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ABSTRACT

Moisture content of snow-free, unfrozen soil is inferred using
passive microwave brightness temperatures from the Scanning
Multichannel Microwave Radiometer (SMMR) on Nimbus-7. Investigation is
restricted to the two polarizations of the,1.66 cm wavelength sensor,
Passive microwave estimates of so%] moisture are. ofi two basic
categories; those based upon soil emissivity and those based upon the
po]arizatfﬁn of soil emission. The two methods are compared and
~contrasted through the investigation of 54 potential functions of
polarized brightness temperatures and, in some cases, groUnd-based
temperature measurements. Of these indiceé, three ére selected for the
estimated emissivity, the difference between polarized brightness
temperatures, and the normalized po]arization. difference. Each of
these indices is about equally effective for monitpring soil moistﬁre.
Using ah antecedent phecipitation index (API) as ground control data,
temporal andbspatial analyses show that emissivity data consistently
give slightly better spi] moisture estimates than depolarization data.
The difference, however, is not statistically significant. It is
concluded that po]arization data alone can provide estimates of soil
moisture 1in areas where the emissivity cannot bbe inferred due to

nonavailability of surface temperature data.
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INTRODUCTION
Objectives

The purpose of this research is to determine methods of estimating
soil moisture content over large agricultural areas using dual polari-
zation passive microwave brightness temperatures from the .Scanning
Multifrequency Microwave Radiometer (SMMR) aboard the N;mbus 7 satel-
lite. This will be done by tésting functions of brightness temperatures
in.the horizontally and vertically polarized channels of the 1.66 cm
SMMR sensor that relate to soil moisture under varying conditions of

-vegetation, surface roughness, land  use, ‘and rainfall. Specific
objectives»ére:

1. Compare the performance of both emissivity and polarization
measures as iﬁdicatdrs of soil moisture.

2. Determine whether multiple correlation and prfncipa] component
analyses can be used to combine soil moisture information_from
several different indices.

3. Demonstrate the use of both' day and night data in microwave
indices of soil moisture.

4. Demonstrate the ability of passive microwave indices to give
quantitative measurements of soil moisturé on winter wheat

areas during seasons when the soil is essentially bare.



5. Demonstrate the ability of passive microwave indices to give
quantitatively correct maps of soil moisture for large areas
with a wide diversity of crops and land use.

6. Compare maps of soil moisture indices using model parameters
developed for individual seasons versus the entire year and for

individual locations versus large areas.
Applications of Passive Microwave Data

A number of activities require large area soil moisture estimates
that can be obtained from satellite-borne passive microwave sensors.
Among these are numeric modeling of energqy and moisture fluxes in the
boundary layer of the. atmosphere, tractionability determinations for
agricultura]nand military applications, and estimation of flood hazards
due to watershed runoff. In particu]ar, the projection of crop yields
requires recurring estimates of soil moisture over large areas. Passive
microwavé sensors can provide estimates representing weighted averqées
over their entire field of view with very little restriction due to
atmospheric conditions.

Passive microwave sensors intended for civil-sector use will be
economically feasible because they can measure a wide range of other
environmental variables. Kondratyev et al; (1977) showed that micro-
wave data could be used to measure soil temperature profiles to a depth
df several centimeters, as well as areally averaged soil moisture con-
tent. Blanchard et al. (1975), Blanchard (1977), and ﬂalker (1978)
showed that watershed hydrologic response characteristics can be in-
ferred from passive microwave data. Allison et al. (1979) showed that

2



a satellite-borne instrument with a wave length of 1.55 cm could be
used reliably to map flood waters in Australia. Burke et al., (1981)
have investigated the use of microwave senéors in probing snowpacks.
Many other phenomena could be cited, including sea ice, atmospheric
water vapor content, and instantaneous rainfall rates. The soil mois-
ture methods developed in this study represent only one of a number of
practical uses for spaceborne microwave radiometers.

In particular, the microwave sensors likely to be available in the
next decade will be useful in agricultural applications. Since these
sensors will have extremely low resolutions, their use will be most
helpful in applications requiring no better than 20 or 30 km resolu-
tion. Since current governmeht methods of monitoring crop moisture are
based on data with poorer resolution than this, a primary application
of microwave data will be in sensing of crop condition ahd prediction
of crop yield. These systems will have virtually a]]-weather capability
and will be appropriate to the essentially bare-soil and monocultural

regions of winter wheat.
Use of Polarization Data

This paper adds to earlier research by investigating the use of
polarization data. Previous researchers have shown thaf single-polar-
ization spaceborne radiometers can indicate soil moisture, ‘at least in
a general, qualitative way. Some, such as McFarland (1976) McFarland
and Blanchard (1977), Theis (1979), and Theis et al. (1982), have shown
that these sensors can be used to infer soil moisture quantitativeiy

under some circumstances. These earlier efforts were based upon the



relationship between microwave emissivity and soil moisture content.

Briefly stated, the dielectric constant of soil varies strongly in
response to the amount of liquid water held in the soil. The dielec—}
tric constant determines the soil emissivity which, together with soil
'femperature, determines the amount of microwave radiafion emitted by
the soil. By measuring the brightness temperature with a satellite
sensor, and by estimating the soil temperature from ground-based
weather observations, it is possible to estimatethe soil's emissivity
and, hence, its moisture cohtent.

Data presented by Newton (1977), however, indicated that the micro-
wave radiation of moist soil is partially polarized, and that the
degree of polarization increases with soil moisture content. If this
relationship is reliable enough, and if it is sufficiently insensitive
to surface temperature, it should give a means of monitoring soil
moisture from space without reference to ground- based temperature
measurements. There are many potential applications for such a purely
remote sensing capability. For instance, some locations such as ﬁoun-
tain valleys are not well instrumented for surface temperature, and
have no consistent relationship to temperature observations frbm sur-
rounding lowland weather stations. Second, there should be military
applications for areas from which conventional surface weather observa-
tions may become inaccessible. Finally, there are many important agri-
cultural areas for which the density of conventional weather observa-
tions may be too low to allow effective use 6f techniques requiring
surface temperature measurements. This paper examines the polarization

approach, using data from the Nimbus 7 satellite.

4



Ground Control Data

Researchefs in satellite remote sensing projects frequently have
difficulty assembling a comprehensive and accurate ground truth data
base. In fact, such data are more appropriately termed "ground con-
trol," since their actual truth is in some doubt. This study is no
éxception. In ofder to interpret the soil mdisture signal of microwave
data from half a million square kilometers of the U;S. Great P]aiﬁs,
soil moisture data frdm the study area are needed. Conventional
measurements of soil moisture over this area are not possible. Even a
single  instantaneous field of view (IFOV) cannot be insterented
adequately on the ground when it has a diameter of nearly 40 km. Some
other apbroach is required.

The ground control data choéen for this study were generated by a
common index from hydrologic engineering, the antecedent precipitation
index (API). This .index represents soil moisture as a Markov chain
whose single inbut is the series of daiiy observations of total effec-
tive precipitation. Blanchard et al. (1980) showed that API varies

almost linearly with soil moisture content.
Analytical Approach

This study relies primarily on regression analysis to relate satel-
lite data to API. A number of functions of vertically and horizontally
polarized brightness temperatures are subjected to simple and multi-

ple linear regression models to establish which functions give the best



estimates of APl for individual training sites. These functions 'are
used to generate images of satellite-derived soil moisture estimates,
which are compared to computer-generated maps of API to verify visually

the effectiveness of the methods.



LITERATURE REVIEW
Review Articles

Several authors have published survey articles of the field of mi-
crowave radiometry and its applications in soil moisture sensiné.
Reeves (1975) presented a comprehensive summary including the physics
of emission and radiative transfer, and the design and performance
characteristics of radiometers. NAS (1977) summarized the‘basic physics
of microwave sensing' and the potential applications in many fields.
Kondratyev et al. (1977) reviewed passive microWave remote sensing of
soil moisture and evaluated the potential of microwave for several data
retrieval applications. Basharinov and Shutko (1978) also reviewed the
field of microwave sensing of soil moisture. Paris (1971) gave a
detailed = development - of ‘the fundamental physics of _microWave
radiometry. :

~ Schmugge et al. (1979) and Schmugge (1978, 1980a,b) reviewed soil
moisture measurément by gravimetric, ndc]ear; réflected solar, thermai
infrared, and both active and passive microwave methods;

Newton (1980) presented a summary of research in microwave meaéure-
ment of soil moisture done by the Texas A&M University Remote Sensing
Center»(RSC) from 1974 to 1980. These investigations included ground-

based measurements, modeling, and simulation studies.
Physics of Microwave Remote Sensing of Soil Moisture

The radiation detected by a spaceborne passive microwave sensor is



expressed as a brightness temperature, a radiative effective tempera-
ture equal to the thermodynamic temperature of a hypothetical blackbody
radiating exact}y_the same power as detected by the instrument. This
brightnéss temperature‘can be expressed as the sum of three components:
sky radiation reflected toward the radiometer by the surface, radia-
tion emitted at the surface, and atmospheric radiation received direct-

ly at the sensor. Schmugge (1980b) gives the equation in this form:

Tg = ©(r Toy * (1-0) Tgure) * Tatm (1)

y

v = atmospheric transmittance

r = surface reflectivity
TSurf = temperature -of emitting layer at surface
Tatm = brightness temperature of atmosphere

The significance of each of the three components is discussed below.
Sky Radiation

Sky radiation sensed by a satellite-borne radiometer consists of
surface reflections of the celestial background emission plus downwel-
ling abnosphéric radiation, Weger (1960) computed downwelling sky
brightness temperatures for wavelengths from 0.43 cm to 3.00 cm, and
for a variety of sky conditions. He found the following values for a
wavelength of 1.80 cm and viewing angle of 50 degrees: about 10K for
clear skies, 15K for moderate cloud, and 30K for uniform moderate pre-
cipitation. The sky brightness component of brightness temperature is
the product of this downwelling brightness temperature, surface reflec-
tivity, and atmospheric transmission from surface to detector. Since

most naturally occurring substances have emissivities near unity, the
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highest surface reflectivities of interest to this study are those of
moist soil. The largest possible value of atmospheric transmission,
1.00, cannot occur simultaﬁeously with the highest sky temperatures,
which are assocfated with rain events, Nevertheless; an upper bound
of this component can be estimated, for moist bare soil, by multiplying
a maximum value of 30K by an assumed reflectivity of 0.30 and atmos-
pheric transmission of 1.00. Thus, this component of microwave bright-
ness temperature is 1less than about 10K. McFarland and Blanchard

(1977) ignored this component.
Direct Atmospheric Effects

Atmospheric effects are of two kinds: the direct radiation from
the atmosphere impinging upon the sensor, and the attenuation of radig-
tfon from the surfacé.' The previous discussfon of sky temperature sug-
gests that direct radiation should also be negligible qnder most cir-
cumstances. The exceptions are those circumstances under which atmos-
pheric aftenuation is élso significant; specifically, those occasions
on which precipitating clouds are present between the surface and the
radiométer. |

Paris (1971) computed the absorption and scattering properties of
gases and hydrometeors in fhe atmosphere, aé well as effects of sea-
surface roughness and salinity, extraterrestrial radiation, and emis-
sioh of microwaves by the atmosphere, clouds, and precipitation par-
ticles. His computations shéw that the effects of absorption and emis-
sion by the atmosphere are small except in the presence of precipita-

ting cloud.



McFarland and Blanchard (1977) chose to ignore atmospheric effects
since the only case in which they are important is that of a precipita-
ting cloud, the principaf effect of which was to produce a brightness
temperature lower than that of dry soil.‘ That is, the rain has the
same appearance in a .microwave image as does moist soil; so it is at
least qualitatively correct to interpret reduced brightness temperature

as being associated with moist soil--soil beneath a rain shower.
Surface Emission

The microwave emission of the surfaces of soil, plants and other
objects present in the IFOV of the sensor have been modeled in many
ways. A number of detailed radiative transfer models are available, as
well as simpler techniques.

Detailed GEmission Models. Several investigators have reported
models that account for the transfer of radiation within the soil
body. These models have been derived in various levels of complexity,
but allrequire fairly detailed information about the properties of the
emitting soil Tlayers. Some account for a rough surface or a vegetative
canopy.

Stogryn (1970) used an electromagnetic fluctuations approach to
derive equations for the brightness temperature of a medium with a flat
surface and with temperature and dielectric constant varying only with
depth.

Tsang et al. (1975) and Tsang and Kong (1975, 1976a, b, c, 1980)
developed a general theory for computing the microwave emission from

soils, and presented illustrations of special cases. The general
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theory allowed a three-layer system of soil, air, and vegetation, with
soil properties allowed to vary in three dimensions.

Njoku and Kong (1977) extended the work of Tsang et al. (1975) and
Stogryn (1970), to give equations for the brightness temperature of a
smooth-surfaced, vertically structured medium in which moisture content
and thermodynamic temperature are assumed to be fﬁnctions of depth.

Wilheit (1978) developed a radiative transfer model for plane strat-
ified media, using a formalism equivalent to but simpler than thét of
Tsang et al. (1975). He defined thermal and reflective sampling
depths, and showed that the former is of the order of one wavelength
while the latter is an order of magnitude smaller. The fef]ectivify
sampling depth is determined primarily by the real part of the dielec-
tric constant; the thermal sampling depth, by the imaginary part.Ther-
mal sampling depth is the layer whose effective temperéture determfnes
the amount of energy ava%]ab]e for emission. Reflectivity samp]ing
depth‘ is the layer whose moisture content determines the effective
emissivity of the soil. The thickness of this layer decreases with
increasing soil moisture content. |

Tsang and Newton (1980) developed a microwave emission model which
accounted' for the incorherent reflectivity modeled by Stogryn (1970)
and the coherent ref]ectiQity modeled by Choudhury et al. (1979). They
used two roughneés parameters, RMS height and RMS slope.

Nang et al. (1980b) used the random-dielectric theory of Tsang and
Kohg (1976b,c, 1980) to derive équations for the polarized brightness
temperéture of a smooth soil wifh a vegetative cover. ‘Using the empir-

ical model of Wang and Schmugge (1980) to describe the emission from
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the soil surface, they computed the expected normalized brightness tem-
peratures (effective emissivities) for a number of vegetative covers.
Their model predictions agreed with measurements except for discrepan-
cies that they explained by roughness which the model did not account
for.

