NASA Contractor Report
 172363

COMPUTATION OF IMAGINARY-SIDE PRESSURE

DISTRIBUTIONS OVER THE FLEXIBLE WALLS

OF THE TEST SECTION INSERT FOR THE

O.3-M TRANSONIC CRYOGENIC TUNNEL

M. J. Goodyer

UNIVERSITY OF SOUTHAMPTON
Department of Aeronautics and Astronautics
Southampton, England (Subcontractor)

KENTRON INTERNATIONAL, INC.
Kentron Technical Center
Hampton, Virginia 23666

Contract NAS1-16000
June 1984

RBRARY EOPY

- m\% \%

LANGLEY FESEARCH CENTER
LIPRARY, NASA
H.....2TCN, VIRGINIA

Larigley Research Center

Hampton, Virginia 23665

CONTENTS

1. Introduction

2. Program notes

3. Listing

4. Comparison with potential-flow test case

 Appendices
1. INTRODUCTION.

The object is to provide a method for detoraining the pressure distribution along the flexible walls of the 13 inch insert for the 0.3 m Cryogenic Pressure Tunnel. The program IFLEX, the subject of this report, provides a method for general wall shapes. The program is based on incompressible potential flow theory, with the addition of an allowance for compressibility effects through the Prandtl-Glakert factor.

The program is quite compact, suitable for aini and micro computers, and is presented in BASIC language.

The essence of the method is tócreate mathenatically an artificial flowfield which contains a streamline springing from infinity having the same shape as a wall. To one side of this streamline, corresponding to the imaginary-flow side of a flexible wall, there are no singularities, and the velocity distribution along the streamline is that which would exist in a semi-infinite inviscid flowfield over that side of the flexible wall. The input data is therefore the wall shape. The flowfield comprises a free stream influenced by a set of sources and sinks positioned regularly along a line parallel to the free stream. The source line is a tangent to the wall at its closest point to the axis of the test section. Often this tangent will in fact pass through the wall anchor point, jack zero, simply because the wall is everywhere else further away.

The input data comprises a set of wall deflections from "straight", measured at jacks. In the context of this work. "straight" must be interpreted as aerodynamically straight as defined in NASA CR-165936.

The strength of the source/sink set is adjusted until a streamline passes through the defined wall co-ordinates given
by the movement of jacks. The first source/sink is positioned $3 / 4^{n}$ downstream of the anchor point (the upstream fixed end of the wall) the remainder being spaced at regular $1 \frac{1}{2} "$ intervals downstream. The velocity/pressure coefficient is determined at "computing points" on the wall mid-way (measured streamwise) between sources, that is at regular $1 \frac{1}{2}{ }^{n}$ intervals downstream from the anchor point.

The nature of the wall shape and jack spacing suggests the adoption of the following policy. Refer to test section drawing LD-525722 for relevant wall dimensions. There is a slope discontinuity built into the walls near to jack 19. The influence of the discontinuity on the static pressure at this jack station will cause the wall to be driven to an unrealistic position. The wall will be driven outwards in the subsonic flow normally expected in this region. It is suggested that in streamlining the walls (empty, or with a model present) the real-side pressure at jack 19 be ignored, and the jack be driven to position the wall at a point given by an extrapolation of the wall line through jacks 17 and 18. In this way the influence of the discontinuity on events at jack 18 will be minimised. Following this, the program to determine the pressures over the imaginary sides of the walls need only account for the movements of jacks 1 to 18 (jack 0 being the anchor point), with a small straight extrapolation towards the position of jack 19.

This arrangement results in the creation of many more sources and "computing points" than there are jacks, although many of the jacks do coincide with computing points particularly in the region of the model. Appendix 1 clarifies the positions of devices along a wall. The station measurements coincide with those on drawing LD-525722. The station of jack 0 is not definable exactly. It is taken as 0.5^{n}.

