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ABSTRACT

Moisture content of snow-free, unfrozen soil is inferred using

passive microwave brightness temperatures from the Scanning

Multichannel Microwave Radiometer (SMMR) on Nimbus-7. Investigation is

restricted to the two polarizations of the 1.66 cm wavelength sensor.

Passive microwave estimates of soil moisture are of two basic

categories; those based upon soil emissivity and those based upon the

polarization of soil emission. The two methods are compared and

contrasted through the investigation of 54 potential functions of

polarized brightness temperatures and, in some cases, ground-based

temperature measurements. Of these indices, three are selected for the

estimated emissivity, the difference between polarized brightness

temperatures, and the normalized polarization difference. Each of

these indices is about equally effective for monitoring soil moisture.

Using an antecedent precipitation index (API) as ground control data,

temporal and spatial analyses show that emissivity data consistently

give slightly better soil moisture estimates than depolarization data.

The difference, however, is not statistically significant. It is

concluded that polarization data alone can provide estimates of soil

moisture in areas where the emissivity cannot be inferred due to

nonavailability of surface temperature data.
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INTRODUCTION

Objectives

The purpose of this research is to determine methods of estimating

soil moisture content over large agricultural areas using dual polari-

zation passive microwave brightness temperatures from the Scanning

Multifrequency Microwave Radiometer (SMMR) aboard the Nimbus 7 satel-

lite. This will be done by testing functions of brightness temperatures

in the horizontally and vertically polarized channels of the 1.66 cm

SMMR sensor that relate to soil moisture under varying conditions of

vegetation, surface roughness, land use, and rainfall. Specific

objectives are:

1. Compare the performance of both emissivity and polarization

measures as indicators of soil moisture.

2. Determine whether multiple correlation and principal component

analyses can be used to combine soil moisture information from

several different indices.

3. Demonstrate the use of both day and night data in microwave

indices of soil moisture.

4. Demonstrate the ability of passive microwave indices to give

quantitative measurements of soil moisture on winter wheat

areas during seasons when the soil is essentially bare.



5. Demonstrate the ability of passive microwave indices to give

quantitatively correct maps of soil moisture for large areas

with a wide diversity of crops and land use.

6. Compare maps of soil moisture indices using model parameters

developed for individual seasons versus the entire year and for

individual locations versus large areas.

Applications of Passive Microwave Data

A number of activities require large area soil moisture estimates

that can be obtained from satellite-borne passive microwave sensors.

Among these are numeric modeling of energy and moisture fluxes in the

boundary layer of the atmosphere, tractionability determinations for

agricultural and military applications, and estimation of flood hazards

due to watershed runoff. In particular, the projection of crop yields

requires recurring estimates of soil moisture over large areas. Passive

microwave sensors can provide estimates representing weighted averages

over their entire field of view with very little restriction due to

atmospheric conditions.

Passive microwave sensors intended for civil-sector use will be

economically feasible because they can measure a wide range of other

environmental variables. Kondratyev et al. (1977) showed that micro-

wave data could be used to measure soil temperature profiles to a depth

of several centimeters, as well as areally averaged soil moisture con-

tent. Blanchard et al. (1975), Blanchard (1977), and Walker (1978)

showed that watershed hydrologic response characteristics can be in-

ferred from passive microwave data. Allison et al. (1979) showed that
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a satellite-borne instrument with a wave length of 1.55 cm could be

used reliably to map flood waters in Australia. Burke et al. (1981)

have investigated the use of microwave sensors in probing snowpacks.

Many other phenomena could be cited, including sea ice, atmospheric

water vapor content, and instantaneous rainfall rates. The soil mois-

ture methods developed in this study represent only one of a number of

practical uses for spaceborne microwave radiometers.

In particular, the microwave sensors likely to be available in the

next decade will be useful in agricultural applications. Since these

sensors will have extremely low resolutions, their use will be most

helpful in applications requiring no better than 20 or 30 km resolu-

tion. Since current government methods of monitoring crop moisture are

based on data with poorer resolution than this, a primary application

of microwave data will be in sensing of crop condition and prediction

of crop yield. These systems will have virtually all-weather capability

and will be appropriate to the essentially bare-soil and monocultural

regions of winter wheat.

Use of Polarization Data

This paper adds to earlier research by investigating the use of

polarization data. Previous researchers have shown that single-polar-

ization spaceborne radiometers can indicate soil moisture, at least in

a general, qualitative way. Some, such as McFarland (1976) McFarland

and Blanchard (1977), Theis (1979), and Theis et al. (1982), have shown

that these sensors can be used to infer soil moisture quantitatively

under some circumstances. These earlier efforts were based upon the



relationship between microwave emissivity and soil moisture content.

Briefly stated, the dielectric constant of soil varies strongly in

response to the amount of liquid water held in the soil. The dielec-

tric constant determines the soil emissivity which, together with soil

temperature, determines the amount of microwave radiation emitted by

the soil. By measuring the brightness temperature with a satellite

sensor, and by estimating the soil temperature from ground-based

weather observations, it is possible to estimatethe soil's emissivity

and, hence, its moisture content.

Data presented by Newton (1977), however, indicated that the micro-

wave radiation of moist soil is partially polarized, and that the

degree of polarization increases with soil moisture content. If this

relationship is reliable enough, and if it is sufficiently insensitive

to surface temperature, it should give a means of monitoring soil

moisture from space without reference to ground- based temperature

measurements. There are many potential applications for such a purely

remote sensing capability. For instance, some locations such as moun-

tain valleys are not well instrumented for surface temperature, and

have no consistent relationship to temperature observations from sur-

rounding lowland weather stations. Second, there should be military

applications for areas from which conventional surface weather observa-

tions may become inaccessible. Finally, there are many important agri-

cultural areas for which the density of conventional weather observa-

tions may be too low to allow effective use of techniques requiring

surface temperature measurements. This paper examines the polarization

approach, using data from the Nimbus 7 satellite.
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Ground Control Data

Researchers in satellite remote sensing projects frequently have

difficulty assembling a comprehensive and accurate ground truth data

base. In fact, such data are more appropriately termed "ground con-

trol," since their actual truth is in some doubt. This study is no

exception. In order to interpret the soil moisture signal of microwave

data from half a million square kilometers of the U.S. Great Plains,

soil moisture data from the study area are needed. Conventional

measurements of soil moisture over this area are not possible. Even a

single instantaneous field of view (IFOV) cannot be instrumented

adequately on the ground when it has a diameter of nearly 40 km. Some

other approach is required.

The ground control data chosen for this study were generated by a

common index from hydrologic engineering, the antecedent precipitation

index (API). This index represents soil moisture as a Markov chain

whose single input is the series of daily observations of total effec-

tive precipitation. Blanchard et al. (1980) showed that API varies

almost linearly with soil moisture content.

Analytical Approach

This study relies primarily on regression analysis to relate satel-

lite data to API. A number of functions of vertically and horizontally

polarized brightness temperatures are subjected to simple and multi-

ple linear regression models to establish which functions give the best



estimates of API for individual training sites. These functions are

used to generate images of satellite-derived soil moisture estimates,

which are compared to computer-generated maps of API to verify visually

the effectiveness of the methods.



LITERATURE REVIEW

Review Articles

Several authors have published survey articles of the field of mi-

crowave radiometry and its applications in soil moisture sensing.

Reeves (1975) presented a comprehensive summary including the physics

of emission and radiative transfer, and the design and performance

characteristics of radiometers. NAS (1977) summarized the basic physics

of microwave sensing and the potential applications in many fields.

Kondratyev et al. (1977) reviewed passive microwave remote sensing of

soil moisture and evaluated the potential of microwave for several data

retrieval applications. Basharinov and Shutko (1978) also reviewed the

field of microwave sensing of soil moisture. Paris (1971) gave a

detailed development of the fundamental physics of microwave

radiometry.

Schmugge et al. (1979) and Schmugge (1978, 1980a,b) reviewed soil

moisture measurement by gravimetric, nuclear, reflected solar, thermal

infrared, and both active and passive microwave methods.

Newton (1980) presented a summary of research in microwave measure-

ment of soil moisture done by the Texas A&M University Remote Sensing

Center (RSC) from 1974 to 1980. These investigations included ground-

based measurements, modeling, and simulation studies.

Physics of Microwave Remote Sensing of Soil Moisture

The radiation detected by a spaceborne passive microwave sensor is



expressed as a brightness temperature, a radiative effective tempera-

ture equal to the thermodynamic temperature of a hypothetical blackbody

radiating exactly the same power as detected by the instrument. This

brightness temperature can be expressed as the sum of three components:

sky radiation reflected toward the radiometer by the surface, radia-

tion emitted at the surface, and atmospheric radiation received direct-

ly at the sensor. Schmugge (19805) gives the equation in this form:

TB= T<rTsky + (I") W + Tatm

T = atmospheric transmittance

r = surface reflectivity

"Tsurf = temperature of emitting layer at surface

T . = brightness temperature of atmosphere

The significance of each of the three components is discussed below.

Sky Radiation

Sky radiation sensed by a satellite-borne radiometer consists of

surface reflections of the celestial background emission plus downwel-

ling atmospheric radiation. Weger (1960) computed downwelling sky

brightness temperatures for wavelengths from 0.43 cm to 3.00 cm, and

for a variety of sky conditions. He found the following values for a

wavelength of 1.80 cm and viewing angle of 50 degrees: about 10K for

clear skies, 15K for moderate cloud, and 30K for uniform moderate pre-

cipitation. The sky brightness component of brightness temperature is

the product of this downwelling brightness temperature, surface reflec-

tivity, and atmospheric transmission from surface to detector. Since

most naturally occurring substances have emissivities near unity, the
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highest surface reflectivities of interest to this study are those of

moist soil. The largest possible value of atmospheric transmission,

1.00, cannot occur simultaneously with the highest sky temperatures,

which are associated with rain events. Nevertheless, an upper bound

of this component can be estimated, for moist bare soil, by multiplying

a maximum value of 30K by an assumed reflectivity of 0.30 and atmos-

pheric transmission of 1.00. Thus, this component of microwave bright-

ness temperature is less than about 10K. McFarland and Blanchard

(1977) ignored this component.

Direct Atmospheric Effects

Atmospheric effects are of two kinds: the direct radiation from

the atmosphere impinging upon the sensor, and the attenuation of radia-

tion from the surface. The previous discussion of sky temperature sug-

gests that direct radiation should also be negligible under most cir-

cumstances. The exceptions are those circumstances under which atmos-

pheric attenuation is also significant; specifically, those occasions

on which precipitating clouds are present between the surface and the

radiometer.

Paris (1971) computed the absorption and scattering properties of

gases and hydrometeors in the atmosphere, as well as effects of sea-

surface roughness and salinity, extraterrestrial radiation, and emis-

sion of microwaves by the atmosphere, clouds, and precipitation par-

ticles. His computations show that the effects of absorption and emis-

sion by the atmosphere are small except in the presence of precipita-

ting cloud.



McFarland and Blanchard (1977) chose to ignore atmospheric effects

since the only case in which they are important is that of a precipita-

ting cloud, the principal effect of which was to produce a brightness

temperature lower than that of dry soil. That is, the rain has the

same appearance in a microwave image as does moist soil; so it is at

least qualitatively correct to interpret reduced brightness temperature

as being associated with moist soil — soil beneath a rain shower.

Surface Emission

The microwave emission of the surfaces of soil, plants and other

objects present in the IFOV of the sensor have been modeled in many

ways. A number of detailed radiative transfer models are available, as

well as simpler techniques.

Detailed Emission Models. Several investigators have reported

models that account for the transfer of radiation within the soil

body. These models have been derived in various levels of complexity,

but allrequire fairly detailed information about the properties of the

emitting soil layers. Some account for a rough surface or a vegetative

canopy.

Stogryn (1970) used an electromagnetic fluctuations approach to

derive equations for the brightness temperature of a medium with a flat

surface and with temperature and dielectric constant varying only with

depth.

Tsang et al. (1975) and Tsang and Kong (1975, 1976a, b, c, 1980)

developed a general theory for computing the microwave emission from

soils, and presented illustrations of special cases. The general

10



theory allowed a three-layer system of soil, air, and vegetation, with

soil properties allowed to vary in three dimensions.

Njoku and Kong (1977) extended the work of Tsang et al. (1975) and

Stogryn (1970), to give equations for the brightness temperature of a

smooth-surfaced, vertically structured medium in which moisture content

and thermodynamic temperature are assumed to be functions of depth.

Wilheit (1978) developed a radiative transfer model for plane strat-

ified media, using a formalism equivalent to but simpler than that of

Tsang et al. (1975). He defined thermal and reflective sampling

depths, and showed that the former is of the order of one wavelength

while the latter is an order of magnitude smaller. The reflectivity

sampling depth is determined primarily by the real part of the dielec-

tric constant; the thermal sampling depth, by the imaginary part.Ther-

mal sampling depth is the layer whose effective temperature determines

the amount of energy available for emission. Reflectivity sampling

depth is the layer whose moisture content determines the effective

emissivity of the soil. The thickness of this layer decreases with

increasing soil moisture content.

Tsang and Newton (1980) developed a microwave emission model which

accounted for the incorherent reflectivity modeled by Stogryn (1970)

and the coherent reflectivity modeled by Choudhury et al. (1979). They

used two roughness parameters, RMS height and RMS slope.

Wang et al. (1980b) used the random-dielectric theory of Tsang and

Kong (1976b,c, 1980) to derive equations for the polarized brightness

temperature of a smooth soil with a vegetative cover, using the empir-

ical model of Wang and Schmugge (1980) to describe the emission from

11



the soil surface, they computed the expected normalized brightness tem-

peratures (effective emissivities) for a number of vegetative covers.

Their model predictions agreed with measurements except for discrepan-

cies that they explained by roughness which the model did not account

for.

Simpler Emission Models. While instructive, the radiative transfer

models generally require too much detailed information about the soil

structure, roughness, and vegetation for practical use with low-resolu-

tion, satellite-mounted microwave radiometers. Simpler models in use

assume that the soil can be represented as a single emitting layer

whose effective temperature and emissivity can be represented by simple

algorithms. In general, these models rely on the strong dependence of

soil dielectric constant upon the moisture content. This effect is so

strong that other effects are ignored or simply parameterized.

Newton (1977) presented model calculations showing that brightness

temperature was a nearly linear function of soil moisture content,

except over a region in the dry end of the moisture range in which

microwave emission is not very sensitive to moisture content. He

explained this behavior as caused by the tight bond of water molecules

held very close to the soil particles under dry conditions. The effect

of increasing the viewing angle from nadir was to increase the ver-

tically polarized component and decrease the horizontally polarized

component. He showed also that the mean of the two polarizations was

nearly independent of viewing angle. He verified these conclusions

using data from truck-mounted radiometers operating at wavelengths of

21 cm and 2.8 cm.

