## Space Station Program Cost Analysis

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY


PREPARED BY:

A. J. GOODWIN SPACE STATION PROGRAM

APPROVED BY:


CONTRACT NO. NASW-3687

## PREFACE

The McDonnell Douglas Astronautics Company has been engaged in a study for the National Aeronautics and Space Administration to determine Space Station needs, attributes, and architecture. The study, which emphasized mission validation by potential users, and the benefits a Space Station would provide to its users, was divided into the following three tasks:

Task 1: Mission Requirements
Task 2: Mission Implementation Concepts
Task 3: Cost and Progranmatics Analysis

In Task 1, missions and potential users were identified; the degree of interest on the part of potential users was ascertained, especially for comnercial missions; benefits to users were quantified; and mission requirements were defined.

In Task 2, a range of system and architectural alternatives encompassing the needs of all missions identified in Task 1 were developed. Functions, resources, support, and transportation necessary to accomplish the missions were described.

Task 3 examined the programmatic options and the impact of alternative program strategies on cost, schedule and mission accommodation.

This report, which discusses Space Station Program cost analysis, was prepared for the National Aeronautics and Space Administration under contract NASw-3687 as part of the Task 3 activities.

Questions regarding this report should be directed to:

```
David C. Wensley
Study Manager
McDonnell Douglas Astronautics Company
Huntington Beach, California 92647
Telephone (714) 896-1886
```


## CONTEMTS

Section 1 INTRODUCTION AND SUMMARY ..... 1
Section 2 PROGRAM COST AND FUNDING MODEL ..... 4
2.1 Purpose ..... 4
2.2 Capabilities ..... 5
2.3 Input Requirements ..... 14
2.4 Output ..... 15
Section 3 PROGRAM COSTS ..... 18
3.1 Estimating Methodology ..... 18
3.2 Program Funding Requirements ..... 19
3.3 Space Station Cost Breakdown ..... 23
3.4 Ground Operations Cost ..... 23
Section 4 IJSER CHARGE MODEL ..... 26
4.1 Cost Elements ..... 26
4.2 Allocation of Facility Costs ..... 27
4.3 User Charges ..... 28

## Section 1

## INTRODUCTION AND SLMMARY

This report documents the principal cost results (Task 3) derived from the Space Station Needs, Attributes, and Architectural Options study conducted for the NASA by the McDonnell Douglas Astronautics Company. The determined costs were those of Architectural Options (Task 2) defined to satisfy Mission Requirements (Task 1) developed within the study (see Figure 1-1).

A major feature of this part of the study was the consideration of realistic NASA budget constraints on the recommended architecture. Thus, the


- Computertized Analysis Allows
- Quick Response
- Multiple Iterations
space station funding requirements were adjusted by altering schedule until they were consistent with current NASA budget trends. The program (architecture) resulting from the study analysis includes an initial station (4-man, 25-KW mission power) estimated to cost $\$ 5.2$ billion, with a maximum annual funding requirement less than $\$ 1.4$ billion. The costs of expanded capability were also identified.

The identified funding requirements include consideration of non-contractor costs such as NASA program support, contingency ( 30 percent), and operations. Thus they can be viewed as NASA line-item values (see Figure 1-2).

The MDAC Program Definition Cost Model (Figure 1-3) was the primary tool for determining program cost. This computerized model is described herein.

## FIGURE 1-2

## SPACE STATION SYSTEM COST ESTIMATING METHODOLOGY

| CATEGORY | SPACE FACILITIES | MISSION EQUIPMENT |
| :---: | :---: | :---: |
| Flight Hardware <br> - GSE, Systems Test, SE\&1 Initial Spares, Proj Mgmt <br> - NASA Integ/Mgmt, Contingency |  |  |
|  | MDAC | Rough Sizing W/ Aerospace Cost Model |
|  | Cost |  |
| Operations |  |  |
| - Logistics <br> —. Transportation (STS) <br> - Materials, Spares | Model | Factored From Flight Hardware |
| Ground Support <br> - Equipment <br> - Operations | Estimated Independently | Estimated Independently |

FIGURE $1-3$

## PROGRAM DEFINITION COST MODEL

## IFBIT: 33

INCLINATIGN: 57.00 [EGSFEES
NI. MOLULES $=1$
 ATF= $1-93 \quad$ lOC=4\% EOC: $=400$

TOTAL FAEILITY COST: $61 S_{0} 067$


An illustration of how a Space Station User Charge Model might be constructed is included, giving quantitative examples of rates for different cost philosophies.