The two walls almost always have different shapes: they are therefore computed separately.

2. NOTES ON THE PROGRAM IFLEX.

The listing, given as Appendix 2, has many built-in comments aimed at clarifying the details of computation. These notes supplement that source of information.

The steps in the program comprise: interpolation between jack displacements to give wall displacements at each of 34 computing points adjustment of source/sink strengths until a streamline passes through the 34 points
computation of pressure coefficients at computing points
linear interpolation to give pressure coefficients at jacks which lie between computing points.

Built into the program is a demonstration case: each wall is given a sinusoidal wave displaced upward. The wave is 20" long, $\frac{1}{2}{ }^{\prime \prime}$ peak height. The imaginary flow above the top wall flows over what could be described as a $\frac{1}{2}$ " high "ridge" transverse to the free stream. As the wall is in some places not moved from its straight position, and is elsewhere raised above the straight, the sources lie along the "straight" position because this is also the tangent to the point (in this case in two areas) nearest to the tunnel axis.

The imaginary flow for the bottom wall traverses a "valley". The sources lie along a line displaced into the test section by the wave height, $\frac{1}{2}{ }^{n}$. These geometries result in the appearance of a positive-negative-positive $C p$ sequence in the imaginary field outside of the top wall, with the strongest negative at the ridge crest. There is the opposite effect on the bottom wall. The output for this demonstration case is given in Appendix 3.

The program adopts linear extensions of the walls for 4尔" beyond jack 18. The bend in the wall is 4.3" beyond jack 18. 4. A POTENTIAL-FLOW TEST CASE.

In order to check quantitatively on the output from the program, a potential-flow test case has been generated. The small program in Appendix 4 computes the shape and pressure
distribution along a streamline in the appropriate position for a wall. The streamline passes by a body created by a single source. A sketch is given on figure l, which also has a plot of the shape of the streamline and its pressure distribution. The shape was used as input data to IFLEX, in the form of streamline deflections inline with each jack station. On the same plot is the exact pressure distribution compared with the predictions from IFLEX.

The two sets of pressure coefficient data are seen to be in close agreement. The maximum error in IFLEX is about +0.002 , likely to be compatible with the precision of the measurements of corresponding real-side pressures in the test section. One reason for IFLEX predicting a higher C_{p} néar to the anchor point is the change in boundary slope which is assumed by IFLEX to occur near to the anchor point. No similar slope change occurs in the potential flow model.

The program is easily adapted in the manner indicated in its inbuilt comments to take as input data, if desired, the shapes of walls selected in wind tunnel tests. The computing time in BASIC on an HP 9845 is a total of 3 minutes for two walls including output as hard copy.

IMAGINAR' FLONFIELD COMPUTRTIONS FLEXIELE WALL IHSERT FOR 0.3 m

	POSIT	N TABLE	
St, at.ion inches . 56	Jack\# 0	Source\#	Computing point 0
1.25		0	
2.60			1
2.75		1	
3.56			2
4.25		2	
4.75	1		
5.60			3
5.75		3	
6.56			4
7.25		4	
8.69			5
8.75		5	
9.50			6
10.25		6	
10.50	2		
11.60			7
11.75		7	
12.50			8
13.25		8	
14.00			9
14.75		9	
15.50	3		10
16.25		10	
17.60			11
17.75		11	1 1
18. 50			12
19.25		12	,
19.50	4		
20.00			13
20.75		13	
21.591			14
22.25		14	
22.50	5		
23.09			15
23.75		15	
24.50	6		16
25.25		16	
26.60	7		17
26.75		17	

