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A computationally efficient and versatile technique for use 

in the-design of advanced transonic wing configurations has been 

developed. A reliable and fast transonic wing flow-field analysis 

program, TWING, has been coupled with a modified quasi-Newton 

method, unconstrained optimization algorithm, QNMDIF, to create a 

new design tool. Fully three-dimensional wing designs utilizing 

both specified wing pressure distributions and drag-to-lift ratio 

minimization as design objectives are demonstrated. Because of the 

high computational efficiency of each of the components of the 

design code, in particular the vectorization of TWING and the high 

speed of the Cray X-MP vector computer, the computer time required 

for a typical wing design is reduced by approximately an order of 

magnitude over previous methods. The shock-wave drag, a quantity 

computed by the wing flow-field analysis algorithm, was previously 

thought to be too unreliable to be used as the objective function to 

be minimized. In the results presented here, this computed wave 

drag has been used as the quantity to be optimized (minimized) with 

great success. yielding wing designs with nearly shock-free (zero 

wave drag) pressure distributions and very reasonable wing section 

shapes. The optimized wing configurations exhibit improved lift-to­

drag ratio performance characteristics. 
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CHAPTER I 

INTRODUCTION 

The challenge of designing modern commercial transport and 

military fighter aircraft to be efficient and practical while also 

demanding higher performance levels is one of the most perplexing 

tasks facing the aerospace engineer. The next generation of commer­

cial transports will be required to meet new standards of fuel 

efficiency and productivity that surpass those of even the most 

advanced aircraft in service today. Increases in productivity gen­

erally mean increases in the nominal cruise Mach number. which in 

turn make the transonic drag-rise effects more pronounced. Thus, 

new design techniques that will permit aircraft operation at higher 

speeds while minimizing adverse drag caused by compressibility 

effects will be important aids to the transport aircraft designer. 

Advanced fighter aircraft designs must meet a somewhat dif­

ferent yet equally challenging set of performance criteria. Fuel 

efficiency during nontactical cruise. high-speed maneuverability, 

and the requirement for operations in the subsonic. transonic. and 

supersonic flight regimes are seemingly conflicting objectives to be 

traded off by the designer. Additionally. other considerations are 

becoming increasingly important in the final design. such as radar 

cross-sectional area and weapons carrying capability. Clearly. a 

systematic method of measuring the effect of configuration changes 
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on each of these design objectives is necessary in order to help the 

design engineer select an acceptable solution. Indeed, an automated 

system capable of finding the "best compromise" to a problem such as 

aircraft design involving several important and contradictory objec­

tives would be very useful. 

Background 

Specific examples may be easily found among aircraft flying 

today which operate in one or all of the four possible flight 

regimes; namely, the subsonic, transonic, supersonic, and hypersonic 

regimes. Among these, it is the transonic flight regime that poses 

some of the most interesting problems for the designer, and this 

report addresses techniques applicable to this regime. Charac­

teristic of this transonic regime are regions of mixed flow, or 

areas where subregions of subsonic, sonic, and supersonic flow 

velocities are in proximity. For free-stream Mach numbers near but 

less than unity, the disturbance created by the presence of some 

body will cause an acceleration of the flow in its vicinity such 

that regions of local supersonic flow will appear. The transition 

back to free-stream subsonic flow will generally be made non­

isentropically through a shock wave. 

As an example, consider a two-dimensional airfoil placed in 

a high subsonic free-stream flow. For a particular loading, or lift 

coefficient value, there will be one free-stream Mach number, the 

critical Mach number, at which sonic flow will first be achieved at 

some point on the airfoil surface. As the free-stream Mach number 
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is increased, this sonic point will expand continuously into a dome 

of supersonic flow above the airfoil, and will usually be terminated 

by a shock wave. On a fully three-dimensional wing, this charac­

teristic supersonic dome becomes a surface, extending outboard from 

the wing root, and decreasing in size toward the tip, where the 

loading (and hence the flow acceleration) is small. The shock wave 

then exists as a sheet along the span of the wing. 

The phenomenon described above, also termed compressibility 

effects, defines the essence of the transonic-flow problem. Com­

pressibility effects are responsible for a significant increase in 

drag as an aircraft operates at higher cruise Mach numbers in an 

effort to reduce time in flight and thereby increase productivity. 

In more severe cases, the appearance of strong shock waves near the 

trailing edge of a wing can induce control-surface oscillations 

known as "aileron buzz," which may have destructive effects. An 

interesting account of the history and difficulties associated with 

transonic aerodynamics is given by Spreiter [1]. 

Meeting the efficiency needs of the airline operators for 

the next generation of transports is a challenge that will require 

improved design methods, both for new aircraft designs and redesigns 

of existing transports. Several new approaches, including research 

on composite structural materials and the implementation of active 

control systems for aerodynamic load control and alleviation, are 

already being used. Both of these approaches aid in reducing an 

aircraft's weight, either by the use of lighter materials of con­

struction, or by permitting a reduction in the required contro1-

surface areas. Decreases in engine specific fuel consumption can 
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also be expected from the new generation of high-bypass-ratio 

turbofan engines. The Lockheed L-1011 trijet transport incorporates 

all these design advances. 

An interesting subset of the new approaches available to an 

aircraft designer is that comprising aerodynamic design improvements 

in general, and design for optimum cruise performance in particular. 

A survey of this subject is given by Lynch [2]. Although perfor­

mance improvements from purely aerodynamic modifications are small, 

even a 5% reduction in cruise drag on a DC-lO-type aircraft may save 

$500,000 per airplane per year in fuel costs [2]. For this reason, 

the use of new design techniques which offer improvements in this 

area is becoming increasingly attractive in the aerospace industry. 

Among the alternatives available to the aircraft designer is 

the digital computer, the performance of which has been dramatically 

increased in recent years. Supercomputers operating in a vector­

processing mode are capable of executing many millions of floating­

point calcuiations per second, and they are generally available to 

industries at reasonable costs. Complementing their power are 

improvements in new computational fluid dynamic algorithms which can 

make full use of the vector-processing abilities of these computers. 

The scope of the problems that may be addressed, as well as the 

accuracy of the final computed result, has been significantly 

increased in recent years. In addition, the cost of these computa­

tions has been reduced. Concurrently, the energy and labor costs 

associated with wind-tunnel testing have risen sharply, making the 

computational fluid dynamics tools even more attractive. 



This report deals with the development of an efficient new 

tool, which utilizes existing mathematical and computational fluid 

dynamics (CFD) algorithms, for use in the aerodynamic design of 

configurations operating in the transonic regime. Specifically, 

the objective is to develop a technique for computationally design­

ing wing configurations that yield optimal transonic cruise perfor­

mance and improved lift-to-drag ratio characteristics. Given a 

suitable starting configuration, the geometry of the wing is then 

systematically altered until the desired objectives are achieved. 

It should be noted that the applicability of a configuration so 

designed is limited only by the assumptions inherent in the CFD 

algorithm. 

Transonic Computational Design Methods 
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An excellent and concise review of existing transonic design 

methods and their limitations is given by Holst et al. [3]. A 

-brief outline of these methods, their uses, points of merit, and 

limitations will be presented in the following paragraphs. Complete 

descriptions of the technical aspects of these methods and their 

implementation can be found in the cited references. 

There are essentially three different categories of numeri­

cal design techniques available to the design engineer for use in 

the aerodynamic tailoring of airfoil and wing shapes. These are 

the inverse methods, the indirect methods, and the direct methods. 

Each offers a different way of attacking the same basic problem of 

finding the aerodynamic shape for efficient operation in the 



transonic (or other) flight regime, without resorting to expensive 

cut-and-try wind-tunnel testing. 
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Inverse methods derive their name from the fact that they 

attempt to solve the problem backwards. That is, given a desired 

flow field (and hence pressure distribution) about some body, the 

problem is to find the unknown body geometry. An immediate advan­

tage here is that the designer can specify all of the aerodynamic 

forces and their distributions acting on the configuration, such as 

lift, drag, and pitching moment, through proper specification of the 

pressure field. Thus, if a wing surface can be found that will 

yield the specified pressure distribution, it should automatically 

satisfy all requirements and constraints. The major disadvantage is 

that the designer, after having specified the pressure field, has no 

control over the surface shape defined by the inverse code. The 

problem is highly nonlinear, and it is difficult to eliminate unac­

ceptable surface shapes by making small remedial changes in the 

specified pressures. Additionally, mathematical non-uniqueness in 

both the inverse problem formulation and the potential-flow solution 

may complicate the procedure further. These effects are even more 

pronounced in three dimensions [3]. 