Simpler Emission Models. While instructive, the radiative transfer
models generally require too much detaiied information about thg soil
structure, roughness, and vegetation for practical use with low-resolu-
tion, satellite-mounted microwave radiometers. Simpler models in Qse
assume that the soil can be represented as a single emitting layer
whose effective temperature and emissiQity can be represented by simple
algorithms. In general, these models rely on the strong dependence of
soil dielectric constant upon the moisture content. This effect is so
strong that other effects are ignored or simply parameterized.

Newton (1977) presented model calculations showing that brightness
temperature was a nearly linear fun;tion of soil moisture content,
except over a region in the dry end of the moisture range in which
microwave emission 1is not very sensitive to moisture content. He
explained this behavior as caused by the tight bond of water molecules
held very close to the soil particles under dry conditions. The effect
of increasing the viewing angle from nadir was to increase the ver-
tically polarized component and decrease the horizontally polarized
component. He showed also that the mean of the two polarizations was
nearly independent of viewing angle. He verified these conclusions
using data from truck-mounted radiometers operating at wavelengths of

21 cm and 2.8 cm.
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" Figure 1 is a schematic view, abstracted from Newton (1977), of the
response of soil brightness temperatures to variations in soil mois-
ture. The figure presenté two cases represented, respectively, as
“dry" and "moisf“. "Under the assumption that all other scene parame-
ters such as temperature profile and surface roughness are the same for
both cases, an increase in soil moisture is seen to result in a
decrease 1in vertically polarized brightness temperature, a greater
decrease in horizontally polarized brightness temperature, and a éonse-

-quent increase in polarization. This polarization increase is greatest
near the Brewster angle, the view angle at which T, peaks.

Wang and Schmugge (1978 and 1980) presented a simple empirical model
of the dielectric behavior of soil-water mixtures and demonstrated its
superiority over pfevious mixing formula approaches. They included, as
an adjustable parameter modeled in terms of spil texture, the transi-
tion moisture value beneath which the dielectric constant of a éoil is
not very responsive to moisture content. | |

Perhaps the simplest model of soil emission is that used by McFar-
land (1976) and by McFarland and Blanchard (1977), in which (1) was

simplified by neglecting the sky and atmospheric effects, giving:

Tg = el : (2)

e = emissivity

T

temperature of surface emitting layer
This relationship holds in the microwave band of the spectrum,
because of the validity of the Rayleigh-Jdeans approximation to Planck's

radiation law. Written in the form appropriate to the wavelength
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Figure 1.

BRIGHTNESS TEMPERATURE

BREWSTER
ANGLE

DRY POLARIZATION"

‘MOIST POLARIZATION

VIEW ANGLE FROM NADIR

Schematic representation of the angular dependence of
polarized brightness temperatures, illustrating the
effect of soil moisture on brightness temperature and
on polarization for a sensor viewing at the Brewster
angle. Curves abstracted from Newton (1977).
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domain, Planck's law is (Shortley and Williams, 1965)

M, = Znhczx‘s[expfgér) -1t (3)
where .
M, = spectral exitance (Wm-3)
h = Planck's constant = 6.6256x10-3%J.s
¢ = speed of 1ight in vacuum = 2.997925x10 &ns-
‘» = wavelength (m)
k = Boltzmann's constant = 1.3805x10~233/K
T = temperature (K)
The exponential can be expanded as a Maclaurin series and, for wave-.
length in the microwave band, the higher order terms can be ignored,

giving the Rayleigh-Jeans approximation:

M, = 2nck AT , (4)

Defining c,=2nckA™", this can be rewritten, for a blackbody, as:

where TB = brightness temperature

For a real radiating surface (4) takes the form:

MA = ECIT (6)

where ¢ = emissivity, defined as the ratio of exitance from a real body
to the blackbody exitance for the same temperature. (2) is derived by
taking the ratio of (5) and (6).
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McFarland and Blanchard (1977) applied (2) by assuming that the
effective temperature of the emitting material could be estimated from
independent sources such as conventional weather 6bservations. They
computed a normalized brightness temperature, representing an estiﬁated
emissivity, by taking the ratio of brightness temperature to air tem-
perature. They showed that this emissivity estimate was linearly rela-
ted to API, which they used as an index of soil moisture. They sug-
gested a methodology of determining empirical linear regression coef-
ficients for each location and for each time of year, so that API could
be estimated by applying these coefficients to compufed values of emis-
sivity.

Effects of Vegetation and Roughness. Vegetation and roughness are
considered together here, since some of their effects are similar, in
spite of the different: physical processes by which they exert those
effects. In general, both decrease the sensitivity of detected radia-
tion to soil moisture. Newton (1977) presented model calculations that
show these effects of roughness and vegetation.

These effects of vegetation and roughness are most important for
shorter wavelengths. Blinn and Quade (1972) reported ground-based
measurements at wavelengths of 0.95, 2.8, and 21 cm, showing that the
longest wavelength's moisture sensitivity was least affected by vegeta-
tion and roughness. Measurements at wavelengths of 2.8, 6.0, 21, and
50 cm. showed that the wavelength with greatest sensitivity to soil
moisture varied with vegetation cover, from 6.0 cm for bare soil to 50

cm for grasslands.
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Choudhury et al. (1979) modified the Fresnel reflection coefficients
by the inclusion of a single-parameter representation of the soil
surface roughness. They found that this approach was not sufficient to
characterize roughness, which must rathgr be described by two parame-
ters: . surface height variance and horizontal scale of roughness.
Nevertheless, their model calculations were in general agreement with
experimental results which indicate that roughness effects are greatést
for wet soil.

Wang et al. (1980c) compared measurements at wavelengths of 6 and 21
cm with tﬁe theory of Wilheit (1978) and.found that vegetation degraded
soil moisture senéitivity by amounts in qualitative agreement with the
results of Kirdyashev et al. (1979). The decrease of sensitivity was
related to the amount of biomass moisture confent of the vegetation
present. This result pertained at both wavelengths. The soil type
tested was a sandy loam, and the vegetation was grass, soybeans, and
corn.

Wang and Chouthry (1981) déScribed a modification of the microwave
emission model of Wilheit (1978), to include a two parameter represen-
tation of soil surface roughness. They related these two parameters to
.combinations of the vertica]]y and horizontally polarized normalized
brightness temperatures, and they showedvthat moisture content may be
inferred from knowledge of the 're]ationship between the Fresnel
reflection coeffiéients and moisture content if the values of the two
parameters are known. They suggested that these parameters could be
estimated empirically from a time series of data, if roughness could be

assumed constant, The brightness temperature combinations they used
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were X = (Ty-Tp)/(1-[0.5(T,+Th)]), which was related to the
polarization mixing parameter; and Y = 1-[0.5(Tv+Th)], which was
related to the roughness height parameter. T, and T, are, respec-
tively, the vertical and horizontal polarized brightness femperatures
measured by radiometer.

Schmugge et al. (1978) used airborne thermal infrared measurements
to demonstrate that the diurnal temperature range could be used to
infer soil moisture or crop stress. This lends weight to the sugges-
tion of McFarland (1982) that, if the emissivity of a dense crop canopy
is relatively insensitive to the moisture content of the plants, then
. microwave brightness tehperature variations observed from space must
indicate changes in the crop temperatures. If air temperature is known
from an independent source, the crop's stress is indicated; revealing,
in turn, qualitative information abdut the soil moisture content. That
ig, the brightness temperature of a crop canopy responds to plant
stress in much the same way as to the moisture condition causing that

stress; and moisture content can be inferred, at least qualitatively.
Ground Control Data

Since conventional soil moisture measurements cannot be made for a
representative sample of points within even one IFOV of a spaceborne
microwave radiometer, the ground control data for these studies must be

obtained through modeling.
Available Models

A number of models are available for the purpose. Baier and Robert-
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son (1966) proposed a Versatile Budget (VB) model, representing the
moisture content of several soil layers by a modified Markov press.Van
Bavel and Llascano (1980) devised a computer simulation model called
CONSERVB which combined energy balance and water balance methods, using
weather observations to drive the modei. Jackson (1980) developed a
model that linked deep-layer moisture content to surface-layer moisture
content through hydraulic equilibrium assdmptions. Most of these
detailed soil moistdre models are too complicated for use in conjunc-
tion with spaceborne microwave sensing methods. They require data not

generally available in real time at the necessary resolution.
’_ Antecedent Precipitation Index

An antecedent precipitation index (API) can be designed to avoid
these difficulties. While this model is very simple, it is neverthe- -
less useful. For instance, McFarland and Beach (1981) used the farmer
sUrvey data reported by Reinschmiedt (1973) to relate farm field work
delays to API. They found linear correlations exceeding 0.98.

Linsley et al. (1975) stated that the soil moisture index mosi
commonly used in storm runoff models ié the API, a simplified moisture
balance approach in which additioh of water to a profile is only
through precipifation, and depletion of water is through a black-box

'proéess of evapotranspiration, etc., representéd by a simple logarith-
mic decrease. They gave the formula It = IOKt where I, is the
initial value of the index, k is a recession factor (or depletion coef-
‘ficient) less than unity, and t is time in days. Letting t = 1, the

index for any day is seen to be the value for the previous day multip-
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Tied by k. They noted that the k-factor should be formulated as a
function of potential evapotranspiration (PET) or of season, which
determines PET to some extent. They further noted that errors in
initialization of the model decay logarithmically and tend to vanish
after a few weeks at most. |

Saxton and Lenz (1967) estimated soil moisture with an antecedent
retention index (ARI) very similar to API. The principal difference in
their model is the use of an estimate of potential evapotrahspiration
to deplete moisture during the constant-rate stage of drying. During
the falling-rate stage, depletion is modeled by a multiplicative
depletion coefficient és in API. Use of the ARI formulation requires
sufficient meteoro]ogical.data to estimate PET by one of the familiar
methods. | |

The form of the API equation used by McFarland and ‘Harder (1982) is

APL = ki + AP, + p,0-891 (7)
where
API; = API on day i (mm)
kj = recession factor for day i
P; = precipation on day i (mm)

In form, (7) is a first-order Markov process. Its utflity lies in its
parameterization of water depletion processes in a single factor that
can be modeled in terms of readily available information.

There are several ways to assign a value to the depletion coeffi-

cient, k. One formula is that of McFarland and Blanchard (1977), who
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used a single value of k specified for each month of the year. A more
sdphiéticated mefhod is that of McFarland and Harder (1982), who used a
sinusoid with a minimum in summer and a maximum in winter. Further
refinement could incorporate an estimate of PET based upon temperature
and sky cover data, possibly involvingAthennal or visual imagery from
weather satellites. _

Choudhury and Blanchard (1981) gave an equation in which PET esti-
mates cou]d‘be used to compute k. They derived the APl equation from a
water balance equation used in global climate models and showed that

the recession factor is
k = exp[-E/Z(FC-WP)]. ' (8)

where E is the potential evapotranspiration for the previous day, Z is
the soil thickness, FC is soil field capacjty, and WP is the permanént
wilting point.

A very’useful feature of the AP] formula is that it can be inverted
to give estimates of effective rainfall. Blanchard et al. (1981) used
this to construct a two-layer API model in which the API of a shallow
surface layer was inverted to give an estimate of the amount ofvwater
infiltrating into a deeper layer, which wasl in turn 'depleted by a
second APl model with 1érger-va1ued'recession factor. They suggested
that the top layer API cou1q be related to microwave Eadiometer data,
providing a way to remotély monitor soil moisture for a deeper soil
layer,

There are two principa] difficulties in using API in the present

investigation. First, the index models all water losses from the layer
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of interest as a simple exponential decay. While this method may be
appropriate for a deep layer, the lack of attention to specific proces-
ses 'such as insulation and head advection must introduce some errors
when the model is used yith a layer as shallow as the sensing depth of
the 1.66 cm band of SMﬁR. Second, for these shalldw layers, the best
maximum and minimun values of the K-factor have not been well estab-
lished at many locations. Nevertheless, McFarland and Blanchard (1977)
did report successfu] use of the index in connection with data from the

1.55 cm radiometer on Nimbus 5.
Experiments in Microwave Sensing of Soil Moisture
Simulation Studies

Smith and Newton (1983) modified the CONSERVB model of van Bavel and
Lascano (1980) to accept input data solely from a microwave radiometer
instead of observed weather data. The resuTting soil moisture predic-
tions were almost identical to those produced by the full CONSERB
model. They used a simluation abproach, based upon experimental data,
to examine the utility of two wavelenghts, 6 and 21 cm. They found
little difference between the accuracy of model outputs from the two
wavelengths, except that the shorter wavelength tended to saturate at
'1ower rainfall amounts; that is, the longer wavelength was a better
quantitative indicator of heavier rainfall events. An important con-
clusion from this experiment was that microwave data should have the
capability to provide information about the moisture contenf of soil,
without requiring the use of such data as solaf radiation, wind speed,

air humidity and temperature.
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Blanchard and Bausch (1979) used a simulation to demonstrate the
potential of dual wavelength (X-band and L-band) sensing of the mois-
ture in the top 1.5 m of soil. They noted that the L-band sensor could
monitor the moisture of the top 21 cm, and that the rétio of change in
X-band and L-band emissivities could bé used to predict the amount of
water infiltrating to depths below the 21 cm level. They also noted
that their method would require daily observations to estimate soil

moisture with acceptable accuracy.
Ground-based and Airborne Sensors

Many experiments have investigated the ability of passive microwave
sensors to indicate soil moisture conditions under realistic condi-
tions. Several results of ground-based and airborne trials with wave-
lengths near SMMR's 1.66 cm sensor are summarized here.

Edgerton et al. (1971) found that brightness temperatures at a
wavelength of 2.2 cm responded strongly to the moisture content of the
top centimeter of soil.

Schmugge et al. (1974 and 1976) showed an approximately linear
relationship between soil moisture and the 1.55 cm brightness ‘tempera-
thre of an airborne radiometer. They noted a breakpoint value of soil
moisture approximately equal to wilting point, below which the radio-
meter showed little response. They demonstrated a means of accounting
for 5011 texture by expressing moisture cohtent in terms of fraction of
field capacity.

Barton (1978) computed emissivity as the ratio of microwave bright-

ness temperature to thermal infrared brightness temperaturé, using a
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2.56 cm microwave radiometer and a Barnes PRT-5 infrared radiometer.
He found strong correlation between emissivity and gravimetric soil
moisture content for base surfaces, but much worse relationships for
vegetated fields.