12



Figure 1 is a schematic view, abstracted from Newton (1977), of the

response of soil brightness temperatures to variations in soil mois-

ture. The figure presents two cases represented, respectively, as

"dry" and "moist". Under the assumption that all other scene parame-

ters such as temperature profile and surface roughness are the same for

both cases, an increase in soil moisture is seen to result in a

decrease in vertically polarized brightness temperature, a greater

decrease in horizontally polarized brightness temperature, and a conse-

quent increase in polarization. This polarization increase is greatest

near the Brewster angle, the view angle at which Tv peaks.

Wang and Schmugge (1978 and 1980) presented a simple empirical model

of the dielectric behavior of soil-water mixtures and demonstrated its

superiority over previous mixing formula approaches. They included, as

an adjustable parameter modeled in terms of soil texture, the transi-

tion moisture value beneath which the dielectric constant of a soil is

not very responsive to moisture content.

Perhaps the simplest model of soil emission is that used by McFar-

land (1976) and by McFarland and Blanchard (1977), in which (1) was

simplified by neglecting the sky and atmospheric effects, giving:

TB = eT (2)

e = emissivity

T = temperature of surface emitting layer

This relationship holds in the microwave band of the spectrum,

because of the validity of the Rayleigh-Jeans approximation to Planck's

radiation law. Written in the form appropriate to the wavelength

13
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Figure 1. Schematic representation of the angular dependence of
polarized brightness temperatures, illustrating the
effect of soil moisture on brightness temperature and
on polarization for a sensor viewing at the Brewster
angle. Curves abstracted from Newton (1977).
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domain, Planck's law is (Shortley and Williams, 1965)

- I']'1 (3)

where

M^ = spectral exitance (Wm" 3)

h = Planck's constant = 6.6256xlO-34J.s

c = speed of light in vacuum = 2. 997925x10 ̂ s'1

A = wavelength (m)

k = Boltzmann's constant = 1. 3805x10' 23J/K

T = temperature (K)

The exponential can be expanded as a Maclaurin series and, for wave-

length in the microwave band, the higher order terms can be ignored,

giving the Rayleigh-Jeans approximation:

-ltT (4)

Defining c^uckx'1*, this can be rewritten, for a blackbody, as:

M A = c i T B (5 )

where Tn = brightness temperature

For a real radiating surface (4) takes the form:

MA = ecj (6)

where e = emissivity, defined as the ratio of exitance from a real body

to the blackbody exitance for the same temperature. (2) is derived by

taking the ratio of (5) and (6).

15



McFarland and Blanchard (1977) applied (2) by assuming that the

effective temperature of the emitting material could be estimated from

independent sources such as conventional weather observations. They

computed a normalized brightness temperature, representing an estimated

emissivity, by taking the ratio of brightness temperature to air tem-

perature. They showed that this emissivity estimate was linearly rela-

ted to API, which they used as an index of soil moisture. They sug-

gested a methodology of determining empirical linear regression coef-

ficients for each location and for each time of year, so that API could

be estimated by applying these coefficients to computed values of emis-

sivity.

Effects of Vegetation and Roughness. Vegetation and roughness are

considered together here, since some of their effects are similar, in

spite of the different physical processes by which they exert those

effects. In general, both decrease the sensitivity of detected radia-

tion to soil moisture. Newton (1977) presented model calculations that

show these effects of roughness and vegetation.

These effects of vegetation and roughness are most important for

shorter wavelengths. Blinn and Quade (1972) reported ground-based

measurements at wavelengths of 0.95, 2.8, and 21 cm, showing that the

longest wavelength's moisture sensitivity was least affected by vegeta-

tion and roughness. Measurements at wavelengths of 2.8, 6.0, 21, and

50 cm. showed that the wavelength with greatest sensitivity to soil

moisture varied with vegetation cover, from 6.0 cm for bare soil to 50

cm for grasslands.

16



Choudhury et al. (1979) modified the Fresnel reflection coefficients

by the inclusion of a single-parameter representation of the soil

surface roughness. They found that this approach was not sufficient to

characterize roughness, which must rather be described by two parame-

ters: surface height variance and horizontal scale of roughness.

Nevertheless, their model calculations were in general agreement with

experimental results which indicate that roughness effects are greatest

for wet soi1.

Wang et al. (1980c) compared measurements at wavelengths of 6 and 21

cm with the theory of Wilheit (1978) and found that vegetation degraded

soil moisture sensitivity by amounts in qualitative agreement with the

results of Kirdyashev et al. (1979). The decrease of sensitivity was

related to the amount of biomass moisture content of the vegetation

present. This result pertained at both wavelengths. The soil type

tested was a sandy loam, and the vegetation was grass, soybeans, and

corn.

Wang and Choudhury (1981) described a modification of the microwave

emission model of Wilheit (1978), to include a two parameter represen-

tation of soil surface roughness. They related these two parameters to

combinations of the vertically and horizontally polarized normalized

brightness temperatures, and they showed that moisture content may be

inferred from knowledge of the relationship between the Fresnel

reflection coefficients and moisture content if the values of the two

parameters are known. They suggested that these parameters could be

estimated empirically from a time series of data, if roughness could be

assumed constant. The brightness temperature combinations they used
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were X = (Tv-Th)/(l-[0.5(Tv+Th)]), which was related to the

polarization mixing parameter; and Y = l-[0.5(Tv+Tn)], which was

related to the roughness height parameter. Tv and T^ are, respec-

tively, the vertical and horizontal polarized brightness temperatures

measured by radiometer.

Schmugge et al. (1978) used airborne thermal infrared measurements

to demonstrate that the diurnal temperature range could be used to

infer soil moisture or crop stress. This lends weight to the sugges-

tion of McFarland (1982) that, if the emissivity of a dense crop canopy

is relatively insensitive to the moisture content of the plants, then

microwave brightness temperature variations observed from space must

indicate changes in the crop temperatures. If air temperature is known

from an independent source, the crop's stress is indicated; revealing,

in turn, qualitative information about the soil moisture content. That
i

is, the brightness temperature of a crop canopy responds to plant

stress in much the same way as to the moisture condition causing that

stress; and moisture content can be inferred, at least qualitatively.

Ground Control Data

Since conventional soil moisture measurements cannot be made for a

representative sample of points within even one IFOV of a spaceborne

microwave radiometer, the ground control data for these studies must be

obtained through modeling.

Available Models

A number of models are available for the purpose. Baier and Robert-
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son (1966) proposed a Versatile Budget (VB) model, representing the

moisture content of several soil layers by a modified Markov press.Van

Bavel and Lascano (1980) devised a computer simulation model called

CONSERVE which combined energy balance and water balance methods, using

weather observations to drive the model. Jackson (1980) developed a

model that linked deep-layer moisture content to surface-layer moisture

content through hydraulic equilibrium assumptions. Most of these

detailed soil moisture models are too complicated for use in conjunc-

tion with spaceborne microwave sensing methods. They require data not

generally available in real time at the necessary resolution.

Antecedent Precipitation Index

An antecedent precipitation index (API) can be designed to avoid

these difficulties. While this model is very simple, it is neverthe-

less useful. For instance, McFarland and Beach (1981) used the farmer

survey data reported by Reinschmiedt (1973) to relate farm field work

delays to API. They found linear correlations exceeding 0.98.

Linsley et al. (1975) stated that the soil moisture index most

commonly used in storm runoff models is the API, a simplified moisture

balance approach in which addition of water to a profile is only

through precipitation, and depletion of water is through a black-box

process of evapotranspiration, etc., represented by a simple logarith-

mic decrease. They gave the formula It = IQ^ where I0 is the

initial value of the index, k is a recession factor (or depletion coef-

ficient) less than unity, and t is time in days. Letting t = 1, the

index for any day is seen to be the value for the previous day multip-
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lied by k. They noted that the k-factor should be formulated as a

function of potential evapotranspiration (PET) or of season, which

determines PET to some extent. They further noted that errors in

initialization of the model decay logarithmically and tend to vanish

after a few weeks at most.

Saxton and Lenz (1967) estimated soil moisture with an antecedent

retention index (ARI) very similar to API. The principal difference in

their model is the use of an estimate of potential evapotranspi ration

to deplete moisture during the constant-rate stage of drying. During

the falling-rate stage, depletion is modeled by a multiplicative

depletion coefficient as in API. Use of the ARI formulation requires

sufficient meteorological data to estimate PET by one of the familiar

methods.

The form of the API equation used by McFarland and Harder (1982) is

API = ki . API^j + p.0'891 (7)

where

APIi = API on day i (mm)

k-j = recession factor for day i

P-j = precipation on day i (mm)

In form, (7) is a first-order Markov process. Its utility lies in its

parameterization of water depletion processes in a single factor that

can be modeled in terms of readily available information.

There are several ways to assign a value to the depletion coeffi-

cient, k. One formula is that of McFarland and Blanchard (1977), who
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used a single value of k specified for each month of the year. A more

sophisticated method is that of McFarland and Harder (1982), who used a

sinusoid with a minimum in summer and a maximum in winter. Further

refinement could incorporate an estimate of PET based upon temperature

and sky cover data, possibly involving thermal or visual imagery from

weather satellites.

Choudhury and Blanchard (1981) gave an equation in which PET esti-

mates could be used to compute k. They derived the API equation from a

water balance equation used in global climate models and showed that

the recession factor is

k = exp[-E/Z(FC-WP)] (8)

where E is the potential evapotranspiration for the previous day, Z is

the soil thickness, FC is soil field capacity, and WP is the permanent

wilting point.

A very useful feature of the API formula is that it can be inverted

to give estimates of effective rainfall. Blanchard et al. (1981) used

this to construct a two-layer API model in which the API of a shallow

surface layer was inverted to give an estimate of the amount of water

infiltrating into a deeper layer, which was in turn depleted by a

second API model with larger-valued recession factor. They suggested

that the top layer API could be related to microwave radiometer data,

providing a way to remotely monitor soil moisture for a deeper soil

layer.

There are two principal difficulties in using API in the present

investigation. First, the index models all water losses from the layer

21



of interest as a simple exponential decay. While this method may be

appropriate for a deep layer, the lack of attention to specific proces-

ses such as insulation and head advection must introduce some errors

when the model is used with a layer as shallow as the sensing depth of

the 1.66 cm band of SMMR. Second, for these shallow layers, the best

maximum and minimum values of the K-factor have not been well estab-

lished at many locations. Nevertheless, McFarland and Blanchard (1977)

did report successful use of the index in connection with data from the

1.55 cm radiometer on Nimbus 5.

Experiments in Microwave Sensing of Soil Moisture

Simulation Studies

Smith and Newton (1983) modified the CONSERVE model of van Bavel and

Lascano (1980) to accept input data solely from a microwave radiometer

instead of observed weather data. The resulting soil moisture predic-

tions were almost identical to those produced by the full CONSERB

model. They used a simluation approach, based upon experimental data,

to examine the utility of two wavelenghts, 6 and 21 cm. They found

little difference between the accuracy of model outputs from the two

wavelengths, except that the shorter wavelength tended to saturate at

lower rainfall amounts; that is, the longer wavelength was a better

quantitative indicator of heavier rainfall events. An important con-

clusion from this experiment was that microwave data should have the

capability to provide information about the moisture content of soil,

without requiring the use of such data as solar radiation, wind speed,

air humidity and temperature.
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Blanchard and Bausch (1979) used a simulation to demonstrate the

potential of dual wavelength (X-band and L-band) sensing of the mois-

ture in the top 1.5 m of soil. They noted that the L-band sensor could

monitor the moisture of the top 21 cm, and that the ratio of change in

X-band and L-band emissivities could be used to predict the amount of

water infiltrating to depths below the 21 on level. They also noted

that their method would require daily observations to estimate soil

moisture with acceptable accuracy.

Ground-based and Airborne Sensors

Many experiments have investigated the ability of passive microwave

sensors to indicate soil moisture conditions under realistic condi-

tions. Several results of ground-based and airborne trials with wave-

lengths near SMMR's 1.66 cm sensor are summarized here.

Edgerton et al. (1971) found that brightness temperatures at a

wavelength of 2.2 cm responded strongly to the moisture content of the

top centimeter of soil.

Schmugge et al. (1974 and 1976) showed an approximately linear

relationship between soil moisture and the 1.55 cm brightness tempera-

ture of an airborne radiometer. They noted a breakpoint value of soil

moisture approximately equal to wilting point, below which the radio-

meter showed little response. They demonstrated a means of accounting

for soil texture by expressing moisture content in terms of fraction of

field capacity.

Barton (1978) computed emissivity as the ratio of microwave bright-

ness temperature to thermal infrared brightness temperature, using a
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2.56 cm microwave radiometer and a Barnes PRT-5 infrared radiometer.

He found strong correlation between emissivity and gravimetric soil

moisture content for base surfaces, but much worse relationships for

vegetated fields.

Burke and Paris (1975) and Burke et al. (1979) examined the dual-

polarized signature of soil moisture at a wavelength of 2.8 cm. They

found that moisture and suface roughness effects could be separated by

comparing values of the first two Stokes1 Parameters, P = (1/2)(Tv +

Tn), and Q = (Tv-Tn). They found that Q was nearly invariant

with temperature, and .that it was very sensitive to soil moisture at

gravimetric moisture contents less than 15 percent, while P was more

sensitive at values above 15 percent, and was nearly invariant with

viewing angle. Q was better correlated with surface roughness than was

P.

Burke (1980) analyzed aircraft data at L-, X-, and K-band wave-

lengths, modeled the effects of the vegetation canopy, and investigated

the effects of the atmosphere at these wavelengths. She found that the

first Stokes parameter, P = 0.5(Tv+Tn), was more sensitive to soil

moisture than were Tv and Tn by themselves; and that the second

Stokes parameter, Q = Tv-Tn, showed considerable scatter related to

surface roughness. She observed that L-band was relatively insensitive

to vegetation cover, but that the shorter wavelengths showed no

response to soil moisture in the presence of vegetation.

Satellite-based Sensors

Satellites Available. Several satellites have carried microwave
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sensors useful for soil moisture experiments. Among these have been

SKYLAB, Nimbus 5, and Nimbus 7. Such data will also be avai lable in

the future, with the addition of a microwave sensor, the Special

Sensor Microwave/Imager (SSM/I) to the DMSP spacecraft, expected in

1985.

SKYLAB carried a scanning Ku-band radiometer, the S193 instrument,

which had a resolution of 11 km at nadir. SKYLAB also carried the S194

instrument, a non-scanning L-band radiometer.

Nimbus-5 had the electrically scanning Microwave Radiometer (ESMRJ,

which scanned directly across the track direction, and had a resolution

of 25 km at nadir. The sensor operated at a wavelength of 1.55 cm, with

circular polarization.