Indirect design methods are characterized by the fact that 

the designer has little or no control over the final configuration or 

the aerodynamics produced by it. Only an initial or baseline geom­

etry is specified, and the indirect code introduces modifications 

to this geometry such that its objectives, for example, shock-free 

flow, are achieved. Usually, some parameters require adjustment by 
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the user for each particular design case; however, it is usually the 

case that these parameters have nonphysical interpretations. Thus, 

in the absence of extensive user experience, trial-and-error may be 

necessary to establish the correct value of these parameters for a 

particular application. The hodograph method (in two dimensions) as 

first used by Nieuwland [4], and the fictitious-gas technique (in 

two and three dimensions) of Sobieczky [5] and Sobieczky et al. [6] 

are examples of indirect design methods. Because the fictitious-gas 

technique is not limited to two-dimensional design, as is the hodo­

graph method (both seek configurations which yield shock-free flow), 

it will be briefly described. 

The equations governing flow in the transonic regime are of 

three different types determined in terms of the local Mach number. 

The flow in the subsonic regions is governed by an elliptic equa­

tion, yielding inherently smooth and continuous solution data. On 

the sonic line, or the surface defining the boundary of the super­

sonic dome, the Mach number is unity, and the governing equation is 

parabolic. Inside this sonic surface, the flow is supersonic, and 

the equation type is hyperbolic. Unlike the smooth nature of the 

solutions to the subsonic elliptic equations, the solutions to a 

hyperbolic equation allow for the existence of jumps or other dis­

continuities, which are interpreted physically as shock waves. In 

the elegant technique of Sobieczky, an artificial or fictitious gas 

law is brought into play whenever the local Mach number exceeds 1. 

Thus, regions of hyperbolic behavior are reverted to smooth elliptic 

behavior, producing data on the sonic line corresponding to a 
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shock-free (or discontinuity-free) flow. With this important data 

on the sonic line used as an initial condition, the method of char­

acteristics is used to find a stream surface that continues the 

original airfoil (or wing) surface into the supersonic region. If 

this marching is successful, a shock-free design is found. If a 

limit-line intervenes during the marching, it indicates that no 

physical solution supporting shock-free flow is possible under the 

current conditions. Here one may either change the flow conditions, 

alter the initial geometry, or re-adjust parameters that control 

the fictitious-gas law used. 

The procedure described above has been shown to work well in 

the presence of viscous-inviscid interactions in two-dimensional 

designs [7] and three-dimensional designs [8] using existing compu­

tational codes. It has been successfully applied to a practical 

airfoil design problem by Cosentino [9] and to several wing designs 

by Fung et a1. [10]. Raj et a1. [11], and Yu [12]. Its main limita­

tion seems to be that it is strictly a point-design method; that is, 

the shock-free performance can be expected only from operations very 

close to the design conditions. Although off-design performance 

should not suffer severely, shocks will again reappear at both 

slightly higher and lower Mach numbers. Further, the differences 

in the computed and actual viscous effects may be sufficient to pre­

clude the realization of shock-free transonic flow in actual flight 

conditions. 

The third category of design procedures, direct design 

methods, is generally made up of those procedures involving design 

by numerical optimization. Here, a computational flow-field 



analysis program is coupled with a numerical optimization algorithm 

in such a way as to create a design tool. This procedure will be 

the main topic of this report. 
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The aerodynamic quantities such as lift, drag, and pitching 

moment are computed by the CFD algorithm for a certain configura­

tion and are used in defining an objective function to be minimized 

by the optimizer. Thus, this objective function must relate 

improvements in the aerodynamic quality of the design to a decrease 

in function value. Minimization of this objective function, through 

proper choice of the pertinent geometric design variables, should 

then correspond to a configuration that is "optimal" in some sense. 

Insofar as aerodynamic design is concerned, it is clear that a 

configuration yielding a minimum drag count, while still satisfying 

reasonable design constraints (such as wing thickness, planform 

size and shape, and twist variations), should be an optimal config­

uration design. Although the above is true only for a given flight 

condition, it is possible to find a design that will satisfy (as 

nearly as possible) these optimal requirements for a range of flight 

regimes by the use of multiple design points. It is in fact this 

ability of numerical optimization techniques to solve multiple 

design point problems that makes their use attractive. 

An example of the need for this "best compromise design" 

strategy is the helicopter rotor design problem. Here, there are 

essentially two distinct operating conditions in which the rotor 

blade must perform. The advancing blade sees both the forward speed 

of the helicopter and its own rotational speed as the total free­

stream speed. The retreating blade, conversely, sees a velocity 
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corresponding to the difference between the rotational speed and the 

forward vehicle speed. There is also a difference in angle of 

attack in general. Both conditions prevail half of the time, thus 

both are equally important design points. Clearly, a rotor design 

that is a best compromise between these two conditions would be 

desired. 

In addition to the merits of multiple-point designs, numeri­

cal optimization design (NOD) procedures also allow the designer a 

great deal of control over both the aerodynamic qualities and the 

physical shape of the final configuration design. However, a great 

deal of user expertise may be necessary in order to take advantage 

of this high degree of flexibility. It is, at least, available, 

which is generally not true of the inverse or indirect design 

methods. By far the most persistent criticism of NOD procedures is 

the large amount of computer time required for the optimization 

algorithm to "sort out" and decide which configuration is best. 

However, this is largely time spent by the CFD algorithm in comput­

ing the flow. With the rapid improvements in computer and algorithm 

speed that are taking place today, this shortcoming may soon be 

largely eliminated. An excellent survey of past work in this field 

is given by Hicks [13], who points out some of its successes and 

failures. A case study on the Lockheed C-141B military transport is 

given by Lores and Hinson [14], and an application to Learjet-type 

airfoil design is presented by Hinson [15]. 
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Current Approach 

The main purpose of this work is to expand the technique of 

transonic configuration design by numerical optimization and to 

demonstrate that most of its shortcomings can be alleviated. This 

is accomplished primarily by bringing several new technological 

advances into play in a new design program. Among these new tech­

nologies are advances in algorithm speed for computing the wing flow 

field, more intelligent optimization routines, and the great 

increase in computing power afforded by supercomputers such as the 

Cray X-MP. Some discussion of these advances will be given in the 

following paragraphs. 

The transonic wing analysis code used in this work is the 

very fast and reliable TWING (transonic wing) program developed at 

NASA Ames Research Center by Holst and Thomas [16]. It solves the 

transonic full-potential equation for the inviscid, irrotational 

compressible flow past an isolated wing on a wall. TWING utilizes 

the fully implicit approximate-factorization (AF2) algorithm [17] 

for solving the full-potential equation. This algorithm displays 

rapid convergence and robustness for a wide range of flow-field 

cases. In addition, it permits the computer code to be written in 

a form that will allow vector processing on a vector computer, 

greatly increasing the speed of execution [18]. Running on the 

Cray X-MP, TWING provides well converged flow-field solutions in as 

little as 10 to 20 sec for typical cases. 

Most of the work done in the area of numerical optimization 

design of aerodynamic configurations has utilized the CONMIN 
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(constrained-function-minimization) algorithm of Vanderp1aats [19]. 

In the new approach of the present study, an alternative method, 

known as the quasi-Newton method of unconstrained optimization, is 

used. In a recent comparative study by Kennelly [20], the optimiza­

tion code QNMDIF (quasi-Newton method with difference approximations 

to the derivatives) of Gill et a1. [21] and Gill and Murray [22] was 

shown to be more efficient and to perform better than CONMIN. 

Another innovative feature of the present work is the manner 

in which geometrical perturbations are introduced into the wing 

shape. Previously, a number of terms based on sine or exponential 

"bump" functions were assembled in a Fourier-like series and added 

to a surface of the airfoil section or wing. A criticism of the use 

of such shape functions stems from the fact that they have no known 

physical basis. In an interesting new approach by Aidala et a1. 

[23], special "aerofunction shapes" are created by using a two­

dimensional inverse code. Specific local changes in a pressure 

distribution are made, and the corresponding shape modification 

introduced to an airfoil is extracted and normalized to create a 

new series of shape functions. Because each shape function corre­

sponds to a distinct (and desirable) pressure change, these func­

tions may be thought of as being orthogonal in some sense. Thus, 

better efficiency should be expected from a numerical optimization 

design program using these new shape functions. In three dimen­

sions, however, the creation of these special shape functions 

requires a more complex approach [23], and possibly a substantial 

computational effort. 
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In the present work, a more straightforward technique of 

geometry perturbation is applied: the coordinate points defining 

the airfoil geometry are moved directly by the optimizer, then a 

spline curve is fitted through these points to produce a new shape. 

The number and location of these movable points are at the discre­

tion of the designer, and a careful choice will result in a smooth 

and physically reasonable shape being defined for each iteration. 

This new procedure is enhanced by the use of a versatile geometry 

generation routine based on a program developed by Sobieczky [24]. 