Burke and Paris (1975) and Burke et al. (1979) examined the dual-
polarized signature of soil moisture at a wavelength of 2.8 cm. They
found that moisture and suface roughness effects could be separated by
comparing values of the first two Stokes' Parameters, P = (1/2)(T, +
Th)s and Q = (Ty=-Th)- They found that Q was nearly invariant
with temperature, and .that it was very sensitive to soil moisture at
gravimetric moisture contents less than 15 percent, while P was more
sensitive at values above 15 percent, and was nearly invariant with
viewing angle. Q was better correlated with surface roughness than was
P. - |

Burke (1980) analyzed aircraft data at ‘L-, X-, and K-band wave-
lengths, modeled the effects of the vegetation canopy, and investigated
the effects of the atmosphere af these wavelengths. She found that the
first Stokes parameter, P = 0.5(T,+T,), was more sensitive to s0i 1
moisture than were Ty and T, by themselves; and that the second
Stokes parameter, Q = Ty-Th, showed considerable scatter related to
surface roughness. She observed that L-band was relatively insensitive
to vegetation cover, but that the shorter wavelengths showed no

response to soil moisture in the presence of vegetation.
Satellite-based Sensors

Satellites Available. Several satellites have carried microwave
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sensors useful for soil moisture experiments. Among these have been
SKYLAB, Nimbus 5, and Nimbus 7. Such data will also be available in
the future, with the addifion of a microwave sensor, the Special
Sensor Microwavé/lmager (SSM/1) to the DMSP spacecraft, expected in
1985.

SKYLAB carried a scanning Ku-band radiometer, the S193 instrument,
which had a resolution of 11 km at nadir. SKYLAB also carried the S194
instrument, a non-scanning L-band radiometer.

Nimbus-5 had the electrically scanning Microwave Radiometer (ESMR),
which scanned directly across the track direction, and had a resolution
of 25 km at nadir. The sensor operated at a wavelength of 1.55 cm, with
circular pb]arization;

The SMMR sensor on the Nimbus-7 satellite is déscribed by Gloersen
and Barath (1977) and by Madrid (1978) with wavelengths of 0.81, 1.36,
~1.66, 2.80, and 4.54 cm, each operating in both horizontal and vertical
polarizations. The absolﬁte accuracy in all ten channels is better
than 2 k rms. The 3 db beamwidths are, respectively, 0.8, 1.4, 1.5,
2.6, and 4.2 degrees. The resulting IFQVs are, respectively, 27xl18,
46x30, 55x41; 91x59, and 148x95 km. The sensor uses a conical scan
pattern so that the beam makes a nearly constant angle of about 50
degrées with the earth's surface. The satellite is in a near-polar
orbit with an a]titude of 955 km and a swath width of 822 km. SEASAT
also carried a SMMR sensor.

The SSM/1 sensor on the DMSP satellite has been described.by Hol-
linger and Lo (1983). It will have wavelengths of 0.36, 0.81, 1.35, and

1.55 cm. A1l four wavelengths will have vertical polarization, and all
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but the 1.35 cm channel will have horizontal polarization. The sensor
will use a conical scan like that of SMMR, with a constant earth-
incidence angle of 53.1 degrees. Resolution will range from about 15
km for the shortest wavelength to about 55 km for the 1longest. The
.satellite will be sun-synchronous like its predecessors and will view
each point on the earth's surface twice daily, one at night and once in
daylight. The satellite will be in a near-polar orbit with an altitude
of 833 km. The swath width will be 1390 km. Several other satellites
have carried microwave sensors, but no others have had séanning radio-
meters. The DMSP satellite is the only planned operational satellite-
borne passive microwave imager.

Satellite Experiments. Several investigators have reported useful
relationships between .data from satellite-borne microwave radjoﬁeters
and indicators of soil .moisture.

Stucky (1975) found correlation .coefficients near -0.9 between the
brightness temperature from SKYLAB'S S193 KU-Band sensor and a 10-day
API computed with a constant depletion coefficient of 0.9. He found
that the correlation coefficiént»diminished almost linearly to about
-0.2 as viewfng angle increased to 40 degrees. He also found that for
viewing angles less than 25 degrees, the lo;day AP1 was better cor-
related with brightness temperature than was a 6-day API.

McFarland (1975 and 1976) reported excellent 1linear correlation
between an 11-day APl and brightness temperatures from the SKYLAB SL94
L-Band sensor. This sénsor had a wavelength of 21 c¢m and a circular
IFOV 115 km in radius. His data were from June and August of 1973, and

he reported correlation coefficients of 0.97 and -073, respectively.
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He explained the lower correlation of the August data as resulting from-
the spacecraft's flight over more varigated terrain, including the
Texas High Plains an an area of dissected caprock.

Eagleman and Lin (1976) also related SKYLAB S$-194 data to soil mois-
ture. They'correlated brightness temperatures with»actua] soil mois-l-
ture samples co]]etted in the field at times near the sensor overpass.
They reported quadratic correlation coefficients very similar to the
linear correlations of McFarland (1976). Interestingly, while many
others have presented scatter plots showing the moisture insensitive
region in'the dry end of the moisture range; several of the figures in
this paper 'showedA a similarly insensitive region in the moist end,
suggestihg that there may be a minimun attainable emissivity for any
given soil.

McFarland and Blanchard (1977), Theis (1979), and Blanchard et al.
(1981) reported linear correlatién coefficients exceeding 0.90 between
emissivity estimated from Nimbus-5 ESMR brightness temperatures and
soil moisture as represented by ah API. They computed a normalized
brightness temperature, which they called "emissivity", by dividing the
brightness temperature by the daily maximum air temperature determined'
from weather records. They found the best correlations betwen emis-
sivity and API 1in areas of winter wheat for the periods of near-bare
soil conditions in fall and early spring. They also noted that the
ESMR's side-to-side scan pattern, with consequent nonuniform viewing
angle, led to problems of data interpretation. Schmugge et al. (1977)
also reported a linear relationship between ESMR brightness temperature

and antecedent rainfall totals for two test areas in Illinois-Indiana
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and Oklahoma-Texas for: periods when the soil was essentially bare.

Meneely (1977) found good correaltions between ESMR 1.55 cm horizon-
tally polarized brightness femperatures and soil moisture expressed as
percent of saturation for agricultural areas during periods when the
soil had less than 40% vegetative cover. He found that additional
vegetation badly degraded the relationship, and that regional empirical
adjustments must be made to account for such local effects as soil
type. He concluded that an independent estimate of soil-temperature
would be necessary. His measure of soil moisture was the model output
for the top soil zone in the Versatile Budget Model of Baier and
Robertson (1966).

McFariand and Harder (1982) found linear correaltion between emis-
siyity as defined above and soil moisture indicated by an antecedent
precipitation index (API). They further demonstrated that the scatter
in the relationship could be described probabilistically jn terms of
value to classical decision theory, and that the "noisy" data could be
used successfully in a discriminant analysis method of determining the
antecedent precipitation category to which a given scene belonged.

McFarland énd Harder (1983) used Nimbus-5 ESMR ‘data to monitor soil
moisture fof essentially bare agricultural soils. They noted that‘the
emissivity for frozen or snow-covered soils was distinctly different
from that of bare unfrozen soil, giving a vpotential to discriminate
between snow covered and bare unfrozen soils. They noted further that
the radiometer responded to the moisture stress of crops when tﬁe
canopy had developed enough to obscure the soil moisture signal, and

. the vegetation response was in the same sense as the variation from
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sdil moisture; thus, soil moisture conditions would be inferred from
microwave data even when the soil itself was not directly viewed by the
sensor.

Resolution of Satellite Sensors. Several authors have published
results indicating that spatial resolutions attainabie from space will
be useful. Spaceborne sensors can provide. resolutions of the same
order as that of the rainfall events that contribute to soil moisture
variations. Furthermore, degraded resolution does not result in Tless
accurate information - only less detailed information,

Hardy et al. (1981) studied the spatial variability of rainfall
amounts in order to determine the utility of hypothetical microwave -
derived estimates of soil moisture at resolutions of 10 km and 1 km.
They concluded that a 10 km sensor could adequately describe the shape
of most precipitation events, but would probably underestimate the peak
rainfall near the storm center. They also concluded that most U. S.
government agencies now using soil moisture estimates could benefit
from estimates at 10 km resolution. Although they did not report on
the ability of lower resolution microwave sensdrs to delineate rainfall
patterns, they did indicate that the rainfall amount at a distance of
10 km from most stomm centers is greater than 50 percent of the central
value and that the gradients of rainfall amount are weak outside 6f 5
km radius. They also noted that currently .operational soil moisture
models in government agencies use temperature and precipitation data
from reporting stations with spacing on the:order of 100 km. Thus,
sensors with a resolution of 10 to 30 km would be an improvement over

current practice.
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In fact, Schmuggé et al. (1976)'stated that 10 km resolution will be
feasible. They calculated that even an L-band sensor could be orbited
at space shuttle altitude (400 km) and attafn a 10 km resolution if its
antenna dimensions were 10 m by 10 mi.

The effect of degraded resolution has been studied. Newton et al.,
(1982)vsimulated an array of three orbiting passive microwave sensors
operating in X-band, C-band, and L-band. They found that the three
sensors should have soil moisture sensitivities of respective]y, -0.50,
-0.85, and -1.5 k per percent soil moisture, under the assumptfon that
the entire area of each sensor footprint had uniform moisture, and
under the restriction that less than 40 percent of the footprint was
forest. They found, contrary to expectations, that the sensitivity to

soil moisture increased as the simulated sensor's resolution was
| degraded, and that the variability of sehsitivity was greatest at a
resolution of 20 km, Resolutions of 5 and 60 kn produced equal
variabilities.

McFarland and Harder (1982) demonstrated the effect of resolution,
using data from the ESMR sensor on Nimbus-5. They simulated a resolu-
tion of about 50 km, by averaging the values of emissivity and API from
five neighboring pixels. The resulting correlations between emissivity
and API were as good or better than the original correlations for data
with a réso]ution of 25 km, which showed that microwave data at any
resolution respond to the area-weighted average soil moisture through-
out the IFOV.

Retrieval of Geophysical Information. The most common information-

retrieval algorithm used to date has been simple linear regression,
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since the ESMR sensor had only one data channel. With the introduc-
tion of dual-polarization, multi-frequency sensing on Nimbus-7 and
DMSP, more refined techniques are being developed. In fact, the thrust
of most future research in satellite borne passive hicrowave sensing of
s6il moisture will be the development df better information retrieval
algorithms. Most of the newer retrieval methods that have been used
or planned for these newer satellite systems consist of some variation
on multiple linear regression analysis, by which empirical coefficients
are determined for each location and for each time of year. .

Pandey and Kakar (1983) presented an efficient alogorithm for
selecting the best fixed;size subset of the ten SEASAT SMMR data chan-
nels, to be used in a multiple linear regression model for retrieval of
geophysicé] parameters. Their method -used a large number of modell
atmospheres to circumvent the need to actually calcu]ate> multiple
linear regressions for all of the possible combinations of n data chan-
nels. They illustrated the technique with retrieval of sea surface
temperatures.

Spencer et al. (1983) employed a stepwise multiple linear regressjon
approach to'infer rainfall rates over land in the American Great Plains
using'Numbus 7 SMMR data. They }ound that the most useful channels
were the 0.81 and 1.36 cm bands in both polarizations. Longérv
wavelengths ‘added 1little to the variance explained by these shorter
wavelengths. Unfortunately, they did not report results of signifi-
cance tests. Nor did 'they indicate any theoretical support for a
linear model. They reported an ability to discriminate between falling

precipitation and either wet soil or water bodies on the basis of the
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difference between vertical and horizontal polarizations at the 0.81 cm
wavelength.

Burke and Ho (1981) présented a demonstration of the Statistical
Parameter Inversion Method of Gaut (1967) and Burke and Ho (1981).
They showed that the method can retrieve soil moisture for the 0-2
and 2-5 cm layers with an accuracy of about 5-6 percent for bare fields
and grass-covered fields, using both polarizations of 21 cm and 2.8 cm
microwave brightness temperafures. Their results did not improve when
they accounted for the temperature dependence of brightness temperature
by dividing the.latter by the surfacetemperature. They suggested that
this unexpected result may have been caused by the longer wavelength's
response to soil temperaturés deeper than the surface. One of their
appendices gave the FORTRAN source code for the SPIM program and its
subroutines. This algorithm has beén selected for use with the SSM/I
sensors on the DMSP satellites. Ho]lingér and Lo (1983) reviewed
'work done to date on the software for hand]ihg data from the SSM/I.
They indicated that soil moisture retrievals will use only the 1.55 cm
wavelength in both polarizations, using the SPIM developéd at Environ-
mental Research and‘Technology, Inc., as described above. They showed
a graph of expected soil emissivity as a function of moisture content.
They gave a brief aiscussion of the retrieval algorithm, which they
call the "'D' matrix" method, due to the procedure of inverting a

correlation matrix.
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MATERIALS AND METHODS
Data Source

Passive Microwave Data

Computer tapes with one year's data (25 Oct 78 - 10 Nov 79) from the
Nimbus-7 Scanning Mu]tiéhanne1 Microwave Radiometer (SMMR)_were provi-
ded by NASA's Goddard Space F]ight_Center._ Nimbus-7; as described by
Gloersa and Barath (1977) and by Madrid (1978), is a polar orbiting
satellite that provides repeat coverage of each point of interest every
two or three days on average. The spacecraft Qiews the earth on both
night and day passes, with average local observation times of about
0100 and 1100, respectively, with actual times varying a§ much as an
hour or two from those values. The SMMR instrument, unlike the preQ
vious ESMR, usés a conical scan method so that it views the earth from
a constént angular height about 50 degrees from the Iocal zenith.
Brightness temperatures in both‘horizontal and vertical polarizations
were obtained from each of fiQé.wavelengths,.of which the central wave-
length, 1.66 cm, was used in this study'in both vertical and horizontal
polarizations. |

The data fapes also provided the nominal: latitude and longitude of_’
each IFQV. These coordinates were assumed:accurate. Spencer et al.
| (1983),did ffnd sufficient control points in.their SMMR analysis area,
but the largest registration error they fbuhd was no more than one

'18x27 km IFOV of the 0.81 cm'sensor. Since the IFOV for the 1.66 cm
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data used in this study was 41x55 km, such positioning errors were

assumed negligible.

Climatic Data

Tapes of weather data were purchased from the National Climatic Data
Center. Climatic data extracted from the tapes were daily values of
maximym and minimum temperature, total precipitation, snowfall, and

snow depth, from stations in the cooperative observing network.

Ancillary Data

Copies of National Neathér Service weather radar summary charts were
obtained for all SMMR overpass times, for use as a screening file to
infer possible contamination of the soil moisture signature by‘precip-
© itating clouds. USGS topographic and land_usg maps were used, along
with reported crop production statistics, to select locations for case

studies of individual time series plots.

