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ABSTRACT

FINITE ELEMENT THERMAL-STRUCTURAL ANALYSIS OF
CABLE-STIFFENED SPACE STRUCTURES

Finite element thermal-structural analyses of cable-stiffened space
structures are presented. A computational scheme for calculation of
prestresses in the cable-stiffened structures is also described, The
determination of thermal loads on orbiting space structures due to en-
vironmental heating is described briefly. Three finite element struc-
tural analysis techniques are presented for the analysis of prestressed
structures. Linear, stress stiffening and large displacement analysis
techniques are investigated.

The three techniques are employed for analysis of prestressed cable
structures at different prestress levels., The analyses produce similar
results at small prestress but at higher prestress differences between
the results become significant. For the cable-stiffened structures
studied, the linear analysis technique may not provide acceptable
results. The stress stiffening analysis technique may yield results of
acceptable accuracy depending on the prestress. The large displacement
analysis technique produces accurate results over a wide range of pre-
stress and is recommended as a general analysis technique g;r thermal-

structural analysis of cable-stiffened space structures.
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Chapter 1
INTRODUCTION

1.1 Background

Past and proposed future flights of space shuttles have brought the
world into the era of space transpertation, In the near future, large
space structures will be placed in earth Prbits. Two basic classes of
orbiting large space structures proposed %or conmunications, earth ob-
servation and remote sensing aré Targe antennas and space platforms.
Figure 1, [1]*, snows an artist's depiction of a large antenna in earth
orbit.

To assure satisfactory performance of orbiting structures, analvses
of structural integrity and stability are required. These analyses
include prediction of structural deformations introduced by cyclic heat-
ing on the structure during the orbit. The deformations must be kept
within design allowable tolerances to assure satisfactory structural
performance. Due to the large size of these structures, ground testing
is not possible, and thus reliable analyses are required to predict
structural deformations accurately. -

To increase the structural stability and to provide additional

stiffness to the structural system, the concept of prestressed,

*The numbt_.*s in brackets indicate references.
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Fig. 1  An artisi's depiction of a large antenna in earth orbit [1].
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cables and membranes have been proposed for some designs [1-3]. Pre-
stressed structures, such as the hoop column antenna, shown in Fig. 2,
[1], can provide ease of deployment while maintaining low mass and
stability., Cable-stiffened space structures are difficult to analyze
because: (1) all members have prestresses, (2) cables cannot take com=
pressive forces, and (3) large deformations may be experienced. For
large structures with cables, it is possible that disblacenents may be
large due to on-orbit loads. This introduces nonlinear effects which
should be considered for the structural analysis to predict deformations
accurately.

Prediction of structural deformations depends primarily on the
accuracy of the heating, thermal and structural analyses techniques
adopted. Finite element methods are used extensively for such thermal
and structural problems [4]. Finite element methods are used extensive-
1y for linear type structural analysis with codes such as NASTRAN and
ANSYS. These codes have limited capability for structural analysis of
cable-stiffened structures with member prestress. The ANSYS finite
element structural analysis program uses a "stress-stiffening technique"
for prestressed structures. Many existing finite element codes do not
have capability for the determination of prestress for the structural

analysis of cable-stiffened structures.
1.2 Literature Review

To predict the displacements caused by on-orbit heat loads, three

steps are required: (1) calculation of neat loads, (2) calculation of

(*
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temperatures, and (3) calculation of displacements and stresses due to
the temperature distribution in the structure. These tasks have been
the subject of recent research.

Mahaney and Strode [5] present a clear description of the heat load
calculation on orbiting structures. The calculation of structural temp-
eratures at different points in the orbit is a transient problem often
based on simplifying assumptions. Arduini [6] presents a discussion of
the accuracy of thermal analyses by citing uncertainties in calculation
of view factors, member to member shadowing, member to member Fadiation
exchange, and conductivity calculation of composite materials.

Chambers, Jensen and Coyner [7] describe a thermal analysis approach
consisting of the MIDAS/TRASYS programs in which solar shadowing includ-
ing umbra-penunbra effects and circumferential gradients in element
temperatures are considered,

Thermal-structural analysis of space structures without prestresses
in members has been discussed in many papers. Reference [8] presents an
integrated finite element thermal structural analysis technique to pre-
dict deformation and stresses. In reference [5] a tetrahedral truss has
been analyzed for on-orbit heating, and it has been shown that defor-
mation of the structure is significant. Bowles and Tenney [9] discuss
the thermal expansion of the composite materials proposed for large
space structures and show that thermal loads have significant effects on
the structural deforma'.ion.

Cables are proposed for many space structures including the Hoop

Column Antenna [1], Stayed Column [2], Mechanically Scanned Deployable

(a



Antenna (MSDA) [3], Cable Boom System [10], Lunar Anchored Satellite
[11], Geosynchronous Tidal Web [12], and Space Elevators [13]. Struc-
tural analyses of some of the above space structures that have preten-
sioned cable elements have been presented in references [1, 3]. Ther-
mal-structural analysis of the MSDA [3] is performed using NASTRAN, and
ANSYS is used for analysis of the antenna mesh using the stress stiffen-
ing technique. The effect of prestresses in the structure on the struc-
tural analysis has not been investigated. |

Conaway [14] presents a comparison between linear and geometrically
nonlinear finite element structural analysis of some simple structures
and shows that nonlinear behavior should be taken into consideration in
structural analysis.

Classical cable structures are considered in a book by Irvine [15].
Analytical solutions of cable structures are given including deflection
of a catenary due to thermal loading. Baroa and Venkatesan [16] present
analyses of geometrically nonlinear structures composed of elastic mem-
bers capable of resisting axial forces only. Cable prestresses have not
been included in this analysis. Cable-stiffened space structuras are
different from classical cable structures because: (1) gravity loads
are negligible in space, (2) they have negligible mechanical loads, and

(3) cables have pretensions.,

1.3 Objectives
The literature review has indicated that little information is

available on the thermal-structural behavior of orbiting prestressed



structures. The present work concentrates on the 1dvestigation of three
finite element structural analysis techniques and the effect of pre-
stress on the accuracy of the techniques. To predict the structural
deformations of cable-stiffaned structures and to compare the different
structural analysis techniques, the following specific objectives are
considered:

1. Development bf a computational technique to perform the pre-

stress analysis of a space structure,

2. Development of alternative thermal-structural analysis tech- 3

niques for cable-stiffened orbiting space structures, and

3. Evaluation and identification of the most suitable analysis for

cable-stiffened large space structures.