Aerodynamic drag, as computed by the flow-analysis program, 

would appear a natural choice for the objective function to be mini­

mized by the optimizer. However, little success with this approach, 

particularly in three-dimensional design, is reported in the litera­

ture. Non-uniqueness effects may be present in the problem, and 

the pressure distribution about a configuration designed by a drag 

minimization approach can be physically unreasonable [3]. Another 

criticism is that the accuracy, or numerically generated "noise" 

inherent in the computed drag value relays incorrect gradient infor­

mation to the optimization routine. A study of this phenomenon 

revealed that with the advanced algorithms in use in the new design 

program, sufficient accuracy appeared to be present in the computed 

drag to warrant a reexamination of this design objective. If suc­

cessful, this would represent the first time that useful three­

dimensional aerodynamic designs were obtained by the technique of 

drag minimization. 
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The performance increases that may be obtained by combining 

these technologies in a new design program might well redefine the 

range of applicability for this design method. The large increase 

in performance, combined with the great flexibility of the tech­

nique, should make the use of NOD procedures very attractive to the 

aerospace community. 



CHAPTER II 

TRANSONIC WING FLOW-FIELD SOLUTION 

The construction of any numerical optimization design pro-

gram for use in aerodynamic applications begins with the analysis 

program itself. This program provides the aerodynamic analysis for 

each new modified configuration during the design process. From the 

pressure field that is computed for the configuration, the aerody-

namic force coefficients are derived. This information, regarding 

the quality of a particular design, is related to the optimizer via 

the objective function. The accuracy and precision of this objec-

tive is critical to the success of the design program, for changes 

to a design are made by the optimizer based on this information. 

Governing Equations 

The governing equation solved in the TWING analysis program 

is the three-dimensional, full-potential equation. This equation 

is written in strong conservation-law form, and is given by 

(la) 

where 

P = 1 _ Y - 1 (¢2 + ¢2 + ¢2) [ ~
l/(Y-l) 

y+l x y z (lb) 

The density p and the velocity components ¢x' ¢ , and ¢ are y z 

nondimensionalized by the stagnation density ps and the critical 
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speed of sound * a , respectively. The coordinate system used here 

is the x, y, and z Cartesian system in the streamwise, spanwise, 

and the vertical directions, respectively. The parameter y = C Ic p v 

is the ratio of specific heats. 

The assumptions inherent in the application of this equation 

are that the flow is steady, isentropic, irrotational, and hence, 

inviscid. These are quite reasonable assumptions for an aircraft in 

cruise flight at transonic Mach numbers at which only weak shock 

waves persist, and at which the boundary layer remains attached to 

the surface. Although shock waves represent a source of energy dis-

sipation and, therefore, entropy production, this effect is negli-

gible if the shocks are acceptably weak (local normal Mach number 

just ahead of the shock less than 1.3). This is generally the case 

on a well designed wing. If shocks exist that do not satisfy this 

condition they are always captured in a pessimistic fashion. That 

is, they are stronger than they should be. Having this situation 

built into the conservative potential formulation allows intermedi-

ate designs involving strong shocks. These solutions are just as 

valid as any other, providing the final design consists of (at most) 

a weak shock. 

Next, by applying a general independent variable coordinate 

transformation to Equation (I), the physical (Cartesian coordinate) 

domain is transformed into the computational domain (Fig. 1). This 

transformation maintains strong conservation form and is given by 

~ = ~(x,y,z) n = n(x,y,z) s = s(x,y,z) (2) 



WING EXTENSION 

SYMMETRY PLANE 

a) 
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b) 

FREESTREAM 
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UPPER VORTEX SHEET 

(~= ~min) 

Figure 1. Schematic of general (x,y,z) to (~,n,~) transformation. 
(a) Physical domain; (b) computational domain. 
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The full-potential equation written now in the computational domain 

(s,n,~ coordinate system) is given by 

(PU/J)~ + (PV/J)n + (PW/J)~ = 0 (3a) 

and 

(3b) 

where the quantities U, V. and Ware the contravariant velocity 

components along the s. n. and ~ directions. respectively. and are 

given by 

(4) 

The six quantities Al through As are the metrical quantities of 

the transformation and are computed as 

Al = ~2 + ~2 + S2 
x Y Z 

A2 = n2 + n2 + n2 
x y z 

As = ~2 + ~2 + ~2 
X Y Z 

(5) 

A4 = ~xnx + ~yny + ~znz 

The Jacobian of the transformation J is given by 

J = ~ n ~ + ~ n ~ + s n ~ - ~ n ~ - s n ~ - ~ n ~ 
~x y~z ~z x~y y z~x ~z y~x y x~z ~x z~y 
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The following metric identities are required to evaluate the metric 

expressions of (5) a~d (6) above: 

~ = J(x z - x z ) y ~ n n ~ 

~z = J(x Y - x Y ) 
n ~ ~ n 

nx = J(y~z~ - Y z ) 
~ ~ 

ny = J(x~z~ - x z ) (7) 
~ ~ 

nz = J(x~y~ - x Y ) 
~ ~ 

~x = J(y~zn - y z ) 
n ~ 

~y = J(xnz~ - x z ) 
~ n 

~z = J(x Y - x Y ) 
~ n n ~ 

The metric quantities above [(Eqs. (5), (6), and (7)] are computed 

numerically by replacing all derivatives by the appropriate finite-

difference formulas. These metrics are computed once for each new 

configuration supplied to TWING, and the flow-field solution then 

proceeds iteratively by solution of the governing equation. 

The governing full-potential equation [(3a) and (3b)] is 

discretized using a spatial differencing formula suitable for solu-

tion by application of the AF2 iteration scheme. The fully implicit 

nature of this AF2 scheme allows for the rapid convergence of the 

solution to small residuals. That is, the first two orders of 

residual reduction take about as many iterations as do the second 

two orders. This is not the case with classical successive line 

overrelaxation (SLOR) schemes, which slow down dramatically as the 
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residual drops. Thus, implementing an NOD technique where tight 

convergence is required with an AF2-based analysis scheme is a big 

advantage. Also, the AF2 algorithm has been written such that the 

required operations will take place in a vector processing mode on 

a vector computer such as the Cray X-MP. For these reasons, we1l-

converged solutions (maximum level of residual at termination less 

than 0.5E-06) are obtained for most cases in less than 20 sec. The 

details concerning the spatial differencing scheme formulas and the 

AF2 solution procedure will not be presented here; instead, the 

reader is directed to References 16 and 17 for further information. 

Details concerning the vectorization of the AF2 procedure are pre-

sented by Thomas and Holst in Reference 18. 

Boundary Conditions 

At the wing-surface boundary of the flow, the condition of 

flow tangency is imposed; hence, it is required that there be no 

transpiration through the wing surface. This implies that the 

s-contravariant velocity component be zero at the wing surface, or 

W = O. This is specified numerically by the condition 

(PW/J)i,j,NK+l/2 = -(PW/J)i,j,NK_l/2 

where k = NK is the wing surface. In expressions where $s is 

needed at the wing surface, the above W = 0 boundary condition 

can be used again to obtain 

<j>sl. = -(As/A3H E. - (As/A3H n 
wl.ng 

(8) 

(9) 
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The final boundary condition that will be shown here is the impor-

tant condition imposed at the symmetry plane or, physically, the 

wall on which the wing is mounted. Again, no transpiration is per-

mitted through the wall (i.e., flow tangency is required and 

v = 0). This is accomplished by requiring that 

(PV/J)i,1/2,k = -(PV/J)i,S/2,k (10) 

at j = 1, corresponding to the symmetry plane boundary. 

Additional important boundary conditions imposed on the 

velocity potential are needed at the outer boundary and also at the 

free-stream sidewall boundary. Here, the initial free-stream dis-

tribution of potential is fixed for non1ifting cases. For lifting 

wings, the outer boundary is updated as the solution progresses by 

the usual compressible vortex solution with circulation rj [16]. 

Grid Generation 

Since the geometry treated by !WING is the relatively simple 

case of an isolated wing on a flat wall, a simple two-dimensional 

grid-generation scheme is used at each span station. The extension 

to three dimensions is made by linear interpolation. A finite-

difference mesh is fitted about each of the airfoil sections which 

make up the wing by solving the two Laplace equations 

~ + ~ = 0 
~ zz (11) 

at each defining station. These equations are solved in the compu-

tational domain as is the full-potential equation. The solution of 

Equations (11) is accomplished after differencing by employing the 
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well-known ADI (alternating-direction-implicit) scheme. Then, with 

the x and z coordinates of the mesh at the defining stations 

known, the y values along the span are obtained by using linear 

interpolation, subject to the p1anform shape specification. This 

simple method is capable of treating general wing geometries with 

arbitrary twist, taper5 sweep, and dihedral, and yet is very effi­

cient. Using 89 x 25 x 18 grid points in the wraparound, spanwise, 

and radial directions, respectively, a mesh consisting of 40,050 

total computational points may be generated in under 1 sec of 

Cray X-MP CPU time. In an iterative design application (such as 

NOD) for which a new grid may be required for each new configura­

tion, a fast grid-generation system helps considerably to reduce the 

overall computing time needed for the design. Further details con­

cerning the grid generation used in !WING may be found in Refer­

ences 16 and 25. 