Section 2
PROGRAM COST AND FUNDING MODEL

The primary tool for determining Space Station program cost and funding requirements is the MDAC computerized space facility cost model. This model was developed with company discretionary funds, but was tailored to provide the type of cost data needed by this study. This section describes this model, its purpose, and capabilities. The nomenclature used is defined here.

- Element: Lowest cost category. Largest group of hardware items that can be defined as unit without imposing restrictions on the design concept (e.g., ACS, EC\&LS, etc.)
- Facility:

One or more elements forming an autonomous unit (e.g., Space Station, OTV, Platform, etc.).

- Architectural Option: One or more facilities.


### 2.1 PURPOSE

The purpose of the cost model is to provide an efficient tool for estimating the cost of space facilities (e.g., Space Station, platforms, and TMS) and determining the aggregate annual funding requirements for program architecture alternatives. In the case of the Space Station facility, it was desired that cost estimates be built up from the element level.

### 2.2 CAPABILITIES

The cost model capabilities are summarized in Figure 2-1. nevelopment, production, and operational costs are calculated for the specified facilities. Program costs are accumulated for the combined facilities, and annual funding requirements are determined according to the scheduled sequence of facility starts. These requirements are tested against input budget allowances and discrepancies may be rectified by redistributing the annual funding level. The level of commonality between succeeding facilities/elements may be specified. Provision is made for altering technology levels at the element level.

Figure 2-2 indicates the various calculations that are made and funding options that are available to the operator during run time. Figure 2-3 shows the level of cost accumulation, which is at the element level. Element costs are estimated by way of algorithms, or cost estimating relationships (CERs),

FIGURE 2-1
cost model capabilities

- language - fortran.
- computer - coc
- estimites racility costs (uevelopment, production, operations)
- space station
- platform
- "OTher Equipment" (OTV, tms, docking module, etc.)
- programyatic features
- time sequencing of each facility start, ioc, etc.
- variable technology levels for each elemient
- reflects benefits of existing hardhare and commonality (ENGINEERING, SIMULATOR)
- TESTS FUNDING REQUIREMENT AGAINST BUDGET CEILING; provides alternative fixes.
- ability to change inputs on-line

FIGURE 2-2


FIGURE 2-3
COST ACCUMULATION SPACE FACILITY

for each designated element. CERs presently in the model are listed in Tables 2-1 and 2-2 along with the principal source of data providing the basis for the CER and the respective independent variables. Items included in the CERs are listed in Tables 2-3 and 2-4.

Table 2-1. COST MODEL DATA SOURCES AND INDEPENDENT VARIABLES FOR MANNED SPACE STATION

| ELEMENT | PRINCIPAL SOURCE | INDEPENDENT VARIABLE |
| :---: | :---: | :---: |
| 1. 2 DIA. SHELL AND UTILITY SERVICES | MOSC STUDY | LENGTH (FT) |
| 2. CONSTANT DIA. SHELL AND UTILITY SERVICES | MOSC STUDY | LENGTH (FT) |
| 3. LOGISTICS MODULE | MOSC STUDY | LENGTH (FT) |
| 4. LAB SHELL AND UTILITY SERVICES | MOSC STUDY | LENGTH (FT) |
| 5. SOLAR ARRAY | LOCKHEED | POWER AT ARRAY (KW) |
| 6. ELECTRICAL CONTROLS | 25 KW POWER SYSTEM STUDY | POWER AT BUS (KW) |
| 7. CREN ACCOMMODATIONS | MOSC STUDY | CREW SIZE |
| 8. ENVIRONMENTAL LIFE SUPPORT SYSTEM | HAMILTON STANDARD | CREW SIZE |
| 9. THERTAL SYSTEM - NO radiators | HAMILTON STANDARD | HEAT REJECTION (KW) |
| 10. COMMUNICATIONS AND DATA MANAGEMENT | NASA AND AF COST DATA | DATA RATE (MBPS) |
| 11. ATTITUDE CONTROL | SSSAS STUDY, PART 3 | NUMBER OF MODULES |
| 12. LAB EQUIPMENT | SSSAS STUDY, PART 3 | LENGTH (FT) |
| 13. STATION DOCKING MODULE | MOSC STUDY | CONSTANT |
| 14. PAYLOAD SUPPORT STPUCTURE | MANNED SASP STUDY | CONSTANT |
| 15. EQUIPMENT RACKS | NASA SPACELAB DATA | CONSTANT |
| 16. SHORT MODULE | NASA SPACELAB DATA | CONSTANT |
| 17. DEPLOYABLE RADIATOR | 25 KW POWER SYSTEM STUDY | HEAT REJECTION (KW) |
| 18. PROPULSION MODULE | 25 KW POWER SYSTEM STUDY | TOTAL LENGTH ALL MODULES (FT) |
| 19. SOFTWARE (TOTAL FACILITY) | MDAC HISTORICAL DATA | MACHINE LANGUAGE INSTRUCTIONS |
| 20. FRAMEWORK \& UTILITY SERVICES | 25 KW POWER SYSTEM STUDY | POWER AT BUS (KH) |
| ORBITER DOCKING MODULE | MOSC STUDY | CONSTANT |
| TMS | VOUGHT | CONSTANT |
| TMS REFUELING AND SERVICE | MDAC OTV STUDY | CONSTANT |
| OTV | NASA AND CONTRACTOR STUDIES | CONSTANT |
| OTV REFUELING AND SERVICE | MDAC OTV STUDY | CONSTANT |
| 100 FT RMS | SPAR | CONSTANT |
| MMU | NASA | CONSTANT |
| EMU | NASA | CONSTANT |

