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1.0

9 This re port presents the tasks nerformedi at Boeing
Aeros pace Company	 (BAC),	 Seattle, Washin q ton,	 in
assessing remote handlinq as pects of a Space
Station.	 The tasks were performed	 in response to

'. the Statement of Work attached as A ppendix A, over
the two week, period fLam January 10 to 21, 	 1983.

The tasks	 involved discussions of remote handling
operations and future potential developments of
s pace mani pulators.	 In particular,	 the followinq
subject areas were addressed and are discussed in
this report:

(a)	 SRMS capabilities	 and characteristics,
` (b)	 potential	 imp rovements	 in SRMS,

(c)	 s pace maintainability considerations 	 for RMS,
(d)	 manipulator develonment 	 issues:	 simulation

Rnd	 analysis,
(e;	 RMS track and base assembly conce pt for a

sp ace station.
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2.0	 SHUTTLE REMOTE MANI

The Shuttle Remote Maninulator System (RMS) is
designed Primarily for the de p loyment and
retrieval of Payloads from the orbiter.

The manipulator arm of the RMS is a 50 ft. long
tubular structure (Figure 2-1), consisting of six
rotational degrees of freedom. The joints
correspond to the Degrees of Freedom (Do g 's) of a
human aLn. the arm is attached at one end to the
Manioulator Positioninq Mechanism (MPM) of the
orbiter, and the other end carries an end effector
which is designed to capture and release pay-
loads. The joints near the MPM, called "shoulder
joints", provide two DoF's and the joints near the
end effector called "wrist joints", Provide three
DoF's. An elbow joint in the middle of the arm
Provides one DoF. The shoulder and elbow provide
three dimensional translations of 'the end effector
and the wrist joints Provide three dimensional
rotations of the end effector..

2.1	 Design Capabilities

The Shuttle RMS has been designed to provide the
following capabilities:

(a) Deploy, or return without release,
weighing uo to 65,000 lbs. 	 with 60

Payloads
ft.	 length

and 15 ft.	 diameter.

(b) Canture and retrieve up to 32,000 lb.	 free-
flying max-dimension payload whose relative
rate with	 respect to the shoulder is
0.1 ft /sec.	 and	 0,1 deq/sec.	 about each

axis.

(c) Position the end effector relative to the
shoulder attach point to within :L2 inches and
±1 degree,	 in the Automatic mode.

r

,1
w

^I

l9	 2-1



cry

'r

4/mcl703/9
SPAR-R.1145
ISSUE A

(d) Release payloads up to 65,000 lbs.	 and
maximum envelope,	 within 5 degrees attitu',,,
error with tip-off rates less than
0.015 deg/sec.

(e) haintain end effector rate accuracies of
±0.03 ft/sec.	 and X0.09 deg/sec.	 in the
manual augmented mode.

(f) Stoo the end effector within 2 ft. under all
loadinq conditions.

(g) Provide the maximum rates at the end effector
as	 follows:

Rate Limits
Load	 ft sec. de sec.

Unloaded	 2	 4.76
Loaded	 (32,000	 lb.)	 0.2	 0.476
Loaded	 (65,000	 lb.)	 0.1	 0.238

(h) Provide the following minimum force/moment
capability at the end effector:

i)	 combined 12 lbs.	 shear force and
160 lb-ft.	 bending moment,

ii)	 torque about the end effector
lonqitudinal	 axis	 (roll)	 of 230 lb-ft.

W Provide two arm	 ( port and starboard) serial
operation capability.

(j) Provide fail-safe operation. n

2.2	 Design Characteristics

The components of the shuttle RMS are shown
schematically in Fiqure 2-2.	 System block
diagrams are shown in Figure 2-3 and Fiqure 2-4. N+

Mass, power and size data for RMS subassemblies
are given in Table 2-1.

2-2
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The mechanical arm of the RMS consists of the
following major elements:

(a) mechanical arm assemblv,
(b) end effector,
(c) thermal p rotection system,
(d) CCTV system.

The mechanical arm assembly consists of the six
electromechanical joints and two arm booms which
Provide structural connection between the
shoulder, elbow and wrist joints. The uooer arm
boom connects the shoulder p itch and elbow pitch
joints, and the lower arm boom connects the elbow
pitch joint to wrist p itch joint. The boomsare
of thin-wall gra phite-eooxy construction and the
joint structures are metallic. A thin kevlar-skin
honeycomb bumper system Provides Protection to the
booms aqainst im pact damage. The key nerformance
characteristics of the joints are given in
Table 2-2.

The end effector is the element which physically_
interfaces with a payload. The standard end
effector has the ca pability to attach to a payload
and to release it on command from an onerator. It
is a snare type device and has a standar:lized
interface with a Payload. The payload side of the
interface is formed by a graoule fixture which is
attached to the payload. The snare desi gn feature
enables the standard end effector to ca p ture the
gramole shaft of the granule fixture (and, thus,
the payload) when it is offset by up to 4 inches
from the end effector centerline and is misaligned
by uo to 15 1 in pitch/yaw and uP to 10 1 in roll.
It also enables the Pavload to be released with
minimal release-impulse. Operations of the end
effector and granule fixture are shown in
Figure 2-5.

The standard end effector is equinoed with a
51 pin electrical connector (only 25 Pins are
available for use at present), which can be used
to transfer power and signals to the payload.

t;
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However,	 the payload needs to be Provided with the
Electrical Flight Grapp le Fixture	 (EFGF)	 to permit
this electrical	 interface.	 This electrical
grapple fixture features a linkaqe mechanism to
engage connectors using motive force provided by
the end effector.	 Electrical connections can be
made through 25 pins.	 The other end of these
wires terminate in the aft fliqht deck and are
usable at a pa y load panel.

The thermal Protection system of the mechanical
arm consists of thermostatically controlled
heaters in the joints and electronics compartments
and multilayer thermal insulation blankets covered
with Beta cloth on the exterior of the joints and
arm booms.	 S pecific areas of the electronics
compartment are free of 	 insulation and are painted
white to provide radiatin q areas for heat
dissi pating components.

The CCTV system includes a CCTV camera and light
located on the wrist-roll 	 joint next to the end
effector,	 as shown in Figure 2-6.	 The camera has
a remotely controlled zoom lens with focal lenqth
variation from 18 mm to 108 mm, 	 and corresponding
fields-of-view of	 30 0	(48 0 diagonal)	 to 5 0	 (8.5°
diagonal).	 The near focus distance is 31.5 inches
(0.8 meters).from the front of	 the lens.	 The
viewLng light has power of 200 watts	 (28 VDC) and
provides a 40 0 included an q le beam.

Theve is a provision for a kittable CCTV camera
with pan and tilt at the elbow joint,	 as shown in
Figure 2-7.	 The camera	 is identical to the wrist
camera.	 The pan and tilt unit is remotely
controlled from the aft deck and provides f70°
tilt and X170' pan capability.

2.3	 Operating Modes
as

The shuttle RMS can be o perated in any one of the
followinq erodes:

2-4
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(a) manual augmented,
(b) automatic,
(c) single joint control,
(d) direct drive control,
(e) back-up drive control.

The manual augmented mode is the most frequently
used method of ooeratinq the arm. The operator
uses the two hand controllers to "fly" the end
effector. Usinq the translational haul controller
(THC) he or she commands the end effector linearly
in anv direction while the Rotational Hand
Controller (RHC) is used to command angular

f	 motions (roll, Ditch or yaw). Hand controller
l	 deflections result in proportional rates of the

end effector. The operator has a choice of
commanding in the orbiter coordinate s ystem, the
end effector coordinate system, or a nayload-based
coordinate system. The hand controllers are shown
in Fiqure 2-8 and Figure 2-9.

The automatic mode, as the name .im p lies, allows
the operator to call up any one of the twenty
preprogrammed trajectories which are executed in a
"hands-off" manner. In addition, the operator can
enter into the Shuttle General Purpose Computer
(GPC), via the keyboard, desired start and
end-point coordinates for the arm to "fly" from
and to, automatically.

The sinqle joint mode is computer-assisted and
enables the operator to move the arm in a
controlled, joint-by-joint manner, using switches
on the Display and Control (D5C) panel. The D&C
panel, shown in Figure 2-10 and Figure 2-11, has
digital displays for joint an qles and rates. The
joints not commanded are held in Dosition-hold by
the GPC. This mode is used mainly to unstow and
restow the arm from and to its retention latches,
as well as to drive the arm away from joint travel
limits, when required.

The direct drive mode is a hard-wired mode which
by-passes the Manipulator Controller Interface
Unit (MCIU) and GPC and gives the o perator the
capability of drivinq the arm joint-by-joint in a

2-5
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contingency. The uncommanded joints are held in
position by their res pective Lrakes. Joint angle
and rate data may or may not be available in this
mode, denending on what system fault necessitates
selection of the direct drive mode.

The back-u p drive mode is similar to the direct
drive mode but is accessed and implemented by a
back-up system which is se parate from the prime
system used for other operating modes (with the
exception of the final qear train). This mode is
used when all modes in the prime channel become
unavailable due to malfunctions. It fulfills the
SRMS fail-safe requirement and allows the operator
to place the SRMS in a safe position on a joint-
by-joint basis (with no dis play information) for
either payload separation, arm latching or arm
separation.

2.4	 Software

The shuttle RMS software resides in the GPC where
it translates the operator commands, transmitted
to the GPC from the D&C panel, into commands
required for the RMS hardware operation. The
software also performs the task of monitoring the
hardware and. RMS status. Interface with RMS hard-
ware is via the data bus between the MCIU and the
GPC.

The RMS software subsystem is non-redundant and is
divided into fifteen principal functions which
perform the required mathematical and logical
operations. The software modes provided can be
classified as either requested modes (manual,
automatic, single or test) or non-requested modes
(suspend, idle or temperature monitor). The
requested modes are those for which a position
exists on the mode-select switch of the D&C
panel. The software is in suspend mode whenever
communication with the MCIU is shut down. Idle
mode is executed when either hardware safeing is
in progress, brakes are beinq applied, software

2-6
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stoppinq has been ordered, or a test mode has been
selected on the D&C panel. Temperature-monitor
mode is executed when no arm has been selected
("powered").

The executive function (EXEC) performs the
O
p
erating mode initialization and permits mode

transitions when various p rerequisites are met.
Depending on the software mode, EXEC calls a
specific set of p rincipal functions in a
particular sequence in order to control and
monitor arm motion.

The RMS software occup ies 13K 32-bit words in the
GPC memory and is executed at 12.5 Hz. The MCIU
features an 8-bit micro processor with 4K bytes of
ROM and lK bytes of RAM. The MCIU processnq is
executed at 25 Hz.

2.5	 Interfaces

Description and requirements of interfaces between
the SRMS and payloads, and the SRMS and the
orbiter are given in the following documents (NASA
document numbers are given in parenthesis):

(a) RMS/Payload Interface Control Document -
SPAR-RMS-ICD.014 (NASA-ICD-2-06001),

(b) Manioulator/Orbiter Physical Interface
Control Document - SPAR-RMS-ICD.026 (NASA-
ICD-3-0018-01),

(c) Manipulator/Orbiter Thermal Interface -
SPAR-RMS-•ICD.015 (NASA-ICD-3-0018-06),

(d) Mani pulator/Orbiter Electrical Interface -
SPAR-RMS-ICD.021 (NASA-ICD-3-0018-02),

(e) Manipulator Dis plays s Controls/Orbiter
Interface Control Document - SPAR-RMS-ICD.028
(NASA-ICD-3-0018-03).

-7
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3.0	 POTENTIAL 'IMPROVEMENTS IN SHUTTLE RMS

The present shuttle RMS desiqn has been primarily
governed by considerations of payload retrieval
and dep loyment from the orbiter.	 A number of
improvements of the RMS can be envisaged to expand
its capabilities in performing tasks related to
satellite servicinq and module exchange,
inspection,	 space construction, materials handlinq
and	 transfers,	 etc.	 Such tasks are likely to be
routinely perfomed on a space station.

The improvements can be broadly divided into the
following categories:

(a)	 improved ability to do precise tasks,
(b)	 imp roved operator control aimed at reducing

onerator effort and/or work load,
(c)	 increased	 reach and articulation.

The	 items	 that	 can beconsidered'are'aiscussed
below.	 The needs and priorities of	 the RMS
application would determine which of these items
should be considered for a s pace station.

3.1	 Force/Moment Sensing and Feedback

The present RMS has no provision for sensi.nq the
force and moments at the end effector/payload
interface, although the maximum level of the
forces/moments can be adjusted by setting the
motor current limits in the joints at the required
values. Knowledge of forces and moments at the
arm ti p may be very helpful to the operator in
oerforminq certain tasks. A force/moment sensor
can be mounted between the wrist roll joint and
the end effector. Feedback can be provided to the
operator as a display or as tactile feedback
through the hand controllers. As a further step,
automatic force/moment limitinq can be achieved by
providin g the feedback to the servo control
system.

3-1
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I
	3.2	 Force/Moment Accommodation

The concept of force accommodation is basically a
software enhancement once the force/moment sensing
and feedback are in place. The operator would
enter, or call up, a "force/moment accommodation
matrix" describing the task that he wishes to
perform. The manipulator would then perform the
task usinq the loadinq and kinematic constraints
resultinq from the accommodation matrix. Examples
of tasks where such an approach would be useful
are:

(a) insertinq a peg into a hole,
(b) turning a threaded object,
(c) prying objects apart,
(d) attaching objects without collision or

excessive loads.

	

3.3	 Visual Proximity Sensing

The shuttle RMS provides CCTV views from wrist
camera (and optional elbow camera) to the operator
who can use these views to judge relative
distance,	 orientation and rates, between the arm
tip (end effector) and the payload that he/she is
trying to ca pture.	 A real-time photogrammetric
sy stem (RPS)	 can use the TV view to determine
precisely the distance,	 orientation and rates
between the end effector and a ngyloard. 	 Such a
system has been developed by the National Research
Council of Canada	 (NRCC) and Leigh Instruments in
Canada and has been demonstrated at the
Mani pulator Development Facility (MDF) at NASA-
JSC.	 The system uses a target pattern on a
payload	 (four dots,	 for example) and the variation
of the target pattern as seen through the TV
camera, to compute the position, 	 orientation and
rate information,	 using a micropro=essor. 	 This

"SPAR PROPRIETARY INFORMATION" (DELETED)
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information can be used in oven-loon (manual
augmented mode) or closed-loot) (automatic mode) to
Position the manipulator (and/or the payload)
more precisely than is possible in the present
design.

g	 The Leiqh/NRCC photogrammetric system could also

Vj	 be incorporated into the SRMS control system to
enable the arm to automatically track a free-
flying payload after it has been acquired in the

¢	 wrist CCTV camera's field of view. Once legal
3	 capture conditions are achieved, the operator

would execute final graop linq through manual
control. Such a system would be useful in
capturing payloads with high relative rates.

A similar system on the orbiter could also be used
for berthinq payloads or berthinq orbiter to a
space station.

3.4	 Stand-Alone Computer System

The SRMS uses	 the shuttle GPC as a computing
resource and as a repository of SRMS software.	 A
stand-alone computer system for the RMS would
eliminate this dependence on the GPC allowing the
RMS to be located as a se parate system on a space
station.	 Advantaqe may also be taken of the
advances in VLSI technology in designing the new
computer system which would be able to provide
additional computing resources needed by other
features such as force/moment sensing and
feedback,	 force accommodation, photogrammetric
sensing, more degrees of freedom,	 and collision
avoidance.

3.5	 Col lision Avoidance Suftware

Limited computer resources precluded inclusion of
collision avoidance function in the SRMS software
to have the capability of predicting potential
collisions between the arm, payload, orbiter and
its contents.	 The collision avoidance capability

r'"
	 "SPAR -PROPRIETARY INFORMATION' (DELETED)
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can be considered for applications in Space
Stations where routine RMS o perations may be
automated to a high degree and VLSI technology
would make considerable computiny resources
readily available. The computer memory require-
ment would depend on the S pace Station configura-
tion and the resolution to which its features are
described. For the huttle orbiter, collision
avoidance software wis estimated to require about
14K, 32-bit words. 	 I

3.6	 End-of-Arm Tools

The RMS can be used for performing functions such
as activation of latches and mechanisms, attach-
ment and detachment of modules, connection and
disconnection of umbilicals, and holdinq objects
to support space construction tasks, if suitable
tools are designed for operation at the end of the
arm.

An active tool
concept, called the Universal Service Tool System
for satellite servicing has also been developed by
Spar, and is shown in Figure 3-7 and Figure 3-8.
The tools could havo force/moment sensing and
feedback features discussed earlie.-. 	 I

I
M
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3.7	 Voice Activated Controls and Displays

The technology of direct voice communication to
and from a computer is becoming increasingly
sophisticated. Voice interface systems for
caution/warning, data entry, information retrieval

a	 and system control are being developed for
aircraft cockpits. Such a system can also be
considered for RMS to reduce workload for the
operator and to enable him/her to exercise more
control authority over the RMS without lettinq qo

r	 of the hand controllers. A voice activated system
could be considered for the following functions:

(a) selection of the operating mde of the RMS,
(b) selection of display parameters (joint,

angles, rates, etc.),
(c) some of the end effector operations,
(d) caution and warning, and to "read" the

display parameters to the operator.

The hand controllers are not likely to be replaced
since they are used to provide continuous and
rap idly changinq commands. In puts of these
commands verbally would be too slow and probably
tiring for the operator.

The additional hardware needed to implement voice
interfaces could be incor porated into the display
and controls assembly leaving the rest of the
system architecture unchanged. Reliability and
desiqn studies would have to he done for
implementing the system. One approach would be to
keep the present functions and switches on the D&C
panel and design a voice interface system as an
add-on module.

	

3.8	 Control from a Payload Station (MRWS)

®	 In some potential applications of the RMS, a
manned remote work station (MRWS) such as the open
cherry picker, is envisaqed. Such a work station
would be. an RMS payload. A dis play and control
Panel can be provided in the work station to
operate the arm. This would be in addition to the
main control panel in the RMS crew cabin.

3-5
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This capability could be provided by interposinq a
"control station selector" between the MCIU and
the main D&C panel. The selector would perform
the function of switching communication to and
from the MCIU and different control stations.

The capability to operate the direct
drive and back-up modes of the arm would be
available only at the main D&C panel (the commands
for these modes by-pass the GPC and MCIU).

The D&C panel in the MRWS could be similar to the
main D&C panel without the followinq switches and
control.:

(a) back-up control, payload release and direct
drive switches,

(b) the end effector o peratinq switches and
controls,

(c) shoulder brace release switches (the shoulder
brace may not be needed for the RMS for a
sp ace station).

Some additional switches to power-uo the D&C nanel
in MRWS would have to be provided. Similarly,
some additional switches to transfer control to
the MRWS D&C panel would have to be provided on
the main RMS D&C panel.

In addition to the D&C panel, the MRWS would also
have a set of hand controllers to "fly" the ti p of
the RMS.

Since MRWS is a payload, electrical power can be
transferred to it from the payload electrical
connector at the end effector. A power
conditioner at the MRWS would condition and
distribute this power to the arm D&C panel and
ether elements of the MRWS. Communication between
the MCIU and the MRWS-D&C panel could either be
over the available payload signal lines, or over a
separate set of wires/cables to be attached
outside the arm structure. Communication would be

"SPAR PROPRIETARY INFORMATION" (DELETED)
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via two serial data links consisting of two
twisted pair wires. Typ ical EIA RS-232C interface
can be used. The additional wires could be
incorporated in the present connector with small
design changes in the linkage mechanisms to engage
the connector.

The above aooroach may also be ado p ted in
developing a portable D&C panel for the RMS, or to
establish control stations at different locations
in a space station.

3.9	 Increased Reach and Articulation

To position and orient an object in three
dimensional physical space, six degrees of freedom
are necessary but not always sufficient. The
shuttle RMS, with six degrees of freedom, has some
singular configurations where one or more degrees
of freedom are lost. The software manages
singularities when they are encountered. when one
or more joints encounter their travel-limits, the
SRMS cannot be manoeuvered along the required
trajectory.

These problems can be alleviated by providing
additional joints. For example, addition of an
upper arm roll joint and a lower arm roll joint
would reduce the effects of singularities and
reduce loss of desired trajectory due to joint

£ travei-limits.
u

Additional degrees of freedom would, however,
complicate thecontrol algorithms and changes in
software would be required.