To meet the objectives mentioned above, finite element methods are ‘
used to perform the various analyses. Chapter 2 describes heating and
thermal analyses. The prestress analysis is presented in Chapter 3.
Chapters 4, 5, and 6 describe three approaches for performing the ther-
mal-structural analysis for cable-stiffened structures. Chapter 7 veri-
fies the structural analyses techniques by analyzing two simple problems
for which analytical solutions are known. Typical results of thermal-
structural analysis of a two-dimensional pretensioned cable system and
three-dimensional hoop column antenna are presented in Chapter 8. Based
on these analyses, the three structural analyses techniques are discuss-
ed and evaluated. Appendices A and B contain finite element matrices

for the two nonlinear structural analysis techniques.
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Chapter 2

HEATING AND THERMAL ANALYSES

During orbit, structural deformations and thermal stresses are
produced due to environmental heating. To perform the structural ana-
1ysis, the structural temperature distribution is needed to compute the
thermally equivalent nodal forces. The structural temperature distri-
bution can be computed if the environmental heat.ag is known. The com
putational approach used for heating and thermal analyses are explained
in this chapter. The computational approach is highlighted herein,

further details are presented in [5].

2.1 Heating Analysis
The environmental heat sources applied to the space structure are
solar heating, earth emitted heating and earth reflected solar heating.
Earth emitted heating and earth reflected solar heating depend on alti-

tude and orientation of the structure. The total incident heat load g

(per unit area) on the structure is given by

=4, *q,*aq, (2.1)

where (g, qé and g3 are the incident solar heating, incident

earth emitted heating and earth reflected solar heating, respectively.
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The incident solar heating qg, is given by the product of the solar
flux, surface absorbtivity for solar radiation (as) and cosine of angle
(v) between the solar flux vector and the structure surface normal as

follows:

g, = 1390 (W/m) a cos v, | (2.2)

The earth emitted heating qe s a function of the Stefan-
Boltzmann constant (o), surface absorbtivity for earth radiation (ae), a
view factor (F) and the temperature of the earth (Te), which is assumed

to be constant at 289K:

9, =0 a,F Te“. (2.3)

The view factor F 1is defined as the fraction of total radiant energy
leaving the earth that arrives at the structural surface.

The earth reflected solar heating qz depends on the solar flux
in earth orbit, solar albedo factor (AF), a view factor (F), the surface

absorbtivity for solar radiation (as) and orientation angle (6):

q, = 13% (W/m) AF cose a_ F. (2.4)

The solar albedo factor is defined as the fraction of solar radiation
striking the earth that is reflected back into space.
If the structure enters the earth's shadow during the orbit, the

heating on the structure is greatly reduced due to the absence of solar
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heating. The duratior of the shadowing depends upon the altitude of the
orbit. Although the shadow portion of the orbit has two regions, name-
1y, umbra and penumbra, the transit time through the penumbra is very
small and can be neglected. The present study uses a geosynchronous
orbit (GEO) which has an altitude of 42000 km. The heating on a member
depends strongly on a member's orientation with respect to the solar
vector‘and, consequently, may vary significantly from membér to member
and with time during the orbit. The calculation of the structural heat
load is performed at different orbital positions which may be specified.
The results are used for the structural thermal analysis described in

the following section,

2.2 Thermal Analysis

Once the heat 1oad on the structural member has been determined,
the structural temperatureldistribution at different orbital positions
can be computed. Basic types of heat transfer for a typical space
structure element are member conduction and surface radiation. The heat
transfer problem also involves member to member heat radiation ex-
changes, shadowing of one member by another and temperature gradients
along the length, through the thickness and around the circumfer2nce of
a member, Member to member radiation exchanges are negligible [5] com-
pared to incident and emitted radiation, so they are disregarded. Shad-
owing of one member by other members is very complicated and expensive.
It has not been determined if a detailed shadowing analysis is necessary

to predict structural deformations accurately. For the current studies,

R
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member to member shadowing will be disregarded. For simplicity, temper-
ature gradients through the thickness of a member will be disregarded.
This latter assumption is a very good approximation for the thin cables
of graphite epoxy considered in this study.

With these assunptions the governing differential equation for a

structural member is

T 3 T '
pcVii+gce ™ - [KA 2] = a q(t) (2.5
at A 9x s )

where the terms on the left hand side of the equation represent energy
stored in the member by thermal capacitance and the temperature change
of element with respect to time, the energy emitted due to radiation and
heat transfer due to conduction. The right hand side term is the inci-
dent heat load, which is a funtion of time. In thc above equation »p
is density, c¢ is specific heat, V is the member volums, ¢ 1is the
Stefan-Boltazmann constant, € s surface emissivity, A. is the
element radiation area, k 1is the thermal conductivity, and A is the
member cross sectional area. On the right hand side ag is the sur-
face absorbtivity, Aq is the incident heating area, and q(t) is the
incident heating rate per unit area.

For a structure made from composite materials such as graphite
eﬁoxy, heat transfer from one member to another by'cbnduction is snaf1
compared to structures made of metallic members such as aluninum due to

the low thermal conductivity of composite materials. Thus for composite
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materials the temperature is nearly uniform along the element length,

For this case Eq. (2.5) reduces to:

pcva_T.meArT":asAqq(t) (2.6)

it

This differential equation is used to formulate an 1sothermal‘fi-
nite element. With this concept, element temperatures for each member
can be computed independently. A typical equation is solved using the
Crank-Nicholson finite difference technique for transient time marching
and Newton-Raphson iteration at each time step. The temperature distri-
bution of the structure may be determined at each time step for the

entire orbit in this marnner.
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Chapter 3

PRESTRESS ANALYSIS

Many proposed large space structures use prestressed elements such
as cables and rods to provide stiffness and stability of the structural
system. Reference [1] presents details of a cable stiffened hoop column
antenna. For such structures before performing a structural analysis, a
prestress analysis is required to determine the tensile (or compressive)
forces and stresses in each member. The basic requirements for the
prestress analysis are that the structure: (1) maintain the required
geometry, and (2) be in static equilfbrium. This chapter describes the
theoretical development for the prestress analysis used in this study

and presents an example of a simple analysis.