Table 2-2. COST MODEL DATA SOURCES AND INDEPENDENT VARIABLES FOR UNMANNED PLATFORMS

| ELEMENT | PRINCIPAL SOURCE | INDEPENDENT VARIABLE |
| :---: | :---: | :---: |
| 1. FRAMEWORK AND UTILITY SERVICES | 25 KW POWER SYSTEM STUDY | POWER AT BUS (KW) |
| 2. ACS/PROPULSION - RBM | 25 KW POWER SYSTEM STUDY | POWER AT BUS (KW) |
| 3. SOLAR ARRAY | LOCKHEED | POWER AT ARRAY (KW) |
| 4. ELECTRICAL CONTROLS | 25 KW POWER SYSTEM STUDY | POWER AT BUS (KW) |
| 5. COMMUNICATIONS AND DATA MANAGEMENT | NASA AND AF COST DATA | DATA RATE (MBPS) |
| 6. THERMAL SYSTEM - NO RADIATORS | 25 KW POWER SYSTEM STUDY | heat rejection (KW) |
| 7. UNPRESSURIZED PORTS/ARM | MANNED SASP STUDY | CONSTANT |
| 8. PROPULSION MODULE | 25 KW POWER SYSTEM STUDY | CONSTANT |
| 9. ATTITUDE CONTROL | 25 KW POWER SYSTEM STUDY | CONSTANT |
| 10. SOFTWARE (TOTAL FACILITY) | MDAC HISTORICAL DATA | machine language instructions |
| 11. DEPLOYABLE RADIATOR | 25 KW POWER SYSTEM STUDY | HEAT REJECTION (KW) |

Table 2-3. MANNED SPACE STATION PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's

## Two Different Diameter Pressurizable Manned Shells and Utility Services <br> Structure (Cylinder, Floor, Racks, Domes, Attach Fittings, Hatches, Hatch Adapters, Docking Adapters) <br> Environment Protection (Radiation/Meteor Shield, External Insulation) <br> Electrical Distribution <br> Lighting <br> Atmospheric Circulation, Vent, Fans <br> Gimbals \& Support for Solar Array

One Constant Diameter Pressurizable Manned Shell and Utility Services
Structure (Cylinder, Floor, Racks, Domes, Attach Fittings, Hatches, Hatch Adapters, Docking Adapters)
Environment Protection (Radiation/Meteor Shield, External Insulation)
Electrical Distritution
Lighting
Atmospheric Circulation, Vent, Fans

Table 2-3. MANNED SPACE STATION PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's (Continued)

## Logistics Module

Pressurized Section
Structure (Cylinder, Floor, Racks, Domes, Hatches, Docking Adapters, Stowage Compartments)
Environment Protection (Meteoroid Shield, Insulation) Electrical Distribution Lighting

Unpressurized Cylinder
Tunnel
Intercom and Control Panel
$\mathrm{O}_{2}$ and $\mathrm{N}_{2}$ Storage Tanks
$\mathrm{H}_{2} \mathrm{O}$ Storage Tanks

## Electrical Power - Array

Solar Cells, Blankets and Connections
Supporting Hardware
Solar Mast
Array Linkage
Cannisters, Containers \& Covers

Electrical Power - Regulation and Control
Batteries/Fuel Cells
Power Processor
Battery Protection Circuit
Power Distributors
Regulators
Diodes
Wiring