It is also possible to readily develop derivatives
of shuttle RMS using the SRMS hardware.	 An

7 example is a three or four degree of freedom
3 ^. manipulator such as the Handling 6 Positioning Aid

r
(HPA)	 being considered by NASA for the Orbiter

t^ (Figure 3-10 and Figure 3-11). 	 A longer	 (or
shorter) manipulator, with six degrees of freedom,
could be developed by increasing	 (or decreasing)

kt
^i
a

3-7



0--%r

p
Fp ^O'
ji

3-8

4/mc1703/22	
SPAR-R.1145
ISSUE A

the lengths of the arm booms. A 100 ft. long
manipulator of this type, for instance, would
weigh about 1200 lbs. and have a stiffness of
about 1.5 lb. per inch minimum at the tip. Reach
of the shuttle RMS can also be increased, for
tasks such as inspecting or positionin q a work
station, by using a deployable Astromast at the
end of the arm. A stowed Astromast, with a work
station and/or inspection equi pment attached to
it, can be picked up and maroeaivered as a
payload. At a desired position, the Astromast can
be extended thereby extending the work station
and/or the inspection equipment. A concept for
such a system has been developed by S par and was
considered by NASA for orbiter inspection tasks
such as the inspection of the orhit thermal system
tiles (ITRS). This system involved an Astromast
with 70 ft. extension, with the total package
(Astromast and work station) weiqht of about
450 lbs. and a stiffness of about 0.5 lb. per inch
at the tip of the deployed Astromast. The concept
is shown in Figure 3-12.
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4.0	 SPACE - MAINTAINABILITY CONSIDERATIONS FOR RMS

` The Shuttle Remote Manipulator System hardware is
divided	 into Line Replaceable Units	 (LRU's)	 and
Shop Rep laceable Units	 (SRU's).	 The LRU's are
hardware assemblies that can be removed from, and
replaced on,	 the orbiter during ground turnaround
operations.	 The SRU's are lower level assemblies
that are to be removed from,	 and replaced on,	 an
LRU in a controlled environment integration area
("shop ").	 Fiqure 4-1 identifies	 the LRU's	 in	 the
RMS and the SRU's	 theof	 mechanical arm assembly.

Five of the LRU's grouped together to form the
mani pulator arm,	 are:

(a)	 mechanical arm assembly consisting of the six
a joints and structural elements connecting

then,

y (b)	 standard end	 effector,

E (c)	 arm thermal protection system consisting of
multi-layer insulation blankets externally
applied to the arm and to the standard end
effector,

z
{ (d)	 the wrist CCTV and viewinq light subassembly

which consists of the following SRU's:

i)

i•ii
iv)

(e)	 the

CCTV camera and monochrome lens
assembly,
viewing light and cables,
RMS to camera cable assembly,
camera/liqht mountinq bracket.

elbow CCTV subassembly.

The remaining four LRU's, housed in the aft crew
station in the orbiter, are:

I^	 (a) Manipulator Controller Interface Unit (MCIU),
j	 (b) Display and Controls (D&C) panel,

(c) Translational Hand Controller (THC),
(d) Rotational Hand Controller (R8C).
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The present categorization of hardware could be
maintained for an RMS for the Space Station. The
manipulator arm LRU's would be handled by EVA.
Two or more astronauts may be needed to remove or	 i
install LRU's with ap propriate handling aids,
tethers and tools. Some of the interfaces may
have to be redesigned to enable mechanical
connections (bolts, clamps, etc.) and electrical
connections to be make quickly by an astronaut in
a space suit with suitable tools. At the SRMS-
orbiter interface (Shoulder to MPM), the
mechanical attachment is with 16, 0.25" bolts and
washers and two dowel pins, located on the
periphery of a rectangular interface
7.2" x 8.86". The electrical connections are
through 9 plug-in connectors located over a
rectangular interface 7" x 8" (approximate).

The LRU's could be brought into an enclosed,
pressurized service bay in the Space Station to
act as a work-area where LRU's could be serviced
and SRU's replaced. Some design changes may again
be required to modify physical interfaces for
zero-g assembly and disassemhly with appropriate
tools and handling aids. Clearly, handling aids,
tools and test and integration equi pment for
zero-g in-orbit servicing would have to be
developed.

In-orbit fault detection and isolation procedures 	 e
would also have to be developed to support the	

idmaintenance activities. Some built-in test
capability to detect and report failures in the
p rime operating channel and to isolate faults to
the LRU level has been designed into the shuttle
RMS. A detailed review of this, along with the
development of tests to isolate faults to the SRU
level (or Lower), would be necessary to support an
on-orbit maintenance plan. Trade-off's involving
on-orbit servicing versus ground servicing also
would have to be carried out.

4-2
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The shuttle RMS has been designed to provide a
minimum operating life of 100 mission cycles. 	 One
mission cycle	 is defined as a launch,	 five
operations of the RMS (from deployed position,
through release or retrieval operation of a
payload and return to the original deployed
position),	 re-entry into the earth atmos phere, and
landing.	 The operating scenarios on a space
station would be different from those on the
shuttle orbiter.	 An "operating life model" of the
RMS would have to be developed to track the
"remaining life" of components as the RMS
operations progress,	 in order to identify the
Planned maintenance periods of the system.

I
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5.0	 MANIPULAThR DEVELOPMENT ISSUES: 	 SIMULATION AND
ANALYSIS

The shuttle AMS is a complex man-machine system
involving non-linear dynamics and control,
interaction between structural flexibility and
control system,	 and is designed for man-in-the-
loop operation in space. 	 The process of design

s and development	 involved extensive analysis and
4 simulation activities 	 to:

4
a (a)	 Support decision makinq in selecting design
t options at system, subsystem and component

level.

(b) Verify the performance of design
configurations.

(c) Develop high-fidelity simulations of the
system to be used for determining .system
behaviour under different conditions, and for
training ooeratbrs of the system.

The analyses and simulations included:

(a) mathematical models of the arm structure and
joints to study their stiffness and dynamics,

(b) mathematical models of the joints and their
Gervo control systems,

(c) simulations of a sinqle joint arm,

(d) high fidelity non-real time simulation of the
system (ASAD),

(e) real-time simulation facility with man-in-
the-loop	 (SIMFAC).

The shuttle RMS has now become operational and the
two
are

simulations of the system, ASAD and SIMFAC,
available at S par to develop and verify

different operational procedures for the system.
These simulations are described below.

i

iy. _
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5.1	 ASAD

The non-real-time digital simulation, called ASAD,
is a computer pro gram which uses operator control
inputs and commands, and produces detailed dynamic
outputs of the system includin g trajectories of
the arm, position rate and acceleration of the
joints and the , arm, and loads in the arm structure
and joints. The program is modular in design, the
princi pal modules beinq the SRMS control
algorithms, joint gearbox and servo, arm dynamics
(flexibility) and Orbiter Attitude Control System
(ACS). Portions of RMS o perational scenarios, for
example, the tasks of payload capture, berthing
and release, can be studied in detail by using
hand controller in puts during these tasks and
system initial conditions, as obtained from a
real-time simulation such as SIMFAC.

ASAD runs on a CDC computer system - CDC.6600 -
and operates typically at 30 times real time. It
is the most versatile detailed and accurate model
of the shuttle RMS system currently available. It
is the master simulation validated by flight test
results which is used for validation of other
simulations of the RMS.

	

5.2	 SIMFAC

The real-time simulation facility, SIMFAC,
provides realistic man-in-the-loop operation of
the RMS in a flight-like crew station patterned
after the orbiter aft flight deck. SIMFAC has the
following four major subsystems, as shown in
Figure 5-1.

(a) simulation subsystem,
(b) scene generation subsystem,
(c) operator complex,
(d) master control complex.

The simulation subsystem (Figure 5-2) is a self-
contained computer complex for manipulator
mathematical models, control algorithms, servo
software modules and data update to the scene

q.
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generation subsystem. The simulation subsystem
complex has two TI-980B minicomputers, each with
an associated floating point processor, used in
master-slave configuration. The com puters are
augmented by an array processor in which the
matrix calculations are performed.

Software in the simulation subsystem is divided
into three categories.

(a) ooerating system software,

(b) appl i cations software, including the orbiter
model and the RMS model. The orbiter model
includes mass properties and rotational
dynamics. A number of payload model options
have been configured including the maximum
envelope payload. The RMS model includes its
mass and stiffness distribution, non-linear
dynamics equations includinq the,first six
modes of am vibration, servo control systems
of the six joints, and control alqorithms.

(c)	 service software,	 to process all display and
control inputs and outputs.	 It also
communicates with the applications software
via a data base.

The scene generation subsystem, 	 shown in
Figure 5-3,	 is a three computer complex augmented
by an array processor, which receives undated data
from the simulation subsystem, and produces the
four visual images presented to the operator. 	 Two
identical IDIIOM gra phics generators are employed,
each generating two of the images.	 One produces
direct (window view)	 images and the other produces
CCTV images.	 The graphics systems are vector
type.	 Up to 2,000 vectors per graphics system can
oe generated, of which 1,300 are dynamic.

The operator complex is an enclosed flight-like
( crew station includinq the man-machine interface,

i.e.

lr
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(a)	 display and controls panel,
(b)	 hand controllers,
(c)	 CRT monitors and keyboard,
(d)	 CCTV camera controls,
(e)	 four TV monitors providing window and CCTV

views.

The direct view perspective is adjusted to a Y
specified viewpoint in the operator com p lex and a
lens system effectively places the images at
infinity,	 thereby creating the illusion of depth
to the operator.

The Master Control Complex includes work stations
for the Test Conductor and Systems Engineer. It
provides full interactive control and monitorinq
of tests and communication with the operator
complex. Tasks may be frozen and restarted, or,
if desired, re-initialized. The test conductor
can monitor engineerinq data in a CRT -flisplay
system with a hard cony of the display, if
desired. Simulation malfunctions may be inserted
and/or cleared by the test conductor.

5.3	 Simulations and Analysis for Soace Stati on
Manipulators

Simulation and analysis would be needed for
development of maninulators for a s pace station in
the following phases:

(a) Requirements Definition

Analysis and simulation could be used to
support s pace station manipulator oncrations
analysis and manipulator tasks. SIMFAC and
ASAD, with app ropriate changes, could be used
to study shuttle RMS type manipulators and
their operations for antici pated tasks. Such
activities would lead to definition of
requirements for s p ace station manipulators.

5-4
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(b)

i

(c)

Design and Develonment

The analysisand simulation effort needed
would depend of the mani pulator concept
selected to meet the requirements. It may be
possible to use ASAD and SIMFAC with small
modifications, or new simulations may be
developed based on the exner.ience any
expertise gained in the shuttle MIS
simulations.

Verification and Training

The role of simulations to verify operational
scenarios and to train the operators would be
similar to those for the shuttle. Some
training may be conducted in orbit on the
space station.

I
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6.0	 RMS TRACK AND BASE ASSEMBLY CONCEPT FOR A SPACE
STATION

Boeing Space Station concepts at p resent have a
shuttle RMS type manipulator(s) mounted on a
linear track. This increases the operating
envelope of the manipulator. Payload handling
operations would involve translation of the RMS,
carrying a payload, along the tracks.

Such a system would require a track system, a
drive system and an interface structure between
the RMS and the track/drive assembly. The main
functional requirements for the system would be:

(a) Provide a stiff structural system between the
RMS base and the space station structure.
The stiffness should be at least as high as
that provided by the orbiter Manipulator
Positioning Mechanism (MPM)	 for the shuttle
RMS.	 The stiffness requirement may be higher
if	 the manipulator is lonqer	 chan the SRMS
manipulator.

(b)	 The track system should have no backlash.
Backlash would appear as a "deadband" at the
arm tip and would degrade the operator's
ability to nosition payloads precisely.

(c)	 The track system should provide a low
stiction/friction ratio system i.e.
variations	 in friction over the s peed range
of operation,	 including start from zero
sp eed,	 should be small.	 Variations	 in
friction level cause degradation in
positioning capability and tend to produce
"jittery"	 motion.

(d)	 Thermal distortions of the track system
should be minimized since they would produce
large friction forces, as well as cause
positi,oninq errors at the mani pulator tip.

6-1
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(e) The track, base structure and the drive
should be designed for repeated applications
of mechanical loads. Thus, fatigue, fracture
and wear should be considered in the design
to Provide adequate operational life for the
system.

(f) The base assembly should also have adequate
provisions for handling the electrical wiring
harness, and to manage the length of wire
bundles as the system moves along the
tracks. A mechanism to feed and retract the
wires as the RMS is translated along the
track, would be needed.

(g) Some requirements would have to be developed
for on -orbit integration of the system, as
the space station concepts mature and
approaches to on -orbit integration are
evaluated.

I
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.0	 CONCLUSIONS AND RECOMMENDATIONS

Capabilities and potential improvements in the
SRMS have been discussed in this report. It
appears that requirements for a large manipulator
on a space station could be met by either an
advanced SRMS (with appropriate end effectors and
tools) or a derivative of the SRMS design.
Analysis of remote handling operations on a space
station should be performed in conjunction with
potential manipulator confiqurations (length,
degrees of freedom, tip force capability, etc.) to
optimize the remote handling system and its
relationship with the space station physical
architecture. This analysis activity would
benefit from support of real--time simulation
(SIVAC) and non-real-time simulation (ASAD)
developed for SRMS and available at Spar. The
remote handling system studies should also
consider the issue of on-orbit maintenance and
repair of manipulators and assess the impact of
various approaches and trade-offs for on-orbit
servicing on the design of manipulators. The
shuttle RMS has not been designed for on-orbit
servicing.

I
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SCHEDULE A

STATEMENT OF WORK

p	
INTRODUCTION

A	 This Statement of Work covers technical interchange between
Spar and BAC for the Space Station Needs, Attributes, and
Architectural Options Study for NASA. The planned study
will emphasize mission analysis to establish mission needs,
with second emphasis on system architecture, and third on
cost and programmatic-s,

Spar will assist BAC in assessing remote handling aspects of
the space station architecture work with a level-of-effort
zonsistent with two man-weeks time available.

TECHNICAL INTERCHANGE TASKS

Task 1 - Manipulation Configuration Concepts - Review BAC's
mission operations, handling equipment. concepts, and space
station architectural options and recommend improved and/or
alternative remote handling equipment. concepts. These
concepts would include configuration sketches and top-level
descriptive information, e.g., reach envelop, payload mass
rating, control station location, etc,

t Task 2 - Control Station Concepts - (a) Report on current
s RMS performance characteristics and system evolution;	 (b)

discuss issues related to controls and displays located at
end of manipulator,	 i.e., manned remote work station;	 (c)

r discuss potential application of voice-actuated control

r technology.

Task 3 - Manipulator Development Issues - 	 (a) Discuss
-	 manipulator development software requirements, e.g., primary

issues, development lead time, magnitude of the code, etc.,
(b)	 Discuss manipulator simulator hardware and facilities

i ` development issues,	 lead time, etc.

"isk 4 - RMS Improvements - Describe RMS improvement
',,• potential, e.g., control/display interfaces, degrees of

freedom, end effectors, etc.
`+S
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I	 Dormer System.

1.	 INTRODUCTION

Dornier looks back on 13 years of experience in the develop-

ment and manufacture of stabilized gimbal systems, starting

with balloon borne telescope pointing systems and maritime

antenna stabilization systems. In the space field the follow-

ing gimbal systems have been developed by Dornier:

- the Instrument Pointing Subsystem (IPS)

0
,m	 - the two axes antenna pointing mechanisms for the German.

MRSE and MRSE-MAS

- the Position. and Hold Mount (PHN,) covering phase A, B

and demonstration model

- the Antenna Pointing Mechanism (APM).

A detailed system description for IPS, PHM and APM is given in

section 2. The Space Station relevant payloads are summarized

in section 3. The Space Station accommodation aspects are hand-

led in section 4.
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2.	 POINTING SYSTEM DESCRIPTION

2.1	 Instrument Pbintinq Subsystem

2.1.1	 General

Starting in 1976 DORNIER SYSTEM has been developing ana manu-

facturing the Instrument Pointing Subsystem (IPS) under con-

tract of the European Space Agency (ESA). In the years 1979/

1980 the IPS has successfully passed an extensive qualifica-

tion programme.

Due to numerous engineering changes concerning Spacelab and

Orbiter interfaces the manufacturing programme for the flight

unit had to be interrupted to allow for a redesi gn of critical

components. The whole programme of manufacturing and requalifi-

cation of the IPS flight unit will be completed by end of 1983.

The first mission of IPS is scheduled to take place in October

1984.

raw W

2.1.2	 Technical._ Concept

The Instrument Pointing Subsystem ,(IPS) provides precision

3-axes pointing for payloads which require greater pointing

accuracy and stability than is provided by the Orbiter. The

IPS can accommodate a wide range of payload instruments of

different sizes and weight. The overall configuration of IPS

with a payload is shown in Figure 2.1.2-1.
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Fig. 2.1.2-1:	 IPS Configuration on a 2 Pallet Train

The IPS features the following main systems:

- the three axes gimbal system for precision pointing

- the Payload Clamp Assembly (PCA) to support the payload

during ascent and descent

- Attitude Measurement Assembly including optical Sensor

Package and Gyro Package

- the Power Electronics Assembly (PEA)

- the Data Electronics Assembly (DEA)

- 5 -
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For the wide range of various payloads different IPS configu-

rations can be provided':

- Flexibility is given by potential payload dimensions from

0,5 m to 3 m diameter and up to 2 m distance from Payload

CG to IPS attachment plane

- Payloads up to 3000 kg mass can be accommodated

- Single or double pallet train may be used depending on

payload mass and dimensions

The field of view is conical about the Orbiter z-axis

ant its half-cone angle can be varied from 30 0 to 600

by adjustment of the impact ring position

- Any x position of the centre of rotation (COR) can be

adapted by moving the gimbal system on the gimbal sup-

port structure rails

- The z position of the centre of rotation (COR) can be

adjusted in height from 1,3 m to 2 m by means of a mis-

sion dependent replaceable column

- The payload clamp assembly can adapt the wide range of

pay]oads by replacement of struts

- Nominal payload characteristics as used for IFS design

reference are shown in Table 2.1.2-1

- The IPS electrical and mechanical data and the essential

IPS capabilities for experiment accommodation are summa-

rized in Table 2.1.2-2.
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Mass

Large Payload Small Payload

2000 kg 200 kg

Dimensions 2 m 0 x 4 m I m 0 x 1,50 m

Moment of inertia about payload CO:

about axis perp. to LOS 1460 kgm2 20 kgm2

about LOS axis 1000 kgm 2 25 kgm2

CO offset referred to P/L interface
Dlane:

®	 along LOS (Note 3) 1,63 m 0,50 m

perp. to LOS 0,00 m 0,10 m

characteristic structural frequency
7,5 8z (Note	 2)(Note	 1)

Note 1:	 Lowest bending rode, supported at P/L interface plane

Note 2:	 Considered not tc be critical

Note 3:

	

	 The LOS is the vector through the COR, perpendicular to the P/L
interface plane

Table 2.1.2-1:

	

	 Characteristics of Nominal 2000 kg and 200 kg

Payloads
M 

a

A

e

0

8

The optical sensor package includes the capability to have two

roll sensors at a skewed angle of either 45 degrees or 12 de-

grees with respect to the line of 'sight (LOS) of the centrally

mounted optical sensor. The LOS's of all three optical sensors

are arranged in one plane. Provision is also made for the mount-

ing of a light baffle system, desi gned for specific mission con-

ditions, at the aperture of each optical sensor but structurally

decoupled from the sensor.

- 7 -
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Requirement Value Comments

IPS Total Mass 1174 kg For the SL- 2 configuraticn
'	 Z (1.83 m COR height ) t without

mission dependent PCA struts,
including integrated SL hard-
ware (RAU/IS)

IPS Power Consumption

;^. - Inertial Pointing 500 W Mean Value

® - Full Torque Sliwing 1400 W 30 Nm Torque About 2 Axes

- Emergency Stowage 200 W Short Time Peak Value

F - Thermal Control 350/ 1200 W Cold Case Mean/Peak Power

ILa.
^ Payload Accommodation

- Nominal Mass 2000 kg
F

- Max. PCA Loading Mass 3000 kg With Stiffened Clamping Struts

- Max. P/L Pointing Mass 7000 kg not covered by actual clasping
system

- Diameter 0,5 to 3 m
Y

- Back to CG Offset C,5 to 2 m- 3 m for 7000 kg P/L

e

J
Payload Support Power

- Main Power 1250 W/22 VDC 8 x 6 AWG 20 independently fused
s
k - Essential Power 100 W 4 AWG 20

Payload Date Lines for

- Experiment RAU's 3 Data and Power Busses
x

- High Data Rate 6 6 TSP 125 ohm for 16 Mb/s

- Analog Signals 3 3 TSP	 75 ohm for 4,5 MHz

- Contro l 10 for discrete signals and commands

Table 2.1.1-2:

	

	 IFS Physical Characteristics and Payload

Accommodations

- 8 -
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2.1.2.1
	

Mechanical Concept

The IPS comprises two Major mechanical assemblies:

- the three axes Gimbal Structure A.sembl.y

- the Payload Clamp Assembly (PCA)

®	 2.1.2.1.1 Gimbal System

During operation on orbit the payload is attached to the Gim-

bal System and its three axis attitude and stability control

is perfo;;..ed by torquers applied by the three identical drive

assemblies. Their axes intersect at one point. Each drive unit

employs 4 ball bearing:+, two brushless DC-torquers, and two

single speed/multi speed resolvers for nominal and emergency

operations.