3.1 Theoretical Development
For a given geometry, the equilibrium equations for a truss-type

structure at each joint are:

IF, = 0
iF, = 0
y
IF, = 0

where Fy, Fy and Fz are member force components in Cartesian

13
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coordinates, For a structure with n Jjoints there are, therefore, 3n
equilibrium equations for the entire structure. For a truss-type struc-
ture with m members, there are m unknown member forces, Fji, i =

1, 2,..m, and the above equations can be written in matrix form as:

F -

Bll 812 . . . Blm Fl 0
. . . . . . . = 10
Bam1 Baa - : © Bagm PO 0
(3n * m) “(m*1) (3n*1)
or
[8B1{F} = {0} (3.1)

In the above equation, [B] contains direction cosines of the members,
and {F} in an unknown vector which contains element forces. The right-
hand side vector is a null vector.

Since some of the member forces are specified, the corresponding
columns in [B] matrix are multiplied by the specified forces and trans-
ferred to the right-hand side of the equation. Depending on the total
nunber of equatfons and total number of unknown member forces, either
additional forces are specified, or extra equations are discarded to
provide the number of equations equal to the naiber of unknowns. In
implementing this approach in the computer program, the equilibrium
equations are not written at fixed joints. For sone structures, if

equations are written at all free joints thea the number of equations
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becomes more than the nunber of unknowns., For such problems, additional
joints are fixed in order to provide the aumber of equations equal to

the number of unknowns. If the total number of unknown membef forzes is
more than the total number of equations then additional member forces

need to be specified. This results in the following matrix equaticn:

(BM] {P} = {R} (3.2)
Jxi ix1 jxi1
where j is the total number of unknown member forces to be determined{
[BM] 1ds the modified form of the [B] matrix after imposing the known
member forces, {P} is the unknown member force vector, and {R} is
the load vector. Equation (3.2) is a linear set of simultaneous equa-
tions that can be solved directly for the unknown member forces.

The nunber of unknowns shown in Eq. (3.2) can be reduced if the
structure has geometric symmetry. In this case, both members and nodes
which are symmetric are first identified. The symmetrical elements
produce identical member forces and the symmetrical nodes generate
identical equations. The use of synmetry reduces the number of equa-
tions to be solved.

An analysis of a structure with symmetry is performed by grouping
all identical members in one element group. This reduces the total
ndnber of element groups. Similarly, the symmetrical nodes, which gen-
erate identical equations, are grouped in one nodal group. Equilibrium
equations are written for each nodal group.

The final linear simultaneous equations which contain forces for
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different element groups can then be solved using the procedures pre-
viously described. Equation (3.1) is written where the sfze of [B8] is
given by (3 * nodal group}* (element group); and (F} 1is a vector con-
taining the total number of element group forces. To clarify these
procedures an example of a prestress analysis for a symmetrical struc-

ture is presented in the next section.

3.2 Example

Figure 3 shows a planar two-dimensional structure with six nodes
and five members, Nodes 1, 2, 5 and 6 are fixed where nodes 3 and 4 are
free. Symnetry may be used in solving for the member forces. To main-
tain the structure in the geometry shown, the forces in members 1 and 5
are identical and similar with the forces in members 2 and 4, Members 1
and 5 are grouped in element group two. Member 3 is placed in element
group three. Nodes 3 and 4 which are free nodes generate identical
equations. Thus nodes 3 and 4 are kept in nodal group one. Nodes 1, 2,
5 and 6 are grouped in nodal group two. At this point, there are two
equations correspoﬁding to nodal group one, and three unknowns corre-
sponding to each element group.

The equilibrium equations obtained from node 3 from nodal group one

are,

\
(o)

-F1 cosf; + Fp cosdz + F3 cos90° =

I
o

and Fy sine; + F, sino; - F3 sin90° =
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Fig. 3 A two-dimensional symetric structure for prestress analysis.
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where F;, F,, F3 are forces for element groups 1, 2 and 3 respec-

tively. These can be written in matrix form as,

~C0s8) €0s0, ol |f 0
siné sind -1 0
1 2 F3
If F3 s specified then the above matrix equation reduces to,
-c0s8, cos 6, ‘Fl} ‘0 ,
sing, sin 62§ (F, )

With two equations, the unknowns forces F, and Fz for element groups
1 and 2 can be solved. Therefore, all the element forces can be obtain-
ed. Once the forces in each member have been determined, the stresses
are computed.

Figure 4 shows a flowchart of the prestress analysis program.
Nodal coordinates, element connections and symmetry data are read first.
The program calculates the total nunber of unknowns and total number of
equations. If the specified forces are not sufficient, the program )
prints a message in the output file and stops. Equation (3.2) is
formulated directly and unknown forces are solved. The program
calculates and writes the member sfresses on the output file, which are

used for the structural analysis as member prestresses.

€

(<
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Fig. 4

READ NODAL DATA, ELEMENT
CONNECTIONS, SYMMETRY DATA
AND SPECIFIED FORCES

!

SET UP MATRIX EQUATION

(3.2) IN TERMS OF SPECIFIED
FORCES ‘

SOLVE MATRIX

EQUATION TO FIND
FORCE IN EACH MEMBER

l

WRITE STRESSES ON
OUTPUT FILE

STOP

Flowchart of the prestress analysis program.
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Chapter 4

SMALL DEFLECTION STRUCTURAL ANALYSIS

The objectives of the structural analysis are to predict deforma-
tions and stresses for the structure during the orbit. The methods for
calculating the thermal loads on the structure and prestresses in
different members are given in Chapters 2 and 3. Figure 5 shows the
thermal-structural analysis procedure for prestressed structures, 1In
this chapter small deflection structural analysis using the finite

element method is described,

4.1 Theory
To derive the structural finite element equations for a one-dimen-
sional rod or cable element, a variational principle is employed [4].
Basic equations required to derive finite element equations are explain-

ed in this section.