27.50	8		18
28.25		18	
29.90	9		19
29.75		19	
30.50	10		26
31.25		20	
32.00	11		21
32.75		21	21
33.50	12		22
34.25		22	
35.600.			23
35.50	13		2
35.75		23	
36.56			24
37.25		24	
37.50	14		
38.00			25
38.75		25	
39.56	15		26
40.25		26	
41.09			27
41.75		27	27
42.50	16		28
43.25		28	28
44.89			29
44.75		29	2
45.510			30
46.25		30	
46.50	17		
47.00			31
47.75		31	
48.50			32
49.25		32	
56.60			33
50.75		33	
51.50	18		34

```
10 ! RE-SAVEd as "IFLEX"
```

```
    FRIHT " WALL IMAGINRRY-SIDE FRESSURE COEFFICIENTS".
    FRIHT " FOR FLEXIBLE WRLLED INSERT IN 0.3m CRYOGENIC WIHD TUNHEL."
    PRIHT " ----------------------------------------------------------------
    FRINT " IFLEX"
    PRIHT " Rugust 6, 1982"
    FRINTER IS 16
    IIM Ty(18), EY(13)
                                Jack displacements from aerodynamically straight,
                                positive FWAY from test section centerline.
                                Buffer store for jack displacements.
    Dimensions are inches.
    Buffer store for interpolated wall displacements.
    A for (source-wall angles)/PI, S for sources.
    Pressure coefficients at computing points."
    Streamwise stations of jacks.
    INTA 39.5,42.5,46.5,51.5 ! Jack stations.
    Mo=0 ! Reference Mach nr.
    IF Mo<.9 THEN 280
    INFUT "Mach may be too high. Input. P[CONT] if to proceed:",P孚
    IF P&="F" THEN 280
    GOTO 250
    Efta=SQR(1-Mo*MO) ! Prandtl-Glauert factor.
    FOR K=0 TO 18
    REFI }<(K
    IICK)=0
    HERT K
    FOE J=4 T0 14 STEF 1 ! Jack nr.
    Ii(J)=.25+.25*SIN(<X(J)-24.0)*FI/10) ! Sinusoid test Ease. Wave . 5" high
    HEXT I ! and 20" wavelength centered on jack g at station 19".
        FOR I=g TO 18 STEP 1 ! Change of sign in lines 3B0 or 390 will exchange
        ! ridge for ualley.
        Ty<I)=Di(I) ! For top wall this wave is a ridge: negative Cp on crest.
        EY(I)=-II<I) ! " bottom " " " " " valley: pos. " in hollow
        HEXT I ! Test case formed.
        ! The programme proper starts here.Ty() & Ey() must already be loaded.
        Eg=0 ! Zero when computing top w.all, & set to l for bottom wall.
        GOTO 496
        FOR I i=0 TO 1s
        Euf(Ii)=Ey(Ii). ! Load buffer store with bottom y-coordinates.
        HEXT I;
        'Yy=0
        GOTO 520
        FOF: B=0 TO 18
        Euf(B)=Ty(B) " " " " "
        HEXT E
        X=.5 ! X is to be raised from this walue in 1.5" incremente.
        N1=0
        Eufi(0)=0 ! Zero displacement at sta. 0.5 inch.
        Y=0
        NG=3 ! First jack # which coincides with the chosen X-spacing.
        8心=8(N9)
        FOR N=0 TO 15 STEP 1
        X1=S(N)
        X2=N(N+1)
        83=人(N+2)
        84=8(H+3)
        \because1= Euf(N)
        Y2=Buf(H+1)
656 YЗ= Euf(N+2)
660 \gamma4=Buf(N+3)
```