The electronic units of the IPS are mounted on the Equipment

Platform, except the power electronics unit which is mounted

to a cold plate on the Pallet.

During launch and landing the gimbal system and the payload

are separated, so that no additional loads or moments will

be imposed on the payload by the gimbal structure.

^r	 w
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The gimbal support structure, ;rit:;nked at A hardpoints to the

pallet, includes rails with broo kets for positioning the gim-

bal system in x direction. For *,) ­,trr,7pt in x and y direc-

tion the brackets include a scret,.:Aig device.

A replaceable extension column between the Gimbal Support

Structure (GSS) and the jettisoning device at the Gimbal

Structure can adapt the height or tht-^ COR between 1,3 m

®	 to 2 M.

The gimbal system includes a jettison device for use in an

emergency case in which the payload and/or IPS cannot be re-

tracted to a safe landing configuration and overboard jetti-

son is required.

The payload and ;`he integrated gimbal structure will he ir.-

stal].ed separately onto the pallet and then be connected to

each other via three mounting flanges on the PAR. During the

ascent/descent phase the upper gimbal structure is locked in

its adjusted location by the Gimbal Latch Mechanism (GLM).

.fter release of the PCA clamping devices or orbit a mechanism

will move the Payload Attachment Ring with the payload towards

the EPF, and clamp the Payload onto the Gimbal Structure.

In an emergency case a PAR mounted EVA device is dedicated to

separate the P/L, connected to the PAR, from the Gimbal Struc-

ture for individual jettison of either r.irt.

;4
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2.1.2.1.2 Payload Clamp Assembly

Durina ascent and descent, the payload is physically separated

from the Gimbal Structure to avoid any load path. The payload

is supported by the Payload Clam p 'assembly (PCA) which distri-

butes the flight loads of the payload into the pallet hard-

points (Figure 2.1.2.1.2-1). The PCA I.s designed such that the

directions of the loads induced in the payload are predominant-

ly tangential.

'W	The Payload Clamp Assembly consists of

- clamping mechanism, i.e. three clamping units (CU) defin-

ing a triangle in the Yo - Z  plane and an actuator mecha-

nism with re placeable flexible shafts to drive the CU's

- replaceable struts distributin g the loads from each clam-

ping unit to four pallet hardpoints. These struts will be

tailored to each individual mission configuration and thus

determine the size of the triangle mentioned above to ac-

commodate payloads between 0,5 m to 3 m diameter.

non-replaceabl,!- elements distributing the loads from the

replaceable struts to the pallet hardpoints.

- for an emergency case an EVA device is provided to enable

the removal of the keybolts and so release the payload.

3gt^

	

	 The Payload Clamp Assembly is capable of mounting and distri-

buting the load of a 2000 kg payload into a single unmodified

pallet without exceeding safe loading conditions on the basis

of compatible payload dimensions and CG location. However, the

clamping mechanisms and the non-replaceable elements of the

Payload Clamp Assembly are designed for the loads correspond-

M
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ing to a payload mass of 3000 kg with its CG located up to 5 cm

radially displaced in the y-z plane from the centre of a 3 m

diameter circle in the clamps and up to 10 cm displaced in the

X direction from the plane of the clamps. In this case, the

pallet may require local reinforcement in the location of PCA/

pallet attachment points, and the replaceable struts of the PCA

must be designed to the'loars involved.

i	 y

Figure 2.1.2.1.2-1:
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Thermal Concept

During orbital operations the IPS is capable of operating in

the

"cold case", that means in a completely shadowed configu-

ration (worst case) for indefinite time

"hot case", that means in a continuous full sun illumina-

tion (worst case) for a minimum time of 195 minutes when

starting with the status after 9 hours cool-down. The ti-

me period for cooling off after maximum solar exposure -

IPS stowed and units switched off - is 9 hours maximum.

For not as extre."ie environmental conditions, the opera-

tional time of IPS is unlimited or can be enlarged. For

hot cases TCA puts the following constraints on payload

operation:

o The total solar and infrared radiation ener gy which

is absorbed by the OSP radiator may not exceed

1.3 kWh during one hot operational phase. This could

mean a roll angle restriction.

o During non-operation phases, payload and IPS shall

remain attached. The maximum time with sepa,.ated

payload (stowed in PCU) shall not exceed 2 hours

in sun phase (hot case).

For other not as extreme orbital conditions than the specified

design cases of IPS TCA, the restrictions may be reduced or in-

applicable depending upon the results of the mission dependent

thermal analysis.

e
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The TCA consists of the following components:

- Multilayer Insulation (common with Spacelab module)

- Radiators covered with second surface mirror foils

- White paint for not insulated external surfaces

- Black paint and tapes for trimming of radiative heat

transfer

- Interface fillers !or im provement of contact conductance

- Heater mats for heat leak compensation

- Thermistors for heater control and temperature monitoring

- TCA software loaded 'n CDMS for thermistor signal trans-

formation, heater switching, temperature out-oz-limit

control and warning.

The 37 thermistors and the 29 heater loops are conditioned by

the PEU and the DCU via the S/.9-RAU and the IPS-RAG.

The heaters are switched on/off if the temperature is lower/

higher than a pre-selected switching limit.

There are three different thermally relevant operation modes:

a) Operational Mode

The operational/in-calibration limits of all IPS units

are automatically controlled by heater logic HL-A.

b) Stand-by Mode

l,.

,i
fi

y'.s

e

0

R'

The switch-on temperatures of not operated units are au-

tomatically controlled by heater logic HL-B (IPS stowed).

- 15 -
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C)	 Non-Operating Mode

IPS is stowed and • all units switched off. Every 30 minu-

tes all temperatures have to be checked by HL-B. For tem-

peratures colder than the switch-on limits the stand-by

mode must be initiated. If max. operating limits are ex-

ceeded, the orbiter must be turned to a cold attitude.

in order to achieve an optimized cool-down of IPS after a hot

mission phase certain switch-off/on sequences of IPS units are

ti	 to be performed which also provide operational conditions at

the end of the cool down phase.

Ascent Constrains

- Pre-launch temoeratures of IPS shall be not higher than

300C o;hen starting into a long duration worst hot ascent

- IPS main power shall be available at least 1 hour after

opening of cargo bay doors

- After a worst hot ascent, the Orbiter shall not remain
n	 more than 1.5 hours in the worst hot attitude (Z solar

inertial, full sun orbit) after cargo bay door opening.

Descent Constraints

The thermal conditions of IPS components which are to be rea-

lized by pre-descent orbital conditions before a descent is

initiated, shall be evaluated by the mission dependant analy-

sis. However as a minimum the IPS design enables a descent to

be made with initial temperatures (when main power is switched

off one hour before cargo bay door closure):

e0
S
0 L- 16 -
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a) which are higher than those occuring a:Lu;. being 1.5 hours

in the hot case transient (hot descent)

b) which are below those occuring after being 2 hours in the

cool down period (cold descent).

An emergency descent can be initiated with steady state cold

case and end of hot case transient temperatures without caus-

ing a failure which would lead to loss of personnel or damage

of Spacelab or Orbiter.

If the temperatures of the pallets and the Orbiter radiators

are in the range of -200C to +500C at cargo bay door closure,

no temperature problems exist for IPS components.

2.1.2.3	 Electrical Concept

The IPS electrical concept is determined by the extensive in-

terface to the SL Command and Data Management Subsystem (COMS)

and to the Electrical Power Distribution Subsystem (EPDS). A

blockdiagram of the IPS and its interfaces to SL is shown in

Figure 2.1.2.3-1.

Clearly indicated are the main IP$ electronic systems:

- the Power Electronic Unit (PEU) connected to the EPDS and

- the Data Control Unit (DCU) connected to the CDMS.

e
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2.1.2.3.1 IPS Power Electronic Unit

The IPS Power Electronic Unit (PEU) receives its primary power

from the Spacelab Electrical Power and Distribution Subsystem

(EPDS) by the following DC busses:

- Main DC Power from the Spacelab Electrical Power Distri-

bution Box (EPDS) by three independent busses:

o DC1 Power Bus for IPS experiments

o DC2 Power Bus for IPS and RAU's

o DC3 Power Bus for heaters, RAU's and IPS OSP

- Auxiliary Power for contingency operation of IPS (retrac--

tion of IPS payload or activation of jettison);

• Auxiliary Power Bus A

• Auxiliary Power Bus B

- Experiment Essential Power

from Spacelab Emergency Bos as a Power source for experi-

ments redundant to the experiment main power bus DC1.
W 0

The PEU provides the distribution and fusing of Spacelab Power

to the IPS electrical and electronic equipment, to the IPS or

payload mounted Spacelab equipment (RAU's) and to the IPS pay-

load.

.r

	 Functionally the PEU is accomplishing the following tasks (see

Electrical Blockdiagram, Fig. 2.1.2.3-1):

Unregulated DC main or essential power will be supplied to IPS

experiments, unregulated main power to RAU's, Optical Sensor

g	

Package (OSP), Gyro Package (GP), IPS Data Control Unit (DCU)

4

- 19 -
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Regulated DC power will be supplied to Accelerometer Package

(ACP) and Jettison.

If

DC power at limited voltage and current at both polarities

will be supplied to the actuator motors.

Controlled power will be supplied to torque motors and heater

mats.

In the nominal operation mode the PEU receives control signals

from the DCU to operate the torque motors.

For contingency operation of IPS during loss of main power or

during nonoperation of CDMS the retraction of the IPS payload

will be initiated by the IPS Contingency Control Panel (CCP)

which is mounted in the Orbiter Aft Flight Deck. In this case

the retraction circuitry for the torque motors is powered by

the Spacelab Au yiliary Bus and controlled by the FEU inte=nal

"stowage loop".

In case that a safe landing of the Orbiter may be prevented

.,^

	

	 by any failure of IPS, its separation from the orbiter is

feasible from a separate section of the CCP, after the jet-

tison function is enabled by a switch on the IMCP-R7 panel

in the Orbiter Aft Flight Deck.

During deployment

or the IPS CCP is
.r
m

Furthermore the P

ter mat switching

of the thermistor

or retraction the PEU, controlled by the CDMS

driving the IPS mechanisms PCM, GLM and PGSM.

3U is supporting the thermal control by hea-

initiated from the CDMS or by conditioning

signals.

`	 The power data given in Table 2.1.2.3-2 apply for the diffe-

rent power buses available at the S/L interface.

- 20 -
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Power Available at

	

•	 S/L Interface

	

Spacelab Power Bus IPS Power Consumer Voltage Range	 Mean	 Peak
[Volts]	 [watt.]	 [watt]

0

Main DC Power

- DC1 Power Bus IPS Experiments - 1440	 (1)
24,0 - 32	 (1)	 - 1410	 (2)

- DC2 Power Bus IPS Electronics
23,5 - 32	 (2)	 500 1400 

IPS Heater.
IPS RAU

- DC3 Power Bus EXP RAU's 350 1200

Experiment Essen-
IPS Experiment 21,5	 - 32	 - 100

tial Power

Auxiliary Power Jettison s IPS 24,7 - 32	 - (3)
Set 1 Electronics

Note:

(1) IPS on pallet 1 through 3

(2) IPS on pallet 4 and 5

(3) 8 AMPS MAX continuous, after Spacelab and payload
have been configured to the low power mode

Table 2.1.2.3-2:	 IPS Power Budget
0
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2.1.2.3.2 IPS Data Control Unit

The IPS interface to tie Spacelab CDMS is provided by the IPS

Data Control Unit (DCU). The DCU is interfacing with the Space-

lab Subsystem Computer (SSC) p ia the IPS RAU and corresponds

with the Spacelab Experiment Computer (EXC) via the payload

mounted EXP RAU1. This DCU serial data link provides the data

exchange capability between the IPS experiments and IPS. The

DCU controls the IPS data and command flow and processes the

fast loop portion of the IPS pointing control loop by means
of a minicomputer.

Controlled by the CDMS the DCU provides thermal control of IPS.

a
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Software Concept

IFS software utilizes two processing units:
a

the Spacelab Subsystem Computer (SSC) and

the DCU "mini-processor"

The overall control of the IPS is exercised from the R', Data

Diaplay System (DDS) and subsystem computer via IPS applica-

tion software except for the emergency stowa ge and jettison

a.	 functions. The latter functions are commanded from the IPS

contingency control panel (CCP) in the Orbiter Aft Flight

Deck (AFD) and require no software.

Stability control of the payload in all 3 axes is processed

within the IPS mini-+}rocessoz "Data Control Unit" (DCU), ba-

sed on error signals of race integrating gyros (feedback-con-

trol) and an Accelerometer Package (feed£orward- control) .

The processing of pointing commands is performed in the SSC

and the resulting desired attitudes and rates are inputs to

ra	 the DCU.

Drift and attitude correction by means of real star/sun mea-

surements with the aid of the optical sensor package contain-

ing 3 fixed head star/sun tracker's is processed in the subsys-

tem computer of the SL CDMS.

Furthermore it is possible to accept either attitude offset

commands or replace the function of the boresighted star/sun

tracker by an experiment sensor error signal via the SL expe-

riment computer to the IPS DCU. However, the control (crew

I/F) of these EXC functions is performed via the SSC.

e
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FIG. 2.1.2.4-1: IPS CONTROL LOOP BLOCK DIAGRAM
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All these input data are processed in the DCU to give three

control signals (one for each gimbal axis) and are sent to

the Power Electronic Unit (PEU) which drives the DC torquers

in the three gimbal axes.

the partitioning betwoen SSC and DCU software is shown in the

blockdiagram of Fig. 2.1.2.4-1.

The IPS related Sw can be divided into two major components:

- Fast Loop SW

residing in the DCU and performing the basic calculation

of the inner control loop of the IPS for inertial point-

ing.

- Slow Loop SW

residing mainly in the SSC except for the experime-m-ge-

nerated sensor data (replacing OSP BS data) and offset

commands, which are ir_)ut from the Experiment Computer

(EXC).

The Slow Loop SW generates all mode option dependent desired

and/or corrective attitude data as input to the Fast Loop SW

in the DCU.

Fig. 2.1.2.4-2 shows an overview of the IPS SW environment and

the data interfaces.

In the scope of this paper the right branch of Fig. 2,1.2.4-2,

i.e., the SSC SW-DCU control loop is of main interest.

The EXC slow loop interfa ce with the DCU is controlled via the

SSC by enabling the EXC control cmd inputs in the DCU. For the

e operational functions which employ this interface (EXP CTL and

° - 25 -	 k
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EXp CMD) it is assumed, that by a TBD experiment/E';C operation

the interface is configured correctly and needs only to be en-

abled/disabled via the SSC slow loop. Output data from the DCU

to the EXC are partially enabled by activation of the DCU SW.

DCU Software

The DCU SW is sx-bdivided mainly into two SW packages:

- the DCU Fast. Loop SW

- the DCU Test SW.

The Fast Loop and Test SW run within the DCU data processor

loaded and started by IPS application SW. Only one program

is in tho DCU memory at one time.

./:ii -as - .00,7 Sir

The main task of the DCU is to perform the calculation of the

inner control loop of the IPS, done by the fast loop program.

This program provides the capability of the IPS to keep the
to	 inertial attitude basea on fast sensor information delivered

from gyros (100 Hz) and accelerometers (50 Hz). Additionally

it acquires attitude and drift signals based on 1 Hz optical

sensor information processed within the SSC by the IPS Appli-

cation SW. The DCU then updates every 40 ms its output to the

PEU, which drives the gimbal torquers. The data between the

DCU and the CDMS (i.e. SSC and EXC) are interfaced via the

serial RAU data link.

DCU Test SW

.^"	 The DCU Test SW executes a selftest of the DCU data processor

- 27 -
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SSC IPS AppZicction Software (IPS SW)

The IPS flight SW consists of one functional configuration (FC).

Within the flight FC, the IPS SW comprises different memory

configurations (MCs):

- 1 MC for ACT/DEALT mode,

- 8 MCs for stellar mode,

- 5 MCs for solar mode,

- 1 MC for earth mode.

The structure of all IPS flight MCs is quite similar. Each MC

for flight application contains:

- the always core resident task for 10 Hz ccmmunicaticn

(PCOMM-task) between SSC and DCU

- the always core resident task for temperature control

(TCA), MMU-access and GIMBAL HOLD (PTGGI-task),

„	 - one MODE-task controlling different operational options

(PMXXX-task),

-- one KBD/ITEM-task supporting the operators/IPS SW inter-

face (PINXX-task),

- one OSP-dialogue task (PDXX-task),

e
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- one AMA-task (PAXXX) which supports the attitude deter-

mination (Star Identificat.on, Attitude Determination

Filter)

one SCHEDULE task (PSCXX-task) required to allocate the
9

Interrupt Levels and to start all tasks of a MC.

11'u allow for required operations, each task comprises up ^o 6

ii ,Lvrnal programs, each supporting a special function.

y'lius each MC supports a dedicated operational function identi-

rial+le from the respective acronym as follows:

MC Name	 Operational Function/Mode

ACD2;,C Activation/D=;ctioation mode

S:.=vST S:.EWing in STellar mode

I DINST Star IDentif ication/INitial in STellar mode

• OSPCST OSP Calibration in STellar mode

IDOPST Star IDentification/OPerational in _""ellar mode

OHSCST Optical Hold plus SCan in STellar mode

a OHITST Optical Hold plus MPc in STellar mode

y -CMPST SCan plus MPc in STellar mode

OHOAST Optical Hold plus CAms in STellar mode

e SL=WSO SLEWing in Solar moteT
IDINSO star sun IDentification/INitial do Solar mode

OHSCSO Optical Hold plus SCan in Solar made

OHAIPSO Optical Hold plus MPc in Solar mode

SC•IPSO Scan plus "c in Solar mode

SCMPEA SCan plus MPc in EArth mode

- 29 -s
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DispZay Processing Concept

All data necessary to operate IPS during flight are provided

on fixed format displays (FFDS).

The IPS FFDS basically utilize the SCOS display services.

The respective FFD is only operative as long as the associa-

ted MC is loaded.

Command Processing Concept

IPS utilizes the SCOS capability for keyboard inputs and re-

lated SCOS command processing to issue individual commands

for IPS operations.

By uplink commands to the IPS via the Orbiter (MDM uplink),

the around has the same functional capability to control IPS

that the crew has in using the keyboard.

The IPS SW is designed such that "parallel" operator inputs

a	 are accepted by SW. Every task which has to receive commands

for IPS applications SW sets a request in the first run after

having been started. Therefore, the IPS application SW accepts

any command delivered by SCOS from the KBD (Item-, FK entry),

the ground via MDM or the EXC via the DCU for execution at any

point in time on the basis of a 1 Hz repetition cycle with the

assumption that no 2 command inputs from the same source occur

less than 1 second apart.

e
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2.1.2.5	 Operations Concept

-	 Operational Mode Diagram

The IPS operational mode diagram in Fig. 2.1.2.5-1 gives a sche-

matical overview, how the various IPS operations are functional-

ly processed.

Two generic processing blocks

®	 - Desired Attitude Processing

- AMA Processing (Attitude Measurement Assembly)

provide the inputs to the IPS dynamics which allow to perform

the required pointing modes with the required accuracy.

The desired attitude processing allows to select, acq_ire and

hold desired attitude (including of--sets), which are defined

in stellar, solar or earth coordinate systems or relative to

the Orbiter.

Q	 without AMA processing, the desired attitude acquisition and

-hold is based on IPS gyro data only (with static, stored

drift updates).

The AMA processing serves to increase the pointing accuracy by

experiment dependent static calibration and/or dynamic attitu-

de updates based on attitude data from the OSP or from experi-

ment sensors (including CAMS).
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OroundruZes for IPS On-Orbit Operations

IPS will be inactive during the ascent/descent

o No normal or contingency IPS operations will be per-

formed during these phases

- The IPS on-orbit activities are performed in the on-orbit

period between end of SL activation and start of SL deac-

tivation.

d	 - During this phase IPS is in one of the three states:

• inactive

• operated in a normal mode

• operated in a contingency mode

All flight operations to achieve and maintain the three

states will be covered by related IPS sequences.

All normal IPS operations are performed from an SL DDS,

employing ITEM-commands and feedbacks on dedicated IPS

FFDs in the SSC. Unlike the basic Spacelab, which is '

a

	

	 primarily operated via the Orbiter GPC CRT and Keyboard,

the GPC is not involved in IPS operations.

- Although the ground (MCC/POCC) has the same command ca-

pability as the crew has on board, the ground control of

IPS will be procedurally restricted to objective loads

and modifications as well as start and stop of experiment

dedicated IPS operations (scan, exp. command and exp. con-

trol) for solar and stellar missions. Activation/deactiva-

tion as well as earth pointing will always be performed by

the crew.

.• eRw
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=:B Operational Functions

Definition:

An operational function is an IPS operation or operational mo-

de, which - success oriented - i,,; always performed or establi-

shed and maintained as an operational entity.

In general, an operational function is initiated and termina-

ted procedurally by the IPS operator.