The SMMR sensor on the Nimbus-7 satellite is described by Gloersen

and Barath (1977) and by Madrid (1978) with wavelengths of 0.81, 1.36,

1.66, 2.80, and 4.54 cm, each operating in both horizontal and vertical

polarizations. The absolute accuracy in all ten channels is better

than 2k rms. The 3 db beamwidths are, respectively, 0.8, 1.4, 1.5,

2.6, and 4.2 degrees. The resulting IFOVs are, respectively, 27x18,

46x30, 55x41, 91x59, and 148x95 km. The sensor uses a conical scan

pattern so that the beam makes a nearly constant angle of about 50

degrees with the earth's surface. The satellite is in a near-polar

orbit with an altitude of 955 km and a swath width of 822 km. SEASAT

also carried a SMMR sensor.

The SSM/I sensor on the DMSP satellite has been described by Hol-

linger and Lo (1983). It will have wavelengths of 0.36, 0.81, 1.35, and

1.55 cm. All four wavelengths will have vertical polarization, and all
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but the 1.35 cm channel wi l l have horizontal polarization. The sensor

will use a conical scan like that of SMMR, with a constant earth-

incidence angle of 53.1 degrees. Resolution wi l l range from about 15

km for the shortest wavelength to about 55 km for the longest. The

satellite will be sun-synchronous l ike its predecessors and wil l view

each point on the earth's surface twice daily, one at night and once in

daylight. The satellite will be in a near-polar orbit with an altitude

of 833 km. The swath width will be 1390 km. Several other satell ites

have carried microwave sensors, but no others have had scanning radio-

meters. The DMSP satellite is the only planned operational satellite-

borne passive microwave imager.

Satellite Experiments. Several investigators have reported useful

relationships between .data from satellite-borne microwave radiometers

and indicators of soil -moisture.

Stucky (1975) found correlation coefficients near -0.9 between the

brightness temperature from SKYLAB'S S193 KU-Band sensor and a 10-day

API computed with a constant depletion coefficient of 0.9. He found

that the correlation coefficient diminished almost linearly to about

-0.2 as viewing angle increased to 40 degrees. He also found that for

viewing angles less than 25 degrees, the 10-day API was better cor-

related with brightness temperature than was a 6-day API.

McFarland (1975 and 1976) reported excellent linear correlation

between an 11-day API and brightness temperatures from the SKYLAB SL94

L-Band sensor. This sensor had a wavelength of 21 cm and a circular

IFOV 115 km in radius. His data were from June and August of 1973, and

he reported correlation coefficients of 0.97 and -073, respectively.
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He explained the lower correlation of the August data as resulting from

the spacecraf t 's flight over more varigated terrain, including the

Texas High Plains an an area of dissected caprock.

Eagleman and Lin (1976) also related SKYLAB S-194 data to soil mois- .

ture. They correlated brightness temperatures with actual soil mois-

ture samples collected in the field at times near the sensor overpass.

They reported quadratic correlation coefficients very similar to the

linear correlations of McFarland (1976). Interestingly, while many

others have presented scatter plots showing the moisture insensitive

region in the dry end of the moisture range, several of the figures in

this paper showed a similarly insensitive region in the moist end,

suggesting that there may be a minimum attainable emissivity for any

given soil.

McFarland and Blanchard (1977), Theis (1979), and Blanchard et al.

(1981) reported linear correlation coefficients exceeding 0.90 between

emissivity estimated from Nimbus-5 ESMR brightness temperatures and

soil moisture as represented by an API. They computed a normalized

brightness temperature, which they called "emissivity", by dividing the

brightness temperature by the daily maximum air temperature determined

from weather records. They found the best correlations betwen emis-

sivity and API in areas of winter wheat for the periods of near-bare

soil conditions in fall and early spring. They also noted that the

ESMR's side-to-side scan pattern, with consequent nonuniform viewing

angle, led to problems of data interpretation. Schmugge et al. (1977)

also reported a linear relationship between ESMR brightness temperature

and antecedent rainfall totals for two test areas in Illinois-Indiana
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and Oklahoma-Texas for. periods when the soil was essentially bare.

Meneely (1977) found good correaltions between ESMR 1.55 cm horizon-

tally polarized brightness temperatures and soil moisture expressed as

percent of saturation for agricultural areas during periods when the

soil had less than 40% vegetative cover. He found that additional

vegetation badly degraded the relationship, and that regional empirical

adjustments must be made to account for such local effects as soil

type. He concluded that an independent estimate of soil temperature

would be necessary. His measure of soil moisture was the model output

for the top soil zone in the Versatile Budget Model of Baier and

Robertson (1966).

McFarland and Harder (1982) found linear correaltion between emis-

sivity as defined above and soil moisture indicated by an antecedent

precipitation index (API). They further demonstrated that the scatter

in the relationship could be described probabilistically in terms of

value to classical decision theory, and that the "noisy" data could be

used successfully in a discriminant analysis method of determining the

antecedent precipitation category to which a given scene belonged.

McFarland and Harder (1983) used Nimbus-5 ESMR 'data to monitor soil

moisture for essentially bare agricultural soils. They noted that the

emissivity for frozen or snow-covered soils was distinctly different

from that of bare unfrozen soil, giving a potential to discriminate

between snow covered and bare unfrozen soils. They noted further that

the radiometer responded to the moisture stress of crops when the

canopy had developed enough to obscure the soil moisture signal, and

the vegetation response was in the same sense as the variation from
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soil moisture; thus, soil moisture conditions would be inferred from

microwave data even when the soil itself was not directly viewed by the

sensor.

Resolution of Satellite Sensors. Several authors have published

results indicating that spatial resolutions attainable from space will

be useful. Spaceborne sensors can provide resolutions of the same

order as that of the rainfall events that contribute to soil moisture

variations. Furthermore, degraded resolution does not result in less

accurate information - only less detailed information.

Hardy et al. (1981) studied the spatial variability of rainfall

amounts in order to determine the utility of hypothetical microwave -

derived estimates of soil moisture at resolutions of 10 km and 1 km.

They concluded that a 10 km sensor could adequately describe the shape

of most precipitation events, but would probably underestimate the peak

rainfall near the storm center. They also concluded that most U. S.

government agencies now using soil moisture estimates could benefit

from estimates at 10 km resolution. Although they did not report on

the ability of lower resolution microwave sensors to delineate rainfall

patterns, they did indicate that the rainfall amount at a distance of

10 km from most storm centers is greater than 50 percent of the central

value and that the gradients of rainfall amount are weak outside of 5

km radius. They also noted that currently operational soil moisture

models in government agencies use temperature and precipitation data

from reporting stations with spacing on the-order of 100 km. Thus,

sensors with a resolution of 10 to 30 km would be an improvement over

current practice.
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In fact, Schmugge et al. (1976) stated that 10 km resolution will be

feasible. They calculated that even an L-band sensor could be orbited

at space shuttle altitude (400 km) and attain a 10 km resolution if its

antenna dimensions were 10 m by 10 mi.

The effect of degraded resolution has been studied. Newton et al.,

(1982) simulated an array of three orbiting passive microwave sensors

operating in X-band, C-band, and L-band. They found that the three

sensors should have soil moisture sensitivities of respectively, -0.50,

-0.85, and -1.5 k per percent soil moisture, under the assumption that

the entire area of each sensor footprint had uniform moisture, and

under the restriction that less than 40 percent of the footprint was

forest. They found, contrary to expectations, that the sensitivity to

soil moisture increased as the simulated sensor's resolution was

degraded, and that the variability of sensitivity was greatest at a

resolution of 20 km. Resolutions of 5 and 60 km produced equal

variabilities.

McFarland and Harder (1982) demonstrated the effect of resolution,

using data from the ESMR sensor on Nimbus-5. They simulated a resolu-

tion of about 50 km, by averaging the values of emissivity and API from

five neighboring pixels. The resulting correlations between emissivity

and API were as good or better than the original correlations for data

with a resolution of 25 km, which showed that microwave data at any

resolution respond to the area-weighted average soil moisture through-

out the IFOV.

Retrieval of Geophysical Information. The most common information-

retrieval algorithm used to date has been simple linear regression,
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since the ESMR sensor had only one data channel. With the introduc-

tion of dual-polarization, multi-frequency sensing on Nimbus-7 and

DMSP, more refined techniques are being developed. In fact, the thrust

of most future research in satellite borne passive microwave sensing of

s6il moisture will be the development of better information retrieval

algorithms. Most of the newer retrieval methods that have been used

or planned for these newer satellite systems consist of some variation

on multiple linear regression analysis, by which empirical coefficients

are determined for each location and for each time of year.

Pandey and Kakar (1983) presented an efficient alogorithm for

selecting the best fixed-size subset of the ten SEASAT SMMR data chan-

nels, to be used in a multiple linear regression model for retrieval of

geophysical parameters. Their method -used a large number of model

atmospheres to circumvent the need to actually calculate multiple

linear regressions for all of the possible combinations of n data chan-

nels. They illustrated the technique with retrieval of sea surface

temperatures.

Spencer et al. (1983) employed a stepwise multiple linear regression

approach to infer rainfall rates over land in the American Great Plains

using Numbus 7 SMMR data. They found that the most useful channels

were the 0.81 and 1.36 cm bands in both polarizations. Longer

wavelengths added little to the variance explained by these shorter

wavelengths. Unfortunately, they did not report results of signifi-

cance tests. Nor did they indicate any theoretical support for a

linear model. They reported an ability to discriminate between falling

precipitation and either wet soil or water bodies on the basis of the
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difference between vertical and horizontal polarizations at the 0.81 cm

wavelength.

Burke and Ho (1981) presented a demonstration of the Statistical

Parameter Inversion Method of Gaut (1967) and Burke and Ho (1981).

They showed that the method can retrieve soil moisture for the 0-2

and 2-5 cm layers with an accuracy of about 5-6 percent for bare fields

and grass-covered fields, using both polarizations of 21 cm and 2.8 cm

microwave brightness temperatures. Their results did not improve when

they accounted for the temperature dependence of brightness temperature

by dividing the latter by the surfacetemperature. They suggested that

this unexpected result may have been caused by the longer wavelength's

response to soil temperatures deeper than the surface. One of their

appendices gave the FORTRAN source code for the SPIM program and its

subroutines. This algorithm has been selected for use with the SSM/I

sensors on the DMSP satellites. • Hoi linger and Lo (1983) reviewed

work done to date on the software for handling data from the SSM/I.

They indicated that soil moisture retrievals will use only the 1.55 cm

wavelength in both polarizations, using the SPIM developed at Environ-

mental Research and Technology, Inc., as described above. They showed

a graph of expected soil emissivity as a function of moisture content.

They gave a brief discussion of the retrieval algorithm, which they

call the "'D' matrix" method, due to the procedure of inverting a

correlation matrix.
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MATERIALS AND METHODS

Data Source

Passive Microwave Data

Computer tapes with one year's data (25 Oct 78 - 10 Nov 79) from the

Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) were provi-

ded by NASA's Goddard Space Flight Center. Nimbus-7, as described by

Gloersa and Barath (1977) and by Madrid (1978), is a polar orbiting

satellite that provides repeat coverage of each point of interest every

two or three days on average. The spacecraft views the earth on both

night and day passes, with average local observation times of about

0100 and 1100, respectively, with actual times varying as much as an

hour or two from those values. The SMMR instrument, unlike the pre-

vious ESMR, uses a conical scan method so that it views the earth from

a constant angular height about 50 degrees from the local zenith.

Brightness temperatures in both horizontal and vertical polarizations

were obtained from each of five wavelengths, of which the central wave-

length, 1.66 cm, was used in this study in both vertical and horizontal

polarizations.

The data tapes also provided the nominal latitude and longitude of

each IFOV. These coordinates were assumed 'accurate. Spencer et al.

(1983) did find sufficient control points in their SMMR analysis area,

but the largest registration error they found was no more than one

18x27 km IFOV of the 0.81 cm sensor. Since the IFOV for the 1.66 cm
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data used in this study was 41x55 km, such positioning errors were

assumed negligible.

Climatic Data

Tapes of weather data were purchased from the National Climatic Data

Center. Climatic data extracted from the tapes were daily values of

maximum and minimum temperature, total precipitation, snowfall, and

snow depth, from stations in the cooperative observing network.

Ancillary Data

Copies of National Weather Service weather radar summary charts were

obtained for all SMMR overpass times, for use as a screening file to

infer possible contamination of the soil moisture signature by precip-

itating clouds. USGS topographic and land use maps were used, along

with reported crop production statistics, to select locations for case

studies of individual time series plots.

Data Base Preparation

Objective Analysis of SMMR and Climatic Data

Two study areas were defined, with data windows and analysis grids

as shown in Fig. 2. The data windows were the areas within which any

data present were used in the analysis. The analysis grids were

defined with 20 km square grid cells arrayed in 35 rows of 40 columns.

Each grid cell was identified by its row and column number. Rows were

numbered from 1 to 35, from the top, and columns were numbered from 1

to 40 from the left. Each study grid was a polar stereographic map

projection.
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SPECIFICATIONS

20-KM GRID NORTH SOUTH

STANDARD
LATITUDE 46.0
LONGITUDE -100.0

NW CORNER
LATITUDE
LONGITUDE

48.8
-1065

37.0
-100.0

39.8
-104.0

DATA
WINDOW

MAX LAT
MIN LAT

MAX LON
MIN LON

NORTH SOUTH

50.0
42X)

-95.0
-107.5

41.0
33.0

-94.0
-105.0

Figure 2. Definition of study areas for database development. Standard
latitude is that for which the scale is true. Standard
longitude is a reference value near the center of the grid.
"NW Corner" refers to the coordinates of the center of the
grid cell at row 01, column 01. Data windows are the areas
within which SMMR and climatic data were used to derive
objectively analyzed fields for the grids.
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This investigation was restricted to data from the southern area, which

is shown in detail in Fig. 3.

SMMR and climatic data were analyzed objectively to these two grids,

using an algorithm similar to that of McFarland and Blanchard (1977).

This method used an exponential weighting function to interpolate near-

by observations to the center of each grid cell. Separate shape para-

meters were selected, by trial and error, for brightness temperatures,

air temperatures, and the precipitation variables, to minimize unneces-

sary smoothing of the data fields while avoiding holes in regions of

sparse data. Further details of the analysis algorithm have been

reported by Harder and;McFarland (1984).

The output SMMR map.files were structured in ten-channel band-inter-

leaf format. That is, the first record had 40 bytes representing the

40 brightness temperatures of the northernmost row for the first chan-

nel (0.81 cm, horizontal polarization); the second record represented

row one for the second channel, etc. The entire file comprised 350

records, representing 10 channels for each of 35 rows of pixels. Each

byte held one brightness temperature, expressed in kelvins (minus 180)

as an integer between -128 and +127 inclusive, with the value of -128

representing missing data.

The output climatic data map files were structured in five-channel

band-interleaf format, with the following channels: maximum tempera-

ture, minimum temperature, precipitation, snowfall, and snowdepth. As

for SMMR data, values were stored on-per-byte, with temperature

expressed in degrees Celsius multiplied by 2.5, precipitation expressed

as millimeters minus 126 and the snow variables as centimeters minus
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Figure 3. Detail of the southern study area. The locations of
case study grid cells are darkened.
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126. All values were rounded to the nearest integer, and the value of

-128 reserved for a missing data indicator.