Data Base Preparation

Objective Analysis of SMMR and Climatic Data

Two study areas were defined, with data winqows and analysis grids
as shown in Fig. 2. The data windows were the areas within which any
data present were used in the analysis. Tﬁe ana]ysis grids -were
defined with 20 km square grid cells arrayed in 35 rows of 40 columns.
Each grid cell was identified by its row and column number. Rows were
numbered from 1 to 35, from the top, and columns were numbered from 1
to 40 from the left, Each study grid was a polar stereographic map

projection.
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CANADA | SPECIFICATIONS
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ND .
MN 20-KM GRID NORTH SOUTH

_ S5 W sTanDARD
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. 1A
NE NW CORNER
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FM\ WINDOW NORTH SOUTH
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TX - MAX LAT 500 410
MIN LAT 420 330
i : 1

L - MAX LON -950 -94.0

MIN LON 1075 -105.0

Figure 2. Definition of study areas for database development. Standard
latitude is that for which the scale . is true. Standard
longitude is a reference value near the center of the grid.
“"NW Corner" refers to the coordinates of the center of the
grid cell at row 01, column 01. Data windows are the areas
within which SMMR and climatic data were used to derive
objectively analyzed fields for the grids.
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This investigation was restricted to data from the southern area, which
is shown in detail in Fig. 3.

SMMR and climatic data wére analyzed objectively to these th grids,
using an a]gorifhn similar to that of McFarland and Blanchard (1977).
This method used an exponential weightiﬁg function to interpolaté near-
by observations to the center of each grid cell. Separate shape para-
meters were selected, by trial and error, for brightness temperatures,
air temperatures, and the precipitation variables, to minimize unneces-
sary smoothing of the data fields while avoiding holes in regions of
sparse data. Further details of the analysis algorithm have been
reported by Harder and-McFarland (1984).

The output SMMR map files were struétured in ten-channel band-inter-
leaf format. That is, the first record had 40 bytes representing the
40 brightness temperatures of the northernmost row for the first chan-
nel (0.81 cm, horizontal polarizatjbn); the second record represented
row one for the second channel, etc. The entire file comprised 350
records, representing 10 channels for each of 35 rows of pixels. Each
byte held one brightness temperature, expressed in_kelvins (minus 180)
as an integef between -128 and +127 inclusive, with the value of -128
representing missing data.

The output climatic data map files were structured in five-channel
band-interleaf format, with the following channels: maximum tempera- -
ture, minimum temperature, precipitation, snowfall, and snowdepth. As
for SMMR data, values were stored on-per-byte,- with temperature
expressed in degrees Celsius multiplied by 2.5, precipitation expressed

as millimeters minus 126 and the snow variables as centimeters minus
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Figure 3. Detail of the southern study area. The locations of
case study grid cells are darkened.
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126. All values were rounded to the nearest integer, and the value of

-128 reserved for a missing data indicator.
Antecedent Precipitation Index

An API waS computed using an algorithm from McFarland and Blanchard

(1977). The model was defined as :

API(i) = k* API(i-1) + P(i)
Where k = depletion coefficient (9)
P = effective precipitation

The depletion coefficient was defined here as a sinusoid with a maximum
value of 0.92 occurring on 1 February and a minimum of 0.70 occurring
on 1 August. This range of K-values was arbitrarily selected fof con-
sistency with McFarland and Blanchard (1977).4 The effective precipita-
tion was computed by raising the precipitation, in millimeters, to a
power of 0.891, following B]ancharq et al. (1980). This formulation of
APl thus represents the land-use, drainage, and meteorological condi-
tions in Oklahoma where the work of McFariand and Blanchard (1977) and
Blanchard ef al. (1980) was done. For those days when snow depth was
nonzero, APl was held constant and all precipitation was assumed to -
accumulate as snow cover. On the first date with zero snow depth, the
accumulated precipitation was added as effective precipitation, again
using Blanchard's exponent. The API was initialized at a value of 50
mm for 1 July 1978, more than 100 days prior to the first SMMR data.

Map files of API were prepared for all dates from 1 July 1978 to 11
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November 1979. The format of each file was similar to that of the SMMR
and climatic map files, except that APl map files had only one channel

of data.
Prospective Microwave Indices of Soil Moisture

Fifty four functions of Microwave brightness temperatures, surface
temperature, and/or day of the year were identified as possible indica-
tors of soil moisture. These prospective indices are summarized in

Table 1. Indices in the first group (¢; through ¢,g) were suggested on

Table 1. Prospective Indices of Soil Moisture.

[sin(B*(DAY-DO)) + 1.0] -

$01
02 = LT1]
03 = [Thl
dou = [Ty ]
$0s = [Th/T]
06 = [Ty/T]
$o7 T [T T )]
" dog T [T Th)/T]
09 = fTv“Th)/Tha
$11 <= (2. 0*(Tv Th)/(Tv+Th)]
¢13=[T+T)/Q 0"'T)]
$1u = [Ty+Th )/(2.0%T ]
d15 = [T +T )/ (2.0*T,]
b16 = [T T )*2 O*T/(T vtTh)]
bi18 = [Tv Th)*2 O*Tv/(Tv+Th)]
o018 L0 ¢3¢ = sqrt[¢f1 to ¢;4]
37 tO sy = square[gg; to ¢4]
B = 2n/365
DO = 32.0 + 365.0/4.0
DAY = Day of year (1-365)
T = Temperature
Tp = H-polarized Brightness Temp
Ty = V-polarized Brightness Temp
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the basis of theory or previous experiment, and each incorporate one or
more model coefficients to be derived empirically. The other indices
listed are the square root or square of one of these basic indices.

These indices were numbered, for reference, and were cél]ed "phi*
indices, represented either by the Greek letter ¢ and a subscript, or
by the Roman letters “PHI" followed by a Number.

¢» @ sinusoidal function of the day of the year, was included in
case the soil moisture time series turned out to be partially composed
of a simple cyclic function as a result of seasonal variations of pre-
cipitations and potential evapotranspiration. ;

bo2s 03> and ¢q, are simply the thermodynamic temperature of the
air and the horizontally and vertically polarized brightness tempera-
ture. ¢g5 and ¢gg are temperature normalized forms of the horizontally
and vertically polarized brightness temperatures. Thése functions, as
noted by McFarland and- Blanchard (1977), represent approximations of
the horizontally and vertically polarized anissivity of the emitting
layer. They will be termed "emissivities" here.

$o7 is the simple difference between the polarization components and
is termed here "polarization" or "polarization difference". ¢gg, ¢go»
$19> and ¢;;, are various normalized versions of this index.

$12> 15 the mean of the the polarized components, and ¢,3, ¢4, and
¢15 are normalized forms of ¢,,. ¢, 617, and ¢,g are the ratios of
the polarization difference to various normalizations of the mean of
the two polarized components. Conceptually, these indices are ratios

of polarization to various indices of emissivity.

40



Analysis Methods
Temporal Analysis

Statistical analyses of data in the time domain were performed for
the ten case study grid cells shown in Figure 3. These grid cells are

also listed in Table 2.

TABLE 2

Case Study Grid Cells

ROW  COLUMN LAND USE STATE COUNTY 1980 WHEAT AREA
09 - 29 Agriculture KS  McPherson 45%
KS Marion 27%
03 29 Agriculture KS Cloud 363
KS Clay 29%
10 33 Range KS  Chase 6%
12 27 Mixed Ag, Range, KS  Reno 42%

Water

13 20 Mixed Ag, Range KS Edwards 28%
KS Kiowa 22%
14 33 Range KS Elk 5%
15 29  Agriculture KS  Sumner 66%
18 27 Agriculture 0K  Grant 65%
29 22 Agriculture OK Kiowa 41%

21 14 Agriculture TX Ochiltree 42%
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Wheat areas listed are county land area percentage planted to non-
irrigated winter wheat, computed from county land areas and crop acre-
ages reported in the county agriculturél statistics published annually
by the state Crop and livestock Reporting Services.

These wheat acreage data are presenfed graphically in Figure 4. A
single grid cell, located at Row 9, Column 29, was selected for initial
screening. This grid cell was selected on the basis of its predom-
inantly agricultural land use and the moderately high wheat area frac-
tions of the two surrouhding counties. Three of the fifty-four indices
were chosen as a result of analysis of data from this single grid
cell. These three indices were then tested on six additional grid
cells in Kansas. These grid cells were chosen to represent a range of
land use types and were separated by at least two grid cell widths;
since the SMMR sensor IF0 was approximately equa) in area to four grid
cells. Finally, observations from these analyses were verified using
independent data from the last three grid cells, located in Oklahoma
and Texas. These three grid cells were chosen on the basis of their
high wheat area fractions.

Time domain analyses were performed for each of several seasons, as
well as for the entire year. The year was divided into five seasons of
61 days each, followed by one season of 60 days. These seasons were
referred to by number, from 1 to 6. They were also identified by
month, season 1 corresponding roughly to January and February, season 2
to March and April, etc. When analyses were done for the entire year,
the period was denoted "Season 0 (Full Year)". Analyses methods con-

sisted of simple and multiple linear regression, including principal
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component analysis.

In all cases, the regression analyses were accompanied by calcula-
tion of two-way contingency tables. Three categories of APl were

defined, as follows:

CATL: [ API < 10 mm]
CAT2: [ 10 m <= API < 20 mm]
CAT3: [ 20 mm <= API ]

These categories were defined arbitrarily, to qemonstrate the indices'
skill in categorical estimation. Tables were constructed to show the
frequency of occurrence of the nine different combinations of API
categories and estimate of API from the regression models. For each
such table, the fraction of correct model-estimated categories was
computed and expressed'as percent correct.

The results of the temporal analyses were presented graphically in.
two ways. Sﬁatter plots were prepared, using a standard presentation
with API on the vertical axis and model estimate of API on the horizon-
tal. This method allowed a common graphical appearance for the dif-
ferent indices, which would not have been possible ysing the more com-
mon presentation with the independent variable on the horizontai axis.
Additionally, time series plots were prepared, showing the temporal
variation of both APl and model estimate of API.

Correlation coeffiéients were compared using the Fisher Z' trans-

form described by Brooks and Carruthers (1953). Specifically,

2 = 2 In (£5) (10)
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where r is any correlation coefficient. This Z' statistic "has an

approximately normal distribution, with standard error given by

SeEyr = 7n—_1_3— | (11)
where n is the number of observations from which the correlation coef-
ficient was computed. These equations can be used in two ways. First,
a value of Z' can be compared with zero to determine whether a regres-
sion has statistical significance. Second, given one correlations
coefficient, a confidence interval on Z' can be constructed, and the
Timiting. values can be transformed back to correlation coefficients

using the inverse of (10):

Spatial Analysis

Spatial analysis consisted of visual comparison of maps of rainfall
generated API and maps of API estimates- from regression models. This
imagery was prepared for illustrative purposes, and is not subjected to
rigorous statistical tests. The regression model APl images were
generated with regression coefficients computed for each individual
grid cé]]. For grid cells where the correlation coefficient was
statistically insignificant, the resulting image data holes were
filled by using the average of model coefficients for the entire area.
The validity of this hole-filling strategy was verified subjectively

by comparison of the resulting spatial: patterns with the API
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map. An additional set of images was produced using the area mean
coefficients at all pixels. Both sets of imagery were produced for
seasonal as well as annual.regnession models. The validity of this
method, too, was checked subjectively by inspection of the patterns
produced. Finally, the correlation coefficients were displayed as

images. A sample case study for 10 May 1979 is reproduced here.
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ANALYSIS AND DISCUSSION
Temporal analysis

Tempofa] analyses consisted of . simp]e' linear regressions, prin-
cipal componenp analyses and multiple linear:regression. The analysis
proceeded in three phases. Initial screening used a single Kansas grid
cell selected for its moderate]y high wheat acreagé. .The three indices
selected in this first phase were then tested on six additional Kansas
grid cells representing a variety of land use types. Finally, the con-
clusions from the second phase were verified usihg three independent

grid cells in winter wheat regions of Oklahoma and Téxas.
Phase I: Initial Screening

The first results are summarized in Table: 3 from data presented in
the appendix, tab1e§ D-1 through D-6; These tables were prepared for

| the entire year (Seasoh'o) and for Seasons 2 through 6. Season 1 had
insufficient data for analysis. Table 3 shows the correlation coeffic-
ients from the reghessiohs of API upon each of the first 18 ¢ indices.
Tables D-1 tﬁrough D-6 additionally show the minimum significant abso—'
lute-value correlation coefficient and the interval [L,U] correspondihg
to the lower and uppef bounds of the 95 percent confidence interval on
Fisher's_Z‘ transform,

The square-root and squared indices are. not shown in Table 3,
~ because they performed ho differently than did their respective basic

indices. In every case, the coefficients of the square-root and
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TABLE 3

Correlation Coefficients Between API
~and Indices- South, Row 09, Column 29.

SEASON

0 2 3 ] 4 5 6
¢ -0.37* -0.93 -0.33*a -0.20*%a -0.26%a +0.04*a
b2 -0.25% -0.10*%a -0.40%a ~-0.10*%a -0.14*a -0.69*
b3 -0.70* -0.87* -0.55 -0.58 -0.70 -0.90
by -0.59* -0.72* -0.39*%a -0.36*a -0.62* -0.80
b5 -0.81 -0.96 -0.35*%a -0.81 -0.82 ~-0.85
bg -0.72* -0.89 -0.05*a -0.47* -0.83 -0.57*
$7 0.75 0.93 0.76 0.72 0.70 0.80
bg 0.74 0.93 0.79 0.72 0.70 0.82
b9 0.76 0.93 0.78 0.74 0.73 0.82
610 -.76 0.93 0.78 0.73 0.73 0.82
11 0.76 0.93 0.78 0.73 0.73 0.82
612 -0.66*  -0.82  -0.48*  -0.49  -0.67  -0.87
613 -0.80  -0.95  -0.17*a -0.72  -0.84  -0.80
14 0.76 0.93 0.78 0.74 0.73 0.82
615 -0.76  -0.93  -0.78  -0.73  -0.73  -0.82
616 0.77 0.93 9.76 9.73 9.73 0.81
17 0.75 0.93 0.76 0.71 0.69 0.81 -
d18 0.75 0.93 0.76 0.72 0.70 0.80
Sample
size 102 17 18 20 27 19

a - correlations were not significant at the 0.05 level.
* - correlations that differed significantly, at the 0.05 level, from
the highest absolute value in the column.
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squared indices were well within the interval [L,U] of the basic
index. Subsequently, only the first 18 ¢ indices were considered.

