | 0.879 | 24.0 x 10
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(a) Normal stress

Figure 1 - Stress decay in unidirectional Material A(A').




11

Txy(%,y) .

(b) Shear stress

Figure 1 - Concluded.




12

o (0,y)

<
O — NV W & 1 O 9 0 o

I I T

3 4 5 6 7 8
T
3 Y

(a) Normal stress

o
p—
no

Figure 2 - Stress decay in unidirectional Material B(B').
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Figure 2 - Concluded.
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Figure 3 - Concluded.




Figure 4 -

(a) Wormal stress

Stress decay in (_t_45°)S Material B.
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