Antecedent Precipitation Index

An API was computed using an algorithm from McFarland and Blanchard

(1977). The model was defined as :

API(i) = k* API(i-l) + P(i)

Where k = depletion coefficient (9)

P = effective precipitation

The depletion coefficient was defined here as a sinusoid with a maximum

value of 0.92 occurring on 1 February and a minimum of 0.70 occurring

on 1 August. This range of K-values was arbitrarily selected for con-

sistency with McFarland and Blanchard (1977). The effective precipita-

tion was computed by raising the .precipitation, in millimeters, to a

power of 0.891, following Blanchard et al. (1980). This formulation of

API thus represents the land-use, drainage, and meteorological condi-

tions in Oklahoma where the work of McFarland and Blanchard (1977) and

Blanchard et al. (1980) was done. For those days when snow depth was

nonzero, API was held constant and all precipitation was assumed to

accumulate as snow cover. On the first date with zero snow depth, the

accumulated precipitation was added as effective precipitation, again

using Blanchard's exponent. The API was initialized at a value of 50

mm for 1 July 1978, more than 100 days prior to the first SMMR data.

Map files of API were prepared for all dates from 1 July 1978 to 11
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November 1979. The format of each file was similar to that of the SMMR

and climatic map files, except that API map files had only one channel

of data.

Prospective Microwave Indices of Soil Moisture

Fifty four functions of Microwave brightness temperatures, surface

temperature, and/or day of the year were identified as possible indica-

tors of soil moisture. These prospective indices are summarized in

Table 1. Indices in the first group (<)>! through (t>18) were suggested on

Table 1. Prospective Indices of Soil Moisture.

$0! = [si n(B* (DAY-DO)) + 1.0]
+02 = HI
+ 03 = "hJ

+ 05 " VT]

+ 07 = LTy-Th J .
+ 08 = LTv-Tn )/U

-Th /ThlJ
J+10 = v-

+ 11 = [2.0*(Tv-Th)/(VTh)3

* 3 - CVTh)/(2.0*T)]

+ 15 = CVTh)/(2.0*Tv]
+ 6 = CVTh)*2.0*T/(VTh)]
+ 17 = CVTh)*2 iO*Tv/(VTh)3
+ 18 - CTv-Th)*2.0*Tv/(VTh)]
+ 18 to +36 = sqrtC^i to 4,
+37 to +su = square[^01 to

B = 2n/365
DO = 32.0 + 365.0/4.0
DAY = Day of year (1-365)
T = Temperature
Tfo = H-polan'zed Brightness Temp
Tv = V-polarized Brightness Temp
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the basis of theory or previous experiment, and each incorporate one or

more model coefficients to be derived empirically. The other indices

listed are the square root or square of one of these basic indices.

These indices were numbered, for reference, and were called "phi"

indices, represented either by the Greek letter $ and a subscript, or

by the Roman letters "PHI" followed by a Number.

<j>, a sinusoidal function of the day of the year, was included in

case the soil moisture time series turned out to be partially composed

of a simple cyclic function as a result of seasonal variations of pre-

cipitations and potential evapotranspiration. i

<l>02» <t>03» and •f'O't are siroply the thermodynamic temperature of the

air and the horizontally and vertically polarized brightness tempera-

ture. <|>05 and $06 are temperature normalized forms of the horizontally

and vertically polarized brightness temperatures. These functions, as

noted by McFarlarid and Blanchard (1977), represent approximations of

the horizontally and vertically polarized emissivity of the emitting

layer. They will be termed "emissivities" here.

<j>07 is the simple difference between the polarization components and

is termed here "polarization" or "polarization difference". $08, <j>09,

i|>10, and (j)llt are various normalized versions of this index.

$12, is the mean of the the polarized components, and (j>13, <j>14, and

ij)15 are normalized' forms of 412. <|>i6» 4>i7» an<^ $18 are the ratios of

the polarization difference to various normalizations of the mean of

the two polarized components. Conceptually, these indices are ratios

of polarization to various indices of emissivity.
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Analysis Methods

Temporal Analysis

Statistical analyses of data in the time domain were performed for

the ten case study grid cells shown in Figure 3. These grid cells are

also listed in Table 2.

TABLE 2

Case Study Grid Cells

ROW

09

03

10

12

13

14

15

18

29

21

COLUMN

29

29

33

27

20

33

29

27

22

14

LAND USE

Agriculture

Agriculture

Range

Mixed Ag, Range,
Water

Mixed Ag, Range

Range

Agriculture

Agriculture

Agriculture

Agriculture

STATE

KS
KS

KS
KS

KS

.KS

KS
KS

KS

KS

OK

OK

TX

COUNTY

McPherson
Marion

Cloud
Clay

Chase

Reno

Edwards
Kiowa

Elk

Sumner

Grant

Kiowa

Ochiltree

1980 WHEAT AREA

45%
27%

36%
29%

6%

42%

28%
22%

5%

66%

65%

41%

42%

41



Wheat areas listed are county land area percentage planted to non-

irrigated winter wheat, computed from county land areas and crop acre-

ages reported in the county agricultural statistics published annually

by the state Crop and livestock Reporting Services.

These wheat acreage data are presented graphically in Figure 4. A

single grid cell, located at Row 9, Column 29, was selected for initial

screening. This grid cell was selected on the basis of its predom-

inantly agricultural land use and the moderately high wheat area frac-

tions of the two surrounding counties. Three of the fifty-four indices

were chosen as a result of analysis of data from this single grid

cell. These three indices were then tested on six additional grid

cells in Kansas. These grid cells were chosen to represent a range of

land use types and were separated by at least two grid cell widths,

since the SMMR sensor IFO was approximately equal in area to four grid

cells. Finally, observations from these analyses were verified using

independent data from the last three grid cells, located in Oklahoma

and Texas. These three grid cells were chosen on the basis of their

high wheat area fractions.

Time domain analyses were performed for each of several seasons, as

well as for the entire year. The year was divided into five seasons of

61 days each, followed by one season of 60 days. These seasons were

referred to by number, from 1 to 6. They were also identified by

month, season 1 corresponding roughly to January and February, season 2

to March and April, etc. When analyses were done for the entire year,

the period was denoted "Season 0 (Full Year)". Analyses methods con-

sisted of simple and multiple linear regression, including principal
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SOUTHERN STUDY AREA

LEGEND: RESP

Figure 4. 1980 county land area fractions planted in dryland
wheat for Kansas, Oklahoma, and Northwest Texas.
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component analysis.

In all cases, the regression analyses were accompanied by calcula-

tion of two-way contingency tables. Three categories of API were

defined, as follows:

CAT1: [ N API < 10 mm]

CAT2: [ 10 mm <= API < 20 mm]

CAT3: [ 20 mm <= API ]

These categories were defined arbitrarily, to demonstrate the indices'

skill in categorical estimation. Tables were constructed to show the

frequency of occurrence of the nine different combinations of API

categories and estimate of API from the regression models. For each

such table, the fraction of correct model-estimated categories was

computed and expressed as percent correct.

The results of the temporal analyses were presented graphically in

two ways. Scatter plots were prepared, using a standard presentation

with API on the vertical axis and model estimate of API on the horizon-

tal. This method allowed a common graphical appearance for the dif-

ferent indices, which would not have been possible using the more com-

mon presentation with the independent variable on the horizontal axis.

Additionally, time series plots were prepared, showing the temporal

variation of both API and model estimate of API.

Correlation coefficients were compared using the Fisher Z1 trans-

form described by Brooks and Carruthers (1953). Specifically,

z< =
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where r is any correlation coefficient. This Z' statistic has an

approximately normal distribution, with standard error given by

where n is the number of observations from which the correlation coef-

ficient was computed. These equations can be used in two ways. First,

a value of Z1 can be compared with zero to determine whether a regres-

sion has statistical significance. Second, given one correlations

coefficient, a confidence interval on Z1 can be constructed, and the

limiting values can be transformed back to correlation coefficients

using the inverse of (10):

- expexp
Spatial Analysis

Spatial analysis consisted of visual comparison of maps of rainfall

generated API and maps of API estimates from regression models. This

imagery was prepared for illustrative purposes, and is not subjected to

rigorous statistical tests. The regression model API images were

generated with regression coefficients computed for each individual

grid cell. For grid cells where the correlation coefficient was

statistically insignificant, the resulting image data holes were

filled by using the average of model coefficients for the entire area.

The validity of this hole-filling strategy was verified subjectively

by comparison of the resulting spatial1 patterns with the API
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map. An additional set of images was produced using the area mean

coefficients at all pixels. Both sets of imagery were produced for

seasonal as well as annual regression models. The validity of this

method, too, was checked subjectively by inspection of the patterns

produced. Finally, the correlation coefficients were displayed as

images. A sample case study for 10 May 1979 is reproduced here.
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ANALYSIS AND DISCUSSION

Temporal analysis

Temporal analyses consisted of simple linear regressions, prin-

cipal component analyses and multiple linear; regression. The analysis

proceeded in three phases. Initial screening used a single Kansas grid

cell selected for its moderately high wheat acreage. The three indices

selected in this first phase were then tested on six additional Kansas

grid cells representing a variety of land use types. Finally, the con-

clusions from the second phase were verified using three independent

grid cells in winter wheat regions of Oklahoma and Texas.

Phase I: Initial Screening

The first results are summarized in Table 3 from data presented in

the appendix, tables D-l through D-6. These tables were prepared for

the entire year (Season 0) and for Seasons 2 through 6. Season 1 had

insufficient data for analysis. Table 3 shows the correlation coeffic-

ients from the regressions of API upon each of the first 18 <$, indices.

Tables D-l through D-6 additionally show the minimum significant abso-

lute-value correlation coefficient and the interval [L,U] corresponding

to the lower and upper bounds of the 95 percent confidence interval on

Fisher's Z1 transform.

The square-root and squared indices are not shown in Table 3,

because they performed no differently than did their respective basic

indices. In every case, the coefficients of the square-root and
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TABLE 3

Correlation Coefficients Between API
and Indices- South, Row 09, Column 29.

SEASON

<(,,

<J>2
4*3
<K

^c
u) ^

(t) Q

(fig

"("lO

< f > 1 2

<J>13

< f > i 5

4>17

0
-0.37*
-0.25*
-0.70*
-0.59*
-0.81
-0.72*
0.75
0.74
0.76
-.76
0.76

-0.66*
-0.80
0.76

-0.76
0.77
0.75
0.75

2
-0.93
-0.10*a
-0.87*
-0.72*
-0.96
-0.89
0.93
0.93
0.93
0.93
0.93

-0.82*
-0.95
0.93

-0.93
0.93
0.93
0.93

3
-0.33*a
-0.40*a
-0.55
-0.39*a
-0.35*a
-0.05*a
0.76
0.79
0.78
0.78
0.78

-0.48*
-0.17*a
0.78

-0.78
9.76
0.76
0.76

4
-0.20*a
-0.10*a
-0.58
-0.36*a
-0.81
-0.47*

0.72
0.72
0.74
0.73
0.73

-0.49
-0.72

0.74
-0.73

9.73
0.71
0.72

5
-0.26*a
-0.14*a
-0.70
-0.62*
-0,82
-0.83
0.70
0.70
0.73
0.73
0.73

-0.67
-0.84
0.73

-0.73
9.73
0.69
0.70

6
+0.04*a
-0.69*
-0.90
-0.80
-0.85
-0.57*
0.80
0.82
0.82
0.82
0.82

-0.87
-0.80
0.82

-0.82
0.81
0.81
0.80

size 102 17 18" 20 27 19
a - correlations were not significant at the 0.05 level.
* - correlations that differed significantly, at the 0.05 level, from

the highest absolute value in the column.
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squared indices were well within the interval [L,U] of the basic

index. Subsequently, only the first 18 $ indices were considered.

These remaining 18 <j> indices were grouped into three performance

categories: weak, moderate, and strong.

The first category, that of weak performance, was assigned to <(>01

and <j)02 which had correlations with API that were insignificantly

different from zero in the majority of Seasons 2 through 6. In Season

0, correlation coefficients were statistically significant, but they

explained very little variance.

The second category, that of moderate performance, was assigned to

the unnormalized brightness temperatures, 4>03 and <j>olt, to their mean,

4>12, and to the vertically polarized emissivity, <j)06. These results

were consistent with theory presented previously. Since soil moisture

content is related to emissivity through the Fresnel reflection

coefficients, and since the Rayleigh-Jeans approximation allows emis-

sivity to be expressed as the ratio of brightness temperature to ther-

modynamic temperature, the unnormalized brightness temperatures should

not indicate moisture as well as would an appropriately normalized

brightness temperature. Thus, air temperature is seen to be a useful

approximation to the emitting layer temperature, as stated by McFarland

and Blanchard (1977). The inferior performance of the vertically

polarized emissivity can be explained by the fifty-degree viewing angle

of the sensor, very near the Brewster angle at which the vertical com-

ponent peaks regardless of dielectric constant. The vertical component

is thus constrained to be less sensitive to soil moisture content than

the horizontal component, which is unaffected by the Brewster angle.
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The remaining 14 $ indices comprised the category of strong indices.

Of these, the best was usually <}>05, the horizontally polarized emis-

sivity used by McFarland and Blanchard (1977). None of the other

indices' correlations with API were significantly different in annual

analysis, but they exhibited more variability in the seasonal analys-

es. In fact, the "best." annual index, <j>05, was again the best in Sea-

son 2 and one of the worst in Season 3. In the other seasons, it was

not very different from its annual value. In Seasons 5 and 6, when it

was not "best", it was insignificantly different from the best. This

erratic performance was duplicated by $13, the mean of <j>05 and <j>06.

The other indices, whether including or excluding the ground-sensed

temperature, showed somewhat more stable performance annually and in

seasonal analysis, and frequently had correlation coefficients numer-

ically lower than that of <f>05» but never significantly so.

Another observation was that several of the correlation coefficients

for individual seasons were higher than for the year as a whole. For

instance, the correlation coefficient for $05 was -0.81 in annual

analysis, but -0.96 in Season 2. Figure 5 shows the annual and season-

al correlation coefficients for regressions of API upon each of three

of the stronger indices. These values are plotted as heavy dots. The

vertically oriented boxes depict, by their widths, the correlation

values corresponding to the 95% confidence limits of the Fisher Z'

transform. Similar confidence limits are shown by horizonal lines for

each of Seasons 2 through 6. In most cases, annual and seasonal

correlations are indistinguishable.

This point is further illustrated by the Z1 transform values

50



«- o

o
o-

0.

o
CO'

o.

8-
o
w

o

0.
CO

8-
o.