'	 The operational functions are grouped into the five categories:

- Set-up

- Attitude Control

- Acquisition

- Offset Pointing

- Experiment Support

Ta51e 2.1.2.5-1 identifies all IPS operational functions, the

assignment to the functional categories and their applicabiili-

a fg	 ty in the basic modes.

Activeion

During Activation the Orbiter- and SL subsystem resources are

provided, IPS equipment is activated, the IPS and its payload

are attached, unclamped and slewed into the upright position.
A

2: Deactivation

During deactivation the IPS is slewed into the stowed position,

IPS and its payload are separated and clamped and all IPS equip-.• w	 _
vent is deactivated.

0	 - 34
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F3: GimbaZ Hold (GM.RZ Hold)

GMBL Hold commands IPS 'to hold the current gimbal angles rela-

tive to the Orbiter. This is accomplished by use of the Orbiter

state vector (SV), superimposing the rotation of the Orbiter on

top of the IPS inertial hold.

GMBL. Hold is primarily a contingency option, available through-

out any IPS operation when IPS is unstowed. During normal IPS

®	 operations it is employed automatically during mode-transition

..	 phases to exclude uncontrolled motions of IPS.

F4: G:.^baZ AngZe Command (GMBL Ai 3G CMD)

GMBL ANG CMD allows to command IPS gimbal angles relative to

the Orbiter. It can be performed in any basic mode, it is al-

ways performed as large angle manoeuvre, i.e., the slew Ste

must be loaded, upon GMBL ANG CMD IPS acquires the commanded

gimbal angles and holds these based on resolver data. In

Stellar, Solar and Earth mode a plausibility check is per-

formed which sets IPS into GMBL Hold i° the cone limits would

s

	

	 be violated. In the ACDEAC mode this check is omitted to allow

stowage/erection.

F5: Objective Load and/or Modification (OBJ LOAD/MOD)

OBJ LOAD/MOD is an essential precondition for any IPS Stellar,

Solar or Earth pointing. Objective data including optional scan

data are loaded from MMU, modified or restored from SSC core as

desired objective.

The performance is functionally similar for all three basic

pointing modes.

h
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Ff: Attitude Command (ATT C::O)

ATT CMD acquires a desired objective which is defined by a pre-

ceeding OBJ LOAD/MOW operation in the Stellar, Solar, Earth

(Local Vertical) or Earth (Landmark) coordinate system. During

execution of ATT CMD, IPS will be moved until the current atti-

tude equals the desired.

F7: Initial Stellar Identification (ST INIT ID)

After launch or long periods of attitude hold on Gyros only,

ST INIT ID has to be performed to run the strapdown attitude

determination system which realignes the inertial IPS attitu-

de. INIT ID identifi =_s unique bright stars only.

I ni.iaZ Sc"c=r ider—.i'ication (SO IV7= ID)

SO I1'_ :D identifies a solar target (sun ¢ bright start).

After the identification process the strapdown attitude de-

termination is performed which realignes the IPS inertial

attitude.

F9: OperationaZ Star Identification (ST OPNL ID)

The operational star identification is performed in stellar

mode only using a set of operational stars loaded as part of.

an objective load.

During the operational star identification process no attitu-

de updates are performed i.e. IPS is in attitude hold on gyros

only.
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PIC/: Manual Experiment Calibration (MAN EXP CAL)

MAN EXP CAL allo-s to determine the actual alignment between

the EXP LOS and the IPS LOS. Employing attitude corrections

"	 until an EXP-provided output indicates the optimum attitude,

the predetermined alignment matrix (or unity matrix if not

predetermined) is updated with the optimum values and will

statically be used when IPS is pointing in support of the

respective experiment.

F11: Experiment Calibration with OA14S (EXP CAL OAMS)

IPS SW determines and updates the alignment of one experiment

versus the boresighted sensor durin g stellar mode operation

using the experiment provided On-orbit Alignment Measurement

Svstem (OA.MS). In this option the boresighted sensor conti-

nuously tracks five artifical CAMS stars. The difference bet-

ween the expected (ground determined) and the actual location

of the artificial stars in the SS tracker field of view is

used to update the specific experiment alignment matrix dyna-

mically,

Zs
a	 F12: Attitur'¢ Hold (A'TT HOLD)

In ATT HOLD IPS points fixed relatively to the basic coordina-

te system as listed below:

-	 in stellar mode: inertial mission true of date,

i -	 in solar mode: solar ecliptic reference system,

-	 in earth mode (Local Vertical): local vertical reference

system

-	 in earth mode (Landmark): geodetic reference system
ay.

e
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ATT HOLD is based on Gyro data only. If provided, the last up-

date of the drift estimation will be used statically for drift

compensation.

F13: Optical Hold (Gyros plus OSP) (OPT HOLD)

High pointing accuracy and stability control are not only ba-

sed on gyros only, but additionally on optical sensor package

®	 (OSP) updates which provide for a gyro drift compensation by

means of an absolute attitude reference signal. Therefore, the

optical hold is an attitude hold under gyro control with opti-

cal sensor update to the strapdown attitude determination sys-

tem, invoked automatically or by operator command after ac qui-

sition and identification of a celestial target, OPT HOLD is

provided only in stellar or solar mode.

_ :. Es: ^^:tee,:.. Ccnsro. (_...' C: L;

IPS accepts two axis control commands derived from the experi-

ment sensor measurements in stellar or solar mode. The experi-

ment provided sensor replaces the measurements of the OSP bore-

sighted sensor. Experiment data are transmitted to IPS via the

Experiment Computer interface. Under experiment control IPS

uses for the strapdown-filter a prelaunch determined set of

filter constants, defined for each experiment.

To achieve the full IPS bias-pointing-performance capability,

the experiment sensor must track the same object (star/sun)

as the IPS boresighted sensor.
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F'S: Scan

In all three basic pointing modes IPS is capable to superimpo-

se a scan on top of attitude - or optical hold (plus optional

EXP CMD).

When scan is started, IPS scans a rectangulrir field according

to scan parameters defined in the desired objective data.

®

	

	 The operator leas the option to start, stop, interrupt/resume

the scan or define the current position as new scan center.

_:E: ,.anual Po'ntznc Control ("P^)

In all three basic pointing modes IPS is capable to superimpo-

se MPC manoeuvres on top of attitude or optical hold (plus op-

tional EXP CAD). MPC allows the crew to manually command yaw,

pitch and roll signals. Rate commands generated by the hand-

controller axe superimposed on rate commands from other ena-

bled options. Inertial attitude commands are derived from the

total rate command.
AM 

0
The crew can change the maximum MPC rate for yaw and pitch

which also defines the max. roll rate via a premission defi-

ned scale factor, furthermore, the crew can select medium

and low rates.

F	 F17: Experiment Bias Command (EXP CMD)J,

In all three basic pointing modes IPS is capable to superimpo-

se three axes experiment bias commands on top of attitude or

optical hold (plus optional scan or MPC). These experiment da-

ta are transmitted to the DCU via the experiment computer in-

e ^
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terface. !:::Y,^riment off-set commands are only accepted by the

IPS SW when this option has been selected by a separate key-

board command from the SSC.

F2O: Stellar OSP Calibration (ST OSP CAL)

By tracking in each tracker of the OSP two identified stars

(1 bright and 1 dimmer star) simultaneously, the OSP calibra-

tion is performed. This compensates the alignment errors of

the OSP skewed versus the boresighte! sensor.

2.1.2.6	 Safety Concept

2.1.2.6.1 General

Safety of human life has the highest priority during all ope-

rational phases of IPS. In particular, special emphasis is gi-

ven to crew safety during ascent/descent and orbital operations.

Therefore catastrophic events must be excluded under all circum-

®	 stances to prevent:

- loss of personnel and/or

- loss of Orbiter or Spacelab.

,j

e

0
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7 rom this the following top catastrophic hazards exist a priori

for IPS:

T	 - hitting the Orbiter or Spacelab

- inability to configure for safe return.

In consequence the IPS design has payed special attention to

the safety critical functions:

®

	

	 - prevent hitting the Orbiter or Spacelab
- configure for safe return.

Before the occurance of an event, the hazard (i.e. potential

of occurance ctf a hazardous situation) is latent and exists

regardless of the introduction of means to reduce the probabi-

lity of the event. The level of an hazard cannot be changed,

the hazard can only be controlled by introducing appropriate

means (safeguards).

The top catastrophic hazards and the corresponding safety cri-

tical functions for IPS are shown in the following table. To

a ® control the top catastrophic hazards, means must be available

to preclude the occurance of the hazardous events. Such safe-

guards are shown in the table. Causes of the top catastrophic

hazards are identified and the relevant controls are defined.

i
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safeguardstop catastrophic hazard safety critical function

A. hitting the Orbiter/SL prevent hitting Orbiter/SL - bumper device
.7

8. inability to configure configure for safe return 	 - stowage via CDMS
for safe return	

- stowage via CCP

- Jettison

- EVA

®	 C. premature jettison prevent premature jettison - appropriate inhibits

• RPC switch
• ARM function
• EXECUTE function

IN

I

Ccr_rol of hazard A

For hazard A the introduction of the passive, mechanical bum-

per device provides adequate control for the occurance of the

hazard as long as the PL is attached to IPS and provided the

bumper is properly designed. In case of inadvertent operation

of PGSi during pointing mode or in case of inadvertent opera-

tion of Payload Clamp Mechanism (PCM) or Gimbal Latch Mecha-

nism (GLM) during ascent/descent the bumper device is no lon-

ger a safeguard against collision between IPS/PL and Orbiter/

SL.

Control of Hazard B

In the case of hazard B a combination of various active means

with a reliability less than 1 are used to control the hazard.

Besides the reliability a further argument for the introduction

of several safeguards is the fact that not every safeguard is

valid for all operational phases.
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1

The standard operation to configure IPS/PL for safe return is

stowage by using the G4mbal Latch Mechanism, Payload Gimbal

Separation Mechanism and Payload Clamp Mechanism. For safety

reasons there are 3 options to stow (Fig. 2.1.2.6.1-1):

- normal stowage (SET1 via CDMS)

- back-up stowage (SET2 via CDMS)

- contingency stowage (SET1 via CCP).

Control cf Hazard C

The jettison device is introduced as a safeguard for hazard B.

It generates itself the top catastrophic hazard C, named " pre-

mature jettison". To preclude the hazardous event certain de-

sign features (inhibits) are introduced, which are:

- RPC 2 switch

- ARM function

- EXECUTE funtion

®	 Items introduced in order to close a top catastrophic hazard

are per definition safety critical items. The identification

of critical items will be based also on these top catastrophic

events (hazards), i.e. items being involved in (or part of)

functions which may result in top catastrophic events shall be

considered primarily as a critical item and will be.examined

for its criticality.
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Main Power I	 ) Aux. Power )	 I Main Power

CDMS	 CCP	 CDMS

(IAD-/IME-Displ.) 	 I 
(LED's) 

I	
(IME-Display)

Electr. SET 1 1	 JElectr. SET 2

full control to	 limited control 'to

i
®	 - go upright	 - latch GLM

j	 - stow	 - separate PL

iy	- lock PCM+)

(jettison independent	 (CCP for jettison o-:l:)
of Electr. SET 1)

+)full travel in boc::
directions possible

Fig. 2.1.2.6.1-1: OPTIONS FOR IPS ACTIVATION/DE-ACTIVATION

kl	 ,
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2.1.2.6.2 Safeguards for Top Catastrophic Hazards

For the redesigned IPS there is a significant safety improve-

ment with regard to the top catastrophic hazard A: "hitting

the Orbiter/SL" because of the

- addition of a bumper device which

o represents a passive mechanical stop for motions of

®	 IPS and its payload as long as the PL is attached to

the IPS and the cargo bay doors are open

o is more reliable than the conc?pt of the former de-

sign for active electronical limitation of range and

rate (a failure of a LBP then resulted in an increa-

sed probability of collision with Orbiter/SPACEL.A3)

- elimination of two complex safety critical systems

• hardware range/rate limitation electronics

• LBP (brakes)

- elimination of items from the critical items list. By in-

troduction of the bumper all items taking part in manoeu-

vres required to support the mission objective (i.e. ma-

noeuvres) only, are no longer safety critical items. 'This

does however not apply to those items which are required

for configuration for safe return.

It must be recognized that the bumper device itself is a

safety critical item.

r-•
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The safeguards for the top catastrophic hazard B: "inability

to configure for safe return" are in the order of preference:

- back-up stowage (SET2) via CDMS

- stowage via CCP (SET1)

- jettison

- EVA

®

	

	 In the following these safeguards for the redesigned IPS are

discussed:

- The principal features of the revised stowage concept

which constitutes the primary function for hazard B are

listed below:

• introduction of gimbal latch mechanism (G:.+:)

• elimination of load bv- passes and formlocks.within

drive units

• rate limitations no longer necessary for safety rea-

sons

®

	

	 o GLM less complex (more reliable) than brake design

• GLM redundant for the locking function (SET2`

• PGSM redundant for 'separate' (SET2)

• IPS during stowage in pointing mode (normal stowage)

until GLM is locked

• redundant switches indicating locked position of EPF

and GLM.

e
- 4-1-
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The main features of stowage via CCP are:

• zero positioning axis by axis with removal of the

control torque after zero position is reached. in

'r. the relevant axis

• no locking of axes in zero position for roll and

X-EL since effects introduced by disturbances (man

motion, VCS firing and mass unbalanced about axes)

are negligible compared to friction of bearings and

®	 CFT

o CCP stowage represents a back-up for normal stowage

and stowage using SET2 via CDMS.

Apart from those features no further modifications result-

ing from safety considerations have been introduced within

the new design for contingency stowage.

The main features of the jettison concept are:

• separation plane is located below the GLM.

• a third inhibit is introduced (RPC 2 switch on R7

panel).

®	 Since the LBP brakes are eliminated in the new design,

a failure of the torquers may cause IPS to swing (sup-

ported by deflections at the bumper ring) for max. time

of 20 min. until it stops. This constitutes a time con-

straint for the i,,,e of the jettison capability.

No further modification have been introduced resulting

from safety considerations into the jettison design.
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For EVA some modifications resulting from safety conside-

rations comps-r ed to the baseline are introduced:

• deletion of the Drive Unit's EVA handles

• redesign of the EVA features of the PCA

• introduction of EVA Payload retention.

The control of the top catastrophic hazard "premature jettison"

is provided by verification of JSC 08060 B requirements (A ppen-

dix I to Safety SR•• IS-0002) and additionally by

- introduction of 3 inhibits

(RPC 2 switch, ARM function, EXECUTE function).

2.1.3	 Inter=aces

2.1.3.1	 Mechanical Interface

2.1.3.1.1	 Interface with Orbiter

W

2W	 ®	 2.1.3.1.1.1	 IPS Equipment located in the Orbiter Payload

Bay

There is no direct mechanical interface between the Orbiter

and IPS equipment located in the Orbiter Payload Bay. However,

the performance of the IPS is influenced by the behaviour of

the Orbiter. The Orbiter behavioural characteristics and dy-

namic model used to investigate the IPS performance and struc-

tural integrity are those defined in section 2.1.4.

.-
e
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2.1.3.1.1.2	 IPS Equipment located in the Orbiter Aft

Flight Deck

The only piece of IPS equipment located in the Orbiter Aft

Flight Deck is the Contingency Control Panel.

2.1.3.1.1.3	 Interfaces with Orbiter Tools

The interface between IPS and the Orbiter Tools for the manual

opening of the jettison bolts is detailed in 20-ICD-IPS.

2.1.3.1.2	 Interfaces with the Spacelab Pallet

IPS is attached to the pallet at the hardpoints and sill fit-

tings. The IPS payload clamp assembly attachments are depen-

dent on the payload characteristics. The IPS gimbal support

structure (GSS) is attached to the pallet hardpoints, numbers

10, 12, 14 and 18.

0

.	 x
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2.1.3.2	 Thermal Interface

2.1.3.2.1	 Interfaces with the Orbiter

2.1.3.2.1.1	 IPS Equipment located in the Orbiter

Payload Bay

2.1.3.2.1.1.1 Thermal Design Configurations and Models

The Orbiter TMM used fox the Spacelab Mission 2 thermal ana-

ly:es is detailed in ES3-76-7.

Specular solar energy reflection from the forward Orbiter ra-

diators is addressed in NASA TM-78270.

2.1.3.2.1.1.2 Mission Thermal Environment

The temperatures of the Orbiter and IPS elements used in and

derived from the IPS baseline thermal analyses are shown ih

Table 2.1.3.2.1.1.2-1. These temperatures are those used in

and derived from the IPS design cases defined in IF-IS-0001

and envelope the temperatures to be expected during the Space-

lab Mission 2. The temperatures of the Orbiter and IPS elements

resulting from the Spacelab Mission 2 thermal analyses are de-

tailed in NASA-Ref-TBD3.

-	 51	 -
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IIODE DESCRIPTION
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i 011-ORDIT DESCENT

()1

HOT COLD HOT 1 COLD HOT COLD

Gumoal Support Structure 44 - 10 99 -122 99 -26
Guroal Support Structure 44 -	 4 76 -117 78 -21
Gimbal Support Structure 44 -	 4 76 -118 78 -21
G1abal Support Structure 45 -	 4 75 -116 76 -21
Gimbal Support Structure 45 -	 4 76 -117 77 -21
Framework/Gimbal Support StrLmure Connection 46 -	 1 53 -114 54 -14
Fra K ork/Ghreal Support Structure Connection 45 -	 1 59 -115 60 -15
Enare.ork/Guroal Support Structure Connection 46 -	 2 60 -114 61 -16
Franework/GUebal Support Structure Connection 45 -	 1 60 -114 62 -16
Framework/Elevation Drive Unit MLI 52 - 36 87 - 73 67 -18
Fra	 ork/Elevation Drive Unit MLI 50 - 22 70 - 41 70 - B
Mil Cable Feedthrou9h MLI 45 - 10 66 -107 66 -24
Yoke Radiator 44 0 I	 53 -	 9 55 10
Yoke +k Sidewall MLI 47 - 27 90 -106 90 -32
Equipment Plattom SSM 57 - 47 43 - 60 64 -I1
Equipmnt Platform SSM 52 - 31 40 - 58 62 -16
Equipeent Platform SSM 45 -	 12 36 - 62 59 -23
Equlprant Platfom SSM 44 -	 12 27 - 60 51 -24
Oquipuent Platform SS4 52 - 31 31 - 59 55 -16
Equipmnt Platform SSM 57 - 46 42 - 57 64 -11
Payload Attacftment Run 49 - 35 47 -100 26 -17
RAu/ICS Bascplate 46 1 29 -	 3 49 -	 1
Equipment Platform MLI 54 - 55 109 -134 109 -32
Equipment Platform MLI 54 - 55 109 -135 109 -33
Equipmnt Platfom MLI 53 - 49 110 -114 110 -29
Equipmnt Platform MLI 53 - 49 110 -115 110 -29
Equipnent Platform MU 47 -	 18 108 -103 108 -26
Equipment Platfom MLI 56 - 69 47 -163 47 -34
Equipment Platform MLI 42 - 20 49 -132 48 -45

Payload 50 -120 70 -120 70 -20

Pallet below outer lorgeron 40 - 20 93 -143 93 -62
Pallet above outer logeron 40 - 20 93 -147 93 -62
Sill 40 -148 85 -146 85 0
Module Aft End Cone Top 60 -113 37 -164 37 -24
Modu.e Aft End Cane Bottom 48 - 74 61 -135 61 -30
Module Top 65 -167 -54 -170 -53 -19

PAI1 46 1 30 -	 4 50 -	 i
ICS 45 2 33 - 13 53 -	 1

Orbiter Aft Dil.khead Top 59 - 91 33 -152 34 -26
Orbiter Aft bulkhead Top 51 - 47 67 -158 67 -40
Orbiter Radiators 66 - 20 15 - 20 15 -20
Orbiter Wings 66 -194 55 -194

i
NCDE
NO

1210
1220
1230
1240
1250
2201
2202
2203
2204
2520
2521

r	 4511
4219
4515
6231
6232
6.233
6236
6237
623B
6251
6321
6501
6502
6503
6504
6505
6511
6512

9101

9111
9112
9113

8 1	9121
9122
9125

6320
6330

9131
9132
9141
9142

j
	

Notes: 1) Defined as PBD open, SL Sarvices available
2) Defined as and of 3.25 hrs operating in sun mode
3) Defined as end of descent
4) Node nrrberc from IPS thermal analyses

TABLE 2.1.3.2.1.1.2-1: ORBITER/SPACELAB/IPS INTERFACE TEMPERATURES



CORNIER
Domier SystemGmbH

f &)

ORIGINAL PAU_ I5
OF POOP QUALITY

2.1.3.2.1.2	 IPS Equipment located in the Orbiter Aft

Flight Deck

The only item of IPS equipment mounted in the Orbiter Aft Flight

Deck is the Contingency Control Panel (CCP). The CCP will be sur-

face cooled by the cabin gas.

The dissipation of the CCP is 3 watts maximum. The temperature

of the structural mounting interface and the mean radiant envi-

ronment temperature is 49 0C maximum.