 \(T=\) Eufi (H\()\) < (\(1.5 *(\mathrm{H}-\mathrm{P}-.5))\)
 IF AES(T)<. 05 THEN 1430
 \(\mathrm{H}(\mathrm{H}, \mathrm{F})=\mathrm{HTH}(\mathrm{T}) / \mathrm{PI}\)
 $1230 \quad F=56 F) * \mathrm{~A}(\mathrm{H}, \mathrm{P})$
$F 2=F 2+F 5 \quad$ Sum all source flow contributions to stream function $S F$.
HEKT F
IF FT>1 THEN 1300
127日 \quad T=4*Fufi《H) 3 ! Tangent of angle betueen point on wall \& source just U/S
GOSUE 2090
$X=8+1.5$
! Hext station at which interpolation to be made.
$\mathrm{H}=\mathrm{H} 1+1$! Counter for nr . of stations interpolated.
IF HK15 THEH 720 ! Go if not interpolating between jacks 16-18.
GOTO 730
IF X>83 THEH 600 ! Most times interp. only in center patch.
$\gamma=\gamma 4+\mathrm{A} 2 *(\mathrm{X}-\mathrm{X} 4) \times 3+B 2 *(\mathrm{X}-\mathrm{X} 4) \cdots 2+C 2 *(\mathrm{~S}-\mathrm{X} 4)$! Interpolated displacement.
IF $X>51.5$ THEN 1950 ! Ho interest beyond jack 18.
Eufi(H1)= ! Interpolated wall displacement.
IF YくYy THEN G日G ! Search for the minimum Y.
IF $X=X \in$ THEN $330 \quad$ Sta. X coincides with a jack.
IF X>Ke THEN BPO ! Bypassed a jack. Go to make Xe the next jack's sta.
GuTa ese
H1=N1-1
$x=x-1.5$
HEXT H
$\mathrm{N} 9=\mathrm{NG}+1$
IF $\mathrm{H} 9>18$ THEN 920
Xc=x(N9)
GOT0 790
$\mathrm{NG}=\mathrm{NG}+1$! Jack counter.
$\mathrm{Xc}=\mathrm{N}$ (H9)
GOTO 790
$\gamma y=Y$
GOTO 779
Eufi(35)=2\#Eufi(34)-Eufi(33) ! One interual (1.5") Extension inst. line.
Eufi (36) =2*Eufi(35)-Eufi(34)
Eufi(37)=2*Eufi(36)-Eufi(35) ! "
FOR K1=0 T0 37
Eufi (ki)=Eufi(ki)-iy ! Displacements are now all relative to a source
line passing through the point on the wall
closest to the centerline of the test section.
NEMT KI
Start of aerodunafics.
Linearized.
FOR $\mathrm{Al}=0$ TO 36
S(A1)=Bufi(A1+1)-Eufi《A1) : 34 approximate source half-strengths.
$S(A 1)=S(A 1) *(1+.75 * B u f i(A 1+1))$
HEST A1
FRIHT
IF Co=1 THEN 1090
FEIHT " Computing \& correrting sourcersink strengths for top wall:"
GOTO 1110
FRINTER IS 16
FRINT " Computing sourcersink strengths for bottom wall:"
PRIHT" - 2 iterations -"
FRIHT" Fass 1 (Elow- 35 secs)"
FOR FT=1 TO 2
! Pass number, correcting sources.
FG=-YY
FOR $H=1$ TD $3 T$ STEP 1 Interval number.
Fe=Eufi《H》 ! Free stream contribution to SF.
FOR F=日 TG 36
Sources in turn.
F $\mathrm{F}=\mathrm{H}-1$ THEH 1250 ! Miss out the source just upstream.
IF PT>1 THEN 1230
H(NF) ! Rssume Tan〈small angle〉=angle,
! to speed up computation.
SF contribution from this source.
$\begin{array}{ll}1276 & T=4 \text { EUfi《H) } 3 \text { ! Tangent. } \\ 1280 & \text { IF } A B S(T)<.05 \text { THEN } 1456\end{array}$
$\mathrm{F}(\mathrm{N}, \mathrm{N}-1)=\mathrm{ATH}(\mathrm{T}) / \mathrm{PI}$