From the potential field obtained from the AF2 solution 

algorithm, !WING next computes the pressure distribution about the 

wing configuration. These pressures are then integrated to yield 

the overall forces acting on the wing. This pressure distribution, 

and the lift, drag, and pitching-moment coefficients are the output 

quantities of primary use in constructing an NOD program. By speci­

fying the required accuracy of the computed potential solution 

(i.e., level of maximum residual before termination), the numerical 

"noise" level inherent in these output quantities can be controlled. 

Because of the speed of TWING relative to other similar programs, it 
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is possible to specify much higher levels of convergence without 

incurring severe computational time penalties. Thus, greater levels 

of precision in the computed aerodynamic quantities may be achieved; 

this is vital to the success of the optimization program operating 

in the highly nonlinear realm of transonic flow. By far the most 

difficult quantity to utilize effectively as an optimization objec­

tive is the computed drag, primarily because of the low degree of 

precision associated with its computation. With TWING, it may be 

expected that the precision level of the drag coefficient will be 

greater than what was attainable in the past using slower algorithms. 

This is in fact largely the key to the success of the present method 

in obtaining useful wing designs by using computed drag in the 

objective function. 



CHAPTER III 

NUMERICAL OPTIMIZATION 

The term numerical optimization is generally used to 

describe a procedure by which the extrema of a function of N vari­

ables are located with the aid of a digital computer. There is 

usually only one scalar function value involved and a one­

dimensional vector of length N, corresponding to the N variables 

of the function. Depending on the particular numerical optimization 

algorithm used, the class of function that may be treated will vary. 

For the application of this work, namely transonic configuration 

design, the function (called the "objective function") can be 

expected to be highly nonlinear and perhaps occasionally discon­

tinuous. In fact, it is well known that the appearance and dis­

appearance of a shock wave are discontinuous phenomena. The charac­

teristics of an objective function relating information concerning 

transonic flow demand an optimization algorithm capable of circum­

venting such highly nonlinear and discontinuous behavior; fortu­

nately, they do exist. 

The present work will employ a robust and relatively "intel­

ligent ll algorithm known as the quasi-Newton method which utilizes 

finite-difference approximations to the function derivatives, or 

QNMDIF for short. It is not a new technique, but its applications 



25 

have not included transonic aerodynamic design until quite recently, 

when it was successfully integrated with a two-dimensional airfoil 

analysis program by Kennelly [20]. In that study, its performance 

was compared to that of the CONMIN algorithm [19], which has been 

used almost exclusively in transonic applications in the past. The 

new program QNMDIF was shown to be much more efficient insofar as 

the number of function evaluations needed to establish the location 

of the minimum is concerned. Additionally, QNMDIF should possess a 

better ability to cope with occasional functional discontinuities. 

Thus, it appears that a higher probability of success with a reduced 

computational effort is afforded by using QNMDIF. 

As a smart algorithm, QNMDIF is able to build up curvature 

information, or in essence "learn" about the function it is trying 

to minimize. This is accomplished by constructing and periodically 

updating an approximation to the Hessian matrix, or matrix of mixed 

second partial derivatives of the objective function. This is in 

complement with the gradient vector, or one-dimensional array of 

first derivatives, which are evaluated using either forward or 

central finite-difference formulas. Because the accumulation of 

such curvature information is obtained at the expense of repeated 

function evaluations (which in the case of transonic flow-field 

solutions are not trivial), it is important that this information 

not be lost if it is necessary to restart a design calculation. 

Here, QNMDIF displays superior abilities relative to its predecessor 

CONMIN, for it was designed and modified with a restart capability 

in mind. 
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The fundamental statement of the optimization problem may 

be formulated as 

subject to 

c. (x.) = 0 , 
1. 1. 

i = 1, 2, •.• , N 

i = 1, 2, • ., m 

i = m + 1, .•. , N 

Here, F is the objective function of N variables, and the c. 's 
1. 

are the constraint functions to be imposed on the solution. Taken 

together, these are termed the "problem functions" [26]. 

Whether constraints may be imposed on the solution is a 

characteristic of the optimization algorithm used. Such constraints 

preclude the possibility of the optimization program terminating 

upon locating a function minimum in an unacceptable sector of the 

design space. Generally, however, this usually slows the progress 

of the optimizer in locating any solution. For this reason, it is 

usually preferable to formulate the problem in such a way as to 

reduce or eliminate the need for constraints, and to utilize an 

algorithm intended for unconstrained optimization. QNMDIF is an 

example of a program designed for unconstrained function minimiza-

tion, as opposed to CONMIN which may accept a number of constraints. 

After any constraints are eliminated, the optimization prob-

lem is reformulated simply as 

i = l~ 2, ... , N 
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This is the basic form of the problem that will be addressed in the 

following paragraphs concerning some basic concepts within the 

theory of numerical optimization. Extensive treatments may be found 

on many aspects of optimization theory in Reference 26, and on the 

quasi-Newton method in particular in Reference 21. 

Gradient Computation 

In an application in which only objective function values 

are available and in which there is no possibility of obtaining 

a priori information about the nature of its derivatives, gradient 

information can only be obtained by using finite-difference approxi-

mations. The finite-difference intervals h., i = 1,2, .•• , N, 
1. 

for differencing the objective function F(x) with respect to each 

of the N variables, are selected. The problem of selecting these 

intervals will be addressed later. With this h vector determined, 

gradients may next be evaluated using standard forward- or centra1-

difference formulas. as 

g.(x.) = [F(x. + h.e.) - F(x.)]/h. , 
1. 1. 1. 1. 1. 1. 1. 

for forward differences, and 

g.(x.) = [F(xi + h.e.) - F(xi - hi e.)]/2hi ' 
1. 1. 1. 1. 1. 

for evaluating central differences, where e. 
1. 

i=l,2, •.. ,N 

(12) 

i = 1, 2, . 0 0, N 

(13) 

is the ith column 

of the identity matrix. Generally, the difference intervals hi 

are not altered during the optimization process. Since forward dif-

ferencing will require only N function evaluations per gradient 



computation, it is usually used first. If changes in the function 

value over the interval appear to be small compared with the rela­

tive precision in the function, the switch to central differences 

(requiring 2N evaluations per gradient estimation) will be made 

by the algorithm. 

The Quasi-Newton Method Optimization Iteration 

Having computed the objective function gradients as shown 

above, the actual optimization steps may begin. The quasi-Newton 

method attempts to locate the minimum of the objective by taking 

steps at each iteration k in a direction specified by the curva­

ture information previously acquired. Specifically, the search 

direction p(k) is computed by solving the linear system given by 

28 

B(k)p(k) = -g(k) (14) 

where g(k) is the gradient vector, and B(k) represents one of a 

sequence of matrices which form an approximation to the true Hessian 

matrix previously described. When dealing with objective functions 

that are inherently imprecise and expensive to evaluate, obtaining 

the true Hessian matrix may be difficult or prohibitive because of 

the cost. The approximate Hessian matrix B(k) may be thought of 

as the Hessian of a quadratic model of the objective function. 

With the search direction p(k) computed, the next step in 

the process, known as the linear (or one-dimensional) search, is 

performed. This is essentially an attempt to step to the minimum 

of the quadratic model of the objective function, based on the accu­

racy of the current gradient and curvature information. This is 

denoted by setting [where a(k) is the linear search step size] 



and 

gi(k + 1) = g.[x.(k + 1)] , 
1 1 

i = 1, 2, ••• , N 

i = 1, 2, ••• , N 
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(15) 

(16) 

Here xi(k + 1) is the new approximate solution vector of the prob­

lem. Now, the gradient estimations are evaluated again in the new 

region of the design space to which the solution has progressed. 

Again, either forward- or central-difference formulas may be used 

depending on the perceived accuracy of the gradients, and on whether 

a sufficient decrease in function value has been obtained during the 

last linear search procedure. 

The final step in this simplified quasi-Newton process is an 

update to the approximate Hessian matrix B to reflect changes (and 

presumably increased information) about the nature of the objective 

function. This update procedure is quite complex, and must satisfy 

certain conditions to maintain the positive definiteness and symmetry 

of the approximate Hessian, even in the presence of round-off error. 

The condition of positive definiteness is necessary to insure that 

each new search direction p(k) will in fact be a descent direction. 

Schematically, this update procedure is given by 

B(k + 1) = B(k) + U(k) (17) 

where U is the update matrix. This update matrix is designed such 

that the new approximate Hessian B(k + 1) satisfies the important 

quasi-Newton condition, that is, 

[g(k + 1) - g(k)] = B(k + l)[x(k + 1) - x(k)] (18) 

On the first optimization iteration of a new problem, B(O) can be set 

to the identity matrix until the first update can be formulated. 
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Termination Criteria 

For the special case of a quadratic objective in N dimen­

sions, the quasi-Newton algorithm should in theory converge to the 

minimum in N iterations. However, when dealing with an imprecise 

objective function that displays somewhat discontinuous behavior, 

the marginal accuracy of the calculated gradients will generally 

preclude such rapid convergence. Still, a great deal of progress 

may have been made toward significantly decreasing the function 

value in these N iterations, as well as reducing its sensitivity 

to further changes in the solution vector (small gradient norm). 