Table 2-3. MANNED SPACE STATION PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's (Continued)
Crew Accommodations
Crew Quarters
Crew Gear
Restraints
Flight Operations Equipment
Food Management
HygieneTrash Management Without Compactor
Water Management
ECLS (Open Loop)
Ventilation Control
Temperature Control
Humidity Control
Pressure Control
Emergency $\mathrm{O}_{2}$ and $\mathrm{N}_{2}$
Trace Contaminant Control
Regenerable $\mathrm{CO}_{2}$ Removal
Humidity Condensate Recovery
Wash Water Recovery
Hot and Cold Water Supply
Emergency Water Storage
Waste Collection and Storage
Hand Wash Hygiene
Oven
ECLS (Partial Closed Loop)
All of Open Loop Above Plus:
Shower
Clothes Washer
Trash Compactor
Airlock Pump
Refrigerator/Freezer
Added Wash Water Recovery From Shower
Water Quality Monitor and Control
ECLS (Closed Loop)
All of Open Loop and Partial Closed Loop Above Plus:
Dishwasher
Oxygen Generation System
$\mathrm{CO}_{2}$ Reduction System
Water Recovery from Urine

Table 2-3. MANNED SPACE STATION PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's (Continued)
Thermal Control
Water Pump PackageFreon Pump PackageWater/Freon Interface Heat ExchangesControls
Communications and Data Management
Antennas
Transponders
Amplifiers
Transmitters
Signal Processors
Internal Communications
Electronics Assemblies
Data Processing Equipment
Instrumentation
Display/Control Equipment
Attitude Control/Propulsion/RCS
RCS (Tarkage and Thrusters)
Control Electronics
Telemetry
Optical Reference Assembly
Intertial Reference Assembly
Guidance Electronics
Lab Equipment
Atmosphere Control
Thermal Control
Data Management
Communications
Facility Control Equipment
Processing Work Station
Medical/Biological Mission Equipment
Pressurized Ports - Docking ModuleActive Forts(4 side ports, 2 end ports)
Hatches
Cylindrical Structure Section and End Domes
Environment Protection
Electrical Distribution
Lighting
Wiring and Fluid Lines \& Interconnects

Table 2-3. MANNED SPACE STATION PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's (Continued)
Unpressurized Port (Payload Support Structure)
Payload Ports (12)
Extension Arm Truss
Interface Umbilicals at Both Ends of Arm
Wiring and Fluid Lines
Equipment Racks
Spacelab Experiment Segment Rack Including Thermal Ducts \& Wiring
Short Module
Modified Spacelab Core Segment Including:
Structure
Electrical Power DistributionCommunications/Data ManagementLife Support Distritution
Thermal Control
Viewpoint
Deployable RadiatorRadiator Assembly (3 panels total 829 sq. ft.)
Radiator Deployment Mechanism
Plumbing and Fittings
Flex Hoses
Spacelab Pallet
Pallet Assembly with Thermal Lines \& Electrical Wiring
Orbiter Docking Module
Structure (Cylinder, Floor, Domes, Hatches, Docking Adapters)
Environment Protection
Electrical Dïstribution
Lignting
Airlock and Controls

Table 2-4. UNMANNED PLATFORM PARAMETRIC PREDICTOR METHODOLOGY DEFINITON OF ITEMS INCLUDED IN CER's

Frame
Deployable Radiator Panels and Mechanical Support/Deployment
Ku Antenna Structure
Low Fidelity Mockup
Equipment Housing Assembly
Support Beam Assembly
Solar Array Support Assembly
Crew Accommodations (EVA Restraints)
Interface Pivot Assembly
Aaapter Housing Assembly

## Attitude Control/Propulsion

Control Electronics
Guidance Electronics
CMG's
Magnetometer
Electromagnet
Rate Sensor
Sun Sensor
Horizon Sensor
Electrical Power (Wiring and Controls)
Thermal Control (Insulation and Heaters)
RCS (Tankage, Thrusters, Valves, Lines: Instrumentation)
Structure

## Electrical Power - Array

Solar Cells, Blankets and Connections
Supporting Hardware
Solar Mast
Array Linkage
Cannisters \& Container Box/Covers

## Electrical Power - Regulation and Control

Eatteries/Fuel Cells
Power Processor
Battery Protection Circuit
Power Distributors
Regulators
Diodes
Wiring Associated with Above Items Only

Table 2-4. UNMANNED PLATFORM PARAMETRIC PREDICTOR METHODOLOGY DEFINITION OF ITEMS INCLUDED IN CER's (Continued)

Communications and Data Management
Antennas
Transponders
Amplifiers
Transmitters
Signal Conditioners
Data Processing Equipment
Instrumentation
TV Camera

Thermal Control
Insulation
Coolant
Radiator and Control Assembly
Cold Plate Assembly
Pump and Payload Cooling Package

### 2.3 INPUT REQUIREMENTS

Model inputs are categorized as either Architectural Option, Facility, or Element inputs:

- Architectural Option Inputs
- Data file name
- NASA budget file
- Ancillary equipment file
- Facility Inputs
- Orbit data
- Schedule data
- Support flights per year
- Element Inputs
- Quantity
- Value of estimating parameter
- Percent new design and new simulator/test
- Spares parameters
- Technology level

An example input file is shown in Figure 2-4.