T

.^ r

I 
M 0

2.1.3.2.2	 Interfaces with the Spacelab

2.1.3.2.2.1	 Thermal Design Configurations and Models

The Spacelab T.M used for the Spacelab Mission 2 thermal ana-

lyses is that shown in NASA-Ref-TBD5.

2.1.3.2.2.2	 Structural Attachment Thermal Interfaces

s

9t

'. V

The detail design of the mechanical connections between IPS

and Spacelab is described in 20-ICD-IPS.

- 53 -
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2.1.3.2.2.3	 Mission Thermal Environment

The temperatures of the Spacelab and IPS elements used are de-

rived from the IPS baseline thermal analyses. These temperatu-

res are those used in and derived from the IPS design cases

defined in IF-IS-0001 and envelope the temperatures to be ex-

pected during the Spacelab Mission 2. The temperatures of the

Spacelab elements and the corresponding temperatures of the IPS

elements resulting from the Spacelab Mission 2 thermal analyses

® are detailed in NASA-Ref-TBD7. In particular the thermal envi-

ronment for the Spacelab Remote Acquisition Unit and Intercon-

nect stations mounted on the IPS is shown in Table 2.1.3.2.2.3-1.

Mean Radiant	 Mean E.--ivo=ental
Environmental Temperature	 E=issivity

Hot Case	 I	 + 600C	 0.9

Cold Case I	 - 400C	 0.9

Table 2.1.3.2.2.3-1:	 RAU and IS Thermal Envivonment

us

2.1.3.3	 Electrical Interface

The electrical interface between IPS and Spacelab is descrip-

ted in Fig.'s 2.1.3.3-1 to -4.
3

0
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FIG. 2.1.3.3-2: AUXILIARY POWER INTERFACE
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FIG. 2.1.3.3-3: EXPERIMENT ESSENTIAL POWER INTERFACE
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2.1.3.4
	

Software Interface

2.1.3.4.1
	

Interface with the Orbi.ter/STS

2.1.3.4.1.1
	

Uplink

2.1.3.4.1.1.1	 Orbiter Data

®	
The GN&C data provided by the Orbiter via SCOS to IPS will be

! in the format defined in Appendix A §A.1.1.2.26 ai,d A.1.1.2.29

of ICD-02-05301; the data are updated at the rate described in

§ 3.4.1.3. of ICD-02-05301.

2.1.3.4.1.1.2 IPS Uplink Commands

By uplinking commands to the IPS via the Orbiter (MDM-lirilc)

the ground will have the same functional capability to con-

trol the IPS that the crew has using the keyboard.

®	 IPS uplink commands can be subdivided into commands which are

executed directly by the Subsystem Computer Operatin g System

(SCOS) without IPS SW intervention, and commands executed by

IPS SW.

Commands which are directly executable by SCOS are beyond the

scope of this document.

The number of uplink commands which are to be executed by the

IPS SW will be one for every ITEM in each IPS FFD, with the

exception of IEL and IME FFD's, plus one command for each of

the Ft*nction Keys (FK's) dedicated to the control of the IPS

(however, some of the commands will never be used via uplink)

e
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IEL and IME FFD's only contain items belonging to the category
of commands directly executable by SCOS.

2.1.3.4.1.1.3 Formats of IPS SW Data Files on MMU

The

®	 1)

2)

3)

4)

5)

6)

7)

8)

following data files are used by IPS .W:

Objectives (File OBJECT)

Filter Gains (File AGAINS)

OSP Data (File LORDFL)

Mission Dependent Parameters (File COMPAR)

DCU Fast Loop SW (File DCUFAS)

DCU Self Test SW (File DCUTES)

Monitor Parameters (File MONLIM)

TCA Parameters (File TCALIM)

Data files used by IPS SW will be stored on MMU as SCOS "User
®	 Files". The general format of an SCOS User File is described

in MA-MA-007:, para 5.4.2.3.

e
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2.1.3.4.1.2	 Downlink

2.1.3.4.1.2.1 IPS Data in TMB

IPS data downlinked as part of the Telemetry Buffer (TMB) are

grouped into downlink frequency subparts. Within each frequen-

cy sub-part, data are grouped into blocks of consecutive words

and for each word the ID='s of the items allocated to that word

are listed.

0
,a	

The data are located in the TMB in the order given below:

ANALOG
	

adjacent ID numbers are located in one 16 bit word

WORD 1 WORD 2 WORD 3 WORD 4

WORD 5 WORD 6 WORD 7 WORD 8

DISCRETE

a 0

2 rows of ID numbers are contained in one 16 bit word

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

bit 9 bit 10 bit it bit 12 b!.t 13 bit 14 bit 15 bit 16

0
E

E

For fields not filled with ID numbers the following applies:

(blank):	 bytes or bits not contained in TMB

SL	 bytes or bits already acquired by SL, respective words
not accounted for in IPS TMB (see IF-IS-0001, pare 4.2.1.3)

7X
	 or bits not available for IPS, but respective

words accounted for in IPS TMB

bytes or bits available as IPS spares, accounted for
in IPS TMB

IN	 invalid bytes or bits due to 20 Bz acquisition,
accounted for in IPS TMB

- 60 -
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2.1.3.4.2	 Interfaces with Spacelab

ci	 2.1.3.4.2.1	 Interfaces with Spacelab SW

Tha Spacelab generated SW packages listed in SR-IS-0001,

§ 3.1.5.2, in the versions specified below in Table 2.1.3.4.2.1-1,

are utilized for the production or for the on line support of

IPS SW ("Version" defines the revision status).

SW Package Version

-	 Host Macro Assembler (XMAS) 4.o

-	 Bost Linkage Editor (XEDL) 4.0

-	 aA.L/S-CII Compiler, EALLINX 6.ol

-	 liU/S-IBM Compiler 16.46

-	 Subsystao Computer Operating System (SCOS) 8.6

-	 System Generator	 (SYSG=V) 3.6

-	 FFD Skeleton Generator (SKIZEN) 3.6

-	 Memory Configuration Generator (MCTGEN) 3.6

-	 Flight Tape Generator (FLTGEN) 3.6

v -	 Data Base Generation and Maintenance (DBGM) 3.11

Table 2.1.3.4.2.1-1:	 Spacelab'SW Packages Versions

0 -	 61	 -
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2.1.3.4.2.2	 CD:-!S SW Resources Utilization

2.1.2.4.2.2.1 SSC SW Sizing

SSC core size utilization (budget and actual) is as follows:

SW Item	 Words

a) SSC SW Without IPS	 40000

b) IPS SW (Cat. 1 and 2) 	 22500

C)	 S.•cond Fixed Format Display Buffer 	 1500

TOTAL	 64000

available	 6=500

Item a) is defined as the SSC SW System as optimized to a SL-2

configuration.

Item b) is as specified in IF-IS-0001, § 5.2.1.

Item c), actually operations dependent, is required when it is

expected to operate two DDS's concurrently with the SSC.

^o
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2.1.3.4.2.2.2 SSC SW Timing

SSC CPU load and access budget is as specified in IF-IS-0001,

para 5.2.2.

Due to the interrupts allocation specified in IF-IS-0001, pa-

ra 5.2.3 it is expected that it will not be possible to upda=

to two concurrent FFD's at the nominal rate of 1 Hz. The con-

sequenr: is that the FFD update frequency must be set at SCOS

generation time to a lower value which is consistent with the

overall SSC SW load, in order to permit tasks running at prio-

rities lower than the FFD-updating task to access the CPU and

in order to avoid the generation of repetive SOE's SA01 (Over-

run of the FFD updating task).

A nominal FFD update frequency for an IPS mission is establi-

shed to be 0.75 Hz. However, as it is considered operationally

acceptable that FFD updates could be sloweu' down to a minimum

of 0.33 Hz, the CPU margin obtainable by reducing the "nominal

IPS FFD update frequency" to this value is the current CPU re-

serve. Reduction to a minimum of 0.5 Hz is controlled by ESA,

® for IPS SSC SW and operation contingencies. Lower update fre-

quency values need joint approvals from ESA and the organiza-

tion responsible for the SL SW maintenance.

e
S
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2.1.4	 IPS Performance

The IPS performance has been analyzed using a finite element

based simulation model incorporating the following substruc-

tures:

Orbiter. from NASA/MDTSCO

Pallet from ESA/ERNO

IPS	 from DORNIER

Payload from DORNIER

The overall structure is modelled to be free-free.

The following data ap ply to the Orbiter finite element mo.!vl

(payload doors ope-'e

-	 Mass	 m =	 81074 kg

-	 MOI	 J =	 1.2	 • 10 6 kgm2

J 8,8	 • 10 6 kgm2
YY

Jzz 9.1	 • 10 6 kgm2

JXz = 0.3	 • 10 6 kgm2

e

i	 o

0
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The basis of the overall structural model is a system repre-

sentation using parallel second order oscillators between

control and disturbance inputs and sensor outputs as in fi-

gure 2.1.4-1.

INPUT	 i	 STRUCTURE	

i	

SENSORS

i

CDUI • s+CPUI.

^52+2r(u(sTw12

IVM R

	

r	 SENSOR

TORQUE,	 I 1	 y	 Y

FORCE

NMR	 number of retained modes

y	 displacement at sensor station

Y 	 measured displacement at sensor station

CPU I :	 proportional cou pling coefficient (for i'th mode)

CDU I :	 derivative coupling coefficient (for i'th mode)

S i	damping coefficient (for i'th mode)

wi	modal frecuency (for i'th mode)

a

^i

^b
ET

P^

r^y

'o

4

8

r^

Figure 2.1.4-1:	 Parallel Oscillator Representation

For every IPS look angle and for every IPS payload an indivi-

dual structural model is used.
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External disturbance forces applied to this model are:

	

'	 - VRCS thruster firing and

- Man motion.

Location of Orbiter Disturbance Sources

(Co-ordinates relative to the spacelab co-ordinate system in

millimeters):

-. ®	 - Man Motion	 X = 8806	 Y = 0'	 z = 1198

'	 - Vernier Thrusters	 x	 Y	 z

I	 a

I i

1	 3456	 -1516	 -1267
2	 3456	 1516	 -1267
3	 34968	 -3807	 1499
4	 34968	 3067	 1499
5	 34968	 -2007	 1408
6	 34968	 2997	 1405

Magnitude of Orbiter Disturbances

- The man motion to be considered by the IPS aesign shall

be as shown in Figure 2.1.4-2. This motion shall be ap-

plied in each axis indivJdually.

(N)

100 --•--

2.4	 ].0 12

0.0 1 0	 2.0	 r t O

-100

Figure 2.1.4-2:	 Man Motion Disturbance
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The IPS design takes into accour.t the vernier thruster

thrust levels and six firing combinations shown in tab-

le 2.1.4-1 for an 80 msec di,r::.ion. The IPS design shall

also take into account an Orbiter limit cycle motion of

+ 0.1 degree.

Thruster
No.

X Y 2	 Remarks

1 -3.56 75.62 - 78.29

2 -3.56 - 75.62 - 78.29

3 0 106.8 -	 2.67

4 O -106.8 -	 2.67

5 0 0 -106.8

6 0 0 -106.8

:'hruster 1,3,5 1,2 1,4	 + ve rotation
Cz=binations 2,4,6 5,6 2,3	 - ve rotation

Table 2.1.4-1:	 Thrust vectors (N) and firing

Combinations

With these orbiter dynamics and Fat's for 200, 2000 and 7000 kg

payloads to following performance values have been simulated

(Ta)rle 2.1.4-2) :
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Payload Mass Disturbance	 Sim. Result	 (aresec)

200 kg Mdn Motion
Lat 3.2

9 Roll 10.0
s

Thruster Firing
Lat 5.6
Roll 10.0

2000 kc Man Motion
Lat 3.9
Roll 4.0

Thruster Firingw
Lat 5.3
Roll 5.1

Quiescent Stab.
Lat 0.8
Roll 3.0

r

7000 kg ?fan Motion

Lat 6.0
Roll -

Table 2.1.4-2:	 IPS Performance

Y
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2.2	 Position and Hold Mount (PHM)

	

2.2.1	 General

The PHM is a small pointing facility for experiments weight-

ing up to 200 kg and calling for low or medium stability. The

pointing stability is based on the orbiter (+ 0.1 deg.).

After performing a feasibility study (Phase A), which included

a two axes demonstration model, Dornier System has completed

the definition of the PHM (Phase B) in October 1982.

	

2.2.2	 Technical-Corceot

The Position and Hold Mount (PEN) is a two axis pointing fa-

cility for smaller Spacelab payloads or payload clusters of

um to 200 kc mass (see Fig. 2.2.2-1, 2.2.2-2). Its elevation-

over-azimuth two axes gimbal assembly provides up to 360 de-

grees of freedom range in azimuth and up to 180 degrees of

freedom range in elevation. The medium pointing stability

based on the stability of the Orbiter is + 0.1 degrees.

As a Spacelab subsystem the PHM relies on Spacelab/Orbiter

support in the areas of data management (CDMS), power sup-

ply, thermal control services for electronics boxes (cold

plates) and attitude information (IMU). It was one of the

driving design goals to ease the use of these Spacelab/Or-

biter services for the potential PHM user aiid to make inter-

faces as simple, reliable, and modular as possible to cover

a broad application spectrum for the PHM payloads.
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FIG. 2.2.2-1:	 PHM WITH TYPICAL PAYLOAD CLUSTER

Payload

FIG. 2.2.2-2:	 PHM WITH TYPICAL PAYLOAD INTEGRATED ON A SPACELAB PALLET SUPPORT
STRUCTURE	 ik
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The PHM Spacelab subsystem consists of the following major

assemblies:

- The Gimbal Assembly (GA) with the Drive Mechanism Sub-

assembly (DMSA) for rotating the payload, the Clamping

Mechanism Subassembly (CMSA) for securing the payload

during launch and landing and the Structural Elements

Subassembly (SESA) for overall stiffness.

®	 - The Electronics Assembly (EA) with its Power Electronics

Unit (PEU) for power supply and the Data Control Unit

(DCU) for data and operation management. The Emergency

Electronics Units (EEUs) are special electronic units

for contingency back up operating modes.

- The Ground Supper-* Equipment (GSE), partitioned in the

Electrical Ground Support E quipment (EGSE) and the Me-

chanical Ground Support Equipment (MGSE), which both

supply the necessary checkout and verification tools.

Special attention throughout the whole PHM design was payed

®	 to the safety concept and its mechanical and electrical im-

plementation. The safety elements have to guarantee the in-

tegrity of the PiiM and its payload during any mode of opera-

tion, especially during launch of the Shuttle, in orbit ope-

rations and during descent and landing of the Orbiter. Safe-

ty is among others achieved by a completely redundant retrac-

tion and stowin g capability for the payload.

This safety aspect was one of the design drivers for the over-

all PHM technical concept.
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Due to its modular design the operating capabilities and per-

formance of the basic PHM design as described in this document

can be extended relatively easy by adding attitude sensors
3	 (e.g. sun sensor), the necessary sensor couplers and software

in the DCU.

This aspect was not covered in this phase B study, but expe-

rience with the PHM demonstration model (PHM phase A-study)

indicated with a Dornier supplied sun-sensors, that accuracy

®	 improvement by a factor of 5 is easily achieveable.
r

As the PHM is conceived to cover a broad range of applications,

some mission dependent hardware has to be taylored accordin g to

the specific payloae requirements and has to be supplied by the

user. These are the following elements:

- a Payload Integration Structure (PIS) as linkin g element

between payload and PRM

- a Mounting Plate (MP) as linking element between PHM and

the Snacelab Pallet support structure

a mission tailored harness for linking PI-DI and payload

elements to the electronics

- a thermal protection for the PHM elements and for the .

payload according to the thermal requirement of the par-

ticular mission

- some structural elements to optimize the load paths from

Spacelab to the payload.

1 r 	

p
d
8	
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2.2.2.1	 Mechanical Concept

The major design drivers leading to the mechanical design con-

cept are the requirements:

- for accommodation of payloads of various shapes and si-

zes,

- for a gimbal freedom permitting pointing ranges of any

sector within a total of a hemisphere,

- for the ability to secure payload and gimbals for safe

return under all circumstances, and

- for the flexibility of mounting the PHM at various places

and in anv direction on the Soacelab pallet by means of

mission dependent supnort structures.

Thus, the Gimbal Assembly (see Fig. 2.2.2.1-1) fulfils the me-

chanical payload accommodation and safety requirements, given

in short form:

- payload mass: 200 kg (including Payload Integration Struc-

ture)

- payload moment of inertia: 50 < J < 500 kg/m 2 (incl. PIS)

- payload centre of gravity relative to PHM coordinate sys-

tem for

side mounted payloads	 Ymax < 625 mm

end mounted payloads	 XMIX <_ 1125 mm

- payload service

o securing of payload during ascent and descent.

yC5
°	 - 73 -
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- position keeping at zero power by means of brakes (Orbi-

ter vernier thrusters only)

safety requirements

• structural integrity to be guaranteed by gimbal as-

sembly and clamping mechanism

• payload not to penetrate the dynamic envelope of the

Orbiter and not to damage surrounding equipment or

®	 experiments.

The Gimbal Assembly (see Fig. 2.2.2.1-2) covers the following

subassemblies:

- The Drive Mechanism Subassembly (DMSA) has the task to

rotate the payload in the desired direction or to per-

form the commanded motions like scanning or tracking.

Main elements within the DMSA are the Drive Units (DU)

(see Fig. 2.2.2.1-3) for the azimuth (ADU) and eleva-

tion (EDU) axes. They contain the DC-motors for torque

generation, the resolvers for relative angle measurement,

the brakes to hold the payload in any direction, the Po-

sition indicators as a backup to enable emergency retrac-

tion and the bearings to take the load. The Yoke links

ADU and EDU together and carries auxiliary items like

connector brackets etc.

- The Structural Elements Subassembly (SESA) consists of

the i.ser supplied Payload Integration Structure and Mount-

ing Plate. Furthermore the struts as linking element bet-

ween the ADU and the MP supply the necessary stiffness for

the Gimbal Assembly. The adjustable mechanical endstops

may limit the range of the payload and serve as ultimate

safety device in case of malfunction.

0
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GUIDING AND HOLDING
PIN
(LATERAL FORCE.PICI( UP)

PAYLOAD INTEGRATION STRUCTURE

7 ACM PINS

_..ai-DCM PINS

CLAMPS

r	
ORIGINAL PAC": M

OF POOR QUALI'iY

DDDEEESSSCC\ENT CLAMPS

MOUNTING
PLATEPLATE

GUIDE RAIL WITH
HOLDING MECHANISM

FIG. 2.2.2.1-2: PHM GIMBAL SUBSYSTEM AND CLAMPING MECHANISM

The Components of the Drive Units are:
1 Ball Bearings
2a Motor for nominal Operations
2b Motor for emergency operations
3 Resolver
4 Position Indicators
5 Solenoid Brakes
6 Flexible Wire Hamess
7 shaft
8 Housing
9 Membrane
10 Mounting Plate	 Mechanical
11 Yoke	 Interface

Housing and shaft are one piece components
for maximum stiffness.

FIG. 2.2.2.1-3	 PHM DRIVE UNIT COMPONENTS
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- The Clamping Mechanism Subassembly (CMSA) design features

different elements for different tasks. The Ascent Clamp-

ing Mechanism (ACM) takes the loads imposed on the PHM/

payload ensemble during launch of the Space Shuttle. The

Descent Clamping Mechanism (ACM) is responsible for se-

curing of PHM/payload during Orbiter descent and landing.

Main actuating element in both units are memory metals

which, subjected to heat, change their physical dimen-

sions, thus actuating the clamp.

•
The Holding Mechanism serves as a mechanical guide for

the zero-clamping-position and as intermediate stowage

clamp during Orbiter RCS main thruster firing.

2.2.2,2	 Thermal Concept

The thermal concept of the PHM requires to cover the Spacelab

so called "hot case" and "cold case" operational conditions.

As it is not possible, to cover all possible user and payload

®	 requirements each payload + PHM thermal concept must be indi-

vidually tailored.

The PHM reserves nevertheless within its PEU some power, dedi-

cated for thermal control, as well as the software is flexible

enough to incorporate even complex thermal control switching

functions.

It is assumed that whatever thermal concept will be chosen for

the PHM and its payload, it is as much as possible of the "pas-

sive thermal control" concept.
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2.2.2.3
	

Electrical Concept

The Electronics Assembly of the PHM is designed for operation

via the Spacelab CDMS in terms of data acquisition, data trans-

mission, operations service, etc. and for supply by the Space-

lab power system in terms of main- and essential power.