4,1,1 Stress-Strain Relation

The stress-strain relation for a member with prestress and thermal

strain is shown in Fig. 6 and is given by,

o=E(e>e)+o (4.1)
0 0
.
20
p
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HEATING RATE ANALYSIS

ELEMENT
HEATING
RATES
PRESTRESS ANALYSIS THERMAL ANALYSIS
ELEMENT
PRESTRESSES ELEMENT
TEMPERATURES

STRUCTURAL ANALYSIS

DISPLACEMENTS
& STRESSES

Fig. 5 Thermal-structural analysis procedure.
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Fig. 6 Stress-strain relation with prestress and prestrain for an

one-dimensional element.
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where o {s the element stress, E 1{s the modulus of elasticity, ¢
is the total strain, e, is the thermal strain and % is the ele-

ment prestress.

4,1.2 Elastic Strain Energy

The elastic strain energy of the element is given by the integral

of the area under the stress-strain curve over the volume of an element,

1 L L
U= = [ A(o-0y) (e-ep) dx + [ A gy e dx
2 .

where A 1{s the cross-sectional area and L 1is the element length.:

Using the stress-strain relation, Eq. (4.1), the strain energy becomes,

L L
/ (ez+e§ -2e¢eg) dx + A [ gy edx (4.2)

U=.A_E..

4,1.3 Strain-Displacement Relation

Figure 7 shows a one~-dimensional rod or cable element in Cartesian
global XYZ coordinates. The element lies on the local X axis. For

small deflection theory, the strain-displacement relation is given by,

| (4.3)
ox L
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Fig. 7 One-dimensional finite element in local and global coordinates.
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where u, u, are the element nodal displacements in local coordi-
nates,

4.2 Element Equations
4.2,1 Element Potential Energy '

The potential energy is the sum of the elastic strain energy and

potential energy due to external loads.
7 =U+

where w denotes the total potential energy, U is the elastic strain
energy, and V 1is the potential energy due to external loads. If P,

and P, are forces acting on node 1 and 2, respectively, then
V=- Pl U - Pz U2

Substituting € from Eq. (4.3), the total potential energy =

becomes,

2
AE Vi T L oap L2
— (—) dx + — [ g4 dx
2 L Loerle

|
n

-y 2L u-u; L
- BE () [ eordx + A (——) [ oodx
- P1 U - Pz Uz (4.4)
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For a one-dimensional element ¢, 1is the thermal strain given by,

co(x) = a [T{x) - 1]

(4.5)

where a s the coefficient of thermal expansion, T(x) is the element

temperature distribution, and T{ 1{s the initial temperature

given prestress.

4,2.2 Potential Energy Minimization

To derive the element equation, the potential energy ( Eq

minimized with respect to the nodal displacenents u; and u,:

E.T.r._ =0 and 2‘_. =0
au auz

or

L
':—E‘(UI-UZ) 5 - %g- feodX‘.'Ado +Pl

L
iL‘E (~up*uy) = .'L’l‘i [ egd% - A gp + P,

The above two equations can be written in matrix form as,

1 =1 fu -1 L 1 P
E ! = .A_E- f EOdX + A o0 + '
1w VoY) o -] e,

r—l:b

at the

. (4.4)) is

(4.6)
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For an isothermal element with constant temperature T, the thermal

strain is,

eo = & (T-Ty) (4.7)

and the above element equations reduce to,

1 -1]{u -1 1 p
AE e oag (1)) + A g + )0 (4.8)
Ll 1l 1 -1 P,

4.3 Analysis Procedure

For a thermal-structural analysis of an orbiting space structure,
the heating analysis and the thermal analysis are first performed to
determine the temperature distribution in the structure. The prestress
analysis is performed to compute element prestresses. Using the temper-
atures and prestresses, element Eqs. (4.8) are formulated and element
matrix transformations from local to global coordinates are made. The
element equations are then assembled to yield the system equations.
Boundary conditions are imposed. Six boundary conditions are specified
to constrain the structure from rigid body motion. The unknown nodal
displacements are then solved, and element stresses are computed using
Eqs. (4.1) and (4.3).

As the structure moves to anotlier orvital position, the heating
loads are recomputed, and the structural analysis is repeated. Such a

sequence of computations is called a quasi-static analysis since dynamic
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effects are neglected, A computationa1 flowchart for the small deflec-

tion analysis is shown in Fig. 8.
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START

READ NODAL, ELEMENT AND /
MATERIAL PROPERTY DATA

/

. < E
+READ INITIAL TEHPERATURE;

ORBITAL POSITION LOOP N

 READ ELEMENT TEMPERATURES /

-FORM ELEMENT MATRICES, EQUATION (4.8)
-TRANSFORM ELEMENT MATRICES TO GLOBAL COORDINATES
+ASSEMBLE ELEMENT EQUATIONS

APPLY BOUNDARY CONDITIONS

-SOLVE FOR NODAL DISPLACEMENTS
-COMPUTE ELEMENT STRESSES

V

WRITE STRESSES AND DISPLACEMENTS
ON OUTPUT FILE

‘ STOP ’

Fig. 8 Flowchart of small deflection structure analysis technique for
orbiting structures.



Chapter 5

STRESS STIFFENING STRUCTURAL ANALYSIS

The small deflection (linear) structural analysis technique was de-
scribed in Chapter 4 for cable-stiffened space structures. The assump-
tion of small deflections was made in the strain-displacement relation,
Since cables show nonlinear behavior as described in [15], the large
deflection relation between strain and displacement must be used for the
structural analysis of cable-stiffened large space structures. Usiqg
the large deflection relation between strain and displacements, the
derivation of finite element equations in terms of displacements results
in a notilinear set of equations. The resulting stiffness matrix and
right-hand side force vector contain displacements, prestress and ther-
mal strain terms, Two solution algorithms for these nonlinear finite
element equations are considered. The two techniques are stress stiff-
ening described in this chapter and large deflection (nonlinear) tech-
nique described in Chapter 6. In the stress stiffening technique, only
two iterations are performed whereas in the large deflection technique
Newton-Raphson iteration is used until convergence is achieved.