### 2.4 OUTPUT

Two categories of output data are developed: element costs and facility funding requirements (Figure 2-5). Element costs are calculated at the contractor (excluding fee) and NASA line item level. T2 designates the first

## FIGURE 2-4



EONF TIIIRATION TATA FOR GFACE STATION:


FIGURE 2-4 (Continued)
PROGRAM DEFINITION COST MODEL INPUT

FILE NAMEms84F D/T= 03/03/30.
FACILITY NO. (1)= 1. TYPE(2)=8PACE STA. USER(3) =NASA

INCLINATION(4)= 28.5, ALTITUDE(5)-235 MA. MI.. 10C(6)w192, EOC(7)=400 - SUP FLTS/YR(B)=10. SPEC ELEMENTS(9): 1. START TO LAUNCH PER MODUEE22.


FIGURE 2-5

```
*#########***)
e3/03/31. 16.53.23.
ARCH OPTION: SSAFI
ARCH TITLE: SPACE STATION SYSTEM ARCHITEC.TIRF, 4, 8, 8
FACILITY NIMRFR: 1.
FACILIITY NAMF: SP STATION
FIINIINB DIJRATION=22. SPAN=25.
RESUPPLY FL IGHTS PFR YFARד10.
```

ORBIT: 233
INCLINATIEN: 28.50 [IEGREES
NO. MODULES $\Rightarrow 4$

THERMAI LOAD= 51.0, NATA RATE= BO. O, NO. NOCK MOMSE 1.
NO. PAYLD SUPPORT STRIICT: 1., NO. SHRT MONSa O. RUS POWERE 38. 0
ATP居 1-96 IOC=192 EOCm400
TOTAL FACILITY COST=5214.683852907

|  | TOTAI. FACILITV | TOTAL TRANSP | Clim ARCHITEC. OPTICN | OVFR/IINAFR NASA RUMGET | CIM TRANSP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1983=$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $1984=$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $1985=$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $1986=$ | 392.000 | 0.000 | 392.000 | . 000 | 0.000 |
| $1987=$ | 646.000 | 0.000 | 646.000 | . 000 | 0.000 |
| $1988=$ | 1219.000 | 0.000 | 1219.000 | .000 | 0.000 |
| 1989 | 1293.515 | 0.000 | 1293.515 | 78.485 | 0.000 |
| $1990=$ | 1004.694 | 0.000 | 1004.694 | 367.306 | 0.000 |
| 1991 m | 602.895 | 252. 300 | 602.895 | 769.105 | 252.300 |
| $1992=$ | 56. 580 | 84. 100 | 56.580 | 1315.420 | 84.100 |
| $1993=$ | 185.148 | $\cdot 48.597$ | 185.148 | 1186.852 | 48.597 |
| $1994=$ | 185.148 | 48. 597 | 185. 148 | 1186.852 | 48.597 |
| $1995=$ | 185.148 | 48. 597 | 185.148 | 1186.852 | 48.597 |
| $1996=$ | 185.148 | 48. 597 | 189. 148 | 1186.852 | 48.597 |
| $1997=$ | 185.148 | 48. 597 | 185.148 | 1186.852 | 48.597 |
| $1998=$ | 185.148 | 48.597 | 185. 148 | 1186.852 | 48.597 |
| $1999=$ | 185.148 | 48.597 | 185.14R | 1186.852 | 48.597 |
| $2000=$ | 183.148 | 48.597 | 185. 148 | 1186.852 | 48.597 |
| TOTAL = | 6K95. 868 | 725. 176 | 669.5 .86 A |  |  |

article production cost and PROD designates the total production cost according to the quantity of units (PROD $=$ QUANTITY $\times$ T2).

Design and tooling (DES \& TLNG) costs are printed out and are a component of development costs (DEVELOPMENT). Cumulative values (CUM) are calculated, including the preceding elements. The cost of spares and their associated weight are printed out, the latter providing the basis for calculating STS transportation cost.