°.
1

o
CM"

1

o.
CO

1

o.
1̂

S-
0.
co

1

o.

o.
CO

o
O)

o
t

L_~

1 —H
II
1

0
w

r
CT p

p

*

I
T

CM

C

o

If

' ^

cp

1

e\

o

1

—

• rt

t

p*
i

n
I-

Ck
\7

CM

T to
UJ A -

••* T T •»«,

I

(

*

*

in TV

t i

o

{ 1

1 1 1 1
1

•*•

•^ «

^^ I ^
1 .—^

K. i 3C
^M

| 4*

^ • ^

ife

nv-

^^\
^ r̂

*

• o

V)

on
 

N
u
m

b
e
r

£O

CO
o
0)

-~

^
o
0

2 S £ 1 3 o a
*" u. < -» < O O
, 1 1 . I I

_j r 5 >. _, Q. >
3 < < < 3 LU O
u. -> S S T c/> z

1 1 1 1 1 1 1

o T- CM to <cr in ID

|

(U </i >,

•° ^.IS
-O ui irt

.0 ^ S C
L- 1~

in cr> a>
O 4-> CD .C

'CD c i. -M
QJ 3

_ -r- U 0
• P 0 O tO
^ -r- li-

lt- •>
O •** *- «<T>
CO O <U E CNJ

^» O S-
_ O o o c

.0 i»- E
"> '^ C W 3

X ° c •—
O •»— » -r- lO O

•*t 4-> (- O
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themselves. For instance, the Z1 value for 4>05 was eleven standard

errors different from zero in annual analysis. It was only seven

standard errors from zero in Season 2. It would be consistent with

theory if these indices performed better in early spring before the

establishment of a dense vegetation canopy, Nevertheless, it would

be difficult to conclude from these data alone that seasonal analysis

is definitely more useful than annual analysis. This point will be

illustrated later, with reference to the scatter plots of time-series

data.

The next step added multiple linear regression and principle compo-

nents analyses and was restricted to thirteen of the eighteen basic

indices. Specifically included were indices <f>0 i, <|>02» and 4>os through

<t>15. This list included strong, moderate, and weak indices, in case

the weaker indices might be found to respond to soil moisture informa-

tion absent in the stronger indices. The annual and seasonal multiple

linear regressions of -API on these indices failed due to ill-condi-

tioned matrices. The decomposition into subsequent multiple regression

on the first four components failed, again due to ill conditioned

matrices. Table 4 shows the Season 0 variance-covariance matrix, which

indicated that the strong indices were very well correlated with each

other; hence they could not be expected to differ significantly in

their information content. Subsequent analyses eliminated many of

these indices for that reason.

The next run was restricted to only five indices: AGINGS' 4>06»

<|)07, and <!>!!. The results for Season 0 (full year) are summarized in

Table 5. The multiple regression did not improve the correlation over
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TABLE 4

Variance-Covariance Matrix for 13 Indices,

Season 0, Row 09, Column 29

PHI
INDEX

01
02
05
06
07
08
09
10
11
12
13
14
15

PHI
INDEX

1
0
0
0
-0
-0
-0
-0
-0
0
0
-0
0

.0

.6

.5

.3

.6

.6

.6

.6

.6

.7

.4

.6

.6

01

1.0
0.2
0.0
-0.4
-0.5
-0.4
-0.4
-0.4
0.8
0.1
-0.4
0.4

02

1.0
0.9
-0.9
-0.9
-0.9
-0.9
-0.9
0.8
1.0
-0.9
0.9

05

1.0
-0.6
-0.6
-0
-0
-0
0
1

-0
0

.6

.6

.6

.5

.0

.7

.6

06

1.0
1.0
1.0
1.0
1.0

-0.8
-0.8
1.0
-1.0

07

1.0
1.0
1.0
1.0

-0.8
-0.8
1.0
-1.0

08

1.0
1.0
1.0

-0.8
-0.9
1.0

-1.0

09

1.0
1.0

-0.8
-0.8
1.0

-1.0

10

1.0
-0.8
-0.8
1.0

-1.0

11

1.0
0.7 1.0

-0.8 -0.9 1.0
0.8 0.8 -1.0 1.0
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TABLE 5

Temporal Analysis of Five Indices
South Area, Row 09, Column 29

Season 0

MULTIPLE CORRELATION COEFFICIENT: 0.83

REGRESSION COEFFICIENTS:
PHI_01: 0.551
PHI_05: 41.8
PHI_06: -25.2
PHI 07: -6.15
PHI~11: 37.6
INTERCEPT: 8.76

PRINCIPAL COMPONENTS ANALYSIS:

PROMINENT EIGENVECTORS:

1: O.li O.^O5 O.lf -0.49 -0.
2: 0.80 -0.23 -0.55 -0.08 -0.07
3: 0.51 0.05 0.59 0.46 0.42

VARIANCE-COVARIANCE MATRIX:
INDEX $i <j>Q5 (j>05 <j>07 4>j

d) Q | 1 . U

4> 0 5 0.5 1.0
<|>06 0.3 0.9 1.0
<t>07 -0.6 -0.9 -0.6 1.0
$u -0.6 -0.9 -0.6 1.0 1.0

FACTOR LOADINGS:
$91 ^°5 4*06 "fro? "I'll

1: 0.64 0.98 0.80 -0.96 -0.96
2: 0.70 -0.20 -0.48 -0.07 -0.06
3: 0.31 0.04 0.36 0.28 0.26

MULTIPLE REGRESSION ON 3 PRINCIPAL COMPONENTS:

MULTIPLE CORRELATION COEFFICIENT: 0.82

SIGNIFICANT (AT ALPHA=0.05): EIGENVECTOR 1
EIGENVECTOR 2

MULTIPLE REGRESSION ON 2 SIGNIFICANT COMPONENTS:

MULTIPLE CORRELATION COEFFICIENT: 0.82

REGRESSION COEFFICIENTS: EIGENVECTOR 1: -4.66
EIGENVECTOR 2: 2.47
INTERCEPT: 8.76
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any of the single linear regressions of the previous analysis. This

suggested that any possible improvement to the coefficient of 0.82 was

no worse than that of the previous analysis with five indices. Conse-

quently, any soil moisture information present in weaker indices but

not shared by the strong ones must be inaccessible to a simple linear

combination algorithm. Again, the strong indices were well correlated,

as indicated by both the variance-covariance matrix and the factor

loadings. The two significant eigenvectors do not add to the explana-

tion of the variance. The first merely restates the equivalence of

the three strong indices. The second depends heavily on the two weak

indices, neither of which is singly important in estimating API.

Finally, the multiple correlation coefficient from the regression of

API on the two significant eigenvectors did not differ from the simple

correlation coefficient from <j>5. Subsequently, the multiple regression

and principal component analyses we're omitted.

The annual regression analyses for row 09, column 29, have been

illustrated graphically in Figures 6, 7 and 8. These are scatter plots

showing points plotted at coordinates given by the API and the regres-

sion model estimate of API. On these graphs, a diagonal line has been

drawn for reference. Some care must be taken in interpreting these

graphs. The diagonal line is the one-t'o-one ratio line, not the

regression line. Furthermore, the abscissa is not the independent

variable, ^; rather, it is the regression model estimate of API.

This format was adopted to enable direct comparison of graphs for the

three separate indices. Similar graphs for Seasons 2 through 6 are

shown in Appendix A.
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MODEL: -253(TH /T) +232

ROW: 09 COL: 29 I SEASON: O/FUU. YEAR

90-

E
E

80-

70-

60-

50-

40-

30-

20-

10-

10 20 30 40 50 60 70

Model Estimate of API (mm)

Figure 6. Regression of API of *t season 0, row 09, column 29,
south area.
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MODEL: 1.44(TV - TH) - 7.6

ROW: 09 COL: 29 SEASON: O/FULLYEAR

0.56

= 102

0 10 20 30 40 50 60 70 80

Model Estimate of API (mm)

Figure 7. Regression of API of $;, season 0, row 09, column 29,
south area.

57



MODEL: 335(TV-TH)/(|(TV+TH)) - 6.0

ROW: 09 COL: 29 SEASON: 0/FULL YEAR

R = 0.58

N= 102

Model Estimate of API (mm)
70 80

Figure 8. Regression of API of *,, , season 0, row 09, column
29, south area.
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Several points can be made from these graphs. First, as for the

numerical evaluation, all of the three indices seem to perform equally

well. Second, all of the indices have a tendency to underestimate the

API in the aftermath of a heavy precipitation event. This behavior is

seen in an anomalous point in the upper center of Figures 6-8. This

point represents a heavy rain event that was recorded at many stations

in the grid, some reporting more than 14 cm of precipitation over two

days in October, 1979. The resulting underestimate of API is consis-

tent with the very shallow sampling depth of the SMMR sensor. Its soil

moisture signal saturates at low values of API. Finally, the sparsity

of the scatter points on the seasonal graphs suggests that the seasonal

analyses may not be quite reliable, even though they have significantly

higher correlation coefficients in some cases. Figure A-4, for

instance, shows only low values of API and a single heavy rainfall

event. This season may be getting' much of its apparent correlation

from two well-separated clusters; a common source of faulty conclu-

sions in regression analysis.

Time-series plots of the data are shown in Appendix B. Each series

shows a solid line representing the API values computed from climatic

data. These series can be compared to the regression model estimates,

which are shown as dots. Both annual and seasonal models are shown,

and the seasons are demarcated along the top of each graph for

reference. Since this entire project has considered only data from

days when snow cover was estimated as zero, and since the presence of

snow on the ground produced a transient anomaly in the API model, the

days of snow cover have been indicated along the bottom margins.
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The time-series plots illustrate some of the same phenomena.

Specially evident is the tendency to underestimate the magnitude of

heavy precipitation events. For instance, in Figure 11, the values on

days 140, 188, and 304 of 1979 show this effect, as do the same days in

Figures B-2 and B-3. These plots also show the relative value of the

annual and seasonal regression analyses. While the root-mean-square

error of the seasonal regressions tended to be lower than that of the

annual regressions, the difference was not particularly noticeable in

time-series plots. In fact, there were times, such as days 120 to 130,

140 to 150, and 160 to 170 of 1979, when the annual model seems to fol-

low the shape of the API line better than did the seasonal model; the

seasonal model was closer to the line, but showed the wrong trend. For

some applications, such as rainfall estimation, in which the daily

change of API is more important than the actual value, this distinction

could be crucial.

While the many contingency tables generated for this study cannot

be reproduced here, a few are included for illustration. Table 6

shows the contingency tables from the screening grid cell, row 09,

column 29, for the full year's analysis. These tables demonstrate the

skill of the three microwave indices in making categorical estimates of

soil moisture. Any differences between the contingency tables are not

compelling.

Phase II: Tests of Three Indices

The three indices used in the final analysis of Phase I were select-

ed for further examination using data from six other grid cells in
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Kansas. These grid cells are shown in Figure 3, and listed with their

land-use classification and wheat area percentages in Table 2. The

indices tested in Phase II were <j>05, 4>07, and $ l l t one index of emis-

sivity and two of polarization.

Linear regressions of API upon each of these indices were performed

for all seasons and the full year. Results are presented in Appendix E

and summarized in Table 7. The results of the Phase I grid cell (row

09, column 29} are included for comparison. Several observations can

be made.

First, each of the three indices was significantly correlated to

API in Season 0, the full year, for all of the grid cells. However,

in the seasonal analyses, each of the indices failed to correlate sig-

nificantly in at least some times and places. The statistics that do

not differ significantly (alpha=0.05) from zero are underlined in the

table.

Second, in most cases in which any two indices were significantly

correlated with API for the same season and the same grid cell, the

Fisher Z1 transforms of the two correlation coefficients did not differ

significantly from each other. The exceptions to this observation are

surrounded with brackets wherever they occur in the tables. On the

whole, however, each index is approximately as good an indicator of API

as either of the other two.

Third, two grid cells that were classified as rangeland have the

poorest correlations. It appears that rangeland vegetation interferes

with the microwave signature of soil moisture more than does the

vegetation of cultivated croplands. One reason for this phenomenon
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TABLE 6

Sample Contingency Tables
South Area, Row 09, Column 29, Season 0

PHI 05:

PHI 07:

PHI 11:

APICAT
OBSERVED
CAT 1
CAT 2
CAT~3

APICAT
OBSERVED
CAT 1
CAT 2
CAT~3

APICAT
OBSERVED
CAT 1
CAT 2
CAT 3

MODEL ESTIMATE
CAT 1 CAT 2 CAT 3
66 I 0
6 12 4
1 2 8

MODEL ESTIMATE
CAT 1 CAT 2 CAT 3

66" 2 1
8 11 3
0 2 9

MODEL ESTIMATE
CAT 1 CAT 2 CAT 3
64 4 1
8 11 3
0 2 - 9

% CORRECT = 84

[ API < 10 mm ]
[ 10 mm <= API < 20 mm ]
[ 20 mm <= API ]

% CORRECT = 84

[ API < 10 mm ]
[ 10 mm <= API < 20 mm ]
[ 20 mm <= API ]

% CORRECT = 82

[ API < 10 mm ]
[10 mm <= API < 20 mm ]
[ 20 mm <= API ]

MULTIPLE
LINEAR
REGRESSION: APICAT MODEL ESTIMATE

OBSERVED CAT 1 CAT 2 CAT 3
CAT 1 6F I 0
CAT~2 8 11 3
CAT 3 1 1 9

% CORRECT = 84

[ API < 10 mm ]
[ 10 mm <= API < 20 mm ]
[ 20 mm <= API ]
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could be the area coverage of the vegetation. In range areas of Kan-

sas, a nearly uniform vegetal cover extends unbroken for many miles.

Agricultural regions, on the other hand, have many bare soil areas,

such as roads, plowed fields, open spaces between crop rows, etc.

Additionally, some crops, such as wheat, may have individual plant

geometries which permit relatively unimpeded passage of microwave radi-

ation during some seasons such as the few weeks after emergence.

Finally, the seasonal behavior of the correlation coefficients,

while not conclusive, is nevertheless consistent with theory. Strictly

monocultural areas, whether planted in wheat or in grassland range,

should show a drop in correlation coefficient during those seasons when

the vegetative canopy is most dense. This effect was seen in Seasons 3

and 4 for the rangeland grid cells and for the final agricultural grid

cell, which was located in the heart of the most dense wheat cropping.

The mixed agricultural and range grid cells and agricultural grid cells

with only moderate wheat percentages did not show this late spring and

summer drop in correlation, presumably because the presence of other

crops with different development cycles insured the nearly continuous

presence of enough bare ground to effect a sensor response to soil

moisture variations.

Phase III: Verification with Independent Data.

The same three indices, <|)05, $07, and $n, were tested on data

from three grid cells in the winter wheat producing regions of Oklahoma

and Texas. The results are presented in Appendix E, Tables E-8 through

E-10, and summarized in Table 8. These results are substantially the
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same as those of Phase II. Annual correlations were all significantly

different from zero, with values ranging from about 0.60 to 0.70.