The electronics concept is based on the following interfaces,

shown also in the interface blockdiagram (fig. 2.2.2.3-1):

au	 - PHM-SSC link for data exchange with the CDMS by an IPS-

type of RAU (which is an EXP-RAU)

- PHtI-EXC link, for data exchange with the payload by an

EXP-RAU

- PHM main power bus supply by Spacelab EPDS for normal

operations

- PHM emergency retraction and stowage co.^unanded and con-

trolled from Orbiter AFD panel R-7, via bracket 57.

fell ®

	

	 Three different electronics units will control/perform the PHM

operations/functions as follows:

- the Data Control Unit (DCU) will handle all data traffic

and software duties imposed on the PM.1 by operations re-

quirements

- the Power Electronics Unit (PEU) will supply all neces-

sary power and switching functions for the PHM, except

the emergency functions

the Emergency Electronics Units (EEU), which is present

in redundant form as EEU-1 and EEU-2, will serve as po-

wer supply, command receiver, and control signal gene-

rator in case of emergency operation.
0
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The DCU, as most complex unit of the Electronics Assembly, is

described in the following in more detail:

The DCU handles and synchronizes the data traffic between the

PHM and the Spacelab CDMS (Subsystem Computer, Experiment Com-

puter) via RAU.

The dataprocessor 430-R controls the traffic on the MUDAS da-

taway and is able to perform logic and arithAreti.c operations.

This capability is used for calculation: of !!•. attitude measu-

rement and control algorithms, and for operating the pyM c ;;,crs..

ing to the PHM modes and their routines. The program-; _,f t,; , :. dr.•

ta-processor are stored in the memories, k1't'ici; are o' PROM ani.:

RAM type.

The DCU is built to the Dornier-MUDAS space standard. It con-

sists of functional modules, which are connectel to the MUDAS

datakay. :'he modules are controlled by the data-processor,

which besides the control function is able to perform logic

and arithmetic operations.

"111	

0

2.2.2.4	 Software Concept

The PiW software concept is governed by the rule to cover as

many operational and software tasks in the PHM dedicated pro-

cessor as possible, to make the PHM a real self standing, au-

tonomous pointing facility to ease the usage and to facilita-

te the testability.

Nevertheless it is clear, that the offered basic Spacelab Sub-

system Computer (SSC), Data Display System (DDS) services are

used.
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That leads to a distribution of the PHA! software in the M14

DCU, covering all operational sequencing and pointing control

functions and in the S5C for usage of basic CDMS software ser-

vices. Additionally the S/W concept is so flexible to incorpo-

rate easily additional sensors to increase the pointing accu-

racy (for example: sun sensor).

2.2.2.4.1 DCU Software

The DCU software covers the following topics:

- Controller S/W

- Timing Control and Organization S/W

- Housekeeping S/W

- PHM-routines a nd subroutines S/W

- Transformation, and calibration S/W

2.2.2.4.2 CDMS Software

The main task of the CDMS software for MM is to transfer data,

as shown in Fig. 2.2.2.4.2-1.

Inputs are acquired from

- MDM: commands and orbiter attitude information

- Keyboard: commands

- RAU: values to monitor or to display and hand controller

information

- 81 -
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- MMU: command sequences

- MTU: time information

Outvuts are routed to

- Display: measurement points, monitoring status error mes-

sages, etc.

- RAU: ON/OFF commands and serial output

- MMU: update command sequence and user files

- PCMMU: Error messages, mesaurements point values, CDMS

hardware status, etc.

ECCE is in charge to access the different peripherals but some

__=Li gation software has to be provided to initialize the dif-

'er=_nt transffers.

=.`.e proposed solution for PM CDMS software is based on a two

=_sks structure

- The first task will have to handle dialog with the PHM

via the RAU serial channels

- The other task will have to handle all other transfers

required by the PEM utilization.

For both tasks the application language will be HAL/S.

l.°
e0
8
s	
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2.2.2.5	 Operations Concept

The operations concept of the PHM (see Fig. 2.2.2.5-1) is ba-

sed on one side on the CDMS-subsystem computer (SSC) and on

the other side on the PHM-DCU processor (MUDAS).

These two processors control together the operations of the

PHM.

Four major PHM modes cover the operating requirements and give

individual payload operating flexibility.

- Individual command mode (ICM)

- Manual Pointing Controller mode (MPC)

- Timeline Program Mode (TPM)

- Power Down Mode (PDM).

Included in all modes is an "alert triccer", which indicates

PHM malfunctions, to alert the Spacelab crew (FFD-SSC message

line).

The Individual Command Mode reflects the necessity, mainly for

safety reasons, to have a step-by-step command possibility,

initiated and controlled by CDMS-keyboard. Within the ICM the

following submodes are possible:

- the ICM-end item-mode (ICM-EIM)

4	 - the ICM-PHM-routine-mode (ICM-PR.\!).

The ICM-EIM is characterized, that by CD.-!S command, a list of

PHM-end items may be commanded and controlled.

e
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End items are:

- DC-motors

- clamps

- brakes

- retraction bolt

- resolvers

- thermal elements

®	 The ICM-PRM is characterized, that by CDMS command, individu-

al PHM-routines may be initiated by a GO-command and stoppedr	
arbitrarily by a STOP-command, not dependent on GMT.

The Timeline Procram Mode is an automatic, time dependent mode

which is preprogrammed by the appropriate PHM-routines and their

characterizing parameters.

The TPM may be operated from:

- the CDMS keyboard by the on-board crew

- the MMU by initiation of the on-board crew

- the POCC to make corrective actions or change the con-

tents of the MMU.

The sequencing element operating the PIDI in the TPM is a

" Seouence Table" where the various PHM routines are expressed

by their associated parameters. The "Sequence Table" (S.T.)

shall be initiated by a GMT start-time and ended by a GMT-end

time. The S.T., may be constituted of several Sequence Table

blocks. One block shall comprise one specific parameter set.

To have enough flexibility within the preprogrammed routines,

a "Sequence Table Change Procedure" permits fast onboard modi-

fications by the Spacelab crew.

0
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The following PHM routines are defined:

- Activation and Initialization Routine (AAIR)
17

- Control Parameter Loading Routine (CPLR)

- Relocking Routing (RELR)

- Slewing And Holding Routine (SAHR)

- Positioning And Holdin g Routine (PARR)

®	 - Tracking Routine (TR.R)

- Scanning Routine (SCAR)

- Bias Controller Routine (BICR)

- Deactivation Routine (DEAR)

The Manual Pointing Controller Mode shall enable the on-board

crew of manual pointing a.-.d slewing the PHM. The MPC-co.,=ands

will be treated as bias c:.=.ands. The operating- post of this

mode is a Keyboard/joystic device in the AFD to produce the

bias commands. After havin g selected an adequate PHI-1-routine,

motion-characterizing parameters of this routine will be re-

v
garded as dummies and overwritten by the bias commands which

are:

- Azimuth angular rate

- Elevation angular rate.

The Power Down Mode is irtrcduced to keep the PHM thermally

-	 controlled without switchin g on the PHM processor. The PHM

is thus a purely CDMS operated mode concerning the commands

as well as the feedback data.

0
	 - &7 -

m



a

s

- 88 -

rA

Y ^

am

M

DORMER
Domie, SystemGmbH

For temperature measurements and control, the identical items

are used as for t'ie normal PHM thermal control.

The power will be drawn from a special power supply within the

PEU.

®	
2.2.2.6	 Safety Concept

The PHM safety concept is based on the following design re-

quirements:

- the PHM and its payload shall be non-jettisonable devices

- the MM and its payload shall require no EVA - operating

or a back up to come to a safe configuration

- the payload shall be fixed to the PHM during launch, in-

orbit-operations, and descent/landing.

The safety concept thus is most concerned with the structural

® integrity of the PHM and its payload. To guarantee this, the

PUM/payload combination requires through all high stress pha-

ses, a maximum strength and stiffness of the mechanical con-

f:;.guration which is only met, when proper clamping is achie-

ved.

Thus, the safety concept is mainly a problem of guaranteed

clamping of the PHM through ascent and descent of the Space

Shuttle/Orbiter. As clamping can be visually verified before

launch, the main concern is with the clamping prior to des-

cent. This is treated in the following:

r
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If normal flight mode retraction and clampin g has failed (even

in case of CAMS failure) or if normal flight mode is no longer

possible, an emergency retraction and clampin g mode will be

performed which relies on fully redundant hardware components,

separate command, monitoring, and power supply lines.

Emergency clamping thus is performed manually within the follow-

ing scheme:

® - a redundant set of electrical and electro-mechanical items,

will rotate the PHM axes to null position, independently of

CDMS and DCU

- the emergency power electronics (there are two for addi-

tional redundancy), will power the above mentioned items.

Power will be drawn from essential power bus

- the redundant clamping mechanism and its actuating ele-

ments will secure PHM/payload

- redundant end switched will indicate safe locking

initiation, control, and completion of the emergency, re-

tration will be done via Orbiter Panel R-7, completely

independent from CDMS command lines.

The announcement to the crew, that PHM re quires an emergency

retraction, will be performed by SCOS services to DDS, based

on PHM housekeeping data.

The PHM mechanical safety devices are shown in figure 2.2.2.6-1.

The emergency retraction mode will be checked out for proper

function after launch prior to start of the P_V s scientific,

mission.

r,
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2.2.3	 Interfaces

The ?kD1 will be integrated into Spacelab. This section ̀ descri-

bes the relevant Spacelab and Orbiter interfaces of PHM.

2.2.3.1	 Mechanical Interface to Spacelab

® -	 PHM/Payload Dynamic Envelope not to exceed the Orbiter dynamic
envelope and.a

not to hit any surrounding Space-
lab payload

-	 Total mass of PHM IsPb.M =	 95 kg

o	 Mass of Gimbal Assembly mGS	 a	 75 k3	 (incl. clamps)

o	 Mass of Electronic Assembly MEE	 =	 20 kga-

-	 Total mass of PHIM and Payload Is 	 - 295 kg	 (max.)

-	 Mounting interface for

o	 Gimbal - Azimuth Drive Unit flange, mount-
cble to the user supplied Mount-
ing Plate

- Struts

- Clamping Mechanism flange to be
mounted to the Mounting Plate

- Clamping Pins, to be mounted to
the user supplied Payload Inte-
gration Structure

- Endstops, according to PHM/Pay-
load Dynamic Envelope

-	 Electronic Assembly Common baseplate to be mounted to
a Spacelab cold plate

-	 Mounting Plate To be mounted to Mission dependent
Spacelab Pallet Support Structure

a -	 91 -
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4
Mounting direction	 any direction relative to the

5	 Spacelab' coordinate system

z
- Coupled analysis	 coupled analysis necessary for

t	 #,he combined Payload/PHM/Support
x	 Structure

y
r
C,
I;

P.

2.2.3.2	 Thermal Interface to Spacelab

As stated in 2.2.2.2 "Thermal Concept" there is at the moment

no specific thermal interface to the Spacelab. But one can

easily forsee, that the PHM would require thermal services

from the Spacelab in the field of

- space and heat rejection capability for the power and da-

ta electronics by means of using a total or a portion of

a Spacelab coldplate.

- space anc. heat rejection/injection capabilities for the

Drive Mechanism Subassembly to comply with the "passive

thermal control" concept. Space is needed in this case

-in ®

	

	 for a heat pipe radiator surface mounted to the cold

plate.

,
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2, ),.j.3	 Electrical Interface

To gi,acelab:

Data Control Unit

Connected with one Connector to Spacelab Main Power Bus

Connected to an EXP-RAU

Power Electronics Unit

®	 connected with one connector to Spacelab Main Power Bus

Emergency Electronic Unit

LEU1 and EEU2 connected individually to Spacelab Essen-

Lial Power Bus

PHM Power Recuirements

I180 W mean value, 2 axes

280 W peak value, 2 axes

150 W emergency, 1 axis

T,, Orbiter:

- AFD R7 Panel

hardwired lines to PSM Emergency Electronic Unit via

Bracket 57
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2.2.3.4	 Software Interface

Payload to

Experiment Computer Operating System (EC9S-S/W)

- PHM to

Subsystem Computer Operating System (SCOS-S/W)

40

2.3	 Antenna Pointing Mechanism

2.3.1	 General

The Antenna Pointing Mechanism (APld) is the coupling /discc-p-

ling member between, for ex2mple, a heavy satellite and ._s

spot beam antenna reflector, as shown in Fig. 2.3.1-1. It is

specially designed for precise pointing within a limited point-

ing range. It ir_^rporates within its cardanic suspension, di-

rect drive motors and precision angle pick-offs, controller: by

its specially tailored electronics.

The development status is as follows:

Mechanism model built:

- Vibration Model

- Engineering Model

- Qualification Model

- Antenna Deployment and Pointing Mechanism (Fig. 2.3.1-1)
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The Qualification Mciel survived successfully sine vibration

inputs up to 20 g and interfacial temperatures from -700C to

+65 0C during qualification tests. An accelera , - life test

programme at ESTL/England was passed successfully.

For the APM-Electronic a Breadbroad Model was followed by a

Prototype Model which was manufactured to flight standard

and has passed successfully electric performance tests.

we

I ID

2.3.2	 Technical-Concept

The technical concept aims at performing the following two

pointing tasks:

1. precision pointing of an antenna as required by the WARC

re:ulations for d_rect satellite broadcasting with a point-

ing accuracy of 0.01 degrees fo-- the mechanism

2. antenna beam shift from one country to another (repaint-

ing)

The APM development at Dornier :led to the following measured

perfor-ance data:

Main PerfOrmL.ice Data

- Antenna Inertias up to 18 kgm2

- Deployment Range up to 180 degree

- Fine Pointing Range +/- 1,5 degree

- Pointing Accuracy +/- 0,01 degree

- Dvnamic Performance above 2 Hz

- 96 -
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ti

- Speed above 0,3 degree/sec.
- Mass 3,5 kg

"	 - Thermostable CFP (Carbon Fibre Plastic) structure

Temperature Range -160°c up to +120 0C

- Vibration Level up to +/- 50 g -

®	 2.3.2.1	 Mechanical Concept

The APM is of modular design. Drives, angle pick-offs, bear-

ings are the same on both axes. The frames of CFP material

can be adapted to the specific interface requirements of both

antenna and spacecraft body.

Basically the framework corresponds to a cardanic suspension.

Its axes arrangement can be) hilt centrally or shifted apart

to allow deployment actions for the antenna from the launch

to an operational condition.

®	 Each axis has a direct driving stepper motor and a resolver as

angle pick-off. The bearings are dry lubricated and therefore

free of maintenance and free of backlash as well.

If required the APM can be equipped with a clamping device for

direct load transfer during launch. A relocking device may be

implemented to fix the antenna in a central position upon com-

mand.
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	2.3.2.2	 Thermal Concept

The mechanism's heat input is low enough not to require an ac-

tive thermal control.

The used CFP material has good thermal stability.

	

2.3.2.3	 Electrical Concept

APR EZectronic

It includes all the necessary electronic equipment of the An-

tenna Pointing Mechanism. The APM-Electronic controls the dri-

ves, feeds the ang'e pick-offs which are precise resolvers,

processes their output signals into digital format, accepts

commands and generates status signals. The input and output

signals cf the APM-Electronic are adaptable according to va-

rious satellite interface requirements. Each of the two point-

ing axes is connected to a completely redundant set of elec-

tronic circuits.

a
Y

V
F

s

Tea%:nic_i iata of the AP91-Electronic

- Power Input	 15 W

- Mass	 3,.9 kg

- Overall Dimensions 363 mm long

166 mm wide

145 mm high

- 98 -
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2.3.2.4	 Software Concept

Not applicable

	

2.3.2.5	 Operations Concept

The APM can be operated in the following modes:

`	 - open loop

specific commands related to effective antenna beam di-

rection

- closed loop

control loop using the angle pick-offs as position mea-

suring devices

- closed loop with RF sensor

control loop using an RF sensor as position measuring * de-

vice located apart from the mechanism and sensing the ef-

fective antenna beam direction.

Introduction of individual bias settings resulting from

on-orbit calibration of the antenna performance poses

no problem.

The APM is able to perform continuous antenna pointing in or-

der to counteract residual satellite nutations over a life

time of ten years.

Its dynamic capability corresponds to a bandwidth above 2 Rz.

s	 - 99 -
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The APM's stiffness allows for complete antenna pointing per-

formance testing and calibration on ground with gravitation

influence.

2.3.2.6	 Safety Concept

The mechanism incorporates complete redundancy of motors and

angle pick-offs. The elect_onic is completely redundant as

well.

The relocking capability adds further reliability, which means,

that in case of any failure within the drive branches the mecha-

nism can be relocked to its central position by means of its te•-

lecommanded Relocking Device.

The life tests have proved the APM's reliable performence un-

der qualification conditions. Special bearing tests confirmed

their life endurance.

2.3.:	 Interfaces

mechanicaZ I/F

Both the antenna frame and the ground plate can be adapted to

special versions of reflector dish and satellite structure.

EZectricaZ I/F

Mechanism and APM Electronics are to be interconnected by cab-

le lines. Adaptation of the Electronics to the S/C power bus

g	 poses no problem.

6
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Thermal I/F

Thermal shielding of the mechanism should be foreseen accord-

ing to the specific implementation :onditions.
t

Vibrational Dynamic 1/F

Depending on the S/C structure and antenna characteristics the

APM's stiffness allows for loads up to 70 g.0
Operational Dynamic I/F

The APM provides a high dynamic bandwidth and high inherent

damping. Therefore the mat.-king of the dynamic behaviour of

the APM to specific satellite re quirements poses no problems.

0
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	3.	 REQUIREMENTS ANALYSIS FOR SPACE STATION POINTING

SYSTEMS

	

3.1	 General

In this section the mission models are analyzed with respect

to pointing system aspects. The following relevant mission

areas have been identified

- Astrophysics

Earth and Planetary Remote Sensing

Environmental Observations

Communications

Life Sciences and

Material Processing

The suitability of the Space Station for pointed experiments

can be discussed with the following parameters

- altitude limitation

- orbit limitation

- mission duration.

- attitude pointing error/stability

- data management & transfer

- power

- heat rejection

- cleanliness

'	 I
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The micro-g requirement is in the area of Life Sciences and
Material Processing the dominant requirement. This results in
special requirements to the altitude control/vibration isola-

tion of the whole Space Station. No demand for pointing sys-

tems has been identified in these areas, thus they are no more

considered in the following sections.

®	 3.2	 Astrophysics

The major objectives of astrophysics are

- investigate properties of extragalactic space, the milky

way galaxy, and the solar system

- investications wi=., respect to cosmic evolution.

All wavelengths are used, like e.g.

visible (cameras)

- IR-astronomy

x-ray astronomy

- RF-astronomy

The driving requirements in the region of astrophysics are

- sensitivity (aperture, size, mass)

- pointing accuracies

- contamination limits

- thermal control (e.g. cryo systems etc.)

'o	 - 103 -
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Typical payloads in the field of astrophysics are summarized

in table 3.2-1 and table 3.2-2.

The manned Space Station can provide the following support

for astrophysics experiments:

- manned operation

- manned maintenance & refueling of consumables

0	 - contamination control
- perform special calibration procedures etc.

The location of an experiment at the Space Station will sig-

nificantly enhance the overall utility (costs, operational

mission efficiency).

0
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However, trade off studies will be requ:-red tear the location

if the contamination requirements will pit vory strin g ent. The

payload may be preferred to be part of the,, *n,:t atttti.on, an

unmanned space platform or a dedicated free- Ayer. This trade

off must include also manual versus automated op ,esations as-

pects.

0	 3.3	 Earth and planetary Remote Sensing

A set of typical payloads in the field of remote sensing is

assembled in table 3.3-1.

:he major objectives of the earth and planetary remote sens-

ing are:

- Exploration of the solar system, Incl. planets

- Earth dynamics, crustal motion, potential fields

- Resources Study

o Irons

o minerals

o petroleum etc.

o ocean

The characteristics are

- Planetary landings (not relevant from pointing system

view)

- Remote sensing

- Development of instruments for future missions.

The last two items are of interest for pointing system aspects.

They have the following design driving rtZuirements:

J

V

- 108 -
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114 ẁ-' w
yu

u c
v o roIj
w u v

U +1

w

u

-uv
w

w O v
i3 O,

s^ E

OY

O
M 0
••• •r	 O 0 h 0 ,D

N U ^ Q
x x	 .

x x x x
u O c

x

r`+ 400 r v,Q
•9 ^ b ^	 N N I.1 ^+	 .•+

c c	 10
c x c x e x x x x x E
LO
C O

i0M 00
C N	 1	 N

O
^l1

'•a
a ao,+

a a

N y

O
C)

i a^
M No
m m u,
W W P

N
y
C
q

E
+i
3a

x
x
w
u
ro
'-I
O
M

ro
c
ro
U

w
N

a
N
O
E
L
Q

ro

J
G
O

EA

U

r+1

N

A
ro

O,
C

N
C
N
N

a
u
0
E
v
N

>

O V
N
U W
^N x
F. 41	 V)



s

s

^ •w

X

8

- 112 -

r^

DORNIER
Dormer System GmbH

- orbit

Instruments pointing ( optics, RF, etc.)

9	 - data rates ( RF-sensors)

electrical power MIDAR, Radars)

RF-generation and susceptibility

For earth resource operational missions, where global coverage

is required, highly inclined orbits (up to 90 deg) are required.