Stress stiffening refers to changes in element stiffness due to

1*e1ement initial stress. This effect is also called geometric or initial

stress stiffening. The change in element stiffness is due to the

30
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presence of prestress and/or thermal strain terms in the stiffness
matrix in contrast to the small deflection analysis where the stiffness
matrix is an array of constants depending only on material properties
and element geometry., The stress stiffening structural analysis is used
because it normally provides a more accurate result than the 1inear
analysis for cable-stiffened structures. A brief descriptibn of stress
stiffening is given in [17]. 1In this chapter, a derivation of finite
element equations for the stress stiffening analysis is first presented.
A solution method for solving the unknown nodal dfsplacements for an

orbiting structure is then described.

5.1 Theory
The finite element eyuations for a stress stiffening structural
analysis is derived using energy methods similar to the procedures for
the Yinear analysis described in Chapter 4.
Figure 9 shows a rod or a cable element in global Cartesian XYZ
coordinates. The strain-nodal displacements relation for large deflec-

tions is given by [18],

U-uy 1 Va-Vi 2 Wy =W 2

e= v 2 (I L (20
L 2 L 2
or
" s=e+_.1_62+._1. V2 (5.1)
2 2

where uw, v;, w and u,, Vv,, w, are nodal displacements in the

elements local xyz directions at nodes 1 and 2, respectively, and e
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Fig. 9 One dimensional rod or cable element in local and global
coordinates. i
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denotes axial strain; 6 and ¢ are rotations in the local x-y and x-z

planes:

Uy =it
-2 (5.2a)
L
Vo=V
6 = (5.2b)
L
W2 -Wi
b = . (5.2¢)

5.2 Element Egquations

5.2.1 Element Potential Energy

The total potential energy is the sum of the elastic strain energy
and the potential energy due to external forces. By substituting Eq.
(5.1) into the elastic strain energy, Eq. (4.2), the total potential

energy becomes,

L g
re M Mo L [epax s )02 4 Lot
2 2 L E Y
g
0
+ﬁ§'_[(e-_1.[ eodx+.__)w2+iwu]+ﬁezwz
: AE b2
-REe [eydx+Agyle+ = [ eo dx
- Plul - Pz U, (5.3)

L 4

\V
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5.2.2 Potential Energy Minimization

Element equations are derived by performing minimization of the
total potential energy, Eq. (5.3), with respect to the nedal dis-
placement components v, v;, w, U, V,, and w,. As an example,

minimization of the total potential energy with respect to u; is,

=0
3U1
or
L L 2 L 2 L L 2
AE ¥, = AE [Le dx + A gy + P (5.4)
- ——— Wy = - — o + P .
L 2 % L 0

For six nodal displacement components, the element equations are;

(k] {u} = {F}, + {F}, +{P} (5.5)
where [K(u)] 1is the stiffness matrix which depends on the unknown
nodal displacements, {u} is the unknown nodal displacement vector,
{F)eo’ {F}oo and {P} are the element force vectors due to thermal
strain, prestress and the external applied forces, respectively. De-

tails of these element matrices are shown in Appendix A.
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5.2 Analysis Procedure

The finite element Eqs. (5.5) are nonlinear because the element
stiffness matrix depends on the unknown nodal displacements. To solve
these nonlinear equations an iterativé‘technique is used. The stress
stiffening method uses two iterations, [17]. For the first iteration,
all nodal displacement components which appear in the element stiffness
matrix are zero. Nodal displacement components computed in the first
jteration are then used as the approximate solution for the second iter-
ation which gives the stress stiffening result.

The stiffness matrix and load vectors are computed at each iter-
ation. These element matrices are transformed from local to global
coordinates, and the system equations are established. Appropriate
boundary conditions are then imposed, and the unknown nodal displace-
ments are computed. The first iteration nodal displacements are used as
initial displacements to compute final displacements in the second iter-
ation.

For the analysis of an orbiting space structure, the heating, ther-
mal and prestress analysis are first performed. Displacements at the
first orbital position are computed based on the given element temper-
atures, prestresses and initial temperatures. With these computed nodal
displacements, the deformed structure is obtained and is used as the
initial structural geometry to compute the structural deformation for
the second orbital position. Prestresses and initial temperatures for
each element are updated. At the second orbital position, the pre-
stresses are the values of the final stresses of the first orbital

position. Initial temperatures take the values of applied element N
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temperatures of the first orbital position. Similar computations are
performed at each specified orbital position. A flowchart showing the

stress stiffening structural analysis for an orbiting structure is given

in Fig. 10.

t{
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Fig. 10 Flowchart of the stress stiffening structural analysis
for an orbiting space structure.
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Chapter 6

LARGE DEFLECTION STRUCTURAL ANALYSIS

It was stated in Chapter 5 that the assumption of the large deflec-
tion relation between strain and displacement results in nonlinear
finite element equations., One solution algorithm was described in Chap-
ter 5. The second algorithm, the large deflection (nonlinear) technique
is presented in this chapter. Large defiection structural analysis is
normally used whenever the displacements are large enough such that the
stiffness matrix based on the initial geometry does not represent the
actua) deformed structure. Reference [18] discusses theory and solution
methods for large deflection analysis of structures due to simple load-
ings. Large deflection analysis provides high solution accuracy com-
pared to the small deflection and the stress stiffening analysis for
cable-stiffened structures, where each structural member is prestressed,
Further explanation is presented in [17, 18]. The element equations
obtained from large deflection analysis depend on nodal displacements
leading to a nonlinear set of system equations. This chapter describes

y;he solution method for the nonlinear equations. An analysis procedure
for solv%ng nodal displacements of the orbiting structure due to thermal

loads is then explained.

38
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6.1 Theory
The derivation of the finite element equation for large deflection
structural analysis follows the procedures given in Chapter 5. The

element equations are the same as Egs. (5.5).