Seasonal correlations were more varied, with the highest exceeding 0.90

while some values were Insignificantly different from zero. In annual

analysis, the performance of the three indices was statistically indis-

tinguishable. The same behavior was typical in seasonal analysis.

Again, the grid cell with high wheat percentage showed poorer correla-

tions in Spring and Summer, while the other two grid cells with

moderate wheat percentages were not so strongly affected.

The near equivalence of the emissivity and polarization indices is

illustrated in Figure 9 which shows the annual and seasonal scatter

plot of <{>o7=Tv~Th versus 4>os=Th/T for the grid cell at Row 18,

Column 27, in Grant County, Oklahoma, a nearly monocultural winter

wheat region. Similar seasonal plots are presented in Appendix C.

These graphs cluster tightly into a linear pattern with increased dis-

persion at the high values of Tn/T. This dispersion at the dry end

of the soil moisture range can be explained by the increased relative

importance, in the absence of water, of such other emission factors as

soil roughness, vegetation cover, effect of wind on canopy geometry,

etc., as well as by the effects of deeper layers of moisture not

directly related to the API. The Season 3 plot also shows the reduced

sensitivity of microwave indices to soil moisture under a well devel-

oped canopy.

Spatial Analysis

A case study from 10 May 1979 illustrates the spatial analysis
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3O
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I- 10-

-10

Season 0
Row 18
Col 27

FULL
YEAR

0.7 0.8 0.9

M'
Figure 9. Scatter plot of emissivity and polari-

zation indices, season 0, row 18, column 27
south area.
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performed in this study.

Correlation Maps

Seasonal and annual correlation coefficient maps were generated

showing results of simple linear regressions (in the time domain) of

API on each of $05, <J>o?» anc* 4>ii» for each grid cell. The Season 3

correlations are shown in Figure 10, and the annual correlations in

Figure 11. THe brightest pixels in both figures had correlation coef-

ficients insignificantly different from zero (at alpha=0.05), while the

darkest pixels showed high correlations, some exceeding 0.90 in season-

al analysis.

Both figures showed areas of weak correlation in the mountains of

Southeastern Oklahoma, in the Flint Hills of east-central Kansas, and

in the high plains of Colorado. These low correlations are consistent

with the forests of Southeastern Oklahoma and the rangeland of the

other two areas.

The other patterns were related to the development cycle of winter

wheat. First, much of the winter wheat region shows very low correla-

tion between API and any of these indices during Season 3. These low

correlations can be explained by the dense canopy of wheat fields in

May and June. On the other hand, the annual correlation maps show high

values for the annual regression analyses. In fact, the annual cor-

relation maps strongly resemble the 1980 map of wheat area percentage,

in Figure 3. This result is .attributable to the essentially bare soil

surface of winter wheat lands during major portions of the year.
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Two further observations can be made from these images. While the

seasonal correlation maps had higher maximum values than did the

annual correlation maps, the latter had far fewer pixels with insig-

nificant correlation. Finally, the areal patterns of correlation for

all of the three indices were very similar.

Soil Moisture Maps

Images of model-estimated API were generated with model parameters

from the same regression analyses that were used to produce the cor-

relation maps. For comparison, maps of precipitation and resultant API

are shown in Figure 12.

Figure 13 shows three maps of model-estimated API, produced from

seasonal regressions of API on «j>05, $07, and (ĵ. Model parameters

for pixels with insignificant correlation were replaced by area average

values. In Figure 14, all API estimates were generated using the area-

mean values of regression parameters. The same sequence of maps pro-

duced from a per-pixel and area-mean parameters of annual regression

models is shown in Figures 15 and 16.

Several observations can be made from these images. First, all of

them succeeded in showing the major features of the API map in Figure

12. The process of remapping SMMR's conic-scan data to a rectangular

grid did not destroy the spatial pattern. Second, seasonal model im-

ages of Figures 13 and 14 tended to depict the high values of API more

accurately than did the annual models of Figures 15 and 16. Third, the

emissivity tended to show high values of API more accurately than did

either of the polarization indices. The low values, on the other hand,
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were imaged better by the polarization indices. Compare, for example,

two dry features of the API map with their counterparts in the model

estimate images. The largest very dry area is shown in the Texas Pan-

handle on the API map, Figure 12, which also shows a weaker dry axis

trending northeastward through central Oklahoma and eastern Kansas.

The emissivity images reversed this pattern, depicting the Kansas-

Oklahoma dry axis as broader and dryer than the Texas dry region. The

polarization images derived from per-pixel regression parameters did

not make this erroneous reversal. Finally, the images produced from

area-mean parameter values preserved the general features of the API

map in spite of their not accounting for site-specific properties, such

as soil type, topography, land use and vegetation.
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SUMMARY AND CONCLUSIONS

Summary

The major purpose of this research is to find ways to extract soil

moisture information from the 1.66 cm polarized channels of the SMMR

sensor. Using API as ground control data, this capability has been

demonstrated for three microwave indices in winter wheat areas of Kan-

sas, Oklahoma, and Texas. API estimates can be obtained from passive

microwave data in areas with essentially bare soil for appreciable

periods of the year. Consequently, these methods are useful in many

monocultural areas, especially in winter wheat regions. They are less

useful in forested areas and in dry climates where factors other than

soil moisture can dominate the microwave signature of the soil and soil

cover. Quantitative soil moisture estimates can be obtained from

either emissivity or polarization data.

Conclusions

Soil moisture information can be derived from emissivity

estimates. Specifically, an index computed by dividing the horizontal-

ly polarized brightness temperature by the air temperature is well cor-

related with API. Using data from the entire year, correlation coef-

ficients typically exceed 0.80 in winter wheat areas. When analysis is

restricted to the shorter periods of individual seasons, these correla-

tion coefficients may exceed 0.90 in winter wheat areas during sea-

sons when the soil is essentially bare. This emissivity index based
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upon the horizontally polarized brightness temperature gives sig-

nificantly better correlations with API than does a similar index

based upon the vertically polarized component.

Alternatively, polarization data can be used to estimate soil

moisture content. Two indices, the polarization difference and the

normalized difference have been shown to have equal utility. These two

polarization indices are also well correlated with API in winter wheat

areas. The correlation coefficents are consistently lower than those

of emissivity, but the difference typically is not statistically sig-

nificant. Both of these polarization indices are effectively invariant

with temperature over the nonfreezing range sampled in this study.

The emissivity and polarization indices convey nearly the same

soil moisture information. Correlation coefficients of about -0.9

between horizontal emissivity and either polarization index are typi-

cal. Furthermore, multiple linear 'regression upon the three indices

does not improve significantly upon the correlation of API with any

single index.

Principal component analysis can be used to combine multiple

indices into one which has the same correlation with API as does the

best single index. However, since the emissivity and polarization

indices carry substantially the same moisture information, this proce-

dure does not result in significant improvement over the simpler

approach of using any one of the single indices.

API estimates for specific sites can be obtained by objectively

analyzing the conic-scan microwave data to a rectangular grid and per-

forming regression analyses of precipitation-derived API values upon
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microwave indices for each individual grid-cell. That is, moisture

estimates need not be based directly upon microwave values from actual

IFOVs, but may be remapped into convenient rectangular arrays, even at

a resolution different from that of the sensor, while still preserving

the spatial pattern of soil moisture.

Regression models from which API is estimated can be based upon

year-round data or seasonal data. Seasonal models for bare-soil period

typically give higher correlation coefficients than do annual models.

However, the parameters of seasonal regression models can be unreliable

due to sample size if the models are derived from a single season of

data. Although the root-mean-square errors of seasonal models tend to

be lower than those of annual models, the difference in correlation

coefficient is usually not pronounced except in the early spring and

late fall when vegetation cover is sparse. In fact, the correlation

coefficients typically respond to the vegetation cover throughout the

year with low or insignificant values in the Spring and Summer for

winter wheat areas. This minimum is not so apparent in multicultural

areas that have at least some bare ground throughout the year.

Individual grid-cell estimates of API can be assembled to form

spatial maps of soil moisture. These maps generally have missing-data

pixels due to lack of correlation at some of the grid-cells. These

holes can be filled by using the average regression parameters for the

surrounding area. Images have been presented showing that this proce-

dure does preserve the general soil moisture pattern represented by the

API map.
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In fact, the general features of the API map are preserved even if

all of the pixels of the microwave-derived image are computed with

area-mean regression parameters. Thus, soil moisture can be mapped

from space even in regions where no ground control data is available,

if the regression parameters can be estimated from those of analogous

regions where ground control data is available.

The satellite imagery presented here preserves the prominent

features of the ground control API map even in areas which are not

monocultural wheat lands. Consequently, passive microwave methods can

be used in at least a qualitative sense for many regions in which their

quantitative application would be an error.

Even in monocultural wheat regions, the quantitative value of

passive microwave methods has some restrictions. The short wavelength

of the SMMR sensor used in this report limits the sampling depth to a

few millimeters. Consequently, the sensor saturates when rainfall

exceeds some limit; that is, there is some value of API above which

further increases of API are not attended by an increase of microwave-

estimated API. This effect is demonstrated in the scatter plots of

temporal analysis and by the 10 May 1979 imagery. In both cases, the

microwave system underestimated the larger values of API.

The contingency tables presented here demonstrate, however, that

passive microwave data do have quantitative value, since the majority

of entries in the tables fall on the diagonal. Even if these methods

are too rough to yield precise soil moisture measurements, they can be

used to classify the moisture content of the soil into a few quantita-

tively defined categories.
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Finally, microwave sensors have essentially all-weather, day/

night capability. The time series for which the regressions were done

in this study did not differentiate between day and night, yet the

correlation coefficients were comparable to those of McFarland and

Blanchard (1977), which were based upon midday observations. Neither

did the presence of an active line of thunderstorms strongly contam-

inate the case study imagery of 10 May 1979, since the sensor IFOV is

larger than the actively precipitating area of many thunderstorms.

Recommendations for Further Study

This paper reports the construction of a large database and the

initial analyses of some of the data. Future efforts should be able to

refine the work presented here. The possible avenues of improvement

include better representation of the ground control data, i.e., a bet-

ter API model; explicit consideration of atmospheric effects that were

ignored in this study; and use of a simulation model of microwave

emission.

The API formula used for ground control data was applied uniformly

over the entire study area, without regard to land cover classifica-

tion, spatial variations of climate or temporal variations of weather.

Future analysis of this data should attempt to parameterize the API

model coefficients in terms of these classes of information. For

instance, the annual temperature pattern for specific locations could

be used to modify the mean and amplitude of of the sinusoidal moisture

depletion coefficient used in the API model. Alternatively, actual

daily values of maximum and minimum temperature could be used to
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compute a daily value of the depletion coefficient, eliminating

reference to a sinusoidally varying function.

With a better representation of API, it should also be possible to

better define API categories for contingency table analysis. The

categories used in this study were purely arbitrary. It would be bet-

ter to define categories in terms of some phenomena with agronomic or

hydrologic significance.

Atmospheric effects can be considered in connection with soil

moisture studies. In particular, the other frequencies of the SMMR

sensor could be exploited to monitor the moisture content and perhaps

the mean temperature of the volume of air through which the microwave

radiation passes. The same methods could allow explicit computation of

the sky brightness temperature. It was assumed here that the effect of

the atmosphere upon the brightness temperature would be less than 10K,

and that this effect would be fairly uniform. These effects can be

tested explicitly, though. Other sensor systems in everyday use can be

employed to do this.

Finally, it is recommended that a simulation model of microwave

emission be evaluated. Simulation methods can be used iteratively in

inversion problems. If a model of soil and land-cover emission can be

implemented, it could be used in an iterative inversion algorithm to

extract soil moisture information. Personnel at Texas A&M University

Remote Sensing Center have done some related emission modeling, such as

Tsang and Kong (1980), Tsang and Newton (1980) and Newton et al.

(1982). It should be productive to apply their theoretical work to the

database and analytic insights developed in this investigation.
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APPENDIX A

REGRESSION PLOTS FOR SEASONS 2-6

This appendix presents the individual seasonal regression results

for a single grid cell in the south area, row 09, column 29, for each

°f 4>5> 4>7> and 'I'll* *n each 9 raPn» tne A b s c i s s a is estimated API

obtained from the regression model; the ordinate is API from the

climatic database. The diagonal line is, thus, the one-to-one slope

line, not the line of best fit. Analogous graphs for the entire year

are presented in Chapter 4.
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Figure A-7. Regression of API on $7, season 3, row 09, column 29,
south area.
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APPENDIX B

TIME SERIES PLOTS

This appendix presents plots, in the time domain, of API against

regression model estimates of API. The solid curve is API from the

climatic database. The large and small dots are, respectively, API

estimates from the annual and seasonal regression models. For

comparision, the seasons are demarcated along the top of the graphs and

the days with snow cover are indicated at the bottom.
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APPENDIX C

SCATTER PLOTS OF 4,5 and 4,7 FOR SEASONS 2-6

The following figures demonstrate the linear relationship between

two of the microwave indices used in this report. In each graph, the

abscissa is <j>5, the normalized horizontal brightness temperature or

emissivity; the ordinate is <f>7, the difference between polarized

channels. The summary graph with data with the entire year is

presented in Chapter 4.
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Figure C-l.

0.9

Scatter plot of emissivity and polari-
zation indices, season 2, row 18, column
27, south area.
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Figure C-2. Scatter plot of emissivity and polari-

zation indices, season 3, row 18, column
27, south area.
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Figure C-3. Scatter plot of emissivity and polari-
zation indices, season 4, row 18, column
27, south area.
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Figure C-4. Scatter plot of emissivity and polari-
zation indices, season 5, row 18, column
27, south area.
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Figure C-5. Scatter plot of emissivity and polari-

zation indices, season 6, row 18, column
27, south area.
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APPENDIX D
TABULATION OF INITIAL SCREENING RESULTS
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TABLE 0-1

Correlation Coef f ic ients Between API and Indices

South Row 09 COL 29 N=102 Season 0 (Full Year)

BASIC INDICES

I N D E X CORR L U

4-01 -0.37 -0.53 -0.19
4,02 -0.25 -0.43 -0.06
4>0 3 -0.70 -0.79 -0.58
4>014 -0.59 -0.70 -0.45
4,05 -0.81 -0.87 -0.74
4,06 -0.72 -0.80 -0.61
4>0 7 0.75 0.65 0.82
4-08 0.74 0.64 0.82
4>o g 0.76 0.67 0.83
$10
$11
$12
d) 1 3

rf) 1 f.