S(H-1)=〈F2-FE)<(1-A〈H,N-1)) ! Fdjust source to equalise SF's.
$F 6=F G+S(H-1) \quad!\mathrm{SF}$ for next H.

```
    1330
    1340
    1350
    NENT F:
    1370 PRINT
    1380 PRIHT "Station
    FOR Hh=0 T0 36
    FRIHT USING 2060;NH*1.5+1.25,2*S(NH),Nh
    NERT Hh
    GOTO 1470
        F(H,P)=T/FI
        GOTO 1230
        F(N,N-1)=T<FI
        GOTO 1300
        PRIHT
        PRINT " Have sources."
    FRINT " Computing Cp's..."
    G0T0 1590
                            ! But there is the option of printing Cp at
                            ! 1.5" intervals by not going to 1590.
1520 FRIHT
1530 IF Co=1 THEN 1560
1540 FRIHT " TOP WALL"
1550 FOTO 1570
1560 FRINT " EOTTOM WALL"
1570 FRINT "Station","Cp"
1580 FRIHT
1590 FOR Q=6 T0 34 ! Computing point. Station is .5+1.5*0
1600 CT=0 I See separate notes.
1E16 CB=0
162日 FOR E=0 T0 36 ! Sources in turn.
1630 T1=(0-R-.5)*1.5 ! Streamwise distance from source to point.
1640 T2=S(R)*T1
1650 TS=Bufi(0)*Eufi<Q)+T1*T1
16E日 T4=T2,T3
1570 C7=C7+T4
16S0 TS=S(R)*Eufi(0)
1690 TE=T5/T3
170日 C8=68+TG
1719 NE&T F
1720 C7=C7.FI
1730 CE=CB/FI
1740 CG=(-2*C7-C7*C7-CS*C8)/BEta
1750
    Cp(0)=C9 ! Cp.
1760 G0T0 1780 ! But
1770 PRIHT USIHG 2070;0*1.5+.5,C9
178G HEKT Q
1796 FRINT
18日G FRINTER IS E
1810 IF Co=1 THEH 1840
1820 FRINT " Top wall"
1830 GOTO 1850
1840 FRIHT " Bottomimall"
1856 FRIHT
1860 FRIHT " Jack Cp"
1870 FOR E=1 T0 18 ! Cp at jacks by linear interpolation.
18日G X=XGE)
1890 FOR G=0 T0 34
1906 K1=.5+G\div1.5
1910 IF X1>=% THEN 1930
1920 HEXT G
1950 Cpa=Cp(G-1)
1940 Cpt=Cp(G)
1950 Cp=Сра+(Срb-Сра)*(X-久1+1.5)/1.5
1960 FRINT USIHG 2080;E,CP
1976 HEXT E
1980 PRIHT
\begin{tabular}{|c|c|}
\hline 1990 & FEIHT \\
\hline 2060 & IF Co= 1 THEN 2030 \\
\hline 2010 & \(\underline{G O}\) \\
\hline 2020 & GOTO 440 \\
\hline 20.50 & FRINT \\
\hline 2040 & FRINT \\
\hline 2650 & EHI \\
\hline 20E6 & IMAGE DD. \(\mathrm{MI}, 13 \mathrm{X}, \mathrm{D} . \mathrm{HDHDL}, 13 \mathrm{X}, \mathrm{HI}\) \\
\hline 2870 & IMRGE DI. I, \(13 \mathrm{~K}, \mathrm{D}, \mathrm{DIDD}\) \\
\hline 2089 & IMAGE 15X, II, \(6 \times\), MDD. DDII \\
\hline 2098 & \(\therefore 5=X 3-84\) \\
\hline 2100 & \(\therefore 6=82-84\) \\
\hline 2110 & \(\mathrm{X} 7=\mathrm{X} 1-\mathrm{X} 4\) \\
\hline 2120 & \(\gamma 5=Y\) - \({ }^{\prime} 4\) \\
\hline 2130 & Y6=Yこ-Y4 \\
\hline 2146 & \(Y 7=Y 1-Y 4\) \\
\hline 2150 & B1= \(55 * 85-85 * 65 * 256\) \\
\hline 2160 &  \\
\hline 2170 & C \(1=85-85 * 85 * 85(86 * 86)\) \\
\hline 2180 & C \(3=\times 7-87 * \times 7 * \times(86 * 26)\) \\
\hline 2196 &  \\
\hline 2208 &  \\
\hline 2210 & \(\mathrm{C} 2=21 \div \mathrm{ES}\) - \(1-23\) \\