The element Eqs. (5.5) can be written in the form,
file, 8, %) =0, i=1,6 (6.1)

where e is the axial strain; 6 and ¢ are the rotations in local x-
y and x-z planes, respectively. In large deflection structural
analysis, the Newton-Raphson iteration method is used to solve the above
nonlinear equations. Aoplication of the Newton-Raphson method to

Eqs. (6.1) results in the following matrix equation, [19],
[J] {Aw} = {R} (6.2)

where [J] 1is the Jacobian matrix and {R} 1is the residual load vec-

tor. The coefficients in the Jacobian matrix are given by,

5y = (6.3
i u, . )
i

where uj, j = 1,6 are the element nodal displacement components. The

residual load vector is,
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Ri :‘ -fi » (6.4)

6.2 Element Equations
To derive the element Eqs. (6.2), Egs. (6.1) is first written., As

an exanple, the first equation of Eqs. (6.1) is,

L L 2 L 2 L L 22 L 2
L
+-il§-[eodx-Aoo-Pl =0

Using Eq. (6.3), the coefficients in the Jacobian matrix are,

of

1 _ AE
Jll = e T e
duy L
; A T I
12 - —— -~ — -
vy L 2
s REL
13 = — = —* —
ow; L 2
of
1 AE
Jl‘i E R S A
duz L
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and the corresponding residual from Eq. (6.4) is,

2 2 L
R1=A&+AE§—+%4+A00-%E [ eodx + Py

Similarly, other coefficients in the Jacobian matrix and residual load

vector can be derived, and the element equations can then be written in

the form,

m m+l _ ' m
(91" {aw} ™" = {(R}eo AR}, RY, +RYg , + IR (6.5)

where [J]m is the Jacobian matrix, {Au}m+1 is the vector of nodal
displacement increments, and the superscript m denotes the mth iter-
ation. The right-hand side of the above equation contains residual load
vectors associated with the thermal strain, element prestress, axial
strain, rotational strain and external loads, respectively. The compo-
nents of the Jacobian matrix and the residual load vectors are given in
Ap;‘)endix B. Once the nodal displacement increment is obtained, the new

displacement vector is computed from,
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W™l - " ag™t (6.6)
Convergence criteria used is given As,
lu|
T:—T.< tolerance - (6.7)

i

where 1 denotes a typical displacement component. The convergence

tolerance typiéa]ly used herein is 10-2,

6.3 Analysis Procedure
Element Jacobian matrices and residual load-vectors are computed at

each iteration. Initial nodal displacements are set to zero at the

first iteration. Element Jacobian matrices obtained in local coordin-
ates are then transformed to global coordinates and then system eqUaﬁ
tions are established. Appropriate boundary conditions are then impos-
ed, and the unknown nodal displacement increments are computed. At each
iteration the displacements are updated using Eqs. (6.6). The iteration
process is terminated when convergence criteria given by Eqs. (6.7) are
met.

For the anaiysis of an orbiting space structure, the heating,
thermal, and prestress analyses are first performed. Displacements at
the first orbital position are calculated based on the given element
temperatures, prestresses and initial temperatures using the nonlinear

analysis method discussed earlier. With these computed nodal displace-
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ments, the deformed structure is obtained and is used as the initial
structural geometry to compute the structural deformation for the second
orbital position. Prestresses and initial temperatures are updated at
each orbital position as discussed in Chapter 5. Nodal displacements
and element strezsses are computed similarly at each specified orbital
position. A flowchart showing the large deflection structural analysis

for an orbiting structure is shown in Fig. 11.
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Fig. 11  Flowchart of large deflection structural analysis
for an orbiting space structure.



Chapter 7

VERIFICATION OF STRUCTURAL ANALYSIS METHODS

In the preceding éhapters, three structural analysis techniques
were described. The accuracy of the small deflection, stress stiffening
and large deflection analyses are verified in this chapter neglecting
prestress effects. TQo problems with known analytical solutions are
used to verify the anélyses. A nonlinear rod-spring system is analyzed
first, and results from the three analysis techniques are compared with
an analytical solution. A 1argé displacement nonlinear analysis of an
elastic cable is performed next, and results are compared with an ana-

lytical solution, {

7.1 Nonlinear Rod-Spring System
Figure 12 shows tie nonlinear rod spring system, Node 1 is hinged,
node 3 is fixed, and node 2 can move only in the vertical direction,.

For an applied vertical force P, the vertical displacement u at node

2 can be computed from the exact relation [20],

- -1 (7.1)

P =ku+ 52-(L sind-u)
L (L sing)2 + (L sing-u)2

o~
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where k 1is the spring constant, A, E and L are the cross-sectional
area, the modulus of elasticity and the length of the rod, respective-
ly; 6 1is the angle between the rod and the horizontal plane shown in
Fig. 12.

Using the small deflection (1inear), stress stiffening and large
disp]acément (nonlinear) analyses, the displacement u is computed for
different values of the applied force P. Results obtained using these
analyses are compared with the analytical solution in Fig. 13.

For very small deflection (less than 0.25 in~hes), the displacement
solution obtained from the linear, stress stiffening, and nonlinear ana-
lyses are close togsther, Foé larger deflections the three analyses
show a wide difference in results.. The nonlinear analysis provides very
accurate displacement predictions for different loads, but the stress
stiffening and linear analyses compare poorly with the analytical solu-
tion. The solution of the nonlinear rod-spring system verifies the

noniinear analysis technique and shows that linear analysis and stress

stiffening analysis should not be used for such problems,

7.2 Symmetric Elastic Cable
A symmetrical elastic (aluminum) cable is shown in Fig. 14. The
shape of the cable under its own weight neglecting the cable extension
rgpresents a catenary. Dimensions and material properties of the cable

are given in Table 1. The cable is loaded by its own weight and is

subjected to a rise in temperature of 200°F. The analytical solution
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’.___ 3000" —tes
X

? sote

Z

CABLE
{ALUMINUM)

Fig. 14 A symmetric elastic cable.

49

3o00" » l

mg = 0.25 LB/IN.

AT = 200°F

<



Table 1

Dimensions and Material Properties of
an Elastic Cable

GEOMETRY AND

MATERIAL PROPERTY VALUES
SPAN 6000 in.
SAG 600 in.
LENGTH | 6157 in.