These remaining 18 ¢ indices were grouped into three performance
categories: weak, moderate, and strong.

The first category, that of weak performance, was assigned to ¢g;
and ¢g, which had correlations with API that were insignificantly
different from zero in the majority of Seasons 2 through 6. In Season
0, correlation coefficients were statistically significant, but they
explained very little variance.

The second category, that of moderate performance, was assigned fo
the unnormalized brightness temperatures, ¢g3 and ¢g,, to their mean,
$12» and to the vertically polarized emissivity, ¢gg. These results
were consistent with theory presented previously. Sinﬁe soil moisture
content is related to emissivity through the Fresnel reflection
coefficienfs, and since the Rayleigh-Jeans approximation allows emis-
éivity to be expressed as the ratio of brightness temperature to ther-
modynamic temperature, the unnormalized brightness temperatures should
not indicate moisture as well as would an appropriately normalized
brightness temperature. Thus, air temperature is seen to be a useful
approximation to the emitting layer temperature, as stated by McFarland
"and Blanchard (1977).  The inferior performance of the vertically
polarized emissivity can be eprained by the fifty-degree viewing angle
of the sehsor, very neaf the Brewster angle :at which the vertical com-
ponent peaks regardless of dielectric constant. The vertical component
is thus constrained to be less sensitive to soil moisture content than

the horizontal component, which is unaffected by the Brewster angle.

49



The remaining 14 ¢ indices comprised the category of strong indices.
Of these, the best was usually ¢45, the horizontally polarized emis-
sivity used by McFarland And Blanchard (1977). None of the other
indices' correlations with API were significantly different in annual
analysis, but they exhibited more variébility in the seasonal analys-
es. In fact, the "best" annual index, ¢q5, was again the best in Sea-
son 2 and one of the worst in Season 3. In the other seasons, it was
not very different from its annual value. In Seasons 5 and 6, when it
was not "best", it was insignificantly different from the best. This.
erratic performance was duplicated by ¢,3, the mean of ¢,5 and ¢gg.
The other. indices, whether including or excluding the ground-sensed
temperature, showed somewhat more stable performance annualiy and in
seasohal analysis, and frequently had correlation coefficfents numer-
ically lower than thaf of ¢g5, but never significantly so.

Another observation was that several of the correlation coefficients
for individual seasons were higher than for the year as a whole. For
instance, the correlation coefficient for ¢,5 was -0.81 in annual
analysis, but -0.96 in Season 2. Figure 5 shows thg annual and season-
al corre]atioh coefficients for regressions of API upon each of three
of the stronger indices. These values are plotted as heavy dots. The
verfically oriented boxes depict, by their widths, the cdrrelation
values corresponding to the 95% confidence 1limits of the Fisher Z'
transform. Similar confidence limits are shown by horizonal lines for
each of Seasons 2 through 6. In most cases, annual and seasonal
correlations are indistinguishable.

This point 1is further illustrated by the Z' transform values
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themselves. For instance, the Z' value for ¢4,5 was eleven standard
errors different from zero 1in annual analysis. It was only seven
standard errors from zero in Season 2. It would be consistent with
theory if these indices performed better in early spring before the
establishment of a dense vegetation cénopy, Nevertheless, it would
be difficult to conclude from these data alone that seasonal analysis
is definitely more useful than annual analysis. This point will be
illustrated later, with reference to the scatter plots of time-series
data.

The next step added multiple linear regression and principle compo-
nents analyses and was restricted to thirteen of the eighteen basic
indices. Specifically included were indices ¢g;, ¢g2» and ¢gs through
¢15. This 1list included strong, moderate, and weak indices, in case
the weaker indices might be found to respond to soil moisture informa-
tion absent in the stronger indices. The annual and seasonal multiple
“linear regressions of -API on these indices failed due to ill-condi-
tioned matrices. The decomposition into subsequent multiple regression
on the first four components failed, again due to i1l conditioned
matrices. Table 4 shows the Season 0 variance-covariance matrix, which
indicated that the strong indices were very well correlated with each
other; hence they could not be expected to differ significantly in
their information content. Subsequent analyses eliminated many of
these indices for that reason.

The next run was restricted to only five indices: 601° 005> $06s

$07» and ¢,,. The results for Season 0 (full year) are summarized in

Table 5. The multiple regression did not improve the correlation over
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TABLE 5
Temporal Analysis of Five Indices

South Area, Row 09, Column 29
Season 0

MULTIPLE CORRELATION COEFFICIENT: 0.83
VARIANCE-COVARIANCE MATRIX:

REGRESSION COEFFICIENTS: INDEX ¢, b0s bdog ¢07
PHI O1: 0.551 ¢o1 1.0
PHI_05: 41.8 6os 0.5 1.0
PHI_06: -25.2 ¢0s 0.3 0.9 1.0
PHI_07: -6.15 ¢o7 -0.6 -0.9 -0.6 1.0
PHI 11: 37.6 ¢y -0.6 -0.9 -0.6 1.0
INTERCEPT: 8.76

PRINCIPAL COMPONENTS ANALYSIS:
FACTOR LOADINGS:

ool8d 0%

PROMINENT EIGENVECTORS:

10 o8 0% oMF o3 Lo%M
2: 0.80 -0.23 -0.55 -0.08 -0.07  2:
3: 0.51 0.05 0.59 0.46 0.42  3:

d06

0.31
MULTIPLE REGRESSION ON 3 PRINCIPAL COMPONENTS:

MULTIPLE CORRELATION COEFFICIENT: 0.82

EIGENVECTOR 1

SIGNIFICANT (AT ALPHA=0.05):
EIGENVECTOR 2

MULTIPLE REGRESSION ON 2 SIGNIFICANT COMPONENTS:

MULTIPLE CORRELATION COEFFICIENT: 0.82

REGRESSION COEFFICIENTS: EIGENVECTOR 1: -4.66
EIGENVECTOR 2: 2.47
INTERCEPT: 8.76
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any of the single linear regressions of the previous analysis. This
suggested that any possible improvement to the coefficient of 0.82 was
no worse than that of the previous analysi§ with five indices. Conse-
quently, any soil moisture information present in weaker indices but
not sharéd»by the strong ones must be inaccessible to a simple linear
combination algorithm. Again, the strong indices were well correlated,
as indicated by both the variance-covariance matrix and the factor
loadings. The two significant eigenvectors do not add to the explana-
tion of the variance.. The first merely restates the equivalence of
the three strong indices. The second depends heavily on the fwo weak
indices, neither of which is singly important in estimating API.
Finally, the multiple correlation coefficient from the regression of
API on the two significant eigenvectors did not differ from the simple
correlation coefficient from d5e SuBsequently, the multiple regression
and principal component analyses were omitted.

The annual regressibn analyses for row 09, column 29, have been
illustrated graphically in Figures 6, 7 and 8. These are scatter plots
showing pointé plotted at coordinates given by the API and the regres-
sjon hode] éstimate of API. On these graphs, a dfagonal line has been
drawn for reference., Some care must be taken in interpreting these
graphs. The diagonal' lfne is the one-to-one ratio line, not the
- regression line. Furthermore, the abscissa is not the independent
variable, ¢j; rather, it is the regression model estimate of API.
This format was adopted to enable direct comparison of graphs for the
three separate indices. Similar graphs for Seasons 2 through 6 are

shown in Appendix A.
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Figure 6. Regression of API of ¢, season 0, row 09, column 29,
south area.
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MODEL: 1.44(T,-T) - 76
ROW: 09 COL: 29 SEASON: 0 /ruiL vear
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Figure 7. Regression of API of 4!, season 0 row 09, column 29,

south area.

57

80
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Figure 8. Regression of APl of¢,, , season 0, row 09, column
29, south area.
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Several points can be made from these graphs. First, as for the
‘numerical evaluation, all of the three indicés seem to perform equally
well. Second, all of the indices have a tendency to underestimate the
APl in the aftermath of a heavy precipitation event. This behavior is
seen in an anomalous point in the uppef center of Figures 6-8. This
point represents a heavy rain event that was recorded at many stations
in the grid, some reporting more than 14 cm of precipitation over two
days in October, 1979.. The resulting underestimate of API is consis-
tent with the very shallow sampling depth of the SMMR sensor. 1Its soil
moisture signal saturates at low values of API. Finally, the sparsity
of the scatter points on the seasonal graphs suggests that the seasonal
analyses may not be quite reliable, even though they have significantly
higher correlation coefficients in some cases. Figure A-4, for
instance, shows only low values of API and a single heavy rainfall
event. This season may be getting much of its apparent correlation
from two well-separated clusters; a common source of fadlty conclu-
sions in regression analysis.

Time-series plots of the data are shown in Appendix B. Each series
"~ shows a solid line representing the API values computed from climatic
data. These series.can be compared fo the regression model estimates,
which are shown as doﬁs. Both annual and seasonal models are shown,
and the seasons are demarcated along the top of each graph for
reference. Since this entire project .has considered only data from
days when snow cover was estimated as zero, and since the presence of
snow on the ground produced a transient anomaly in the API model, the

days of snow cover hqve been indicated along the bottom margins.

59



The time-series plots illustrate some of the same phenomena.
Specially evident' is the tendency to undefestimate the magnitude of
heavy precipitation events. For instance, in Figure 11, the values on
days 140, 188, and 304 of 1979 show this effect, as do the same days in
Figures B-Z and 8-3. These plots also show the relative value of the
annual and seasonal regression analyses. While the root-mean-square
“error of the seasonal regressions tended to be lower than that of the
annual regressions, the difference was not partitular]y noticeable in
time-series plots. In fact, there were times, such as days 120 to 130,
140 to 150, and 160 to 170 of 1979, when the annual model seems to fol-
low the shape of the API line better than did the seasonal model; the
seasonal model was closer to the line, butAshowed the wrong trend. For
some applications, such as rainfall estimation, in which the daily
- change of API is more important than the actual value, this distinction
could be crucial. |

While the many contingency tables generated for this study gannot
be reproduced here, a few are included for illustration. Table 6
shows the contingency tables from the scfeening grid cell, row 09,

column 29, for the full year's analysis. These tables demonstrate the

skill of the three microwave indices in making categorical estimates of

soil moisture. Any differences between the contingency tables are not

compelling.

Phase II: Tests of Three Indices

The three indices used in the final analysis of Phase I were select-

ed for further examination using data from six other grid cells in
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Kansas. These grid cells are shown in Figure 3, and listed with their
land-use classification and wheat area percentages in Table 2. The
indices tested in Phase II Qere bo5» 407> and ¢;,, one index of emis-
sivity and two of polarization.

Linear regressions of APl upon each df these indices were performed
for all seasons and the full year. Results are presented in Appendix E
and summarized in Table 7. The results of the Phase I grid cell (row
09, column 29) are included for comparison. Several observations can
be made.

First, each of the three indices was significantly correlated to
API in Season 0, the full year, for all of the grid cells. However,
ih the seasonal anaiyses, each of the indices failed to correlate sig-
nificantly in at least some times and places. The statistics that do
not differ significantly (alpha=0.05) from zero are underlined in the
table.

Second, in most cases in which any two indices were significantly
correlated with API for the same season and the same grid cell, the
Fisher Z' transforms of the two correlation coefficients did not differ
significantly from each other. The exceptions to this observation are
surrounded with brackets wherever they occur in the tables. On the
whole, however, each index is approximately as good an indicator of API
as either of the other two.

Third, two grid cells that were classified as rangeland have the
poorest correlations. It appears that rangeland vegetation interferes
with the microwave signature of soil moisture more than does the

vegetation of cultivated croplands. One reason for this phenomenon
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PHI_05:

PHI_p7:

PHI_}I:

MULTIPLE
LINEAR

REGRESSION:

AP ICAT
OBSERVED
CAT 1
CAT 2
CAT 3

APICAT
OBSERVED
CAT 1
CAT 2
CAT 3

APICAT

"OBSERVED

CAT 1
CAT 2

CAT 3

APICAT
OBSERVED
CAT_1
CAT 2
CAT 3

TABLE 6

Sample Contingency Tables
South Area, Row 09, Column 29, Season 0

MODEL ESTIMATE

CAT_1 CAT 2 CAT 3
66 3 0

6 12 4

1 2 8

MODEL ESTIMATE

CAT 1 CAT 2 CAT 3
66 2 1
8 11 3
0 2 9

MODEL ESTIMATE

CAT_1 CAT 2 CAT3
64 4 1
8 11 3
0 9

2 .

MODEL ESTIMATE

CAT.1 CAT 2 CAT 3
66 3 0

8 11 3

1 1 9
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could be the area coverage of the vegetation. In range areas of Kan-
sas, a nearly uniform vegetal cover extends unbroken for many miles.
Agricultural regions, on the other hand, have many bare soil areag,
such as roads, plowed fields, open spaces between crop rows, etc.
Additionally, some crdps, such as wheat, may have individual plant
geometries which permit relatively unimpeded passage of microwave radi-
ation durin§ some seasons such as fhe few weeks after emergence.
Finally, the seasonal behavior of the correlation coefficients,
while not conclusive, is nevertheless consistent with theory. Strictly
monocultural areas, whether planted in wheat or in grassland range,
should show a drop in correlation coefficient during those seasons when
the vegetative canopy is most dense. This effect was seen in Seasons 3
and 4 for the rangeland grid cells and for the final agricultural grid
cell, which was located in the heart of the most dense wheat. cropping.
The mixed agricultural and range griq cells and agricultural grid cell§
with only moderate wheat percentages did not show this late spring and
summer drop in correlation, presumably because the presence of other
crops with different development cycles insured the nearly continuous
presence of enough bare ground to effect a sensor response to soil

moisture variations.
Phase III: Verification with Independent Data.

The same three indices, ¢gs, ¢g7» and ¢;;, were tested on data
from three grid cells in the winter wheat producing regions of Oklahoma
and Texas. The results are presented in Appendix E, Tables E-8 through

E-10, and summarized in Table 8. These results are substantially the
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same as those of Phase II. Annual correlations were all significantly
different from zero, with values ranging from about 0.60 to 0.70.
Seasonal correlations were more varied, with the highest exceeding 0.90
while some values were 'insignificantly different from zero. In annuai
analysis, the performance of the three indices was statistically indis-
Vtinguishable. The same behavior was typical in seasonal analysis.
Again, the grid cell with high wheat percentage showed poorer correla-
tions in Spring and Summer, while the other two grid cells with
moderate wheat percentages were not so strongly affected.