The payloads will comprise small to large microwave antennas

and/or passive or active ( large LIDAR) optical systems. Point-

ing regc .irements are today in the region of 1/10 of a degree,

future large antennas may reduce this down to about 1/100 of

a degree.

3.4	 Environmental Observations

The major objectives of the environmental observations are

- atmospheric and ocean observation to further understand-

ing of

• solar terrestrial interactions

• effects of man on environment

• effects of natural phenomena on environment

- Contribute to the development of global environmental

models.
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The major design drivers are

- global coverage (highly inclined orbit)
3	 - broad spectral coverage (multisensor measurements)

- Cross Track Scanning, Viewing (multidirectional measure-

ments)

- High data rates, (up to 120 MBPS)

- very large antennas

The instruments may be single antennas or grouped on platform/

pallets/bridges. The instruments comprise passive remote sen-

sors, active stimulation by lasers, plasma wave injection fa-

cilities, electron beams and powerful radars. Typical charac-

teristics for some payloads are shown in table 3.4-1. Early

missions at low inclinatiDn may include missions for man sup-

ported equipment development missions.

The major design driving requirements are

- Orientation & pointing

- !'ata rates
M

- Power

- Orbit range.

i

0

0
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J N W p
fG U ^ ^ ^a ^ O
a c ^. x
I-. a
y —

Qi
Z_ —

h ^ ry ^ = tD
Z C M1 x
C a

W
NOO	 ....

W ? W ^ O ^
W W ° a ZQ ^

ZO
a V en mW y Y O q C1 `

we
C
LL• ^ M1 M M1 O N f'13 v
0

p ^ ... r .- .. ry
a

2O
H ^ p p O q

? a r: A a ¢ N m
UZ

W
C

O
~'

O O O o } O NYF.• ^...
O
Q

m
M1

O
Q

o
I

Z
a

p
Q

M1
NJ n

a

N qO OO q O q O eN p
a Y o ry Oe Ory O

u>
O
ry

p
W

W
H

S
a3

^ O t I
4 OJ J ^ Z
L N U N ^

C
4.1 W
O.^ W V

V v O -• C
S C U '^ O N ^ 4 WWv 4 Q C T w Y W ^ WO J ^ N i N o f̀.

- 114 -

NCCCJ
C
C-

CD

J
C
F
Z
W

O
C

W

J
CU
CL
L
}
1-

iC
M
wJCCF-

_	 L



iP
,^'^'^,

 •,.., v,^x-c,-,.v*• 1'-+_,,.	 4.^, ry^	 „—. .- ,.- ._.:.	 r	 z	 .- ...	 ....	 e	 s /^ F,r_.	 f ^.	 -	 grnTtam

J6

"r

,
DORMER
oomier System GmbH

3.5	 Communications

The space station mission of interest with respect to commu-

7A

	

	 nications and pointing systems will be the technology deve-

lopment for advanced communications technology. The space

stations large size, high prime power supply, availability

of man to observe, and the recovery of the hardware makes

it ideal to employ it as an in situ laboratory.

®	 The major areas of interest are

.a
large deployable antennas

- Laser communications

- Space borne Interferometer

- millimeter wave propagation.

Larger antennas, Laser communications, interferometer etc,

require all higher pointing performance than delivered by

the Space Station itself.

M tP

s
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3.6	 Recuirements Summary

3.6.1	 Attitude Poirrting[Stability[Mass
----------------

Astrophysics	 (ia^c^

Three major groups can be identified

1.	 Pointing accuracy	 1 arcmin down tc Q71tSec-

®	 high stability At ctl-,UN^?-^^^	 k
U	 !

m	 Most payloads are in the range from 200 to 800p (Cq 104+'
some are heavier)	 U	 r5r

a

2.	 Pointing accuracy	 in the range of Q,( Qytl-Se-r— r
1	

.i

Most payloads are in the range from 10 to 100	 04--1

a few up to 270 kg)

3.	 Pointing accuracy 	 greater 1 deg	 v.

Payload mass	 10 - 150 kg

Earth Remote Sensing/EnvironmentaZ Observations -)--(e.10i .17- C—

AA broad spectrum of sensors is considered

- RF

- optical

with pointing requirements of 0.05 to 0.3 deg

Payload mass e.g. LIDAR	 up to 3500 kg

RF. Optical	 up to 150 - 200
y=rV

o
(one payload up to 10000 kg, but

V

o,&1^

720 arcmin pointing accuracy)

z

I	 ^

`

I	 o

-	 116	 -
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Communications

Large antenna pointing
	

<< 0.10

Major pointing constraints
	

low payload eigenfrequencies

3.6.2	 Altitude/Orbit_Limitations

- Altitude

Nearly all missions can be satisfied by the 400 to 600 km

circular orbit, only some earth viewing mission prefer al-

titudes un to 1000 km

Inclination

The inclination tequirements can be s=nmarized in three

groups

• Astrophysics and low "g" prefer 28.5 deg inclination

• Earth viewing missions which can be satisfied by'

57 deg

• Earth viewing missions requiring global coverage

(i = 90 deg)

3.6.3	 Mission -Duration---------------

The potential benefit of the Space Station lies in the capa-

bility of supporting scientific research by man's presence

of more than 7 to 30 days.

Most missions (e.g. Astrophysics, Earth observation) require

rrission duration in the region of months and years.

- '17 -

^`a
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The useful ]if.^ of the payloads can be increased by mainten-

ance, rep:,c::,0shment of,consumables and by the update or

changeout uk new technology equipment (e.g. smarter sensors

etc.) thus increasing the utility of the observatories

through longer on-orbit life.

0	 3.6.4	 Data Management_8 Transfer

High data rates will be required for

- astrophysics payloads (< 50 MBPS)

- environmental Instruments (< 120 MBPS)

(e.g. RF equipments)

3.6.5	 Power

The missi-ns, related to the pointing system, with highest
a	

requirement for electrical power will be the LIDAR and RF

missions with up to 25.kW.

Peak as •.i physics requirements are 6.8 and.3.4 kW/payload.

A variety of payloads of less than 1 kW power demand exists.

0

^a
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3.6.6	 Heat—Rejectl.on

The requirements for heat rejection will ly in the same mag-

zanitude of the power, demand. Special effort is required for

RF and optical amplifiers active cooling.

	

®	 3.6.7	 Cleanliness

Contamination control for the sensor systems is a stringent

requirement (e.g. IR-astronomy, x-ray astronomy). This may

cause problems with a manned space station (e.g, local at-

mosphere cabin leakage or other sources), an accommodation

of the affected payload on a space platform may be preferred.

	

3.6.8	 Man OperatedFunctions

Manned operation & resource provisoning of station-at-

!	 tached telescopes

Assembly & checkout techniques

- In rare cases, even, it is conceivable that the investi-

gator could actually be sent to the Space Station to per-

'A

Pi	

form his experiment

- Man conducted development of station mounted sensors,

analytical & automated techniques

- Manned development of station-attached advanced systems

(communications)

r
I
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3.7	 Space Station Constraints Summary

- Preferred space station orbit

• Altitude	 400 - 500 )an

• Inclination	 28.5

Space Station Characteristics

o Moments of Inertia	 >> Shuttle MOI

o Space Station 1. Eigenfrequency about 1 Hz

(Shuttle/Pallet first eigenfrequency about 4 Hz)

o Local angular deflections at first eigenmode H

large with respect to high pointing requirements

o Local disturbances due to actuators

mr,a motion

RVD events

- Space Station attitude reference data can be delivered

to pointing subsystems.

0

s
- 120 -
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4.	 POINTING SYSTEM ACCOMMODATION ON THE SPACE STATION

	

4.1	 Accommodation Analysis

The pointing stability requirements versus the mass of poten-

tial European Spacelab Experiments are summarized in Fig. 4.1-1.

The mass/accuracy ranges of IPS and the PHM are indicated, a

wide range of experiments can be covered by these. two systems.

AN

V 0

I

kg payload mass

10t	
LOW	 I MEDIUM I HIGH	 VERY HIGH

I	 I	 1

•	 I	 1	 I	 1
I	 I	 1	 •	 I

777	 Ir	 I	 r	 I
{ v103 	T 	 • r i IPS RANGE

b	 • { IT	 I

102	
PHM RANGE	 UP_	 I T	 • I •	 I

°	 ^;GppDEU	 I	 i	 I

t	 PHM°	 I •	 I	 {

j ••	 \ RANC'V•	 I	 1	 r	 I°	 is•	 .	 I	 I	 1ytis^4^.,.   	 ^
10 4	103	 102	 10	 1.0	 01

accuracy orc sec

Fig. 4.1-1:	 IPS and PHM stability and payload range
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4.1.1	 IPS

Dynamiaa

- Orbiter

• Orbiter Limit cycle 	 + 0.1 deg/+ 0.01 deg/sec

• Lowest Orbiter/Pallet 	 t Hz

Eigenfrequency

o Disturbances	 Man motion

Thruster firing

- Space Station

• Limit cycle	 TBD

• Lowest Space St :ion	 ca. 1 Hz (expected)

Eigenfrequency

• Lowest eigenfrequency	 << 0.1 Hz

of Solar Array System

• Disturbances	 - Man motion

- Distributed actuators

(e.g. thrusters)

- RVD activities

- Moved parts (RMS etc.)

I
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Rigid body angular accelerations of the Space Station due to

disturbances and attitude control are expected to be lower
17	 in amplitude and frequency.

The disturbances are depending on

a) rigid body rates & angular accelerations

b) distance of IPS mounting location from Space Station

e	 C.O.M.

C)

	

	 local translatorial accelerations and angular deflections

due to Space Station flexibility.

to a)

Rigid b-)dy rates and angular accelerations are expected to be

much lower than for the STS due to the Space Station high mo-

ments of inertia.

to b)

IPS performance simulations have been executed with a distan-

ce of about 1.6 m from C.O.M. For the Space Station a distan-

ce up to 10 - 15 m seems to be more realistic. Great attention

has to be payed to the fact that resultant disturbances (lower

rates, angular accelerations but much greater distances) are

in compliance with the IPS-torquer capabilities (30 Nm)

to c)

Space Station flexibility

The first space station eigenmode of about 1 Hz"requires at

a first glance a lowering of the IPS bandwidth to less than

0.5 Hz. This is valid if the assumption can be m- , le that the

angular deflections due to the space station first eigenmode

a

6

JI
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are negligable. An IPS performance similar tc the IPS/Orbiter

configuration may be achieved, a quick analysis has shown that

the IPS can handle a larger but slower disturbance better,

than it can handle a smaller but faster disturbance.

If the local angular deflections of the first eigerunode have

to be compensated by the IPS, the controller bandwidth has to

be increases to 2 to 4 Hz, lying than within the Space Station

structural frequencies. So the lower structural frequencies ha-

ve to be notched in the controller.

The controller structure will be different to the existing

one. Modifications which can improve the situation are e.g.

decoupling (e.g. magnetic bearing) and control by inertial

systems (Reaction wheals, CMG).

Much more investigations have to be performed for stability

assessments. The Space Station FEM has to be used for detai-

led analysis. Interaction is also expected with the payload

model. An adaptive controller is recommended due to space

station and payload changing characteristics. The feedfor-

ward loop (accelerometers) is recommended not to be used.

Operations

Task sharing is performed between CDMS and DCU. For the Space

Station an additional processor is recommended, it has the

.s
following advantages

- required for adaptive controller
- increase autonomy

- increase flexibility

g
c 	 ti
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Safety

Reduced safety requirements are expected, because no reentry

is planned (no cargo bay door closing constraints).

Power arbG Data•

- the payload support power can be upgraded according to
®	 future payload requirements.

- the payload data lines are according to RAU, CDMS, STS

capabilities.

Payload mass

- the IPS has been designed for payloads from 200 to 7000 kg,

this seems to fit also with most of the space station can-

didate payloads.

Improvements for IPS
MR 0 - better Gyros (noise, drift)

- separr.ce Sun-Sensor

- wide FOV Acquisition Sensor

- on-board alignment calibration

between IPS and space station inertial measurement unit

reduces initial IPS AMA attitude error which relieves

from the wide FOV acquisition sensor after first acqui-

sition after launch

Rwe

S	 ^
0

- 125 -



IT

CC)P",ER
De.wrw Syomm GmbH

- additional control-loop based r.ot on gyros, but on gimbal-

resolvers for pointing relative to Space Station (e.g. du-

ring Space Station rotations or during IPS stowage/deploy-

ment or parking, back-up mode for loss of gyros) 	 addi-

tional processor or RAM extension

- improvement of command-capability from the Experiment

Computer (e.g. automatic sequencing)

- Improvement of bright star-triplet acquisition procedure

(- SW) for bright stars search

- sun-sensor as fast attitude-sensor for fast loop control

and not for attitude determination filter (ADF)

ADF works only for roll-attitude-and not for LOS in so-

lar pointing

different AMA-concepts for

stellar

solarl pointing

earth	 I1

- new/additional scan profiles

• raster-point scan (store-and-go)

• sin/cos scan

• etc.

- earth sensors in control-loop (landmark, horizon-sensors)

Ay
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4.1.2	 PHM

In general, the PHM is for hemispherical coverage for

- low to medium 2 axes pointing and stability requirements

for

- small to medium sized payloads,

®	 requiring from the Space Station in its non-autonomous opera-

tion mode the

- state vector.of the Space Station to calculate a quasi-

inertial attitude for inertial pointing or earth track-

ing.

Possible PHM users in the field of Astrophy sics are smaller

experiments running in parallel with advanced large astrophy-

sical payloads who want to maintain independence and flexibi-

lity from those experiments.

Possible PHM users in the field of Environmental O bservation

,p	are all kinds of antenna- or telescope-based experiments fit-

ting the PHM capabilities.

The PHM can be upgraded without problems by use of dedicated

sensors (Gyros, Optical Sensors). With the demonstration mo-

del a pointing accuracy of 0.5 arcmin was achieved with a

Dornier off-the-shelf sun sensor.

No accommodation problems exist with payload power and data

requirements.

The PHM controller bandwidth is nominally between 3 to 4 Hz.

No interaction (as for the IPS) is expected between PHM and

Space Station.

e
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4.1.3	 APM

Typical application would be in the fields of:

- the Space Stations own infrastructure such as TM/TC an-

tennas for up-downlink purposes,

- antenna pointing for experiments with small, light weight

antennas, and

®	 - surveillance operations by supporting a (video) camera.

The APM can accommodate payloads with the performance and in-

terface data as given in sect. 2.3.

4.2	 Identification of Design Improvements

4.2.1	 IPS

.sr
Improvement of performance

o Adaptive/self optimizing control

o Modified controller/actuator concept

Updated distributed microprocessor system

o more flexibility, more autonomy, intelligence dis-

tribution

Technology improvements

o Sensor improvements, smart sensors (CCD/CID sensors

etc.)	 i

o decoupling from Space Station or carrier e.g, mag-

S
neric bearings

$	
4

e
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o cryo or fluidic connections to the payload

- improvements with respect to maintenance/operations.

	

4.2.2	 PHM

- Accommodation of payload dedicated sensors (inertial,

sun, earth reference)

- Development of standardized interfaces (mech. and data)

- Use of dedicated processor

- Increase slew rates

	

4.2.3	 APM

- Accommodation of larger antennas

- more powerful motors to increase slew rates

s

4.3	 Pointing Systems Accommodations Summary

Most of the considered payloads of section 3. can be accommo-

dated by IPS, PHM and APM. Additional investigations primarily

have to be done with respect to:
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IPS

IPS/Space Station'dynamics

o definition of disturbances

o set up a coupled Space Station/IPS finite element

model

o analyse modified controller concepts

o perform simulations

®	 - IPS Processor Accommodation

• S/W Requirements

• Task sharing between DCO, new processor and CDMS

- Analysis of future sensor developments

PEM

- Accommodation of payload dedicated sensors

- Development'of_standardized interfaces

APM

Analyse accommodation of larger antennas

All three systems seem to be very well suited to be used as

standard equipment for future Space Station missions.

^Y	^!
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7.4.9 External Radiators - Dornler System GMBH
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Technical Note

ternal radiator concept for the core

module of the Space Station

- Boeing design -

1.	 Introduction

The radiator concept, described in this technical note, is based

on the requirements of Telex 9424 from 83 -02-02 from Boeing and

is part of the cooperation between Boeing and Dornier System with-

in the 'Space Station Study'. The requirements mentioned are de-

rived from the overall core module concept of the space station

designed by Boeing. The radiator needs to be assembled in space,

the individual radiator modules are stowed in up to 4 packages

which are 1,75 m long by 0,5 m square. The modules will be at-

tached to a central freon 21 loop system.

Main requirements :

• Qmax 25 KW

• TRad - 323 K	 280 K

• Packages dimensions : 4 x 1,75 x 0,5 x 0,5 m

o No sun-shielding possible

r
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The overall design consists of these radiator modules which pos-

sess the following main design features :

• Heat dissipation on the -.odules by means of heat pipes.

• Module seize 1,7m x 0,5m.

• 2 Heat pipes per module.

• RaW ation to both sides.

• The heat pipes may be re placed by VCHP's (gas-stabilized heat
pipes) for temperature control reasons.

o Heat pipe and radiator sheet material is an aluminium alloy.

Problem areas .

- Heat pipe performance.

- Panel thickness and possibility to stow.

- High connecting area to central loop.

- Attachment mechanism of the panel modules.

- Low weight.

- Low cost and low development risk.

- Lifetime. ( 10 years).

The design is based on the state of the art technique so that no

development risk and minimized manufacturing and design costs exist.

6
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HP1

rad. shield

/

4	 1,7 m	 -

I

H
central

loop 40 mm

Fig. 2

Fig. 1

HP2

HP1

HP2

Fig. 3

Fig. 1 shoes the radiator module and the heat pipe routing.

Figs. 2 e 3 show two possibilities for the heat pipe contact

to the central loop.
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The neat pipes must possess a nigh contact area to the central

freon- loop in order to minimize the tem perature drop and the

radial 'neat flux densit y .	 lonq coupling area has therefore

been designed. For weight reasons the radiator consists of a

single aluminium plate, a honeycomb construction will not be

necessary because of the stiffness of the heat pi pe profiles

which possess integrated fins (see Fiqs. 4 & 5 - the profiles

already available at Dornier). The heat pipes can be welded (on

the fin) or bonded with an adhesive to the aluminium radiator

plate.

3.	 Lay-Out Calculations

Radiated heat : 
Q
max - 450 W/m2

Q
min = 150 W/m2

Assumption for 
Q
min : 508 of the surface area (one side) in

sunlight, TRad - 280 K; Red. efficiency

included.

Assumption for 
Q
max : no sun; TRad = 323 K; Rad. efficiency

included.

Maximum heat radiation per panel

A
max = 450 W/m2 . 1,7m . 0,5m . 2 (sides) = 765 Watt

Q
min = 150 W/m2 . 1,7m . 0,5m . 2 (sides) = 255 Watt

Maximum heat load on one heat pipe : 385 W

Minimum heat load on one heat pipe : 130 W

Desired heat pipe performance : 400 Wm

Material combination : Aluminium/ammonia of the heat pipes.

6
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The a..ready existing (and space -qualified) profile DS-WR 10 pos-

sesses a performance with ammonia as heat carrier of about 300 Wm

(open axial grooves). Therefore a heat pipe witn a slightly higher

performance must be developed or the heat pipe routing according

to Figs. 1 and 2 must be provided with 2 heat pipes accordingly.

This point will not be a basic problem area.

Radial heat flux :

Contact area length : 40 cm

width	 2 cm

Q kadial max = 805 w = 4,8 W/cm2

A heat flux density of 6 W/cm 2 has already been qualified for heat

pipes in	 the L-SAT programme. The max. temperature drop is about

5 K.

Weight : o Weight of one heat pipe with integrated fin (according

to DS-WR 10) : = 0,350 Kg/m

• Weight of 2 heat pipes on one Module : 1,5 Kg

• Weight of the radiator panel : 3,5 Kg

(surface : 1,7 m x 0,5 m)

• Connection parts : 0,250 Kg

• Total weight of one module : 5,250 Kg

6
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4.	 Overall arrangement of the radiator

The radiation of one module without sun is about 600 Watt (average

value) and about 425 Watt with full sun on one panel side (average

value). Therefore a heat dissipation of 25 KIJ can be reached with

a number of modules between 42 and 59. The arrangement can be done

according to Fig. 6. The attachment of 60 modules (30 double mod-

ules) leads to an attachment length of 15 m if both sides of the

loop are provided with these radiator modules (Fig. 6). The total

length of the central loop in the radiator area will be about 20 m.

5.	 Radiator packages

Before assembly the radiator modules have to be

ages with 1,75 x 0,5 x 0,5 m each. Because each

an outer shape of 1,75 x 0,5 m, the modules may

of less than 3,3 cm (60 modules). A solution is

7. Here we reach about 20 modules per package o

packages.

stowed in 4 pack-

module possesses

have a thickness

sketched in Fig.

r 80 modules in 4

6.	 Redundancy aspects

Each module possesses a certain redundancy because a failure of

one heat pipe does not mean a failure of the entire module but a

certain temperature drop of the module and therefore a reduced

amount of radiation heat.