$15
$16
$17
$18

0.76 0.67 0.83
0.76 0.67 0.83

-0.66 -0.76 -0.54
-0.80 -0.72 -0.86
0.76 0.67 0.84

-0.76 -0.83 -0.67
0.77 0.67 0.84
0.75 0.65 0.82
0.75 0.65 0.83

SQUARE-ROOT I N D I C E S

I N D E X CORR L U

$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31
$32
$33
$34
$35
$36

-0.40 -0.56 -0.23
-0.25 -0.43 -0.06
-0.70 -0.79 -0.59
-0.60 -0.71 -0.45
-0.82 -0.87 -0.74
-0.72 -0.80 -0.61
0.72 0.61 0.80
0.72 0.61 0.80
0.74 0.64 0.82
0.74 0.63 0.81
0.74 0.63 0.82

-0.67 -0.76 -0.54
-0.81 -0.86 -0.72
0.76 0.66 0.83

-0.76-0.67 -0.83
0.74 0.64 0.82
0.72 0.61 0.80
0.73 0.62 0.81

S i g n i f i c a n t a b s ( C O R R ) = 0.19

[ s i n ( B * (DAY - DO) ) + 1.0 ]

C Tn ]
[ Tv ]
[ Th / T ]
C TV / T ]

C (Tv - Th) / T ]

[ (TV

[ 2.
[ (T
[ (T

[ (T
[ (T
[ (T
[ (T

v - Th) / TV ̂
0 * (Ty - Tn) / (Tv + Th) ]
v + Thj / 2.0 ]
v + Th) / (2.0 * T) ]
v + Th) / (2.0 * Th) ]
v + Th) / (2.0 * TV) ]
v - Tn) * 2.0 * T / (Tv + Th) ]
v - Th) * 2.0 * Th / (Tv + Th) ]
v - Tn) * 2.0 * TV / (Tv + Tn) ]

SQUARED I N D I C E S

I N D E X CORR L U

$37
$38
$39
$40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$50
$51
$52
$53
$54

-0.31 -0.48 -0.13
-0.25 -0.43 -0.06
-0.69 -0.78 -0.57
-0.58 -0.70 -0.44
-0.81 -0.87 -0.73
-0.71 -0.79 -0.60

0.75 0.65 0.82
0.74 0.64 0.82
0.75 0.64 0.82
0.75 0.66 0.83
0.75 0.65 0.82

-0.65 -0.75 -0.52
-0.79 -0.86 -0.71
0.76 0.67 0.83

-0.76 -0.83 -0.66
0.76 0.66 0.83
0.75 0.65 0.82
0.74 0.64 0.82

All correlations were significant at the 0.05 level
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TABLE D-2

Corre lat ion Coef f i c ien ts Between API and Indices
South Row 09 Col 29 N=17 Season 2 (MAR - APR)

BASIC INDICES

INDEX CORR Signif icant abs(CORR) = 0.48

$01
$02
$03
$04
$05
$06
$07

$09
$ 10
$11
$12

$14
$15
$16
$17
$18

-0
-0
TO
-0
-0
-0

0
0
0
0
0

-0
-0
0

-0
0
0
0

.93

.10
787
.72
.96
.89
.93
.93
.93
.93
.93
.82
.95
.93
.93
.93
.93
.93

-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

98
56
95
89
98
96
81
80
81
82
81
93
98
81
98
82
81
81

SQUARE-ROOT I N D I

I N D E X CORR

$19
$20
$21
$22
$23

$25
$26
$27
$28
$29
$30
$31
$32
$33
$34
$35
$36

-0
-0
-0
-0
-0
-0
0
0
0
0
0

-0
-0
0

-0
0
0
0

.93

.10

.72

.96

.89

.92

.92

.93

.93

.93

.83

.95

.93

.93

.93

.92

.92

L

-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

97
55
95
89
98
96
79
78
81
80
80
94
98
82
98
81
78
79

-0.
+0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

CES

U

-0.
+0.
-0.
-0.
-0.
-0.
0.

82
40
67
36
88
72
98
97
97
98
98
57
85
97
82
98
97
98

[ s i n ( B * (DAY - DO) ) + 1 . 0 ]
C T ]
[ Tn ]
C TV ]
C Th / T ]
[ TV / T ]
C TV - Th ]
[ (Tv -
[ (Tv -
[ (Tv -
[ 2.0 *
[ (Tv +[ (Tv +[ (Tv +C (TV +

C (TV -
C (Tv -

Th) /
Th) /
Th) /
(Tv -
Th /
Th) /
Th) /
Th) /
Th) *
Th) *
Th) *

T ]
Th ]
TV ]

2.0 ]
(2.0 *
(2.0 *
(2.0 *
2.0 *
2.0 *
2.0 *

(Tv +

T) ]
Th)
T V )

Th) ]

]
]

T / (VTn)]
Th /
TV /

(Tv +T h)]
(TV +T h ) ]

SQUARED I N D I C E S

80
40
68
37
88
72
97

0.97
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

97
97
97
57
85
98
82
97
97
97

I N D E X

$37
$38
$39
$40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$50
$51
$52
$53
$54

CORR

-0.91
-0.11
-0.86
-0.71
-0.96
-0.89
0.91
0.91
0.89
0.91
0.90

-0.82
-0.94
0.93

-0.93
0.90
0.92
0.91

L

-0.97
-0.56
-0.95
-0.89
-0.98
-0.96

0.77
0.76
0.72
0.75
0.74

-0.93
-0.98
0.81

-0.98
0.74
0.79
0.76

U

-0.76
+0.39
-0.66
-0.35
-0.88
-0.71
0.97
0.97
0.96
0.97
0.96

-0.55
-0.85

0.97
-0.82
0.96
0.97
0.97

Underlined correlations were not signif icant at the 0.05 level
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TABLE D-3

Correlat ion Coef f ic ien ts Between API
South Row 09 Col 29 N=18 Season

and Indices
3 (MAY - JUN)

BASIC INDICES

INDEX CORR Signif icant abs (CORR) = 0.47

$01
$02
$03
$04
$05
$06
$07
$08
$09
$10
$11
$12
$13
$14
$15
$16
$17
$18

-0.33
-0.40
-0.55
-0.39
-0.35
+0.05
0.76
0.79
0.78
0.78
0.78
-0.48
-0.17
~O8
-0.78
0.75
0.76
0.76

-0.69
-0.73
-0.81
-0.73
-0.70
-0.43
0.45
0.50
0.49
0.49
0.49
-0.77
-0.59
0.49
-0.91
0.44
0.45
0.46

+0.
+0.
-0.
+0.
+0.
+0.
0.
0.
0.
0.
0.
-0.
+0.
0.
-0.
0.
0.
0.

16
09
11
09
14
51
91
92
91
91
91
02
32
91
49
90
91
91

[
C

[
[
C
C

[
[
[
C
[
[[
[

sin( B *
T ]
th :
tv '-
th i
tv /
tv -
(tv
(tv
(tv
2.0
(tv
(tv
(tv
(tv
(tv
(tv
(tv

]]
' T ]
' T ]
- th ]
- th)
- th)
- th)
* (ty
+ th)
+ th)
+ th)
+ th)
- th)
- th)
- th)

(DAY - DO) ) +

',
-
/
/
1
/
*
*
*

T ]
th 1
tv ]
th) /
2.0 ]
(2.0 *
(2.0 *
(2.0 *
2.0 *
2.0 *
2.0 *

(tv +

T) ]
th) ]
tv) 3
T / (t
th /(t
tv /(t

1.0 ]

th) 3

v + th
v+th)J
v+th)]

)]

SQUARE-ROOT INDICES

INDEX CORR :U

SQUARED INDICES

INDEX CORR L

$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31
$32
$33
$34
$35
$36

-0.33
-0.40
(̂TTBT
-0.39
0̂735~
0.05
TT7F
0.77
0.77
0.77
0.77
-0.48
-0.17
0.77
-0.77
0.74
0.75
0.75

-0
-0
-0
-0
-0
-0
0

.69

.73

.81

.73

.70

.43

.44
0.48
0
0
0
-0
-0
0

-0
0
0
0

.47

.47

.47

.77

.59

.48

.91

.42

.44

.44

+0.
+0.
-0.
+0.
+0.
+0.
0.
0.
0.
0.
0.
-0.
+0.
0.
-0.
0.
0.
0.

16
09
11
09
14
51
90
91
91
91
91
02
31
91
47
90
90
90

$37
$38
$39
$40
$41
$i*2
$43
$44
$45
$46
$47
$48
$49
$50
$51
$52
$53
$54

-0.33
-0.40
"̂ OB~
-0.40
-0.34
0.05
U777
0.80
0.79
0.79
0.79
-0.48
-0.17
0.78
-0.78
0.76
0.77
0.77

-0
-0
-0
-0
-0
-0
0
0
0

.69

.73

.81

.73

.70

.42

.47

.53

.51
0.51
0
-0
-0
0

-0
0
0
0

.51

.77

.59

.49

.91

.45

.47

.47

+0.
+0.
-0.
+0.
+0.
+0.
0.
0.
0.
0.
0.
-0.
+0.
0.
-0.
0.
0.
0.

16
09
11
09
15
51
91
92
92
92
92
02
32
91
49
90
91
91

Underlined correlations were not significant at the 0.05 level,
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TABLE D-6
Correlat ion Coef f ic ients Between API and Indices

South Row 09 Col 29 N=19 Season 6 (NOV - DEC)

BASIC INDICES

I N D E X

*
*

<f>
*
*
*
*

<J>
*

*
4>
*
<t>
*

*

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

CORR

+0.^o:
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

,04
"6T
90
80
85
57
80
82
82
82
82
87
80
82
82
81
81
80

L

-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

42
87
96
92
94
81
55
58
57
59
58
95
92
57
93
55
55
54

U

+0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

49
34
76
55
64
16
92
93
93
93
93
70
54
93
59
92
92
92

SQUARE-ROOT I N D I C E S

I N D E X

*4>
4>
4>
*
4
*
*

*
4>
<J>
4>
*
m

m

*
<t>

19
20

"21
22
23

~24
25
26
27
28
29
30
31
32
33
34
35
36

CORR

+0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.

09
55
91
81
85
57
82
84
84

0.85
0.

-0.
-0.
0.

-0.
0.
0.
0.

85
88
80
82
82
83
83
82

L

-0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

38
87
96
92
94
81
59
63
63
64
64
95
92
57
93
60
59
59

U

+0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.

52
34
77
56
64
16
93
94
94
94
94
70
54
93
58
93
93

0.93

Signif icant abs(CORR) = 0.45

[ sin( B * (DAY - 00) )
[ T ]
C Tn ]

1.0 ]

C Tv

[ (Tv

C (Tv
[ (Tv
[ 2.0
C (Tv
[ (Tv
[ (TV
[ (TV
C (Tv
C(V
C(V

/ T ]
/ T ]

"- Th)
- Tn

- Th)

- (TY
+ Th

T ]
Th ]
Tv ]
Th) / (Tv+Th) ]
2.0 ]

Th) / (2.0 * T) ]
+ Th) / (2.0 * Th) ]
+ Th) / (2.0 * TV) ]
- Th) * 2.0

Th)
Th) * 2.0 * Tv/(VTh)]

T/(VTh)]
* 2.0 * Th/(VTh)]

SQUARED INDICES

INDEX CORR

b _37 -0.04 -
(, _38 -0.69
> _39 -0.90
(, _40 -0.80
b _41 -0.85
(, _42 -0.57
|> _43 0.76
f, _44 0.77
b 45 0.76
> _46 0.77
b 47 0.76

48
49

*4

-0.87
-0.80

50 0.81
51 -0.82
52 0.76

0.76
0.75

53
54

0.48
0.87
0.96
0.92
0.94
0.81
0.46
0.48
0.46
0.48
0.47
0.95
0.92
0.57
0.93
0.46
0.47
0.46

U

+0.42
-0.34
-0.75
-0.54
-0.65
-0.16
0.90
0.91
0.90
0.91
0.90

-0.68
-0.54
0.93

-0.59
0.90
0.90
0.90

Underlined correlations were not significant at the 0.05 level.
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TABLE D-5
Correlation Coef f ic ients Between API and Indices

South Row 09 Col 29 N=27 Season 5 (SEP - OCT)

BASIC INDICES

INDEX CORR Signif icant abs (CORR) = 0.38

$01
$02
$03
$04
$05
$06
$07
$08
$09
$10
$11
$12
$13
$14
$15
$16
$17
$18

-0.26 -0.58 +0.13
-0.14 -0.50 +0.25
-0.70 -0.85 -0.44
-0.62 -0.81 -0.31
-0.82 -0.91 -0.64
-0.83 -0.92 -0.66
0.70 0.43 0.85
0.70 0.43 0.85
0.73 0.49 0.87
0.73 0.48 0.87
0.73 0.48 0.87

-0.67 -0.84 -0.39
-0.84 -0.92 -0.67
0.73 0.49 0.87

-0.73 -0.87 -0.48
0.73 0.48 0.87
0.69 0.42 0.85
0.70 0.44 0.85

[ s i n ( B *
[ T ]
C Th

C TV
[ Th
[ TV
C TV
[ (Tv[ (Tv[ (Tv
[ 2.0
[ (Tv
[ (Tv[ (TV
[ (Tv
[ (TvC (TvC (Tv

]
]
/ T ]
/ T ]
- Th ]
- Th)
- Th)
- Th)

* (TY
+ Tn)
+ Th)
* Th)
+ Th)
- Th)
- T h )
- Th)

(DAY - DO) ) + 1.0 ]

/ T ]
/ Th ]
/ Tv ]
- Th) /
/ 2.0 ]
/ (2.0 *
/ (2.0 *
/ (2.0 *
* 2.0 *
* 2.0 *
* 2.0 *

(Tv + Th) ]

T) ]
Th) 3
Tv) ]

T/(VTh)]
V(VTh)]
T v / (VT h)]

SQUARE-ROOT INDICES

INDEX CORR U

SQUARED INDICES

INDEX CORR L

$19
$20
$21
$22
$23
$2i»
$25
$26
$27
$28
$29
$30
$31
$32
$33
$3"+
$35
$36

-0.27 -0.59 +0.12
-0.14 -0.50 -0.25
-0.71 -0.86 -0.45
-0.63 -0.81 -0.32
-0.82 -0.92 -0.65
-0.84 -0.92 -0.67
0.68 0.40 0.84
0.67 0.39 0.84
0.70 0.44 0.86
0.70 0.43 0.85
0.70 0.44 0.85
-0.68 -0.84 -0.41
-0.84 -0.92 -0.68
0.73 0.49 0.87
-0.73 -0.87 -0.48
0.70 0.44 0.85
0.67 0.39 0.84
0.68 0.40 0.84

$37
$38
$39
$40
$41
$42
$U3
$414
$<*5
$46
$47
$48
$49
$50
$51
$52
$53
$54

-0.23 -0.56 +0.16
ÛTTT -0.50 +0.25
0̂755" -0.84 -0.41
-0.60 -0.80 -0.29
-0.81 -0.91 -0.62
-0.82 -0.92 -0.64
0.73 0.48 0.87
0.72 0.47 0.86
0.77 0.55 0.89
0.76 0.54 0.89
0.76 0.54 0.89
-0.66 -0.83 -0.37
-0.83 -0.92 -0.65
0.73 0.49 0.87
-0.72 -0.87 -0.47
0.77 0.55 0.89
0.72 0.47 0.86
0.73 0.49 0.87

Underlined correlations were not significant at The 0.05 level
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TABLE D-6
Correlat ion Coeff ic ients Between API and Indices

South Row 09 Col 29 N=19 Season 6 (NOV - DEC)

BASIC INDICES

INDEX

*
*
4>
4>
*
4>
(n

(h

(n

*
*

(p

m

(n

*

4>

01
~02
03
04
05
06
07
08
09
10
11
12
13
14
15

"16
17
18

CORR

+0

-0
-0
-0
-0

•

.
•

•

•

•

0.
0
0
0
0
-0
-0

•

•

•

•

•

•

0.
-0•
0.
0
0
•

•

04
39"
90
80
85
57
80
82
82
82
82
87
80
82
82
81
81
80

L

-0
-0
-0
-0
-0
-0
0
0
0

•

•

•

^

•

•

•

•

•

0.
0.
-0
-0

•

•

0.
-0
0
0
0

•

•

»

•

42
87
96
92
94
81
55
58
57
59
58
95
92
57
93
55
55
54

U

+0
-0
-0
-0
-0
-0
0
0
0
0
0
-0
-0
0

-0

•

•

•

•

.