The near equivalence of the emissivity and polarization indices is
illustrated in Figure 9 which shows the annual and seasonal scatter
plot of ¢o7=Ty-Th versus ¢¢s=Tp/T for the grid cell at Row 18,
Column 27, in Grant County, Oklahoma, a nearly monocultural winter
wheat region. Simiiar seasonal plots are presented in Appendix C.
These graphs cluster tightly into a linear pattern with increased dis-
persion at the high values of T,/T. This dispersion at the dry end
of the soil moisture range can be explained by the increased relative
importance, in the absence of water, of such other emission factors as
soil roughness, vegetation cover, effect of wind on canopy geometry,
etc., as well as by the effects of deeper layers of moistufe not
directly related to the API. The Season 3 plot also shows the reduced
sensitivity of microwave indices to soil moisture under a well devel-

obed canopy.
Spatial Analysis
A case study from 10 May 1979 illustrates the spatial analysis
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performed in this study.
Correlation Maps

Seasonal and annual correlation coefficient maps were generated
showing results of simple linear regregsions (in the time domain) of
API on each of g5, ¢97,» and ¢;, for each grid cell. The Season 3
correlations are shown in Figure 10, and the annual corfe]ations in
- Figure 11. THe brightest pixels in both figures had correlation coef-
'ficients insignificantly different from zero (at alpha=0.05), while the
darkest pixels showed high correlations, some exceeding 0.90 in season-
al analysis.

Both figures ;howed areas of weak correlation'in the mountains of
Southeastern Oklahoma, in the Flint Hills of east-central Kansas; and
in the high plains of Cblorado. These low correlations are consistent
with the forests of Southeastern Oklahoma and the rangeland of the
other two areas.

The other patterns were related to the development cycle of winter
wheat. First, much of the winter wheat regfon shows very low correla-
tion between API and any of these indices during Season 3. These low
correlations can be explained by the dense canopy of wheat fields in
May and June. On the other hand, the annual correlation maps show high
~values for the annual regression analyses. In fact, the annual cor-
relation maps strongly resemble the 1980 map of wheat area percentage,
in Figure 3. This result is attributable to the essentially bare soil

surface of winter wheat lands duringAmajor portions of the year.
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Two further observations can be made from these images. While the
seasonal correlation maps had higher maximumn values than did the
annual correlation maps, the latter had far fewer pixels with insig-
nificant correlation. Finally, the areal patterns of correlation for

all of the three indices were very similar.
Soil Moisture Maps

Images of model-estimated API were generated with model parameters
from the same regression analyses that were used to produce the cor-
relation maps. For comparison, maps of precipitation and resultant API
are shown in Figure 12.

Figure 13 shows three maps of model-estimated API, produced from
seasonal regressions of APl on ¢45, ¢g7» and ¢,;. Model parameters
for pixels with insignificant correlation were replaced by area average
values. In Figure 14, all API estimates were generated using the area-
mean values of regression parameters. The same sequence of maps pro-
duced from a per-pixel and area-mean parameters of annual regression
models is shown in Figures 15 and 16.

Several observations can be made from these images. First, all of
them succeeded in showing the major features of the API map in Figure
12. The process of remapping SMMR's conic-scan data to a rectandular
grid did not destroy the spatial pattern. Second, seasonal model im-
ages of Figures 13 and 14 tended to depict the high values of API more
accurately than did the annual models of Figures 15 and 16. Third, the
emissivity tended to show high values of API more accurately than did

either of the polarization indices. The low values, on the other hand,
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were imaged better by the polarization indices. Compare, for example,
two dny'features of the APl map with their counterparts in the model
estimate images. The largeét very dry area is shown in the Texas Pan-
handle on the APl map, Figure 12, which also shows a weaker dry axis
trending northeastward through central Oklahoma and eastern Kansas.
The emissivity images reversed this pattern, depicting the Kansas-
Oklahoma dry axis as broader and dryer than the Texas dry region. The
polarization images derived from per-pixel regression parameters did
not make this erroneous reversal. Finally, the images produced from
area-mean parameter values preserved the general features of the API
map in spite of their not accounting for site-specific‘properties, such

as soil type, topography, land use and vegetation.
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SUMMARY AND CONCLUSIONS
Summary

The major purpose of this research is to find ways to extract soil
moisture information from the 1.66 cm polarized channels of the SMMR
sensor, Using API as ground control data, this capability has been
demonstrated for three microwave indices in winter wheat areas of Kan-
sas, Oklahoma, and Texas. APl estimates can be obtained from passive
microwave data in areas with essentially bare soil for appreciable
periods of the year. Consequently, these methods are useful in many
monocultural areas, especially in winter wheat regions. They are less
useful in forested areas and in dry climates where factors other than
soil moisture can dominate the microwave signature of the soil and soil
cover. Quantitative soil moisture estimates can be obtained from

either emissivity or polarization data.
Conclusions

Soil moisture information can be derived from emissivity
estimates. Specifically, an index computed by dividing the horizontal-
ly polarized brightness temperature by the air temperature is well cor-
related with API. Using data from the entire year, correlation coef-
ficients typically exceed 0.80 in winter wheat areas. When analysis is
restricted to the shorter periods of individual seasons, these correla-
tion coefficients may exceed 0.90 in winter wheat areas during sea-

sons when the soil is essentially bare. This emissivity index based
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upon the horizontally polarized brightness temperature gives sig-
nificantly better correlations with APl than does a similar index
based upon the vertically ﬁo]arized component.

Alternatively, polarization data can be used to estimate soil
moisture content. Two indices, the bo]arization difference and the
normalized difference have been shown to have equal utility. These two
polarization indices are also well correlated with APl in winter wheat
areas. The correlation coefficents are consistently lower than those
of emissivity, but the difference typically is not statistically sig-
nificant. Both of these polarization indices are effectively invariant
with temperature over the nonfreezing range sampled in this study.

The emissivity and polarization indices convey nearly the same
soil moisture information. Correlqtion coefficients of about -0.9
between horizontal emissivity and either polarization index are typi-
cal. Furthermore, multiple linear. regression upon the three indices
does not improve significantly upon the correlation of API with any
single index.

Principal component analysis can be wused to combine multiple
indices into.one which has the same correlation with API as does the
best single index. However, since the emissivity and polarization
indices carry substantially the same moisture information, this proce-
dure does not result in significant improvement over the simpler
approach of using any one of the single indices.

APl estimates for specific sites can be obtained by objectively
analyzing the conic-scan microwave data to a rectangular grid and per-

forming regression analyses of precipitation-derived API values upon

79

45’._‘



microwave indices for each individual grid-cell. That is, moisture
estimates need not be based directly upon microwave values from actual
IFOVs, but may be remapped into convenient rectangular arrays, even at
a resolution different from that of theAsensor, while still preserving
the spatial pattern of soil moisture.

Regression models from which API is estimated can be based upon
year-round data or seasonal data. Seasonal models for bare-soil period
typically give higher correlation coefficients than do annual models.
However, the parameters of seasonal regression models can be unreliable
due to sample size if the models are derived from a single season of
data. Although the root-mean-square errors of seasonal models tend to
be lower than those of annual models, the difference in correlation
coefficient is usually not pronounced except in the early spring and
late fall when vegetation cover is sparse. In fact, the correlation
coefficients typically respond to the vegetation cover throughout the
year with low or insignificant values in the Spring and Summer for
winter wheat areas. This minimum is not so apparent in multicultural
areas that have at least some bare ground throughout the year.

Individual grid-cell estimates of API can be assembled to form
spatial maps of soil moisture. These maps generally have missing-data
pixels due to lack of correlation at some of the grid-cells. These
holes can be filled by using the average regression parameters for the
surrounding area. Images have been presented showing that this proce-
dure does preserve the general soil moisture pattern represented by the

API map.
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In fact, the general features of the AP] map are preserved even if
all of the pixels of the microwave-derived image are computed with
area-mean regression paramefers. Thus, soil moisture can be mapped
from space even in regions where no ground control data is available,
if the regression parameters can be estimated from those of analogous
regiohs where ground control data is available.

The satellite imagery presented here preserves the prominent
features of the ground control APl map even in areas which are not
monocultural wheat lands. Consequently, passive microwave methods can
be used in at least a qualitative sense for many regions in which their
quantitative application would be an error.

Even in monocultural wheat regions, the quantitative value of
passive microwave methods has some restrictions. The short wavelength
of the SMMR sensor used.in this report limits the sampling depth to a
few millimeters. Consequently, the sensor saturates when rainfall
exceeds some limit; that is, there is some value of API above which
further increases of API are not attended by :an increase of microwave-
estimated API. This effect is demonstrated in the scatter plots of
temporal analysis and by the 10 May 1979 imagery. In both cases, the
microwave system underestimated the larger values of API.

The contingency tables presented here demonstrate, however, that
passive microwave data do have quantitative value, since the majority
of entries in the tables fall on the diagonal. Even if these methods
are too rough to yield precise soil moisture measurements, they can be
used to classify the moisture content of the soil into a few quantita-

tively defined categories.

81



Finally, microwave sensors have essentially all-weather, day/
night capability. The time series for which the regressions were done
in this study did not differentiate between day and night, yet the
correlation coefficients were comparable to those of McFarland and
Blanchard (1977), which were based upod midday observations. Neither
did the presence of an active line of thunderstorms strongly contam-
inate the case study imagery of 10 May 1979, since the sensor IFOV is

larger than the actively precipitating area of many thunderstorms.
Recommendations for Further Study

This paper reports the construction of a large database and the
initial analyses of some of thé data. Future efforts should be able to
refine the work presented here. The possible avenues of improvement
include better representation of the ground contrq] data, i.e., a bet-
ter API model; explicit consideration of atmospheric effects that were
ignored in this study; and use of a simulation model of microwave
emission.

The APl formula used for ground control data was applied uniformly
over the entire study area, without regard to land cover classifica-
tion, spatial variations of climate or temporal variations of weather.
Future analysis of this data should attempt to parameterize the API
model coefficients in terms of these classes of information. For
instance, the annual temperature pattern for specific locations could
be used to modify the mean and amplitude of of the sinusoidal moisture
depletion coefficient used in the APl model. Alternafively, actual

daily values of maximum and minimum temperature could be wused to
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compute a daily value of the depletion coefficient, eliminating
reference to a sinusoidally varying function.

With a better representation of API, it should also be possible to
better define APl categories for contingency table analysis. The
categories used in this study were purefy arbitrary. It would be bet-
ter to define catagories in terms of some phenomena with agronomic or
hydrologic significance.

Atmospheric effects can be considered 1in connection with soil
moisture studies. In particular, the other frequencies of the SMMR
sensor could be exploited to monitor the moisture.content and perhaps
the mean temperature of the volume of air through which the microwave
radiation passes. The same methods could allow explicit computation of
the sky brightness temperature. It was assumed here that the effect of
the atmosphere upon the brightness temperature would be less than 10K,
and that this effect would be fairly uniform. These effects can be
tested explicitly, though. Other sensor systems in everyday use can be
employed to do this,

Finally, it is recommended that a simulation model of microwave
emfssion be evaluated. Simulation methods can be used iteratively in
inversion problems. If a model of soil and land-cover emission can be
fmp]emented, it could be used in an iterative inversion algorithm to
extract soil moisture information. Personnel at Texas A& University
Remote Sensing Center have done some related emission modeling, such as
Tsang and Kong (1980), Tsang and Newton (1980) and Newton et al.
(1982). It should be productive to apply their theoretical work to the

database and analytic insights developed in this investigation.
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APPENDIX A
REGRESSION PLOTS FOR SEASONS 2-6

This appendix presents the individual seasonal regression results
for a single grid cell in the south area, row 09, column 29, for each
of 45, 7, and ¢y3. In each graph, the abscissa is estimated API
obtained from the regression model; the ordinate is APl from the

climatic database. The diagonal line is, thus, the one-to-one slope

line, not the line of best fit. Analogous graphs for the entire year

are presented in Chapter 4.
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Figure A-4. Regression of API on ¢,, season 5, row 09, column 29,
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Figure A-6. Regression of APl ong¢,, season 2, row 09, column 29,
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Figure A-8. Regression of API on ¢,, season 4, row 09, column 29,
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Figure A-10. Regression of API on ¢,, season 6, row 09, column 29,

south area.

101



35:7(TV-TH)/('}(TV+TH)) - 1.5

MODEL:
ROW: 09 COL: 29 SEASON: 2 /MAR-APR
90 +
804
704
“ 60
£
E
VSO-
a
<
4041
304
204
1o R’: 0.87
| N:=17
(‘)A 110 ZTO 5‘0 4'0 5'0 6'0 ;0 80
Model Estimate of APl (mm)
Regression of APl on ¢,,, season 2, row. 09, column 29,

Figure A-11.

south area.

102



80

MODEL:  s35(-T)/(}(T,+Tw) - 7.9
ROW: 09 COL: 29 | SEASON: 3 /MAY-JUN
90
80
70+
“ 60+
E
£
" s0-
Q.
<<
40
304
20+
104 R*: 0.61
N:=18
0 10 20 30 40 50 60 70
Model Estimate of APl (mm)
Figure A-12. Regression of API on 4, , season 3, row 09, column

29, south area.

103



415 (M T/ FHT+T) -

MODEL: 6.0
ROW: 09 COL: 29 | SEASON: 4 /UUL-AUG
90+
80+
704
“ 60+
£
=
v50~
o.
<
404
304
204
104
N=20
‘(‘) % 2'O 3'0 4'0 5‘0 6‘0 7'0
Model Estimate of APl (mm)
Figure A-13. Regression of APl on¢,, , season 4, row 09, column

29, south area.

104

80



APl (mm)

MODEL: 447(T,-T)/(H(T+T,) - 13.1
ROW: 09 COL: 29 SEASON: 5/SEP-0OCT
90+
80+
704
60
50+
40
30+
20-'.
2
10- R%: 0.53
N:=:27
6 110 ?0 3'0 4'0 ST(J 6'0 7‘0 80

Model Estimate of API (mm)

Figure A-14. Regression of APl on ¢,,, season 5, row 09, column
29, south area.

105




MODEL: 240(TV-TH)/(%(TV+TH)). - 4.5

ROW: 09 COL: 29 SEASON: 6 /NOV-DEC

904

801

70

501

APl (mm)

40+

30+

204

101

604

R?: 0.67
N:=19

. .
A ¥ L

L Ll A L
o 10 20 30 40 50 60 70 - 80

Model Estimate of APl (mm)

Figure A-15. Regression of API on ¢,,, season 6, row 09, column 29,

south area.