Thus, user supervision may be necessary to determine the most valid 

termination criteria based on the current solution status. 

Finite-Difference Step-Size Selection 

The proper selection of appropriate finite-difference step 

sizes is vital to the success of the optimization algorithm. All of 

the information about the nature of the objective is derived from 

the computed gradients, and the accuracy of the gradients is largely 

dependent on the finite-difference interval size. For problems such 

as transonic flow design in which limited function precision is 

available, the selection of the proper step size will permit the 

most effective use of the available precision. These step sizes 

will no doubt vary slightly from one problem to another and, there­

fore, should be recomputed for each new design case. 
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In the new design program developed here, problem-adaptive 

finite-difference step sizes are computed automatically by routine 

FDSTEP (finite-difference step size) at the outset. This routine is 

based on algorithm FD in Reference 26, and was implemented in the 

work by Kennelly [20]. In essence, FDSTEP begins by evaluating the 

objective over certain intervals whose lengths are determined based 

on the user's estimate of the function precision and the scaling of 

the problem. By making estimates of the cancellation and round-off 

errors present in the trial gradients computed, FDSTEP selects a 

final step size that should be near optimal for the problem. This 

process is repeated for each of the design variables; usually two to 

four function evaluations are required per variable. Thus, two- to 

four-N function evaluations are necessary before optimization can 

begin. Although this may appear costly, the vastly increased per­

formance afforded by using these optimal step sizes is well worth 

the cost of computing them. Additionally, as a by-product, FDSTEP 

also provides accurate gradients for use by QNMDIF in the first 

optimization iteration, as well as estimates of the diagonal ele­

ments of the approximate Hessian matrix B(O). Thus, a great deal 

of vital information about the objective function is accumulated by 

FDSTEP before optimization is begun. This should aid QNMDIF in 

getting off to a good start, and relieve the user of the difficult 

task of manual step-size estimation. Indeed, it is felt that the 

success of the present design work is due in large part to the opti­

mality of the step sizes so computed. 



The details concerning the operation of FDSTEP are beyond 

the scope of this report and will not be presented. Instead, the 

interested reader is referred to the cited references. 
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CHAPTER IV 

AERODYNAMIC DESIGN PROGRAM DEVELOPMENT 

The major part of this research effort was in the coupling 

of the transonic flow-analysis program with the numerical optimiza­

tion algorithm previously described. This coupling is not straight­

forward and requires a careful integration of the two relatively 

unrelated components of the design tool. Fortunately, both !WING 

and QNMDIF are well structured and designed to be adaptable to new 

applications. The new application of this work will be the first 

time that a transonic wing flow-field solution program of the speed 

of TWING has beEn integrated with a quasi-Newton method optimization 

algorithm to create a fully three-dimensional design tool. 

The essential communication between the flow solver and the 

optimization program is established through the objective function 

to be minimized, and the N-dimensional vector of design variables. 

The definition of these two vital entities is generally the major 

factor in the performance obtained from the design program. It is 

here that the present work will explore two new approaches: the 

objective function will be derived directly from the aerodynamic 

force coefficients computed by the analysis program, and the design 

variables will control the wing-surface geometry by the use of a 

new spline-fitting technique. This is in contrast to previous 
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methods in which the objective function was based on the difference 

between the computed pressure field and one that was specified as a 

target. This reverts the operation of an NOD program to a pseudo-

inverse mode - more flexibility is present than with a true inverse 

method. This mode of operation, referred to as the C -objective 
p 

mode, is also possible with the present design program, and an 

example using this option is presented. Also, the design variables 

in the previous methods served merely as magnification coefficients 

of the terms in a series of shape functions. Here, a more direct 

technique for geometry perturbation will be described. 

The essential function of the main driving routine of the 

design program is operation sequencing and design management. 

There are. several steps that must be completed during each design 

cycle, and within the context of a computer program this amounts to 

calling the appropriate subroutines at the proper time. An outline 

of the steps in a typical design iteration is illustrated as 

follows: 

1. Wing geometry generation (GSO) 

2. Grid generation about the current geometry (GRGEN3) 

3. Transonic-flow solution (TWING) 

4. Evaluation of objective function 

5. Compute new geometrical perturbation (QNMDIF) 

6. Check convergence and solution; return to Step 1 

The names in parentheses refer to the computer programs that handle 

the particular steps. GSO is a wing-alone geometry-generation 
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program based on a wing-body geometry generator developed by 

Sobieczky [24]. GRGEN3 is the grid-generation subroutine within 

TWING. Each of these programs is modified somewhat from its origi­

nal form in order to utilize better its capabilities in an itera­

tive design mode. A brief description of the most important steps 

in the design iteration will be given in the following sections. 

Wing Geometry Generation 

Although the GRGEN3 routine within TWING can establish gen­

eral wing geometries itself, it was felt that use of a separate 

special-purpose geometry generator would add additional versatility 

in the design program. A special feature of the G80 routine is the 

manner in which the airfoil sections that make up the wing are 

defined. From relatively few (or alternatively, many) coordinate 

points, a cubic spline interpolation is used to create a wel1-

defined airfoil. This is done on an expanded scale, which reduces 

-the curvature sufficiently so that oscillations in the spline curve 

may be avoided. This particularly aids in defining a smooth leading 

edge, even though when rescaled down to the correct size the radius 

may still be quite small. This spline-support point method lends 

itself naturally to the new geometry perturbation technique used in 

the design program. This will be discussed in a later paragraph. 

The geometry generation program G80 accepts three input air­

foils used as defining stations for the wing. The location of the 

stations is fixed at the root and tip. with the third main or break 

station located at some intermediate point specified by the user. 



The spline-support points defining these three input airfoils are 

then used to spline-fit many more points to aid in well defining 
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the section shapes. The wing planform size and shape must also be 

specified by the user. This is done indirectly by the use of ana­

lytical relations describing generalized curves over a unit inter­

val. The starting and ending points of the curve are specified, as 

well as its slope, and then an analytical connection fit and blend­

ing are used to define the desired shape. Although it seems com­

plex, the technique is actually easy to use and offers a great deal 

of generality and flexibility. In addition to defining the planform 

shape, arbitrary twist and dihedral distributions may be specified 

in the same way. 

From the three basic defining airfoils, up to 20 output 

stations may be requested. Across the span, the section distribu­

tion may be varied, as well as the relative influence of each of the 

three defining stations. The latter is effected through four influ­

ence coefficients. The output stations and planform characteristics 

are then arranged and formatted for use by the grid-generation rou­

tine (GRGEN3). The proper specification of such general shape and 

influence parameters cannot easily be determined without some 

experimentation, but they are not critical; if in doubt, the user 

can use standard values initially. Because of this great flexibil­

ity, it is possible to optimize the wing planform, as well as its 

surface shape, in future work. This area of design is largely 

unexplored. 
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The next two steps in the design cycle, namely, grid'gen­

eration and transonic flow-field solution, have already been dis­

cussed in Chapter II. These two steps effectively amount to a 

function evaluation based on the current solution. The result must 

next be interpreted by the driving program and converted into an 

objective function value suitable for use by the optimizer. The 

qu~stion of this interpretation will be treated next. 

Evaluation of Objective Function 

As has been stated, the objective function must relate 

improvements in the aerodynamic quality of the design to the opti­

mizer by a decrease in function value. The aerodynamic drag computed 

by the flow solver is an obvious choice; however, its use has been 

limited because of the anticipated low reliability of its calcula­

tion, especially when computed by an inviscid potential method. In 

theory, the drag calculated by this type of flow solver should be 

composed of two parts: induced drag, or the drag owing to lift, and 

shock-wave drag. The shock-wave drag in inviscid flow manifests 

itself as a momentum deficit essentially, and this effect is 

enhanced physically because of boundary-layer separation, if the 

shock is of more than moderate strength. Thus, for efficient opera­

tion in the transonic regime, it is the component of wave drag that 

must be minimized (the induced drag is generally a function of lift 

and spanwise lift distribution only, and is determined by p1anform). 

A more sophisticated approach than simple drag minimiza­

tion might be maximization of the so-called transonic efficiency 
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parameter. This is expressed as the product of the free-stream Mach 

number and the 1ift-to-drag ratio. This quantity is directly 

related to the cruise range of a turbojet-powered aircraft operating 

in the transonic regime. Also, this objective will prevent the 

optimizer from reducing the drag simply by reducing lift or thick­

ness. Here, it will be the optimizer's task to increase the 1ift­

to-drag ratio of the wing design through more complex means. Evi­

dently, the best that may be hoped for is a design in which a wing 

shape is found that is capable of supporting shock-free flow at the 

specified Mach number, while preserving as much of the original lift 

as possible. Since a specified flight Mach number is usually given, 

it will be removed from the objective function and held constant. 