\hline 22 c 0 & \(\mathrm{C} 2=\mathrm{C} 2)(\mathrm{C} 1 * \mathrm{E} 3-\mathrm{B} 1-\mathrm{C} 3)\) \\
\hline 2236 & \(E 2=(21-E 2 * C 1) / E 1\) \\
\hline 2248 &  \\
\hline 2250 & FETURN \\
\hline
\end{tabular}

IFLEX
Rugust 6, 1982
Top wall
\begin{tabular}{cc} 
Jack & Cp \\
1 & .0060 \\
2 & .0108 \\
3 & .0165 \\
4 & .0747 \\
5 & -.0383 \\
6 & -.0483 \\
7 & -.1825 \\
8 & -.2038 \\
9 & -.1823 \\
10 & -.1246 \\
11 & -.0486 \\
12 & .0395 \\
13 & .0806 \\
14 & .0255 \\
15 & .0126 \\
16 & .0072
\end{tabular}

Bot tom w.all
\begin{tabular}{cc} 
Jack & \(C p\) \\
1 & -.0055 \\
2 & -.0697 \\
3 & -.0116 \\
4 & -.0782 \\
5 & -.0254 \\
6 & .0656 \\
7 & .1243 \\
8 & .1605 \\
9 & .1725 \\
16 & .1605 \\
11 & .0244 \\
12 & -.0659 \\
13 & -.0261 \\
14 & -.0543 \\
15 & -.0188 \\
15 & -.0114 \\
17 & -.0064 \\
18 &
\end{tabular}

10
20
36
40
50
\(E 6\)
70
80
90
100
110
";T;"INCH BOD'r."
1こG FEINT "JACK STATION DEFLECTION CP"
130 FOR \(J=1\) TO 18
140 READ X(J)
\(150 \quad \because 0=6.5\)
166 \(\quad X=X(J)-29\)
\(170 \quad F=6.5+\) RTH(6.5/-28.5)*T/(2*PI)
180 IF \(\leqslant=0\) THEN 360
190 IF \(\times<0\) THEH 210
260 \(F=6.5+\) RTH 6.5\(\rangle-28.5\rangle * T /\langle 2 * P I\rangle+T / 2\)
210 FDR \(\gamma=Y\) TO TO 10 STEP . 04
\(220 \quad F 1=Y+T * R T N(Y / K)<(P I * 2)\)
230 IF FI \(>\) F THEN 250
240
256
260
270
286
296
365
316
320
336
346
359
360
370
381
396
400
410
420 FRINT
430 END

2 INCH EODY.
\begin{tabular}{|c|c|c|c|}
\hline TAEK & ETATIOH & DEFLECTIOH & Ci \\
\hline 1 & 4.75 & . 0122 & . 02433 \\
\hline 2 & 10.50 & . 0368 & . 03033 \\
\hline 3 & 15.56 & . 0729 & . 03767 \\
\hline 4 & 19.501 & . 1225 & .04434 \\
\hline 5 & 22.50 & . 1831 & . 04644 \\
\hline \(E\) & 24.50 & .2413 & . 04207 \\
\hline 7 & 26.60 & . 2964 & . 63277 \\
\hline 8 & 27.50 & .3692 & .01731 \\
\hline 9 & 29.60 & . 4286 & -. 09211 \\
\hline 10 & 36.50 & .4959 & -. 02063 \\
\hline 11 & 32.06 & . 5566 & -. 63421 \\
\hline 12 & 33.56 & . 6083 & -. 04191 \\
\hline 13 & 35.56 & .6632 & -. 04531 \\
\hline 14 & 37.50 & . 7649 & -. 04440 \\
\hline 15 & 39.50 & .7366 & -. 04173 \\
\hline 16 & 42.50 & .7714 & -. 03698 \\
\hline 17 & 46.50 & . 8628 & -.03126 \\
\hline 15 & 51.50 & . 8284 & -. 02576 \\
\hline
\end{tabular}
\(Y 1=Y\)
FOR \(Y=Y 1\) TO STEP -.001
\(F 1=\zeta+T * R T H(Y / X) /(P I * 2)\)
IF F1<F THEN 300
HENT Y
\(\gamma 1=\gamma\)
FOR \(Y=Y 1\) TO 10 STEP . 0001
FI= \(\because+T * R T H(Y-X)<(P I * 2)\)
IF F1>F THEN 370
HEXT Y
GOTD 370
\(Y=F+T / 4 \quad!\quad Y\) in closed form aboue origin.
\(\mathrm{R}=\mathrm{K} * \mathrm{~K}+\mathrm{Y} \div \mathrm{Y} \quad!\mathrm{K} \wedge 2!\)

FRIHT USING 440;J,X+29,Y-YO, C
NEXT J
PRINT


Figure I. Test case and comparison between exact and