Facility annual funding requirements are output, presenting costs for the facility and a cost accumulation including preceding facilities in the architecture. The accumulated funding is tested against input budget limitations and the difference printed out. The cost of spares is accumulated under the facility. Transportation costs are shown separately and not charged against the budget.

## Section 3

PROGRAM COSTS

Program costs have been estimated which make allowance for all major categories necessary to define total costs to NASA for the required space facilities. This section presents the results of the cost analysis.

### 3.1 ESTIMATING METHODOLOGY

Figure 3-1 identifies the categories of cost considered. The MDAC cost model accounted for all areas of space facilities cost except operational ground support and associated support equipment.

FIGURE 3-1
SPACE FACILITY COST ELEMENTS

- CONTRACTOR

HARDIMARE, GSE, SYSTEMS TEST, SE\&I, INITIAL SPARES, PROJECT MANAGEMENT, FEE

CONTINGENCY (30\%)

- NASA

PROGRAM SUPPORT, MANAGEMENT \& INTEGRATION, LAUNCH \& LANDING

- OPERATIONS

TRANSPORTATION, EXPENDABLES, SPARES, GROUND SUPPORT AND SUPPORT EQUIPMENT

These costs were estimated independently. An allowance for contractor fee (10 percent) was included. NASA costs traditionally identified as Program Support, Management and Integration, and Launch and Landing were accounted for by factors. A contingency equal to 30 percent of the contractor program price (fee included) was assumed.

Where the cost of mission equipment was estimated, flight hardware cost was calculated by use of an algorithm developed by Aerospace Corporation*. Operations costs were estimated independently, with the logistics costs calculated as a fraction of hardware costs.

Key assumptions are noted in Figure 3-2.

### 3.2 PROGRAM FUNDING REQUIREMENTS

Program funding requirements were determined for the study baseline architecture (see Figure 3-3).

FIGURE 3-2
COST AMD SCHEDULE ASSUMPTIONS

- $\$ 1984$ (FISCAL YEAR)
- TOTAL PROGRAM COSTS INCLUDE CONTRACTOR FEE, NASA COSTS, CONTINGENCY
- Shuttie
- FUNDED FROM OSTS "SHUTTLE OPERATIONS" BUDGET
- \$84M/LAUNCH
- MOST COST-EFFECTIVE PROCUREMENT CONCEPT
- MAXIMUM COMMONALITY
- SINGLE NASA CENTER PROGRAM MANAGEMENT
- PRIME CONTRACTOR DOES SYSTEM ENGINEERING

[^0]

The baseline architecture's buildup is accomplished through seven separate steps which either add new facilities or expand facilities already deployed. Standard sized modules and elements are used in these steps as indicated below.

1. Space Station at $28^{\circ}$

- 4-man crew (3 for missions)
- 25-kW mission power

2. Platform at $97^{\circ}$

- $\quad 15-\mathrm{kl}$ mission power
- $\quad 300-\mathrm{Mbps}$ data rate

3. Expand Space Station

- 8-man crew
- $\quad 40-\mathrm{kW}$ mission power
- Add TMS operations

4. P1atform at $28.5^{0}$

- 15-klv mission power

5. Expand Space Station at $28^{\circ}$

- Add ROTV operations

6. Expand platfona at $97^{\circ}$ (evolutionary growth)

- 4-man capability
- 25-KW mission power

7. Add platform at $57^{\circ}$ (evolutionary growth)
8. Continuous logistics and assembly-level upgrade.

Program funding requirements for this architecture are shown in Figure 3-4. The annual funding is constrained to a maximum of $\$ 1.37$ billion (1984 dollars). Cumulative facility costs are shown, with factors to account for

FIGURE 3-4
SPACE STATION PROGRAM FUNDING PRIORITIZED MISSION MODEL
(1) Initial Space Station
(2) Platform 1, \$1 Billion
(3) Space Station Growth, $\$ 1.2$ Billion
(4) Teleoperator (TMS), $\$ 0.3$ Billion
(5) Platform, $\$ 0.5$ Billion
(6) Space Station Growth, $\$ 0.8$ Billion
(7) Reusable OTV, $\$ 1.3$ Billion
(8) Ground Support Equipment, \$0.2 Billion


NASA management and a 30 percent contingency included. An initial capability station; sized to accommodate four crew persons, is estimated to cost $\$ 5.2$ billion. An expanded capability would include station growth from four to eight persons and introduction of TMS operations. Total cost for these additions is $\$ 1.2$ billion. If ROTV development and operations were introduced, an added cost of $\$ 0.8$ billion would be incurred. Funding for operations is overlaid, including consideration of the costs of spares, ground support, and the associated equipment. The cost of STS operations is excluded.