Thus, it will be the optimizer's task to maximize the 1ift-to-drag 

ratio of the configuration (or, operationally, to minimize its 

reciprocal). 

What has been described is effectively the same objective as 

that of shock-free design methods. However, there is one important 

difference: shock-free methods will fail to produce any answer if 

no shock-free solution can be found. In general, for a given free­

stream Mach number and wing-loading condition (lift coefficient), 

there may in fact be no shock-free flow solution. Nevertheless, it 

may be possible to redesign the surface shape such that the shock­

wave strength is appreciably weakened, while the lift is reduced 

only slightly (or even increased). Also, these changes may be shown 

to require minimal changes in wing-section thickness and surface 
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shape. Thus, no severe penalties in structural design or fuel-

carrying capacity need be incurred. For these reasons, the drag-

to-lift ratio minimization of an initial wing configu,ration at a 

fixed Mach number will be defined to be precisely the objective of 

this work. 

Mention must be made, however, of another objective function 

that may be utilized: the so-called C -objective function. p It is 

simply a measure of the difference between the pressure field given 

by the current design and a target pressure distribution that is 

specified. The use of this objective will drive the optimizer 

toward shaping the wing surface such that the computed pressure 

field matches that of the target. Operated in this manner, a numeri-

cal optimization design program becomes an expensive substitute for 

an inverse design method. Of course, a great deal more flexibility 

and user intervention is available. One result showing the imple-

mentation of this objective is presented. The remainder of results 

will deal strictly with the unexplored technique of drag-to-lift 

ratio minimization. 

Geometrical Perturbation Technique 

The technique used in the present work is designed to reduce 

the number of design variables required to explore a sufficiently 

broad design space, and is directly related to physical changes in 

wing-section shape. The computer time required for a given design 

is directly proportional to the number of design variables that must 
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be used. Thus, the minimum number of variables that will allow the 

design objective to be met should be used. In a design case study 

on the Lockheed C-l41B aircraft, the shape-function-series tech­

nique used in Reference 14 used a total of 120 design variables. In 

the present study, the new spline-support point movement (SSPM) 

technique yielded an excellent design at similar conditions using 

only 12 geometrical design variables. 

The SSPM technique is so named because the three defining 

airfoil sections used in the wing geometry program are derived from 

a spline-fit of several spline-support points. Over the region 

where surface reshaping is desired, a few support points can be 

located, and control of their vertical position is given to the 

optimizer. Thus, subregions of an entire wing may be easily rede­

signed by modifying only a certain part of the defining airfoil. 

Over the remainder of the airfoil section, many fixed points are 

used to control accurately the spline. Thus, a smooth new airfoil 

shape will be defined for each new location of the movable support 

points. This procedure will be illustrated in Chapter V. 

It has been mentioned that although constraints may be 

imposed on the solution with certain types of optimization algo­

rithms, it is generally preferable to formulate the problem such 

that constraints become unnecessary. The SSPM technique of the 

present work in some sense imposes implicit constraints on the 

design by restricting the class of airfoil that may be defined. 

Because much of the airfoil surface shape is held fixed by the 
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immovable points, the portion where reshaping is permitted must 

still conform in a reasonable way to the rest of the surface. Thus, 

large deformations and discontinuous curvature should be shunned by 

the optimizer. Any unacceptable perturbations to the flow field 

will manifest themselves as increases in drag and, hence, increases 

in the objective function. Hence, the need for the imposition of 

formal constraints should be reduced with the SSPM method. 

Having described some of the theory of aerodynamic config­

uration design using numerical optimization procedures, the remain­

der of this report will present four actual wing design cases. The 

general objectives of each case will be discussed, as well as some 

details of the procedure involved. The choice of spline-support 

points will also be explained. 



CHAPTER V 

WING DESIGN CASE RESULTS 

The new transonic wing-configuration design program combin­

ing TWING with the numerical optimization routine QNMDIF has been 

described and will now be applied to practical wing-design problems. 

The design program as a unit will now be referred to as TWING/QNM. 

Three interesting wing geometries have been selected among aircraft 

in operation today: the Lockheed C-l4lB military transport, and the 

Gates Learjet Model 55 and Cessna Citation III business jets. These 

three wing configurations all differ appreciably in sweep, aspect 

ratio, and planform, and also utilize different types of airfoil 

sections in their definition. The flight conditions at which new 

improved designs are sought are chosen to be typical of the actual 

operating conditions for these aircraft. For the Cessna Citation 

wing, a design at a slightly higher Mach number and lift coefficient 

than normal was sought. The achievement of the specified objectives 

of each design case should prove the integrity of the new design 

program TWING/QNM. Some details of the procedure, as well as an 

explanation of the design objectives and interpretation of the 

results will now be given for each of the three wing designs 

studied. 
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Lockheed C-141B Wing Design 

The Lockheed C-14lB military transport is a four-engine 

aircraft with a high-mounted wing that was designed primarily for 

the transport of cargo. The simplified isolated wing geometry that 

will be treated in this design is shown in Figure 2. Geometrical 

specifications of this wing include a leading-edge sweep of 27.7° 

and an aspect ratio of 7.89. A linear twist distribution was 

imposed on the geometry such that the incidence angle varies from 

+1.0° at the root to -0.5° at the tip. No dihedral was specified. 

Having defined the planform characteristics, the next step in formu­

lating the design problem is the selection of the three initial or 

baseline airfoil sections to be used as the defining stations. 

Here, all three sections were selected to be the same GA(W)-2MOD 

airfoils. This airfoil is based'on the low-speed GA(W)-2 airfoil 

used on general aviation aircraft, but with a slightly modified 

upper surface for better high-speed performance. It was selected 

for its excellent low-speed, high CLmax characteristics [27]. It 

is a fairly thick airfoil at 13%, with moderate aft cambering. The 

modified GA(W)-2MOD airfoil used in this work has been thinned to 

be 11.8% thick. 

The next step in setting up a design run is choosing the 

location of the fixed and movable spline-support points. Because 

improvements in the supercritical performance of the wing are the 

primary objectives, only modifications to the upper surface of the 

airfoil will be permitted. Further. the region of shape modifica­

tion will be restricted to essentially that region wetted by 



Figure 2. Two views of the Lockheed C-141B wing geometry with 
aspect ratio 7.89 and leading-edge sweep of 27.7°, 
(a) Planform view; (b) isometric view. 
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supersonic flow. as it has been shown in a two-dimensional shock­

free airfoil design problem by Cosentino [9] that small changes in 

shape here may have a great effect on the entire flow. Therefore, 

four spline-support points are positioned somewhat arbitrarily over 

the region of the upper surface where supersonic flow may be 

expected. These four points are designated to be movable, and the 

remainder of the airfoil is defined by a number of fixed points 

spaced much closer together. This arrangement is illustrated in 

Figure 3. Note that the important leading-edge shape and radius, 

as well as the trailing-edge angle. are preserved by the clustering 

of fixed points. With this geometrical parameterization. modifica­

tions permitting improved transonic performance are facilitated. yet 

reasonable constraints on the class of airfoil that may be defined 

have been imposed because of the location and number of fixed coor­

dinate points. 

Having specified completely the starting wing configuration 

and the method of geometrical perturbation. the final step before 

the actual numerical design can begin is the selection of the flight 

conditions, that is, the free-stream Mach number and wing lift coef­

ficient. For this first design attempt, a flight Mach number of 

0.77 and a lift coefficient for the initial configuration of 0.60 

were chosen. These conditions are typical, yet reasonably moderate. 

Because the design objective function to be minimized is the drag­

to-lift ratio (for the purposes of scaling, this value is then 

multiplied by 100 to bring it to order unity), it may be expected 

that changes in both the lift and drag coefficients will appear as 
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the design progresses. Thus, the starting lift-coefficient value 

will not in general be the same as that achieved on the optimized 

design. This situation could perhaps be rectified by altering the 

definition of the objective function. This will not be treated 

further here. 
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A complete design problem has now been specified, and the 

actual design can begin. Note that there are four movable points on 

each of the three defining wing stations, a total of 12 design (or 

decision) variables. As the design progresses, the vertical posi­

tions of these spline-support points are shown, along with the value 

of the objective function. Because the use of the computed drag 

coefficient is relatively unexplored, the design termination cri­

teria should not be determined from the objective function and gra­

dients alone. User intervention is required. Inspection of the 

wing-surface shapes and resulting pressure distribution is impera­

tive, and should be done periodically throughout the design process. 

The improvement in lift-to-drag ratio, combined with smooth pressure 

distributions with weakened shocks and physically reasonable airfoil 

shapes are together sufficient evidence to declare a design 

successful. 