IFLEX values of pressure coefficient.
\begin{tabular}{|c|c|c|c|}
\hline 1. Report No. NASA CR-172363 & \multicolumn{2}{|l|}{2. Government Accession No.} & 3. Recipient's Catalog No. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
4. Title and Subritle \\
Computation of Imaginary-Side Pressure Distributions Over the Flexible Walls of the Test Section Insert for the \(0.3-\mathrm{m}\) Transonic Cryogenic Tunnel
\end{tabular}}} & \[
\begin{aligned}
& \text { 5. Report Date } \\
& \text { June } 1984
\end{aligned}
\] \\
\hline & & & 6. Performing Organization Code \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
7. Author(s) \\
*M. J. Goodyer
\end{tabular}} & 8. Performing Organization Report No. \\
\hline 9. Performing Organization Name and Address Kentron International, Inc. Kentron Technical Center Hampton, VA 23666 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Subcontractor: \\
University of \\
Southampton, Dept. \\
of Aero. \& Astro. \\
Southampton, England
\end{tabular}} & 11. Contract or Grant No. NAS1-16000 - Task TZ-47 \\
\hline \multicolumn{3}{|l|}{12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546} & 14. Sponsoring Agency Code
\[
505-31-53-10
\] \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
15. Supplementary Notes \\
*University of Southampton \\
Langley Technical Monitor: Charles L. Ladson \\
Progress Report
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
16. Abstract \\
Two dimensional airfoil testing in an adaptive wall test-section wind tunnel requires the computation of the imaginary flow fields extending outward from the top and bottom test section walls. A computer program was developed to compute the flow field which would be associated with an arbitrary test section wall shape. The program is based on incompressible flow theory with a Prandtl-Glauert compressibility correction. The program was validated by comparing the streamline and the pressure field generated by a source in uniform flow with the results from the computer program. A listing of the program, the validation test results, and a sample program are included.
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{|l|l|}
\hline 17. Key Words (Suggested by Author(s)) & 18. Distribution Statement \\
2-D Airfoils & Unclassified - Unlimited \\
Adaptive Wall Wind Tunnels & Star Category - 02
\end{tabular}} \\
\hline 19. Security Classif. (of this report) Unclassified & 20. Security Classif. (of this page) Unclassified & \[
\begin{aligned}
& \text { 21. No. of Pages } \\
& 15
\end{aligned}
\] & 22. Price
A02 \\
\hline
\end{tabular}


NASA Langley Form 474 (Rev. Oct. 1999)```