106



APPENDIX B8

T-IME SERIES PLOTS

This appendix presents plots, in the time domain, of API against
regression model estimates of API. The solid curve is APl from the
climatic database. The large and small dots are, respectively, API
estimates from the annual and seasonal regression models. For
comparision, the seasons are demarcated along the top of the graphs and

the days with snow cover are indicated at the bottom.
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APPENDIX C

SCATTER PLOTS OF ¢ and ¢, FOR SEASONS 2-6

The following figures demonstrate the linear relationship between

two of the microwave indices used in this report. In each graph, the

abscissa is
emissivity;
channels.

presented in

¢s,» the normalized horizontal brightness temperature or
the ordinate is ¢5, the difference between polarized

The summary graph with data with the entire year is

Chapter 4.
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Figure C-1. Scatter plot of emissivity and polari-

zation indices, season 2, row 18, column
27, south area. :
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Figure C-2. Scatter plot of emissivity and polari-
zation indices, season 3, row 18, column
27, south area.
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Figure C-3. Scatter plot of emissivity and polari-

zation indices, season 4, row 18, column
27, south area.
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Figure C-4. Scatter plot of emissivity and polari-
zation indices, season 5, row 18, column
27, south area,.
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Figure C-5. Scatter plot of emissivity and polari-

zation indices, season 6, row 18, column
27, south area.
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APPENDIX D
TABULATION OF INITIAL SCREENING RESULTS
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TABLE D-1

Correlation Coefficients Between APl and Indices

(Full Year)

Season 0

N=102

South Row 09 COL 29

BASIC INDICES

0.19

Significant abs{CORR)

CORR L U

INDEX

+ 1.0 ]

B i ] I i Il i
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— b
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* & o & & o 6 & & 8 & o o 3 o o e @
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~'SQUARED INDICES

SQUARE-ROOT INDICES

L

INDEX

CORR L U

INDEX

CORR
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$19
$20
$21
$22
$23
d24
¢25
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b27
b28
$29
$30
$31
$32
$33
¢34
$35
$36

A1l correlations were significant at the 0.05 level.
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TABLE D-2

—
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c o
— <
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o
w

BASIC INDICES

Significant abs(CORR) = 0.48

U

L

CORR

INDEX

+ 1.0 ]

(DAY - 00) )

93 -0.98 -0.82
10 -0.56 +0.40
87 -0.95 -0.67

-0
-0
-0
-0
-0
-0

%01
$02
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dou
$05
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Underlined correlations were not significant at the 0.05 level.
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TABLE D-3

Correlation Coefficients Between APl and Indices

South Row 09 Col 29

N=18

Season 3

BASIC INDICES

INDEX  CORR L U

601 =-0.33 -0.69 +0.16
602 -0.40 -0.73 +0.09
403 -0.55 -0.81 -0.11
oon -0.39 -0.73 +0.09
605 -0.35 -0.70 +0.14
605 F0.05 -0.43 +0.51
407 0.76 0.45 0.91
608 0.79 0.50 0.92
409  0.78 0.49 0.91
610 0.78 0.49 0,91
61, 0.78 0.49 0.91
612 -0.48 -0.77 -0.02
613 =0.17 -0.59 +0,32
o1n 0.78 0.49 0.91
615 -0.78 -0.91 -0.49
616 0.75 0.44 0.90
61> 0.76 0.45 0.91
618 0.76 0.46 0.91

SQUARE-ROOT INDICES
INDEX CORR L U

619  =-0.33 -0.69 +0.16

o0  —0.40 -0.73 +0.09
451  -0.55 -0.81 -0.11
690  =-0.39 -0.73 +0.09
$23 -0.35 -0.70 +0.14
65n  0.05 -0.43 +0.51
65s  0.75 0.44 0.90
d26 0.77 0.48 0.91
¢27 0.77 0.47 0.91
6,6  0.77 0.47 0.91
629  0.77 0.47 0.91

630 -0.48 -0.77 -0.02
631  =0.17 -0.59 +0.31
é32 0.77 0.48 0.91
623  -0.77 -0.91 -0.47
43e  0.74 0.42 0.90
¢35 0.75 0.44 0.90
32 0.75 0.44 0.90

(MAY - JUN)

Significant abs(CORR) = 0.47

[ lisselounsenl e lae s feae e Tass | sun fane Vasne s Fams F o ¥ o R o

sin( B * (DAY - DO) ) + 1.0 ]

T ]]
th
ty J
th /T ]
ty /T ]
ty - th ]
(ty - th) / T ]
(ty - th) / th ]
(ty - th) / ty ]
2.0 * (ty - tn) / (ty + tn) ]
(ty + tn) /2.0 ]
(ty + tp) / (2.0% T) ]
(ty + ty) / (2.0* ty) ]
(ty +th) / (2.0*t,) ]
(ty - th) *2.0* T/ (t, + ty)]
(tv - th) * 2.0 * t /(tv+th)ﬂ
(ty - tp) * 2.0 * ty /(ty*rth)]
SQUARED INDICES
INDEX CORR L U
637 -0.33 -0.69 +0.16
438 -0.80 -0.73 +0.09
¢39 ‘0.55 -0.81 -0.11
¢yo -0.40 -0.73 +0.09
oy, -0.3% -0.70 +0.15
éyo 0.05 -0.42 +0.51
643 0.77 0.47 0.91
¢y, 0.80 0.53 0.92
bys 0.79 0.51 0.92
oye 0.79 0.51 0.92
¢y7 0.79 0.51 0.92
¢yg -0.48 -0.77 -0.02
b9 -0.17 -0.59 +0.32
¢s9 0.78 0.49 0.91
45, -0.78 -0.91 -0.49
45, 0.76 0.45 0.90
653 0.77 0.47 0.91
osy 0.77 0.47 0.91

Underlined correlations were not significant at the 0.05 level.
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TABLE D-6
Correlation Coefficients Between APl and Indices
South Row 09 Col 29 N=19 Season 6 (NOV - DEC)

BASIC INDICES

INDEX  CORR L U Significant abs(CORR) = 0.45

6 _01 +.04 -0.42 +0.49 [ sin( B * (DAY - 00) ) + 1.0 ]

¢ _02 0.69 -0.87 -0.3& [T ]

¢ _03 -0.90 -0.96 -0.76 [ T, ]

¢ _04 -0.80 -0.92 -0.55 [ T, ]

6 05 -0.85 -0.94 -0.64 [ Ty / T ]

¢ _06 -0.57 -0.81 -0.16 [T, /717 -

¢ 07 0.80 0.55 0.92 [T, -T,]

¢ 08 0.82 0.58 0.93 [ (T, -Tp) /T]

& 09 0.82 0.57 0.93 [ (Ty-Th) / Tp ]

¢ _10 0.82 0.59 0.93 [ (Ty -Tp) /Ty 1]

o6 _11 0.82 0.58 0.93 [ 2.0* (Ty - Th) / (Ty+Th) ]

¢ _12 -0.87 -0.95 -0.70 [ (T, + Th¥ / 2.0 ]

6 _13 -0.80 -0.92 -0.54 [ (Ty + Tp) / (2.0 * T) ]

6 _14 0.82 0.57 0.93 [ (Ty + Th) / (2.0 * Ty) ]

¢ _15 -0.82 -0.93 -0.59 [ (Ty + Ty) / (2.0 * T,) ]

¢ _16 0.81 0.55 0.92 [ (Ty - Ty) * 2.0 * T/(Ty+Ty)]

¢ _17 0.81 0.55 0.92  [(Ty-Tp) * 2.0 * Th/(Tv+Th)3

6 _18 0.80 0.54 0.92  [(Ty-Tp) * 2.0 * T,/(Ty+Th)]
SQUARE-ROOT INDICES SQUARED INDICES

INDEX CORR L U INDEX CORR L U

19 +0.09 -0.38 +0.52
20 0.69 -0.87 -0.34
21 -0.91 -0.96 -0.77
22 -0.81 -0.92 -0.56
23 -0.85 -0.94 -0.64
24 -0.57 -0.81 -0.16
25 0.82 0.59 0.93
26 0.84 0.63 0.94
T27 0.84 0.63 0.94
28 0.85 0,64 0.94
29 0.85 0.64 0.94
T30 -0.88 -0.95 -0.70
31 -0.80 -0.92 -0.54
732 0.82 0.57 0.93
733 -0.82 -0.93 -0.58
T34 0.83 0.60 0.93
35 0.83 0.59 0.93
736 0.82 0.59 0.93

37 -0.04 -0.48 +0.42
738 70.69 -0.87 -0.34
739 -0.90 -0.96 -0.75
740 -0.80 -0.92 -0.54
741 -0.85 -0.94 -0.65
42 -0.57 -0.81 -0.16
43 0.76 0.46 0.90
44 0,77 0.48 0.91

45 0.76 0.46 0.90
46 0.77 0.48 0.91
47 0.76 0.47 0.90
748 -0.87 -0.95 -0.68
749 -0.80 -0.92 -0.54
750 0.81 0.57 0.93
751 -0.82 -0.93 -0.59
752 0.76 0.46 0.90
753 0.76 0.47 0.90
54 0,75 0.46 0.90

© O O 6 6 6 6 6 6 6 6 66 6 6 6 6 6
o 6O 6 6 66 9 6 6o 6 e 6 o6 o 6

Undertined correlations were not significant at the 0.05 level.
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. TABLE D-5
Correlation Coefficients Between APl and Indices
South Row 09 Col 29 N=27 Season 5 (SEP - OCT)

BASIC INDICES

INDEX CORR L U Significant abs{CORR) = 0.38

$01 -0.26 -0.58 +0.13 [ sin( B * (DAY -D0) ) + 1.0 ]

002  -0.14 -0.50 +0.25 [ T ]

¢93 - -0.70 -0.85 -0.44 [ Th ]

doy -0.62 -0.81 -0.31 1y 1

bos -0.82 -0.91 -0.64 (Th/T1

bo6 -0.83 -0.92 -0.66 (T, /711

b07 0.70 0.43 0.85 [Ty -Th ]

bos 0.70 0.43 0.85 L(Ty -Th) / T 1

bog 0.73 0.49 0.87 L (Ty -Th) / Tnh ]

$10 0.73 0.48 0.87 L (Ty -Th) / Ty ]

d11 0.73 0.48 0.87 [ 20* (Ty -Ty) / (Ty + Ty) 1

¢12  -0.67 -0.84 -0.39 [ (T, + Thx / 2.0

d13 -0.84 -0.92 -0.67 L (Ty +Th) 7/ (2.0 *T) ]

b1y 0.73 0.49 0.87 [ (Ty + Tn) /7 (2.0 * Tp) ]

615 -0.73 -0.87 -0.48 [ (Ty +Ty) /7 (2.0 *7,) ]

b16 0.73 0.48 0.87 [ (Ty = Tp) * 2.0 * T/(Ty+Ty)]

617 0.69 0.42 0.85 [ (Ty - Th) * 2.0 * T/ (Ty+Th)1

b18 0.70 0.44 0.85 [ (Ty - Th) * 2.0 * T,/(Ty+ThH) ]
SQUARE-ROOT INDICES SQUARED INDICES

INDEX CORR L U INDEX CORR L U

d19 -0.27 -0.59 +0.12 637 -0.23 -0.56 +0.16

$20 -0.14 -0.50 -0.25 b38 -0.14 -0.50 +0.25

$21 -0.71 -0.86 -0.45 $39 -0.68 -0.84 -0.41

$22 -0.63 -0.81 -0.32 by 0 -0.60 -0.80 -0.29

$23 -0.82 -0.92 -0.65 by -0.81 -0.91 -0.62

day -0.84 -0.92 -0.67 by 2 -0.82 -0.92 -0.64

b25 0.68 0.40 0.84 d43 0.73 0.48 0.87

b26 0.67 0.39 0.84 buy 0.72 0.47 0.86

627 0.70 0.44 0.86 dys 0.77 0.55 0.89

b8 0.70 0.43 0.85 bue 0.76 0.54 0.89

d29 0.70 0.44 0.85 by 7 0.76 0.54 0.89

$30 -0.68 -0.84 -0.41 dug -0.66 -0.83 -0.37.

631 -0.84 -0.92 -0.68 du9 -0.83 -0.92 -0.65

$32 0.73 0.49 0.87 $s0 0.73 0.49 0.87

$33 -0.73 -0.87 -0.48 ¢s51 -0.72 -0.87 -0.47

b3y 0.70 0.44 0.85 $s52 0.77 0.55 0.89

$35 0.67 0.39 0.84 53 0.72 0.47 0.86

$36 0.68 0.40 0.84 dsy 0.73 0.49 0.87

Underlined correlations were not significant at The 0.05 level.
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TABLE D-6
Correlation Coefficients Between API and Indices
South Row 09 Col 29 N=19 Season 6 (NOV - DEC)

BASIC INDICES

INDEX  CORR L Uy Significant abs(CORR) = Q.45

¢ 01 +0.04 -0.42 +0.49 [ sin( B* (DAY - DO) ) + 1.0 ]

¢ _02 <0.69 -0.87 -0.34 [T ]

6 _03 -0.90 -0.96 -0.76 [ Ty ]

¢ _04 -0.80 -0.92 -0.55 [ T, ]

6 05 -0.85 -0.94 -0.64 [ Ty / T1]

6 _06 -0.57 -0.81 -0.16 [ Ty /T ]

6 07 0.80 0.55 0.92 [Ty - Tp ]

¢ 08 0.82 0.58 0.93 [ (Ty -Ty) /7]

6 09 0.82 0.57 0.93 [ (Ty -Th) / Th ]

¢ _10 0.82 0.59 0.93 [ (Ty -Tp) / Ty ]

6 _11 0.82 0.58 0.93 [ 2.0* (Ty - Tp) / (Ty+Th) 1

¢ _12 -0.87 -0.95 -0.70 [ (Ty + Ty) / 2.0 ]

¢ _13 -0.80 -0.92 -0.54 [ (Ty + Ty) / (2.0 * T) ]

6 _14 0.82 0.57 0.93 [ (Ty +7Th) / (2.0 * Tp) ]

6 _15 -0.82 -0.93 -0.59 [ (Ty + Tp) / (2.0 * 1) 1

6 _16 0.81 0.55 0.92 [ (Ty - Tp) * 2.0 * T/(Ty+Ty)]