•

•

•

•

•

•

•

•

*

•

0.
0.
0.

49
34
76
55
64
16
92
93
93
93
93
70
54
93
59
92
92
92

Significant abs(CORR) = 0.45

[ sin( B * (DAY - DO) ) + 1.0 ]
[ T ]
[ Th ]

u
[ (T
[ (T
[ 2.
[ (T
C (T
[ (T
[ (T
[ (T
[(Tv
[(Tv

/ T ]
/ T ]

- Th) / T ].
v - Th) / Tn .
v - Th) ' T '
0 (Tv - Th) ,

Th) / 2.0 .
Th) / (2.0
Th) / (2.0

' (VTh)

* T) 3
* Th) ]

SQUARE-ROOT INDICES

INDEX CORR L U

v T Th) / (2.0 * Tv) ]
v - Th) * 2.0 * T/ (TV+TH)]
-Tn) * 2.0 * Th/(Tv+Thn
-Th) * 2.0 * T v / (T v+Th ) ]

SQUARED INDICES

INDEX CORR

<t>
*
4>
*
4>
4>
(t,
*
*
4>
*

<J>
*

4>

19
20

"21
22

"23
24
25

"26
27
28

"29
30

"31
32

"33
34

"35
"36

+0.09
^0769
-0.91
-0.81
-0.85
-0.57
0.82
0.84
0.84
0.85
0.85

-0.88
-0.80
0.82

-0.82
0.83
0.83
0.82

-0.38
-0.87
-0.96
-0.92
-0.94
-0.81
0.59
0.63
0.63
0.64
0.64

-0.95
-0.92
0.57

-0.93
0.60
0.59
0.59

+0.
-0.
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.
0.

-0.
0.
0.
0.

52
34
77
56
64
16
93
94
94
94
94
70
54
93
58
93
93
93

m

m

*

*
*

*
*

*
*

*
*
*
*

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

-0.
— LJ«
-0.
-0.
-0.
-0.
0.
0.
0.
0.
0.

-0.
-0.

04
69
90
80
85
57
76
77
76
77
76
87
80

0.81
-0.
0.
0.
0.

82
76
76
75

-0.48
-0.87
-0.96
-0.92
-0.94
-0.81
0.46
0.48
0.46
0.48
0.47

-0.95
-0.92
0.57

-0.93
0.46
0.47
0.46

+0.42
-0.34
-0.75
-0.54
-0.65
-0.16
0.90
0.91
0.90
0.91
0.90

-0.68
-0.54
0.93

-0.59
0.90
0.90
0.90

Underlined correlations were not significant at the 0.05 level,
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APPENDIX E

SIMPLE LINEAR REGRESSION RESULTS

The following tables present the results of simple linear

regression of API on each of three indices, by season and annually, for

all of the individual grid cells used in temporal analysis, Phases I,

II, and III.

136



TABLE E-l

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 09 Column 29

PHI 05 PHI 07 PHI 11
Sn

0

2
3
4
5
6

N

102

17
18
20
27
19

CORR

-0.81

-0.96
-0.35
D̂TBT
-0.82
-0.85

SLOPE

-253

-253
-133
3̂"4~8~
-320
-207

INTCP

232

232
128
TT7
291
189

CORR

0.75

0.93
0.76
0.72
0.70
0.80

SLOPE

1.44

1.61
2.04
1.55
1.87
1.04

INTCP

-7.6

-10.3
-8.3
-6.2
-14.6
-5.6

CORR

0.76

0.93
0.78
0.73
0.73
0.82

SLOPE

335

357
535
411
447
240

INTCP

-6.0

-7.5
-7.9
-6.0
-13.1
-4.5

Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.48 for Season 2
Minimum significant abs(CORR) = 0.47 for Season 3
Minimum significant abs(CORR) = 0.44 for Season 4
Minimum significant abs(CORR) = 0.38 for Season 5
Minimum significant abs(CORR) = 0.45 for Season 6

TABLE E-2

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 03 Column 29

PHI 05 PHI 07 PHI 11
Sn N CORR SLOPE INTCP CORR SLOPE INTCP CORR SLOPE INTCP

0 104 -0.81 -309 283 [0.71] 1.90 -10.8 [0.74] 454 -9.3

2
3
4
5
6

16
19
22
29
17

-0.87
-0.80
-0.60
-0.84
-0.61

-327
-240
-353
-455
-266

296
224
321
413
243

0.86
0.85
0.37

[0756]
0.65

2.43
1.55
1.51
"2719
1.54

-20.3
-5.8
-4.7

-TB76
-8.8

0
0
0

Co
0

.88

.86

.38
7£?]
.69

555
390
403
"577
379

-17.2
-5.0
-4.6

-T576"
-8.3

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined stat ist ics differ insignificantly from zero (alpha=0.05)

Minimum significant abs(CORR) = 0.19
Minimum significant abs(CORR) = 0.50
Minimum significant abs(CORR) = 0.45
Minimum significant abs(CORR) = 0.42
Minimum significant abs(CORR) = 0.37
Minimum significant abs(CORR) = 0.48

for
for
for
for
for
for

Season
Season
Season
Season
Season
Season

0
2
3
4
5
6
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TABLE E-3

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 10 Column 33

PHI 05 PHI 07 PHI 11
Sn N CORR SLOPE INTCP CORR SLOPE INTCP CORR SLOPE INTCP

0 100 -0.52 -239 223 [0.34] 0.94 0.7 [0.36] 241 0.8

2
3
4
5
6

15
18
20
26
20

-0.77
-0.46
-0.43"
-0.76
-0.22

-310
-411
-370
-220
-81

284
384
344
203
80

0.83
0.20
0.33
0.53
0.13

2.45
1.34
1.80
1.06
0.30

-17.8
3.6

-1.1
-5.0
4.4

0.85
0.21
0.35
0.53
0.22

576
351
507
271
131

-15.5
3.9

-1.3
-4.7
2.0

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (alpha=0.05).

Minimum significant abs(CORR) = 0.20 for Season 0
Minimum significant abs(CORR) = 0.51 for Season 2
Minimum significant abs(CORR) = 0.47 for Season 3
Minimum significant abs(CORR) = 0.44 for Season 4
Minimum significant abs(CORR) = 0.39 for Season 5
Minimum significant abs(CORR) = 0.44 for Season 6

TABLE E-4

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 12 Column 27

PHI 05 PHI 07 PHI 11
Sn

0

2
3
4
5
6

N

109

16
19
23
31
18

CORR

-0.81

-0.96
-0.41
-0.82
-0.94
-0.90

SLOPE

-257

-213
-215
-270
-410
-313

INTCP

235

197
204
246
371
278

CORR

0

0
0
0
0
0

.78

.93

.47

.72

.91

.84

SLOPE

1.

1.
2.
1.
2.
1.

54

46
38
25
46
56

INTCP

-10.

-10.
-12.
-5.

-20.
-15.

0

3
1
7
7
4

CORR

0

0
0
0
0
0

.80

.94

.54

.72

.92

.87

SLOPE

349

321
655
323
554
355

INTCP

-7.

-7.
-12,
-5,

,7

.5

.7
T-m

-13. ,6

Underlined statistics differ insignificantly from zero (alpha=0.05)
Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.50 for Season 2
Minimum significant abs(CORR) = 0.45 for Season 3
Minimum significant abs(CORR) = 0.41 for Season 4
Minimum significant abs(CORR) = 0.35 for Season 5
Minimum significant abs(CORR) = 0.47 for Season 6
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TABLE E-5

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 13 Column 20

PHI 05 PHI 07 PHI 11
Sn N CORR SLOPE INTCP CORR SLOPE INTCP CORR SLOPE INTCP

0 99 -0.81 -246 0.78 1.61 -9.9 0.78 377 -8.1

2
3
4
5
6

18
17
20
25
15

-0.90
-0.73
-0.90
-0.93
-0.57

-240
-277
-363
-364
-155

0.89
0.73
0.89
0.88
0.74

1.60
1.83
2.23
2.40
0.97

-10.2
-6.5

-14.9
-18.2
-7.0

0.89
0.75
0.89
0.90
0.76

373
453
554
558
237

-8.3
-5.4

-13.1
-15.6
-6.5

227

221
260
332
335
142

Underlined statistics differ insignificantly from zero (alpha=0.05),
Minimum significant abs(CORR) = 0.20 for Season 0
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR) = 0.51 for Season 6

0.47 for Season 2
0.48 for Season 3
0.44 for Season 4
0.40 for Season 5

TABLE E-6

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 14 Column 33

PHI 05 PHI 07 PHI 11
Sn N "CURR SLOPE TFTfCP" CORR SLOPE INTCP CfiRR SLOPE TNTCP"

0 106 -0.56 -201

2
3
4
5
6

16
17
20
27
24

-0.51
-0.62
-0.65
-0.45
-0.27

-117
-479
-701
-117
-114

190

116
446
648
109

[0.22] 0.34 5.8

0.39 0.63 6.1
rt *1 ~*\ Zfo' (• ••)0.61 £.0£ -3. J
"O7 O7 174

3.8

[0.24] 95 5.6

0.42 158 6.1
"O? 757 -577
0.10 184 3.5

-0.29 ^38 "377
111 ~DT?7 "DTP" 2.2 ~O4" 705 0.5

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (alpha=0.05).

Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.50 for Season 2
Minimum significant abs(CORR) = 0.48 for Season 3
Minimum significant abs(CORR) = 0.44 for Season 4
Minimum significant abs(CORR) = 0.38 for Season 5
Minimum significant abs(CORR) = 0.40 for Season 6
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TABLE E-7

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 15 Column 29

PHI 05 PHI 07 PHI 11
Sn

0

2
3
4
5
6

N

104

19
18
20
27
18

CORR

-0.76

-0.91
-0.50
-0.53
-0.93
-0.66

SLOPE

-162

-181
-189
-100
-148
-127

INTCP

152

171
182
94
135
120

CORR

0.68

0.85
0.17
0.38
0.87
0.58

SLOPE

0.98

1.10
0.43
0.40
1.05
0.70

INTCP

-3.4

-2.6
7.2
0.0
-8.7
-0.5

CORR

0.70

0.87
0.22
0.38
0.90
0.61

SLOPE

231

248
142
104
253
166

INTCP

-2.4

-1.0
6.4
0.1
-7.7
0.1

Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)

0.45 for Season 2
0.47 for Season 3
0.44 for Season 4
0.38 for Season 5
0.47 for Season 6
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TABLE E-8
Simple Linear Regressions of API on Three Indices, By Season

Sn N

South Area Grid Cell: Row 18 Column 27

PHI 05 PHI 07
sTon nircp EGRB SWE TNTCP"

0 105 -0.73 -169 157 0.67 0.98

PHI 11
SM — TRTCT

0.69 238 -2.2

2
3
4
5
6

19 -0.92 -211
18 -0.46 -296
21 -0.75 -173
27 -0.95 -168
17 -0.69 -106

199
279
160
153
100

0.85
0.31
0.73
[0.79]
0.68

1.30
1.11
1.14
0.73
0.59

-2.4
~O
-6.3
7̂6-
-0.4

0.86
0.39
C73
[0.83]
0.69

298
360
TBQ
192
137

-0.8
-1.6
-5.1
T3~F
0.2

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (alpha=0.05)

Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.45 for Season 2
Minimum significant abs(CORR) = 0.47 for Season 3
Minimum significant abs(CORR) = 0.43 for Season 4
Minimum significant abs(CORR) = 0.38 for Season 5
Minimum significant abs(CORR) = 0.48 for Season 6

TABLE E-9
Simple Linear Regressions of AP.I on Three Indices, By Season

South Area Grid Cell:

PHI 05

Row 29 Column 22

PHI 07 PHI 11
Sn N CORR SLOPE INTCP CORR SLOPE TivTCP CO~RRSLOPE INTCF

0 110 -0.70 -202

2
3
4
5
6

22
17
21
27
18

-0.63
-0.70
-0.79
-0.70
-0.67

-130
-266
-216
-157
-102

186 0.62 1.11 -6.4 0.64 268 -5.3

0.3126
246
198
142
94

0.61
0.57

[0.47]
0.65
0.71

0.85
1.47
0.84
0.78
0.79

0.61
0.63
[0.50]
0.66
0.74

193
400
223
201
184

1.7
-7̂
-2.2
-6.1
-5.6-6.5

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (a1pha=0.05)

Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)

0.19
0.42
.48
.43
.38
.47

0.
0,
0.
0.

for
for
for
for
for
for

Season
Season
Season
Season
Season
Season
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TABLE E-10 •

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 21 Column 14

PHI 05 PHI 07 PHI 11
Sn

0

2
3
4
5
6

N

116

19
19
20
29
21

CORR

-0.63

-0.71
-0.81
-0.65
-0.60
-0.83

SLOPE

-171

-85
-297
-207
-109
-360

INTCP

158

80
274
194
100
322

CORR

0.58

0.63
0.65
0.68
0.50
0.88

SLOPE

1.15

0.56
1.64
1.65
0.55
2.32

INTCP

-7.5

-2.2
_7.2
^972
-4.1

-25.1

CORR

0.59

0.66
0.68
0.67
0.50
0.89

SLOPE

269

138
408
419
132
546

INTCP

-6.2

-1.8
-6 .2
-8.1
-3.6

-22.8

Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.18 for Season 0
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)
Minimum significant abs(CORR)

0.45 for Season 2
0.45 for Season 3
0.44 for Season 4
0.37 for Season 5
0.43 for Season 6
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The REMOTE SENSING CENTER was established by authority of the Board of Directors of
the Texas A&M University System on February 27, 1968. The CENTER is a consortium of four
colleges of the University; Agriculture, Engineering, Geosciences, and Science. This unique
organization concentrates on the development and utilization of remote sensing techniques and
technology for a broad range of applications to the betterment of mankind.