SPECIFIC WEIGHT

.11 1b/in.3

WEIGHT/UNIT LENGVH .25 1b/in.
CROSS-SECTIONAL AREA 2.5 in.2
MODULUS OF ELASTICITY 10.0 x 10% psi

COEFFICIENT OF

13.0 x 10-5/F

THERMAL EXPANSION

50
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for the displacement due to the cable's own weight and temperature
increase is given in [15]. This analytical solution is obtained by
first computing the undeformed shape of the inextensible cable by

using,

Z(x) = L [cosh (%) - cosh 1. (_z_ - X)] (7.2)
mg 2H H 2
_H mgL ., mg , &
S(X) = ——[sinh (=) - sinh 2 (<~ - X 7.3
e ( o - ( ; )] (7.3)

)
i
1

where H s the maximum horizontal component of force in the cable

which is computed from,

mgLo
sinh(M%) =
2H

(7.4)

where mg is the weight of the cable per unit length; X, Z and S
are the horizontal distance, vertical distance and cable length, respec-
tively, (Fig. 14). The length of the undeformed cable is Ly, and £ s
the span.

The vertical deflection, including extension, due to the combined
loading of the cable's weight and the temperature increase AT, with

respect to the undeformed shape Z(X), Eq. (7.2) is,

(7.5)

M Aag-2

mge2 h X X
we= (M) [ ]
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where h 1{s the positive root of,
3 2
— A2, — A2, —
h-(2+6 +=—)h +(1+20+—)h-06=0 (7.6)
24 12 ,

where
8 =

a |aT| Lt/(HLe/EA)
2
A2 = (Eﬁ& *2/ (H Le//E A)

r‘
(a4
u
E.-
r—
—
+
P )
|5
(Vo)
=
A
N
N\
—
[aM]
o N

—
]
b g

—
—_
+
(2]

-

L

ol

a s the coefficient of thermal expansion, and d is the diameter of
the cable.

The finite element solution of the cable problem is obtained using
the nonlinear structural analysis technique. The geometric symmetry of
the problem is used where only half of the cable is modeled for the
analysis. The finite element model includes 25 cable elements and 26
nodes. The nonlinear technique using Newton-Raphson iteration method
(Chap. 6), converges in five interations.

The vertical deflections for the analytical and finite element
solution are compared in Fig. 15.% The nonlinear finite element solution
provides very accurate results with a maximum difference of 0.05

percent.

The results of these two problems verify that the large deflection
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Fig. 15 Comparative deflections for cable loaded by its own weight
and subjected to a temperature rise.
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(nonlinear) finite element analysis can be used to analyze cable deflec-
tion accurately. The linear and stress stiffening analyses techniques
may not provide results of comparable accuracy for such nonlinear prob-
lems.

The two problems analyzed did not consider prestress effects that
characterize cable applications in large space structures. In the next
chapter, cable-stiffened orbiting structures will be analyzed. The
three analysis methods will be evaluated for these applications includ-

ing prestress effects.
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Chapter 8

THERMAL-STRUCTURAL ANALYSIS OF CABLE-STIFFENED
ORBITING SPACE STRUCTURES

This chapter is devoted to the ana]ys{s of cable-stiffened orbiting
space structures. Small deflecﬁion (1inear), stress stiffening and
large deflection (nonlinear) analyses procedures were described in
Chapters 4, 5, and 6, respectively. Chapter 7 demonstrates for two
structures without prestress, that the nonlinear analysis provides more
accurate displacements than the stress stiffening and the linear
analysis procedures. It was also verified that the non]inear analysis
provides very accurate displacements for a thermal load.

Thermal-structural analysis of prestressed cable-stiffened space
structures is described in this chapter. Comparative analyses for two
typical cable-stiffened structures are presented. The analyses were
performed using linear, stress s-iffening and nonlinear techniques, and
the results are compared in tables and figures. The analyses are
performed at different structural prestress levels to study the effect

of prestress.

P

8.1 Simplified Two-Dimensional Pretensioned Cable System
A simplified two-dimensional pretensioned cable system is shown in

Fig. 16. The cables which form the parabolic shape are called radial

55
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NODE 1 2 3 | s 5
X 3.37 | 10.1]23.8 | 38.0 | 52.7
Y -9.6 | -9.4]-8.9 | -6.8 | -3.7
' (DIMENSIONS ARE IN METERS)
YA TYPICAL RADIAL CABLE
! TYPICAL SUPPORT

CABLE

122.0 -

Fig. 16 Simplified two-dimensional pretensioned cable system.
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cables, and the cables which support these are called the support
cables. All cables are made of graphite epoxy, where the material prop-
erties are given in Table 2. The finite element model of the structure

consists of 21 elements and 13 ncdes.

8.1.1 Heating and Thermal Analysis

The cable system is assumed to be in a geosynchroncus earth-facing
orbit as shown in Fig, 17. Heating histories for two typical structural
members are shown in Fig. }8. The member incident heating is maximum
when the member is perpend%cular to the solar vector. The member
heating drops when the member is either parallel to thé solar vector or
in the earth's shadow. The heating rate varies from:1200 W/m2 to 10
W/m for a typical member during the orbit. |

Member heat loads are used to compute member temperatures. in the
thermal analysis. Isothermal elements are used because members are made
of graphite epoxy which have very low thermal conductivity. Figure 19
shows temperature histories of two typical members., The temperature
histories follow the patterns of the member heating histories because
tha members change orientation siowly with respect to the solar flux.
The member's low mass and high surface emissivity along with the slow
change in heating produce member temperatures very close to the radi-
ation equilibriumn temperatures throughout the orbit. When the structure
en£ers the earth's shadow, member temperatures drop suddenly and ap-
proach much lower radiation equilibriun temperatures. When the struc-

ture leaves the earth's shadow, member temperatures rise abruptly due to
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Table 2

Properties of Simplified Two-Dimensional
Pretensioned Cable System

Radial céble

3.09 mm
diameter
Support cable 1.21 mm
diameter
Modulus of 1.23 x 10t n/m?
elasticity

Coefficient of

thermal expansion

5.40 x 10~7 1/K

Density 1650.0 kg/m3
Specific heat 879.2 J/kg-K
Emmissivity 0. 84
Absorbtivity 0.916
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GEOSYNCHRONOUS ORBIT
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\\\\SOLAR HEATING

Fig. 17 Orientation of simplified pretensioned cable system in
geosynchronous orbit.