The architecture discussed above results in maximum accommodation of the prioritized mission model. Figure 3-5 shows the relative cost impact of reduced levels of mission capture as caused by elimination of selected architectural elements. The architecture which captures 50 percent of the mission model consists of a Space Station at $28^{\circ}$ inclination and a platform


FIGURE 3-5
VGB681

## ARCHITECTURAL OPTIONS


(1) 1.00 Represents Total Program Cost - Prioritized Mission Model
at $90^{\circ}$ inclination and employs a TMS for satellite servicing and Ku band communications as required by some high priority Science and Applications missions.

In order to capture the 75 percent model, missions of lower priority are added. Growth subsystems and an RMS are required to capture this model.

Capture of the 95 percent model (maximum capture) requires the addition of another $28^{\circ}$ inclination platform and an OTV to satisfy operations missions launching payloads to geosynchronous orbits.

The costs show that the 50 percent capture costs a factor of 0.65 compared to a factor of 1.00 for 95 percent capture. This means that the cost is greater per mission captured for facilities with reduced capture. Also, a smaller increase in cost occurs between the 50 percent and 75 percent than between the 75 percent and 100 percent capture. This is primarily due to the need for the OTV for the 95 percent capture version.

### 3.3 SPACE STATION COST BREAKDOWN

A breakdown of costs for the initial space station is shown in Table 3-1. Costs are identified at the hardware, project (i.e., contractor), and program (i.e., NASA line item) levels. An allocation for contractor fee ( 10 percent) is included within the item designated NASA Program Support, Contingency.

### 3.4 GROUMD OPERATIONS COST

Cost elements and their associated costs for the category of ground operations and equipment are shown in Table 3-2. The cost designated

Table 3-1. SPACE STATION COST BREAKDOWN (\$M 1984)

*INCLUDES COMMON NON-RECURRING COSTS FOR ALL PRESSURIZED SHELLS.

Table 3-2. GROUND SUPPORT OPERATIONS - SPACE STATION SYSTEMS (\$M, 1984)

FACILITY ITEM
SPACE STATION CONTROL CONSOLES (SSCC)
PLATFORM CONTROL CONSOLE (SPCC) \#1 ( $90^{\circ}$ )
SPCC \#2 ( $28.5^{\circ}$ )
SPCC \#3 ( $57^{\circ}$ )
DATA HANDLING FACILITY (DHF)
NON-SEPARABLE

| INVESTMENT COST |  | ANNUAL OPERATIONS COST |
| :---: | :---: | :---: |
| $\$ 74.6$ | 25.9 |  |
| 24.9 | 8.6 |  |
| 12.4 | 8.6 |  |
| 12.4 | 8.6 |  |
| 54.4 | 13.4 |  |
| $\frac{8.4}{\$ 187.2 M}$ | $\underline{23.5}$ |  |
|  |  | $\$ 88.6 M /$ YR |

INVESTMENT COST: DEVELOPMENT AND PRODUCTION OF HARDWARE AND SOFTWARE.
OPERATIONS COST: HARDHARE AND SOFTWARE MAINTENANCE, FACILITY STAFFING, TRAINING AND MANAGEMENT.

Investment Cost corresponds to the Ground Support Equipment item shown in Figure 3-4. The source of these data was the Space Platform Study (June 1982). Costs were escalated at 9 percent per annum and tripled (as appropriate) to reflect the increased complexity of the Space Station.

A program schedule, showing major program milestones is shown in Figure 3-6. The Phase C/D ATP and initial station IOC correspond to the funding profile shown in Figure 3-4.

FIGURE 3-6

## SPACE STATION PROGRAM SCHEDULE



Section 4
USER CHARGE MODEL

A NASA objective is to ultimately cormercialize the Space Station. One important aspect of this process would be to establish a user charge model. This section presents examples of how this might be done and representative rates.

### 4.1 COST ELEMENTS

User charges should reflect all station costs, whether they are direct or indirect (see Figure 4-1). Direct costs are those directly relating to user

FIGURE 4-1
USER CHARGE MODEL COST ELEMENTS

services, such as electrical power, data handling, crew labor, and mission equipment accommodation (internal pressurized volume or external mounts). Indirect costs are all other costs necessary for the operation of the station.

### 4.2 ALLOCATION OF FACILITY COSTS

In establishing user charges, it is necessary to first assign or allocate costs against the services to be sold. An example of how this might be done is shown in Figure 4-2.