6 _17 0.81 0.55 0.92  [(Ty-Tp) * 2.0 * Th/(Tv+Th)H

6 _18 0.80 0.54 0.92  [(Ty-Tp) * 2.0 * T,/(Ty+Th)]
SQUARE-ROOT INDICES SQUARED INDICES

INDEX CORR L U INDEX CORR L U

19 +0.09 -0.38 +0.52
20 70.69 -0.87 -0.34
21 -0.91 -0.96 -0.77
22 -0.81 -0.92 -0.56
~23 -0.85 -0.94 -0.64
24 -0.57 -0.81 -0.16
25 0.82 0.59 0.93
26 0.84 0.63 0.94
27 0.84 0.63 0.94
28 0.85 0.64 0.94
29 0.85 0.64 0.94
730 -0.88 -0.95 -0.70
731 -0.80 -0.92 -0.54
32 0.82 0.57 0.93
733 -0.82 -0.93 -0.58
734 0.83 0.60 0.93
735 0.83 0.59 0.93
736 0.82 0.59 0.93

37 -0.04 -0.48 +0.42
738 70.69 -0.87 -0.34
739 -0.90 -0.96 -0.75
40 -0.80 -0.92 -0.54
41 -0.85 ~0.94 -0.65
42 -0.57 -0.81 -0.16
43 0.76 0.46 0.90
44 0.77 0.48 0.91
45 0.76 0.46 0.90
46 0.77 0.48 0.91
T47 0.76 0.47 0.90
48 -0.87 -0.95 -0.68
49 -0.80--0.92 -0.54
50 0.81 0.57 0.93
751 -0.82--0.93 -0.59
52 0.76 0.46 0.90
753 0.76° 0.47 0.90
54 0.75 0.46 0.90

€ 9 6 9 6 O 6 66 69 66 96 0O
© 9066 6666666696 e o

Underlined correlations were not significant at the 0.05 level.
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APPENDIX E
SIMPLE LINEAR REGRESSION RESULTS

The following tables present the results of siﬁple linear
regression of API on each of three indices, by season and annually, for
all of the individual grid cells used in temporal analysis, Phases I,

II, and III.
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TABLE E-1

Simple Linear Regressions of APl on Three Indices, By Season

102

17
18
20
27
19

South Area Grid Cell: Row 09 Column 29
PHI 05 PHI 07 PHI 11

CORR SLOPE INTCP  CORR SLOPE INTCP  CORR SLOPE INTCP
-0.81 -253 232 0.7 1.44 -7.6 0.76 33 -6.0
-0.96 -253 232 0.93 1.61 -10.3 0.93 357 -7.5
-0.35 -133 128 0.76 2.04 -8.3 0.78 535 -7.9
-0.81 -348 317 0.72 1.5 -6.2° 0.73 411 -6.0
-0.82 -320 291 0.70 1.87 -14.6 0.73 447 -13.1
-0.85 -207 189 0.80 1.04 -5.6 0.82 240 -4.5
Underlined statistics differ insignificantly from zero (alpha=0.05).

Minimum significant abs(CORR) = 0.19 for Season O

Minimum significant abs(CORR) = 0.48 for Season 2

Minimum significant abs(CORR) = 0.47 for Season 3

Minimun significant abs(CORR) = 0.44 for Season 4

Minimum significant abs(CORR) = 0.38 for Season 5

Minimum significant abs(CORR) = 0.45 for Season 6

TABLE E-2

Simple Linear Regressions of APT on Three

n Nv
104

16
19
22
29
17

South Area Grid Cell:

PHI 05

Row 03
PHI 07

Indices, By Season

Col

umn 29

PHI 11

CORR

- .0.81

-0.87
-0.80
-0.60
-0.84
-0.61

SLOPE
-309

-327
-240
-353
-455
-266

INTCP

283

296
224
321
413
243

CORR  SLOPE  INTCP

(0.71] 1.90 -10.8

0.86 2.43 -20.3
0.85 1.55 -5.8
0.37 1.51 -4.7
[0.56] 2.19 -15.6
0.65 1.54 -8.8

CORR
[0.74]

0.88
0.86
0.38
(0.62]
0.69

SLOPE
454

555
390
403
577
379

INTCP
-9.3

'1702

-5.0
-4.6
- 5.6
-8.3

Bracketted CORR values differ significantly from largest abs{CORR).
zero (alpha=0.05).

Underlined statistics differ
significant
significant
significant
significant
significant
significant

Minimum
Minimum
Minimum
Minimum
Min imum
Minimum

insignificantly f

rom

abs{CORR) = 0.19 for

abs(CORR)
abs(CORR)
abs(CORR)
abs{CORR)
abs(CORR)

0.50
0.42

0.48
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TABLE E-3
Simple Linear Regressions of APl on Three Indices, By Season
" South Area Grid Cell:  Row 10  Column 33

PHI 05 PHI 07 PHI 11
Sn N CORR  SLOPE INTCP  CORR SLOPE INTCP  CORR SLOPE INTCP

0 100 -0.52 -239 223 [0.34] 0.94 0.7 [0.36] 241 0.8

8 0.85 576 -15.5
6 0.21 351 3.9
1 0.35 507 -1.3
0 0.53 271 <&7
4 0.2 131 2.0

15 -0.77 -310 284 0.8
18 -0.46 -411 384 0.2

3 2.45 -17.
0 3.
20 -0.43 -370 344 0.33 1.80 -1.
3 -5,
3 4

26 <0.76 -220 203 0.5
20 -0.22 -81 80 0.1

U PAWN

b
0.30 .

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.20 for Season
Minimum significant abs(CORR) = 0.51 for Season
Minimum significant abs(CORR) = 0.47 for Season
Minimum significant abs(CORR) = 0.44 for Season
Minimum significant abs(CORR) = 0.39 for Season
Minimum significant abs(CORR) = 0.44 for Season

DN oW O

TABLE E-4
Simp]e Linear Regressions of API on Three Indices, By Season
South Area Grid Cell: Row 12  Column 27

_ PHI 05 PHI 07 PHI 11
Sn N CORR SLOPE INTCP  CORR SLOPE 'INTCP RR SLOP N

0 109 -0.81 -257 235 0.78 1.54 -10.0 0.80 349 -7.7

2 16 -0.96 -213 197 0.93 1.46 -10.3 0.94 321 -7.5
3 19 -0.41 -215 204 0.47 2,38 -12.1 0.54 655 -12.7
4 23 -0.82 -270 246 0.72 1.25 -5.7 0.72 323 -5.1
5 31 -0.94 -410 371 0.91 2.46 -20.7 0.92 554 -17.1
6 18 -0.90 -313 278 0.84 1.56 -15.4 0.87 355 -13.6

Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.19 for Season
Minimum significant abs{CORR) = 0.50 for Season
Minimun significant abs(CORR) = 0.45 for Season
Minimum significant abs(CORR) = 0.41 for Season
Minimum significant abs(CORR) = 0.35 for Season
Minimum significant abs(CORR) = 0.47 for Season

D s~ Wwrn O

woH ouonon
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TABLE E-5
Simple Linear Regressions of API on Three Indices, By Season
South Area Grid Cell: Row 13 Column 20

PHI 05 PHI 07 PHI 11
Sn N CORR SLOPE INTCP  CORR SLOPE INTCP  CORR SLOPE INTCP

0 99 -0.81 -246 227 0.78 1.61 -9.9 0.78 377 -8.1

18 -0.90 -240 221 0.89 1.60 -10.2 0.8 373 -8.3
17 -0.73 -277 260 0.73 1.83 -6.5 0.75 453 -5.4
20 -0.90 -363 332 0.89 2.23 -14.9 0.89 554 -13.1
25 -0.93 -364 335 0.88 2.40 -18.2 0.90 558 -15.6
15 -0.57 -155 142 0.74 0.97 -7.0 0.76 237 -6.5

N wWwnN

Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.20 for Season
Minimum significant abs{CORR) = 0.47 for Season
Minimum significant abs(CORR) = 0.48 for Season
Minimum significant abs(CORR) = 0.44 for Season
Minimum significant abs(CORR) = 0.40 for Season
Minimum significant abs(CORR) = 0.51 for Season

ST whhoO

TABLE E-6
Simple Linear Regressions of API on Three Indices, By Season
South Area Grid Cell: Row 14 - Column 33

PHI 05 PHI 07 = PHI 11
Sn N CORR  SLOPE INTCP TCORR SLOPE INTCP CORR SLOPE INTCP

-0 106 -0.56 -201 190 [0.22] 0.3¢4 5.8 [0.,24] 95 5.6

2 16 -0.51 -117 116 0.39 0.63 6.1 0.42 158 6.1
3 17 -0.62 -479 446 0.37 72.62 5.3 0.39 707 -5.3
4 20 -0.65 -701 648 0.07
5
6

0.47 4.4 0.10 184 3.5
27 -0.45 -117 109 -0.30 -0.15 3.8 -0.29 -38 3.7
26 -0.27 -114 111 0.27 ~0.64 2.2 ~0.3% 7205 0.5

Bracketted CORR values differ significantly from largest abs(CORR).
Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs(CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.50 for Season
Minimum significant abs(CORR) = 0.48 for Season
Minimum significant abs(CORR) = 0.44 for Season
Minimun significant abs(CORR) = 0.38 for Season
Minimum significant abs(CORR) = 0.40 for Season

S b wrn
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TABLE

E-7

Simple Linear Regressions of API on Three Indices, By Season

South Area Grid Cell: Row 15 Column 29
PHI 05 PHI 07 PHI 11
CORR SLOPE INTCP  CORR SLOPE INTCP CORR SLOPE INTCP
-0.76 -162 152 0.68 0.98 -3.4 0.70 231 -2.4
-0.91 -181 171 0.85 1.10 -2.6 0.87 248 -1.0
-0.50 -189 182 0.17 0.43 7.2 0.22 142 6.4
-0.53 -100 94 0.38 0.40 0.0 0.38 104 0.1
-0.93 -148 135 0.87 1.05 -8.7 0.90 253 -7.7
-0.66 -127 120  0.58 0.70 -0.5 0.61 166 0.1
Underlined statistics differ insignificantly from zero (alpha=0.05).
Minimum significant abs{CORR) = 0.19 for Season 0
Minimum significant abs(CORR) = 0.45 for Season 2
Minimum significant abs(CORR) = 0.47 for Season 3
Minimum significant abs(CORR) = 0.44 for Season 4
Minimum significant abs(CORR) = 0.38 for Season 5
Minimun significant abs{CORR) = 0.47 for Season 6
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Bracketted CORR values differ significantly from largest abs(COR

South Area Grid Cell:

PHI 05
CORR SLOPE INTCP
-0.73 -169 157
-0.92 -211 199
-0.46 -296 279
T0.75 -173 160
-0.95 -168 153
-0.69 -106 100

Underlined statistics differ

DO WM

Minimum
Minimum
Minimum
Minimum
Minimum
Minimum

South Area Grid Cell:

significant
significant
significant
significant
significant
significant

PHI 05

CORR SLOPE  INTCP
-0.70 -202 186
-0.63 -130 126
-0.70 -266 246
-0.79 -216 198
-0.70 -157 142
-0.67 -102 94

TABLE E-8

Simple Linear Regressions of APl on Three Indices, By Season

Row 18 . Column 27
PHI 07 PHI 11
TORR SLOPE INTCP  TORR _SLOPE INTCP
0.67 0.98 -2.8  0.69 238 -2.2
0.85 1.30 -2.4 0.86 298 -0.8
0.31 1.11 "0.3 0.39 360 <1.6
0.73 1.14 6.3 0.73 780 5.1
[0.79] 0.73 =7, [0.83] 192 <7435
0.68 0.59 -0.4 0.69 137 0.2

Simple Linear Regressions of API on

——

R).
insignificantly from zero (alpha=0.05).
abs(CORR) = 0.19 for Season 0
abs(CORR) = 0.45 for Season 2
abs(CORR) = 0.47 for Season 3
abs(CORR) = 0.43 for Season 4
abs(CORR) = 0.38 for Season 5
abs(CORR) = 0.48 for Season 6

TABLE E-9 2
Three Indices, By Season
Row 29  Column 22
PHI 07 PHI 11

CORR SLOPE INTCP CORR SLOPE INTCP
0.62 1.11 -6.4 0.64 268 -5.3
0.61 0.85 0.3 0.61 193 1.7
0.57 1.47 -7.5 0.63 400 -7.
[0.47] o0.84 -2.3 f0.50] 223 -2.2
0.65 0.78 -6.4 0.66 201 -6.1
0.71 0.79 5 0.74 184 -5,

Bracketted CORR values differ significantly from largest abs{CORR)
Underlined statistics differ

Minimum
Minimum
Minimum
Minimum
Minimum
Minimum

significant
significant
significant
significant
significant
significant

insignificantly from

abs(CORR)
abs(CORR)
abs(CORR)
abs (CORR)
abs(CORR)
abs(CORR)

[}

o u g o
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0.19 for
0.42 for
0.48 for
0.43 for
0.38 for
0.47 for

zero (
Season
Season
Season
Season
Season
Season

alpha=0.05).
0
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TABLE E-10

Simple Linear Regressions of APl on Three Indices, By Season

South Area Grid Cell: Row 21 Column 14

PHI 05 PHI 07 PHI 11

CORR SLOPE INTCP  CORR SLOPE INTCP  CORR SLOPE INTCP
-0.63 -171 158 0.58 1.15 -7.5 0.59 269 -6.2
-0.71 -85 80 0.63 0.5 -2.2 0.66 138 -1.8
-0.81 -297 274 0.65 1.64 -/, 0.68 408 -6.2
-0.65 -207 194 0.68 1.65 -9.2 0.67 419 -8.1
-0.60 -109 100 0.50 0.55 -4.1 0.50 132 -3.6
-0.83 -360 322 0.88 2.32 -25.1 0.89 546 -22.8

Underlined statistics differ insignificantly from

Minimum significant abs(CORR) = 0.18 for
Minimum significant abs(CORR) = 0.45 for
Minimum significant abs(CORR) = 0.45 for
Minimun significant abs(CORR) = 0.44 for
Minimum significant abs(CORR) = 0.37 for
Minimun significant abs(CORR) = 0.43 for
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zero (alpha=0.05).
Season
Season
Season
Season
Season
Season
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The REMOTE SENSING CENTER was established by authority of the Board of Directors of
the Texas A&M University System on February 27, 1968. The CENTER is a consortium of four
colleges of the University; Agriculture, Engineering, Geosciences, and Science. This unique
organization concentrates on the development and utilization of remote sensing techniques and

technology for a broad range of applications to the betterment of mankind.