In the Lockheed C-14lB wing design case, termination was 

initiated after 12 optimization iterations were completed. Although 

the optimized airfoil shapes and pressures were reasonable, some 

waviness in the pressure distribution was noted. It was found that 

the new surface did not match the rest of the original airfoil shape 

because of the location of the fixed points. To correct this, the 



48 

amount of airfoil surface fixed by the immovable points was reduced, 

and the airfoil shape based on the optimized location of the movable 

points and fewer fixed points was redefined with a new spline fit. 

This process amounts to nothing more than a smoothing of the new 

shape defined by the optimization process. The C-l4lB planform 

with these final optimized and smoothed airfoils was then analyzed 

in a separate TWING solution. The results of this solution, super­

imposed with the original airfoils and pressure distributions, are 

shown at various span stations in Figures 4 through 8. These 

results indicate that a design attempt using the computed lift-to­

drag ratio as the objective function has been quite successful. An 

almost shock-free solution has been found, corresponding to essen­

tially a minimization of the wave drag component in the total com­

puted drag. This has been accomplished using only 12 geometrical 

variables, and required just 1.43 hr of Cray X-MP CPU time. The 

fully three-dimensional nature of the problem is evidently handled 

adequately by modifying only three wing stations independently (the 

two stations between the root. break, and tip stations are inter­

polated). A summary of the design is presented in Table 1. 

Table 1. Summary of Lockheed C-l4lB Wing Design 

Original wing New wing Percent change 

0.585 

0.00967 

60.535 

0.558 

0,00723 

77.264 

-4.62 

-25.23 

+27.64 
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Figure 4. TWING/QNM drag-to-lift ratio minimization result, 
Lockheed C-l4lB wing design: root span station. 
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Figure 9 displays the convergence characteristics of this 

design by plotting the objective function (the drag-to-lift ratio 

multiplied by 100 for scaling) versus the number of flow analysis 

solutions (function evaluations) performed. The relatively wild 

behavior over the first third of the curve is actua~ly the correct 

functioning of subroutine FDSTEP in estimating appropriate finite­

difference step sizes for each of the 12 variables, and evaluating 

preliminary gradients and the diagonal elements of the approximate 

Hessian matrix. Thus, the first 37 function evaluations are per­

formed by FDSTEP in order to "learn" about the nature of the func­

tion and the shape of the design space. The accumulated information 

is then passed to QNMDIF, and the first linear search step is ini­

tiated. As can be seen in Figure 9. this first step results in an 

immediate decrease in the objective. QNMDIF then initiates a recom­

putation of the gradient vector, and calculates a new updated search 

direction. The next linear search results in another decrease, and 

the process is repeated. As the optimization design 'progresses, the 

amount of improvement (or decrease of objective) at each line search 

step is reduced, and eventually the function levels to some constant 

value. This may be interpreted physically as an elimination (as 

best as possible) of the wave-·drag component, leaving a constant 

level of induced drag. 

Figure 10 reveals the overall drag characte~istics of both 

the original and optimized wings. The coefficient of drag (scaled 

by a factor of 100) is plotted at several Mach numbers for each wing 

(the lift coefficient is held fixed at approximately 0.56). As can 
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be seen, the optimized wing displays superior drag-rise character­

istics as the Mach number is increased, yet does not suffer any 

undesirable off-design behavior at the lower Mach numbers. One of 

the objectives of this design, namely, an improvement in the tran­

sonic efficiency of the wing (or an increase in its lift-to-drag 

ratio), has been adequately satisfied. This has been accomplished 

by using only 12 design variables, tight flow solver convergence, 

and just 1.43 hr of computer time. This represents a significant 

advancement in the state of the art of transonic configuration 

design using numerical optimization procedures. 

Gates Learjet Century III Wing Design 
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The next wing configuration studied is the Gates Learjet 

Century III wing as shown in Figure 11. This is the same wing as 

that used on the Learjet Model 55, with the winglets removed. It 

has a fairly low leading-edge sweep of 15.9°, and an aspect ratio of 

6.72. A cubic twist variation has been specified such that the 

angle of incidence varies from 0° at the root to -1.0° of washout 

at the tip; the dihedral angle is 2.5°. The NACA 64 1A2l2 airfoil 

was used to define all three input stations. This airfoil was 

selected because it is similar to several Learjet airfoils currently 

in use, and is not significantly aft-loaded. Aft loading may create 

undesirable control-surface moments, and this is particularly a 

problem on aircraft with purely mechanical actuators. 

For this design, only three movable spline-support points 

were selected. These are shown in Figure 12. Choosing just three 
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Figure 11. Two views of the Gates Learjet Century III wing geometry 
with aspect ratio 6.72 and leading-edge sweep of 15.9°. 
(a) P1anform view; (b) isometric view. 
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points at each station will reduce the total number of design vari­

ables from the 12 in the previous case to 9. This should increase 

the computational efficiency of the design, and demonstrate whether 

a sufficiently broad design space is possible with only three 

movable points on each airfoil. The points were again located over 

approximately the region wetted by supersonic flow. A free-stream 

Mach number of 0.78 and a lift coefficient of 0.48 were chosen as 

the initial conditions to formulate a practical design problem. 

The progress of the design was inspected after the third, 

sixth, and ninth optimization iterations by plotting the new airfoil 

shapes· and pressure distributions across the span. Mter the ninth 

design iteration. the process was terminated. The resulting wing 

design was then analyzed with a separate TWING computation. The new 

shapes and pressures are compared with the original NACA 64 1 A212 

airfoils and pressures in Figures 13 though 17. In this design 

case, although a shock-free solution has not been found, the shock 

wave strength llas been significantly reduced and is now acceptably 

weak (the root station is shock-free). The section thickness at 

midspan has been reduced from 11.0% to approximately 10.3% as a 

result of the design reshaping. From the strong shock present on 

the original airfoil, and the apparent inability of the optimizer to 

locate a shock··free configuration, it may be concluded that the 

original airfoil is rather inefficient for operations at high tran­

sonic speeds. Despite this, a substantial improvement has been made 

in the 1ift-to-drag ratio of this wing. l~e total computer time 
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Figure 15. TWING/QNM drag-to-lift ratio minimization result, 
Gates Learjet Century III wing: 48.5% span station. 
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Figure 16. TWING/QNM drag-to-lift ratio minimization result, 
Gates Learjet Century III wing: 72.7% span station. 
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required for this design was 1.05 hr. A summary of the results of 

this design is presented in Table 2. 

Table 2. Summary of Gates Learjet Century III Wing Design 

Original wing New wing Percent change 

CL 0.481 0.410 -14.76 

~ 0.01853 0.0060 -67.62 

LID 25.950 68.210 +162.85 
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From Table 2, it is observed that at the expense of about 

15% of the lift, a 68% reduction in the inviscid drag count has been 

effected, and the overall lift-to-drag ratio has been increased by 

a rather substantial 163%. This is in accord with the large 

decrease in shock strength displayed at every span station. Fig­

ure 18 shows the convergence characteristics for this optimization 

case. Here the amount of work done by routine FTISTEP is smaller. 

since there are only nine design variables. After several success-

fu1 linear search steps (which lead to significant reductions in the 

objective). the function begins to level off as it did for the 

C-141B wing design. Although it may appear that the function evalu­

ations from 72 on are wasted effort. as no decrease in the objective 

is realized. continuation was permitted to verify that this was the 

best that could be done with the given level of function precision. 

Because of time restrictions. a study of the coefficient of drag 

versus Mach number was not performed for this case; however. one 

may postulate that it would appear qualitatively the same as that for 

the previous C-141B case (Fig. 10). 
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As an aside to the design work presented above, the use of 

an alternative (and more widely used) objective function will now 

be explored. The so-called C -objective function is defined simply 
p 

to be a scalar measure of the difference between the computed pres-

sure field and some specified target pressure distribution. The 

minimum of this function is obviously zero when the computed pres-

sures match the target pressures exactly. A sample design case 

using the pressure field given by t.he Learjet planform with 

GA(W)-2MOD airfoil sections as the target was constructed. A 

related and yet quite different airfoil was then used as the base-

line section for this sample problem. Three movable spline-support 

points were positioned on the upper airfoil surface (where the two 

airfoils differ appreciably), and design commenced. The results of 

this example are shown in Figures 19 through 21. The target pres-

sure distribution, the initial pressure difference owing to the new 

airfoil. and the pressures after optimization design are shown 

superimposed at three span stations. The baseline wirig configura-

tion has been reshaped so as to match the target pressure field 

closely. Note that no specific design objectives are specified 

here; this result is included only to serve as an example of the 

use of this alternative design objec.tive function. 

Cessna Model 650 Wing Design 

The final wing design case presented is that of the Cessna 

Model 650 wing used on the new Citation III aircraft. This geometry 

is shown in Figure 22. The Model 650 wing has a fairly high 
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Figure 22. Two views of the Cessna Citation III Model 650 wing 
geometry with aspect ratio 9.0 and leadinr-edge sweep 
of 27.2°, (a) Planform view; (b) isometric view. 
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leading-edge sweep of 37 0 before the break and 27 0 after. The 

aspect ratio is 9.0, and no wing dihedral is present. This wing is 

defined by three different airfoil sections at the root, break, and 

tip stations; and the twist distribution is incorporated in the air­

foil coordinates. These three airfoils, along with the locations of 

the fixed and the three movable spline-support points are shown in 

Figure 23. Three movable points were chosen again based on the 

success of the Learjet design presented earlier. 