Figure 4-3 shows the accumulation of all costs which are prorated across user services. The station is assumed to be written off over a 10-year program. Development costs are included in this illustration. The figures designated Available Resource represent a quantification of the service that

FIGURE 4-2
VGB820
ALLOCATION OF STATION FACILITY COSTS (PERCENT)

| Allocated      <br> Element      | Mission Service |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Data <br> Mgt/ |  | Internal <br> Comm | Labor <br> Volumernal <br> Mount |
| Crew Shell, Accom | - | - | 100 | - | - |
| Mission Module | - | - | - | 100 | - |
| Utilities Framework | 60 | 14 | 18 | 4 | 4 |
| Logistics Module | 10 | - | 80 | 5 | 5 |
| Array/Elec Control | 50 | 13 | 14 | 12 | 11 |
| Thermal Control | 13 | 6 | 14 | 67 | - |
| ECLS | - | - | 80 | 20 | - |
| ACS/Propulsion | 16 | 17 | 17 | 25 | 25 |
| Comm/Data Mgt | 33 | 17 | 33 | 9 | 8 |
| Software | 33 | 17 | 33 | 9 | 8 |
| Unpress Ports | - | - | - | - | 100 |

FIGURE 4-3

PRORATING OF STATION COSTS
10-YEAR MISSION
ALL-UP PROGRAM COSTS

| Cost Element (\$ Millions/Year) | Total | Power | Data/ Comm | Labor | Internal Volume | External Mount |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Space Facility | 508tt | 111 | 48 | 223 | 94 | 32 |
| Resupply* | 220 | 48 | 21 | 96 | 41 | 14 |
| Ground Support** | 100 | 22 | 9 | 44 | 19 | 6 |
| Training, Duplicate Crews |  |  | (Assum | ed Sma |  |  |
| Total Cost Base | 828 | 181 | 78 | 363 | 154 | 52 |
| Available Resource Units (Annual) | - | 201K. KWh | $2.5{ }^{9} \mathrm{Mb}$ | 8,800 | $12 \mathrm{kft}{ }^{3}$ | $20+$ Ports |
| Annual Rate (\$/Units) |  |  |  |  |  |  |
| Gross | - | 900 | 0.031 | 41K | 12.8K | 2.6M |
| (Load Factor) | - | (50\%) | (20\%) | (80\%) | (80\%) | (80\%) |
| Net | - | 1800 | 0.156 | 52K | 16K | 3.25M |

*Includes STS and Cost of Spares (Excludes Payload Spares)
**Excludes Payload Support (i.e., Only Space Facility Support Included) †External Ports
$\dagger \dagger$ Based on a $\$ 5.08 \overline{\mathrm{~B}}$ Station (Early Iteration Concept) With 3-Man Crew, 35 kW Power.
is assumed available for sale. In the case of labor, it was assumed that 2.4 persons of a 3-person crew were available 10 hours a day, 365 days a year. Load factors are applied on the assumption that 100 percent utilization of services could not be achieved.

### 4.3 USER CHARGES

User charges are summarized in Figure 4-4, showing the relative apportionment of costs to the various services. The impact of only amortizing production costs is shown in Figure 4-5. The potential reimbursement for these two scenarios, based on the commercial mission demand for services, is shown in Figure 4-6.

FIGURE 4-4


SPACE STATION


FIGURE 4.5
Power (kWh)
22\%

SPACE STATION USER CHARGE MODEL PRODUCTION COSTS ONLY 3 Men, 35 kW


FIGURE 4-6

## REIMBURSIBLE FRACTION OF SPACE STATION RESOURCES COMMERCIAL MISSIONS

| Resource | Reimbursible Fraction (\%) | Average (10 Year) Annual Reimbursement ( $\$ M / \mathbf{Y r}$ ) |  |
| :---: | :---: | :---: | :---: |
|  |  | All-Up(1) | Production(2) |
| Power | 53 | 96 | 51 |
| Data | 5 | $4^{(3)}$ | $2(3)$ |
| Labor | 37 | 134 | 68 |
| Interal Volume | 62 | 95 | 49 |
| External Mounts | 14 | 7 | 4 |
| Total | - | \$336M/ $\mathbf{M r}$ | \$174M/ Y r |

## Notes

(1)All Costs, Including Development, Prorated Over 10 Years
(2) All Costs, Excluding Development, Prorated Over 10 Years
(3) Excludes TDRSS Lease Charges

## Excludes STS Charges

Space Station Cost Assumed \$5.2 Billion


[^0]:    *Spacecraft System Cost Model, Aerospace Resource Cost Analysis Office, March 1981.