A failure of one module does not influence in any way another mod-

ule. Nevertheless, some spare modules may be connected to the cen-

tral loop for redundancy reasons.
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Without any great effort in designing and manufacturing, such a
radiator module may be provided with gas-stabilized heat pipes

(VCHP)	 so that these modules serve not only for radiation but also

for the temperature stabilization without any active electrical

system such as a heater or controller.

The most critical part is the central cooling loop system itself

(no redundancy) and possibly the attachment of the individual mod-

ules.

7.	 Overall Configuration

A conce ptual layout of a modular heat pipe radiator installed

on the Space Station solar array boom was envisaged (Fig. 8).

The central loop system is attached to the boom and the indivi-

dual radiator panels are mounted to the central loop by means

of e.g. a manipulator system. In case of damage to a panel

it can easily be disassembled and replaced.



i

7i-J' -V

DORNIERSYSTE M
Participation in

RASA
Space Station Study

Doe.Nr.: TN-SSS-DS-002

Issue Nr.: 1
Date:	 24.03.83

Page 12

ORIGINAL PAGE 18
OF POOR QUALITY

6

^I



► ti 1'

Participation in	 Doc.Nr: TN-SSS-DS-002
DORNIER NASn 	Issue Nr:.1SYSTEM	 :	 24•D3.83Space Station Study 	 Date

r^

Page 13

B.	 ::ecnanical Attachment of Modular Radiator Panels

Several possible attachment mechanisms have been studied and a

preliminary concept (Fig. 9) was selected.

Following major design features were considered:

- Mounting by means of manipulator,

- Good contact between thermal saddle and central loop,

- Attachment of panels to both sides of central loop,

- Capability to remove a panel if required, and

- Maintaining envisaged envelope of foreseen packaging concept.

In the selected concept (Fig. 9) the radiator is moved to the

central loop10 by the manipulator, and then slided loi:gitudi-

nally Q2 along the central loop to insert the attachment plates

into the housings mounted on the radiator panel.

The shapes of the central loop plates and the radiator panel

housings (Fig. 10) have been selected such as to ensure a good

contact between the thermal saddle and the central loop pipe

by means of a positive pressure between the two, when the

radiator panel is installed. Compatibility of the materials

used for easy insertion and especially for removal after con-

tinuous contact must be foreseen.

A locking device to prevent longitudinal movement of the

panels has been forseen (Fig. 11). The locking device is

actuated by the manipulator arm when holding the panel for

installation or removal.

.c
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5.2 Interface Requirements/Standardization

The principal interfaces for the four basic classes of User and Transportation Vehicles or

Facilities as summarized in Figure 5.2-1 were examined.

The objective was directed toward determining the services and configuration driver

influences upon the Space Station system.

Three principal influences were defined.

(1) The requirement for a standard docking/berthing interface.

(2) OTV hangar facility (unpressurized).

(3) Propellant storage and transfer.

5.2.1 Module to Module

The nature of a Modular Space Station concept dictates a requirement for standard-

ization of at least the module to module interfaces and the berthing and docking

interfaces. This allows the highest operations utility since any module may be placed

either permanently or temporarily at any port location. Table 5.2-1 summarizes the

basic interfaces requirement areas for Space Station Transportation and User Interfaces.

Programmatically, greater flexibility is gained in the growth configurations by being able

to change the planned growth sequence while not being constrained to a particular

sequence and distinct module positions. This standard interface is not easy to achieve

and represents a complex mechanical, electrical and fluid interface. During the SOC

study, Rockwell examined the orbiter to Space Station interface and the module to

module interface to basically determine It the 40 inch hatch allows enough peripheral

area to contain the mechanical and electrical connections. This is shown in Figure 5.2-2.

In the Needs, Attributes and Architecture Study, Hamilton Standard analyzed a Space

Station buildup sequence to determine the equipment and requirement growth as the

space station is assembled. Figure 5.2-3 shows the interconnect arrangement at the end

of a six STS flight buildup operation. This analysis indicates that from an ECLSS point of

Y,

d
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TABLE 5.2-1 USER do ON-ORBIT TRANSPORTATION INTERFACES

OTV/SPACE STATION INTERFACE

o HANGAR
o	 ELECTRICAL POWER
o	 ACTIVE THERMAL
•	 SERVICING do CHECKOUT
•	 EVA/IVA CREW SUPPORT
o	 MAINTENANCE
o	 COMMUNICATIONS do TRACKING
o	 GUIDANCE & NAVIGATION

TELEOPERATOR MANEUVERING SYSTEM (TMS)

o STRUCTURALINTERFACE
o	 ELECTRICAL POWER
•	 SERVICING do CHECKOUT
•	 EVA/IVA CREW SUPPORT
•	 MAINTENANCE
•	 COMMUNICATIONS do TRACKING
•	 GUIDANCE do NAVIGATION

PLATFORMS do FREE FLYERS

o	 STRUCTURALINTERFACE
o	 ELECTRICAL POWER
o	 ACTIVE THERMAL
o	 EVA/IVA CREW SUPPORT
o	 MAINTENANCE
o	 COMMUNICATIONS & TRACKING
o	 GUIDANCE do NAVIGATIOn

ATTACHED MISSION FACILITY (PRESSURIZED)

•	 STRUCTURALINTERFACE
•	 ELECTRICAL POWER
o ACTIVE THERMAL CONTROL
•	 ECLSS
•	 IVA CREW SUPPORT
o	 ORIENTATION

i.
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view, a standard interface concept is viable and should be pursued further. A greater

depth of study across all subsystem areas is required to define and size the interface.

The next phase of the Space Station study should stress the definition of the design of

this standard interface port. Involved is not just the mechanical /structural layout but

the maintenance aspects for the fluid and electrical disconnects and data ports. The

ability to replace and leak test the hazardous fluid disconnects while confining the fluid

lines and disconnects to be isolated outside the life support volume is a desirable

requirement. This task is complicated further by the requirement for compatibility with

the shuttle docking interface and its attenuation features. Some work was done in early

1970's Space Station studies and in the SOC study. Some of that work may have

application.

The requirements for this key standard interface is as follows.,

(1) It shall be compatible with the Space Station shuttle docking interface.

(2) The standard interface shall have reserved locations for each standard component.

(3) If necessary, it would be permissible to retain a capability to rerig an Interface

within reserved locations for components.

(4) It is 6esirable to operate the hazardous fluid lines outside the life support volume

with capability for maintainable and test by an IVA crewmember.

With this concept, it would not be necessary that all interfaces carry the 100% hardware

standard interface. It would be required that the interface be easily convertee to a

standard interface. With this modified requirement, it would relieve considerable system

cost pressure while retaining the standard interface flexibility.

This concept variation would not be free because it would involve storing several

berthing port/docking port hardware sets on orbit ready for reconfiguration as well as

tools and the crew training for performing these tasks.

As an aid to the designers, a mockup should be initiated to aid the design and be updated

at the end of the study to illustrate the selected design and its utility for maintenance

and rigging.

fk
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5.2.2 Operating Interfaces

The Space Station system operating interfaces are divided Into two classes, (1)

Transportation and Servicing Systems and (2) l aser Elements as defined in Figure 5.2-5.

5.2.2.1 Transportation and Servicing Systems

The STS System is the logistics support of the Space Station System. In this role it

delivers the logistic module on a regular basis to resupply the basic needs of the station

and crew, it delivers construction equipment and additional modules in support of the on-

orbit system growth. Additionally, It delivers user payload elements for installation on

or servicing by the space station. In this role It prefers several docking locations on the

configuration to allow maximum use of the Orbiters manipulator in berthing its cargo on

the Space Station or parking it externally. In general, equipment transported to be

installed inside the pressurized space station areas will be transported in the logistics

module. Berthing and docking interfaces and their proximity to one another is important

to the up and down transportation system.

The shuttle docking ports interface locations are dictated by approach path clearance,

plume impingement limitations, and configuration orientation and control considerations.

Additional operations considerations are involved in the delivery and return of station

equipment, modular elements, construction equipment, and logistics module resupply.

The ability to offload and load the orbiter cargo bay efficiently depends on the operating

relationship between the orbiter manipulator aid the Space Station manipulator in order

to efficiently and safely berth or locate the zargo elements on the Space Station and

effectively reload the orbiter with down cargo elements.

The growth Space Station progresses into operations supporting Ground Launched and

Space Based OTV's. These operations introduce to the system the requirement to base

large quantities of propellants in orbit, transport propellants to orbit and transfer of

propellants from the orbiter to the on orbit storage tank and transfer of proellant to fuel

the OTV's in the course of GEO OTV operations. The interfaces become predominately

external to the Space Station pressurized volume. There are propellant storage tanks,
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hangars for OTV assembly, checkout and protection and areas for storage of equipment

and OTV payloads.

The Space Station subsystem support interface for the on-event transportation and

servicing systems is not over demanding and involves support from electrical power,

thermal, navigation & tracking, and communications as shown in Table 5.2-1.

5.2.2.2 User Elements

The user elements are defined as all of those useful payloads that require Space Station

as an experiment platform, a servicing station, or a repair station and reservice station.

These user elements can be installed in the Space Station in available laboratory or

equipment space pressurized or unpressured or be delivered by the shuttle orbiter as a

pressurized module installed on a berthing port.

The third class of user elements is unmanned platforms or free-flyers delivered by the

shuttle orbiter and parked or berthed temporarily while servicing and checkout

operations are performed under control of the Space Station crew.

These three classes of user elements require radically different interface support from

the Space Station.

The internally installed user elements require structural mounting, electrical power, data

management and an occasional space station reorientation.

This second element class, the mission dedicated module requires a standard berthing

port for a semi-permanent location and becomes an integral part of the Space Station

since it is pressurized and requires considerable IVA crew support. Subsystem interface

support is supplied in the form of Electrical power, ECLSS, communications, data

management and active thermal control. In performance of its mission pointing and

pointing stability is usually required supplied by Space Station short term or long term

orientation.

y.
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The third element, Satellite Platforms and Free-Flyers utilize the Space Station
principally as a staging area. Upon delivery to orbit by the STS, a free-flyer is parked or

berthed on the Space Station, serviced with propellants, checked out and launched where
its operations are monitored by the station periodically or continuously as required. The

free-flyer uses the Space Station as its logistics base and periodically requires revisits to

the Space Station for servicing and replenishment of consumables and replacement of

instruments and equipment in an IVA/EVA maintenance mode.

The Space Station interface is Involved in subsystem support of electrical, power,

tracking, propellant transfer, active thermal, and navigation and communication. Crew

support is heavily involved In IVA checkout and servicing tasks and EVA servicing and

maintenance tasks. The Space Station structural and mechanical interface becomes one

of supplying berthing ports and hangar work locations suitable for maintenance, transfer

of propellants and checkout and monitoring of subsystems by the crew.

5.2.3 Orbital Transfer Vehicle Servicing

The Growth Space Station will serve as a space servicing base for ground based and space

base orbital transfer vehicles and their payloads principally supporing GEO Satellite

Operations from LEO. These vehicles require the following Interface and services.

•	 Propellant Storage

•	 Assembly/Storage Hangar

•	 Electrical Power
o	 Active Thermal
•	 Payload C/O do Servicing/Storage

•	 IVA/EVA Crew Support

•	 Vehicle Assemble, Checkout and Servicing

The center of this basing concept is the unpressurized hangar and propellant storage and

transfer capability. The Boeing concept approach deviates from that proposed by the

Space Operations Study being performed by MDTSCO in these areas.
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A separate launch and fueling platform is not recommended because of its hi@h cost

implications. The pressurized hangar has not been adopted because of its complexity,
potential failure modes and associated high costs.

5.2.4 Conclusions

There is an early need to baseline interfaces In two principal areas:
(1) Berthing/Docking Ports
(2) Hargar Servicing/Maintenance/Checkout

5.2.4.1 Standardized Berthing/Docking Port

Emphasis should be placed on defining the physical requirements for a standardized

berthing/docking port. The objective would be to conceptually design a standard

berthing/docking port and derive the requirements for the following subsystems at this
interface.

Structures/ Mechanical

Docking /Berthing

Electrical Power

Thermal Control
ECLSS

Communications

Data Management

The conceptual designs should test the feasibility of developing a standardized fully

maintainable interface that can meet the safety criteria involved.

5.2.4.2 Hangar Servicing/Maintenance/Checkout Interface

.The Hangar Servicing/Maintenance/Checkout interface is a predominant factor in the

arrangement architecture of the growth Space Station. It is important to the initial

station configu, ation to know the growth restraints. It is recommended that this area of
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operation with JTV's, Free Flyers, and Platforms be explored In enough detall to define

the basic requirements and to estimate a realistic traffic model to derive the number of

maintenance/service stations required. The objective would be to develop a greater

understanding of the Space Stations architecture sensitivity to this Important growth

Interface area.
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SUMMARY OF STUDY TASKS

The study accomplished 3 major objectives:

1. Identified, collected, and analyzed science, applications, commercial, national security,

technology development and space operations missions that require or benefit by the

availability of a permanently manned space station. The space station attributes and

characteristics that will be necessary to satisfy these requirements were identified.
2. Identified alternative space station architectural concepts that would satisfy the user

mission requirements.
3. Performed programmatic analyses to define cost and schedule Implications of the various

architectural options.

Figure A-1 shows the summary task flow that was used to accomplish these objectives.

In Tasks 1.1 thru 1.5, missions were identified, screened, and their needs and benefits analyzes.

Mission investigators were assigned to each of the mission classes (science and applications,

commercial, technology development, space operations, and national security). In general,

these investigators (and their supporting subcontractors) contacted potential users and analyzed

available data to characterize potential mission needs. They worked In conjunction with

designers and operations analysts to characterize the potential payloads and operational

interfaces. In Task 1.6, the missions were allocated to orbits, and were assigned to platforms,
free-flyers, or space stations, as appropriate. During Task 1.7, the various missions were
integrated into time-phased mission models. The time-phasing took into account available
budgetary constraints, priorltization, time sequencing constraints, and transportation avail-
ability. A computer program was used to process the integrated time-phased mission modal to

derive a year-by-year shuttle manifest schedule. The computer program was also used for Task
1.8 to derive the integrated time-phased space station accommodation requirements, I.e., power

and thermal demands, berthing requirements, and crew skills. These mission analyses have been
reported in Volume 2 of the final report.

Also included in Volume 2 are the results from Task 1.10. In this task, some of the primary
commerical opportunities were examined to define the economics of the use of a space station

and to define the benefits of doing business on a space station relative to doing it using the
shuttle.

rs"
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In Task 1.9, mission requirements and space station design requirements were identified. An
aggregate of these requirements are reported in Volume 3.

Volume 4 of the final report contains the results from Tasks 2.1, 2.2 and 3. Specifically in Task

2.1, a methodology for defining realistic architectural options was established. This method-

ology was applied using the requirements def!ne^ in the previous tasks. From this, we have

created 3 architectural options and have shown some reference space station configuration

concepts for each architectural option. Task 2.2 was performed to obtain analysis and trades of

some of the principle subsystems, i.e., data management, environmental control and life

support, and habitability. Task 3 provides the analyses of programmatics and cost options

associated with the concepts derived during the study.

A cross reference guide to enable locating study topics within the volumes and volume sections

of the final report is presented in Table A-1.
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George Reid
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LIST OF ACRONYMS AND ABBREVIATIONS

AAP Airlock Adapter Plate
AC Alternating Current
ADM Adaptive Delta Modulation
AM Airlock Module
APC Adaptive Predictive Coders
APSM Automated Power Systems Management
ACS Attitude Control System
ARS Air Revitalization System
ASE Airborn Support Equipment
BIT Built in Test
BITE Built in Test Equipment
CAMS Continuous Atmosphere Mr.,itoring System
C&D Controls and Displays
C&W Caution and Warning
CCA Communications Carrier Assembly
CCC Contaminant Control Cartridge
CCTV Closed Circuit Television
CEI Critical End Item
CER Cost Estimating Relationship
CF Construction Facility
CMG Control Moment Gyro
CMD Command
CMDS Commands
CO2 Carbon Dioxide
CPU Computer Processor Units
CRT Cathode Ray Tube
dB Decibels
DC Direct Current
DCM Display and Control Module
DDT&E Design, Development, Test, and Evaluation
DOD, DoD Department of Defense
DT Docking Tunnel
DM Docking Module
DIMS Data Management System
DSCS Defense Satellite Communications System
ECLSS Environmental Control/Life Support System
EDC Electrochemical Depolarized CO2 Concentrator
EEH EMU Electrical Harness
EIRP Effective Isotropic Radiated Power
EMI Electromagnetic Interference
EMU Extravehicular Mobility Unit
EPS Electrical Power System
ET External Tank
EVA Extravehicular Activity
EVC EVA Communications Systei i
EVVA EVA Visor Assembly
FM Flow Meter
FMEA Failure Mode and Effects Analysis
ftc Foot candles
FSF Flight Support Facility
FSS Fluid Storage System
GaAs Gallium Acsenide
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LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

b

r

GN&C Guidance, Navigation and Control
GEO Geosynchronous Earth Orbit
GHZ Gigahertz
GPC General Payload Computer
GPS Global Positioning System
GSE Ground Support Equipment
GSTDN Ground Satellite Tracking and Data Network
GFE Government Furnished Equipment
GTV Ground Test Vehicle
HLL High Level Language
HLLV Heavy Llft Launch Vehicle
HM Habitat Module
HMF Health Maintenance Facility
HPA Handling and Positioning Aide
HUT Hard Upper Torso
Hz Hertz (cycles per second)
ICD Interface Control Document
IDB Insert Drink Sag
IOC Initial Operating Capability
IR Infrared
IVA Intravehicular Activity
JSC Johnson Space Center
KBPS Kilo Bits Per Second
KM, Km Kilometers
KSC Kennedy Space Center
Ibm Pounds Mass
LCD Liquid Crystal Display
LCVG Liquid Cooling and Ventilation Garment
LED Light Emitting Diode
LEO Low Earth Orbit
LiOH Lithium Hydroxide
LM Logistics Module
LPC Linear Predictive Coders
LRU Lowest Replaceable Unit
LSS Life Support System
LTA Lower Torso Assembly
LV Launch Vehicle
Ix Lumens
MBA Multibeam Antenna
mbps Megabits per second
MHz Megahertz
MMU Manned Maneuvering Unit
MM-Wave Millimeter wave
MOTV Manned Orbit Transfer Vehicle
MRWS Manned Remote Wor!; Station
MSFN Manned SpacA Flight Network
NIA. Not Applicable
NBS National Bureau of Standards
NSA National Security Agency
N Newton
NiCd Nickel Cadmium
NiH2 Nickee Hydrogen
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LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

Nm,r^m Nautical miles
N/m Z Newtons per meter squared
OBS Operational Bioinstrumentation System
OCS Onboard Checkout System
OCP Open Cherrypicker
OMS Orbital Manuevering System
OTV Orbital Transfer Vehicle
PCM Pulse Code Modulation
PCM Parametric Cost Model
PEP Power Extension Package
PIDA Payload Installation and Deployment Apparatus
P/L Payload
PLSS Portable Life Support System
PM Power Module
POM Proximity Operations Module
ppm Parts per Million
PRS Personnel Rescue System
PSID Pounds per Square Inch Differential
RCS Reaction Control System
REM Roentgen Equivalent Man
RF Radio Frequency
RFI Radio Frequency Interference
RMS Remote Manipulator System
RPM Revolutions Per Minute
RPS Real-time Photogrammetric System
SAF Systems Assembly Facility
SAWD Solid Amine Water Desorbed
SPGaAs Space Produced Gallium Arsenide
scfm Standard Cubic Feet per Minute
SCS Stability and Control System
SCU Service and Cooling Umbilical
SDV Shuttle - Derived Vehicle
SDHLV Shuttle - Derived Heavy Lift Vehicle
SEPS Solar Electric Propulsion System
SF Storage Facility
SM Service Module
SOC Space Operations Center
SOP Secondary Oxygen Pack
SRB Solid Rocket Booster
SRMS Shuttle Remote Manipulative System
SRU Shop Replacable Units
SSA Space Suite Assembly
SSME Space Shuttle Main Engine
STS Space Transportation System
SSP Space Station Prototype
STAR Shuttle Turnaround Analysis Report
STDN Spaceflight Tracking and Data Network
STE Standard Test Equipment
TBD To Be Determined
TDRSS Tracing and Data Relay Satellite System
TFU Theoretical First Unit
TGA Trace Gas Analyzer
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LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

TIMES Thermoelectric Integrated Membrane Evaporation System
TLM Telemetry
TM Telemetry
TMS Teleoperator Maneuvering System
TT Turntable/Tilttabie
TV Television
UCD Urine Collection Device
VCD Vapor Compression Distillation
VDC Volts Direct Current
VLSI Very Large Sacle Integrated Circuits
VSS Versatile Servicing Stage
WBS Work Breakdown Structure
WMS Waste Management System
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