In a private communication (Mr. Richard J. Crupper, Cessna 

Aircraft, Feb. 1984), the authors were told that the high-speed 

cruise conditions for the Citation III are Mach 0.81 at a lift 

coefficient of 0.21. For the purposes of this study, a design was 

sought at Mach = 0.81 and CL = 0.57 (for the initial configura­

tion) to arbitrarily provide a more challenging example for 

TWING/QNM. The objective function to be used is again the wing 

drag-to-1ift ratio. 

The results of this design case are presented in Figures 24 

through 28 at five span stations. Again, reasonably smooth pressure 

distributions and airfoil shapes are observed, with reduced shock 

strengths at every station (the 48.5% span station is nearly shock­

free). The slight pressure peak at the root station at about 6% of 

chord might be eliminated by redistributing spline-support points 

and reinterpo1ating. The remaining stations are quite well behaved. 

Note that actually very little modification to the shape or thick­

ness of any section was required to achieve the desired result. 

This is an indication that the wing was very well designed and 
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highly efficient before any optimization redesign was carried out. 

Some data summarizing this design are presented in Table 3. 

Table 3. Sunnnary of Cessna Model 650 Wing Design 

Original wing New wing Percent change 

CL 0.565 0.506 -10.44 

CD 0.00909 0.00438 -51.82 

LID 62.151 115.428 +85.72 
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The convergence history shown in Figure 29 is seen to dis­

playa behavior similar to that of the previous cases. This design 

required only six optimization iterations and was completed in just 

under 1 hr of Cray X-MP CPU time. The inviscid drag-to-lift ratio 

of this wing has been increased by over 85% at the expense of just 

over 10% of the lift, yielding a reasonable and efficient design at 

nominal computational expense. Note that the same procedure may be 

follmved if a design with a higher lift is desired; the initial 

angle of attack would be set such that more lift is generated by the 

starting configuration. This should then compensate for the nominal 

amount of lift lost during the redesign process. The redefinition 

of the objective function such that decreases in lift below a speci­

fied minimum value would penalize the optimizer might be an alterna­

tive way of preserving lift. 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

A new tool has been developed to aid the aircraft designer 

concerned with efficient aircraft operation at transonic flight 

speeds. This was done by combining a sophisticated computational 

analysis program with an optimization algorithm using some new and 

promising techniques to provide the necessary interprogram communi­

cation. The availability of a supercomputer such as the Cray X-MP 

and the high speed of the !WING analysis program have reduced by 

almost an order of magnitude the time required for a single three­

dimensional transonic flow-field solution. Because of this power, 

numerical optimization design procedures using such an analysis pro­

gram should no longer be considered prohibitive because of cost. 

Indeed. exceptional designs have been shown to be achievable in less 

than 1 hr of computer time. 

The feasibility of utilizing the aerodynamic drag as com­

puted by an inviscid potential-flow solver such as !WING has usually 

been discounted because of the expected low reliability and preci­

sion of such a computation. In a preliminary study for this work, 

the relative precision inherent in the computed drag (or, more 
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specifically, the drag-to-lift ratio) was found to be of nearly the 

same order as that of the more widely trusted C -objective value. 
p 

This type of problem with the reliability of the objective is due to 

a lack of convergence of the flow-field solution. If tighter con-

vergence levels are specified, the consistency, or repeatability, 

of the computation of the objective function is increased. Because 

of the speed of TWING, the potential solution may be converged to 

much more stringent levels than what must be accepted with a much 

slower program, and, consequently, the precision of the drag compu-

tation is correspondingly increased. This may well be the reason 

for the success of the designs presented here. 

In addition to the question of available precision, the 

computed drag has also been thought to be misrepresentative in terms 

of its modeling of the physical situation. For some geometries and 

flow-field solutions this may be true; if so, it indicates the limi-

tations of the problem formulation. Numerical truncation errors may 

also be a factor in computing drag. For these reasons, it should be 

stressed that the success of a particular design using drag as the 

objective function should not be judged in terms of the reduction of 

the objective value alone. Examination of the wing-surface shapes 

and the resulting pressure field by an experienced aerodynamicist 

will be necessary as the design progresses to be sure that physi-

cally reasonable modifications to the design are actually being per-

formed. If this is not the case, a redistribution of the movable 

and fixed spline-support points was found to remedy the situation in 

the cases presented in this work. This was necessary for the C-l4lB 
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only, not for the Learjet and Cessna. The feasibility of using the 

drag-to-lift ratio as the design objective has been verified by the 

nearly shock-free design of the C-14lB wing case presented, as there 

is virtually no chance of finding such a solution by simple luck 

(or by trial and error)! 

The new SSPM method of geometrical perturbation reduced the 

required number of design variables significantly. and provided a 

sufficiently broad design space for many practical cases. The air­

foil shapes defined at each design iteration are very reasonable, 

and in no case was a shape defined for which a flow solution could 

not be found. Because of the "implicit constraints" imposed on the 

design solution with this technique, formal constraints, which 

would retard the process or confuse the optimizer, are not required. 

Also, greater control over the acceptability of the final design is 

provided to the user by allowing only a specific portion of the air­

foil surfaces to be modified. More specific flow problems may be 

attacked in this manner, without sacrificing other desirable airfoil 

characteristics. 

The optimization routine QNMDIF has proved its "intelligence" 

quite convincingly based on the quality of the wing designs obtained, 

and the efficient and orderly manner in which it progressed toward 

these solutions. Optimization divergence, or other general degrada­

tions to the design, were never observed. QNMDIF's performance was 

predictable and repeatable, at least when an adequate level of func­

tion precision was provided. This is directly related to the con­

vergence level of the flow-field solution. and a residual level of 



85 

5.0E-7 yielded an objective function precision of 1 part in 10,000. 

This level was specified throughout this work, and was found to be 

adequate. Future investigations in which this precision level would 

be varied should yield some interesting facts about how the design 

is affected by the precision of the objective. 

It is important to understand the limitations concerning the 

validity of a wing designed by this type of procedure. Since the 

optimization program received its information from an inviscid flow 

solution, it is obvious that such a design may only be valid when 

operating in a regime wherein viscous effects are unimportant. If 

in fact such an idealized flow solution can still provide the 

designer with important information, it should follow that a wing 

designed using such a solution should prove useful as well. By 

analyzing in a separate step the numerically designed wing config­

uration, any hysteresis effects in the course of the optimization 

design have been eliminated. Thus, the original and optimized wings 

are compared on the same basis. This is exactly what is displayed 

by the superimposed pressure distributions for each design case. An 

important conclusion from this discussion may now be stated: a wing 

designed using this type of computational procedure is valid only 

within the context of the assumptions inherent in the flow solu­

tions; the design will be valid only where these assumptions are 

good approximations to the actual physical situation. 

In summary, several important conclusions may be drawn from 

this research effort. These are stated as follows: 
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1. Aerodynamic design by numerical optimization procedures 

need not be prohibitively expensive - the computational time that is 

required can be reduced greatly by employing advanced technology and 

supercomputer power. 

2. By specifying tight convergence levels for the 

potential-flow solution~ the numerical precision of the computed 

aerodynamic forces is sufficient to make possible their use as 

design objective functions. 

3. Transonic wing designs obtained by such drag-to-lift­

ratio minimization are quite practical, and yield physically 

reasonable pressure distributions. 

4. Some user expertise and intervention is required; it 

will aid greatly in the production of useful designs. 

5. Numerical optimization design procedures are reliable 

and very versatile - the extension to more complex wing-fuselage 

designs is possible and depends only on the availability of the 

flow-solution algorithm. Multiple design points may·be specified, 

and a great deal of user control over the design is afforded. 

The greatly enhanced efficiency of this numerical optimiza­

tion design technique should broa.den the range of its practical 

applications. This design method, in combination with more advanced 

flow simulations made possible by the use of the Euler or the full 

Navier-Stokes equations and more powerful computers, should allow 

the computation of truly realistic aircraft designs to become com­

monplace in the near future. 
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and the high speed of the Cray X-MP v.ector computer, the computer time 
required for a typical wing design is reduced by approximately an order 
of magnitude over previous methods. The shock-wave drag, a quantity 
computed by the wing flow-field analysis algorithm, was previously 
thought to be too unreliable to be used as the objective function to be 
minimized. In the results presented here~ this computed wave drag has 
been used as the quantity to be optimized (minimized) with great success, 
yielding wingdes'igns with nearly shock-free (zero wave drag) pressure 
distributions and very reasonable wing section shapes. The optimized 
wing configurations exhibit improved lift-to-drag ration performance 
characteristics. 
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