60

—

- SOLAR —
HEATING ——T
2000
~N '
£
EJ
o
s 1000
]
(324
=
—
o
==
— —

180 270 360
ORBITAL POSITION o, DEGREES

Fig. 18 Heating nistories of typical members of simplified
pretensioned cable system.
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Temperature nistories of typical members of simplified
pretensioned cable system.
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the abrupt change of heat load. The range of member temperatures during
an entire orbit is from 320 K to 90 K. The member temperatures at the
different orbital positions are used in the structural analysis to com-

pute displacements and stresses.

8.1.2 Prestress Analysis

Element prestresses are computed using the prestress analysis pro-
cedure described in Chapter 3. Geometric symmetry of the structure is
used, and a tensile force of 452 N is specified for element number one
(see Fig. 20). The prestress program is then used to compute the other
element forces and stresses. Figure 20 shows the computed forces and%

prestresses for each member of the symmetric structure.

8.1.3  Structural Analysis

Linear, stress stiffening and nonlinear analyses are used for com-
putation of structural deformations and cable stresses. Element temper-
atures and element prestresses calculated earlier are used as input data
in these analyses. Initial member temperatures of 294 K are assuned,
Analyses are performed at orbital positions for the orbit as described
in the analysis procedures in Chapters 4, 5, and 6. The three analyses
predict similar patterns of nodal displacements and member stresses.
Only the results of the nonlinear analysis is presented in the figures.
Deflection comparisons for the three analyses are presented in tabylar
form in the next section.

Figure 21 shows the displacenent histories of two typical nodes.

The nodal displacement history for a typical node follows the temper-



Fig. 20

ELEMENT FORCE PRESTRESS
NO. (N) (MPa)

1 452.0 60.2 |
2 173.3 23.1
3 150.2 - 20.0
4 134.6 17.9
5 134.1 17.8
6 133.6 17.8
7 284.5 245.4
8 25.8 22.2
9 21.5 18.5
10 1.0 0.9
11 4.0 3.4

63

Member prestresses for symmetric simplified pretensioned

cable system.
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Displacement histories for two typical nodes on simplified
pretensioned cable system.
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ature histories of the connected elements (not shown). Figure 22 shows
the stress histories for two typical members. The stress variation
during the orbit is small compared to the prestress level of the member,
For 2 typical member; the stress variation is 11 percent from its pre-
stress value. The maximum stress change occurs during passage throuqh
the earth's shadow.

Greatly exaggerated deformed shapes of the structure at the 0, 90,‘
and 130 degrees orbital positions are shown in Fig. 23. The deformed
shape of the structure is in equilibriun and members are in tension,

The deflection of the parabolic surface is not symmetric because the
synmetrical elements have unequal thermal loads at different orbigal
positions. Maximum displacements are in the Z direction. At the 90
degrees orbital position, a maximum displacement of 11.5 mm (shown in
Fig. 23) occurs at the node nearest to the support. A maximum Z-
displacement of 20 mm occurs at the same node during passage through the

earth shadow.

8.1.4 Comparative Deformations

To compare the three structural analysis methodé, the thermal-
structural analysis is performed at three prestress 1evels‘using the
linear, stress stiffening and nonlinear analysis techniques. The first
prestress level is determined by specifying a force of 45,2 N for member _
number one (see Fig. 20). Similarly, the secdnd and the third prestress
levels are determined by specifying forces of 452 N and 4520 N, respec;

tively. The second prestress level is close to the design prestress
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Fig. 22 Stress histories for two typical members of the simplified
pretensioned cable system.
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Deformation of the simplified pretensioned cable system at
different orbital positions. '
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used by NASA for structures such as the hoop column antenna [1]. The
third prestress level is a hypothetical prestress level assumed for
evaluation of the three structural analysis techniques. At this pre-
stress some of fhe members may exceed design allowable stresses in ten-
sion.

Comparative deflections for node five (see Fig. 16) obtained from
the three analysis techniques at the orbital positions of 0, 90, and 187
degrees are shown in Table 3. For these prestress levels, the linear
analysis overestimates the deflection compared to the stress stiffening
and nonlinear analysis. With increasing prestress, the linear anélysis
results remain almost unchanged, but the stress stiffenihg and nonlinear
analysis results vary significantly. The latter two analyses predict
relatively small deflections at higher prestress.

For the second prestress level at the 90 degrees orbital position,
the linear and stress stiffening analyses predict 15‘percent and 0.31
percent higher displacements than the nonlinear analysis, respectively.
As prestress increases, the error in the linear analysis increase and
results are not acceptable. The errors in the stress stiffening analy-
sis increase also but remain within acceptable levels., The stress
stiffening analysis can be used at NASA design values of prestresses

with small error.

8.2 Three-Dimensional Prestressed Hoop Column Antenna
A three-dimensional hoop colunn antenna is shown in Fig. 24,

Dimensions of the finite element .10del are shown on the front and top
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(Fig. 16) Z-Deflection Comparison (mm)

ORBITAL 0 90 187
POSITION
(DEGREES)

PRESTRESS LEVEL ONE (F," = 45.2 N)
LINEAR -.6590 13.40 22.97
ANALYSIS
STRESS -.6592 12.90 2280
STIFFENING
ANALYSIS
NONLINEAR -.6536 13.10 22.80
ANALYSIS

PRESTRESS LEVEL TWO (F, = 452,0 N)
LINEAR -.6578 13.40 22.97
ANALYSIS
STRESS -.6332 11.69 20.98
STIFFENING
ANALYSIS
NONLINEAR -.6097 11.66 20.95
ANALYSIS

PRESTRESS LEVEL THREE (F, = 4520.0 N)
LINEAR -.6461 13.41 22.98
ANALYSIS
STRESS -.4769 6.738 11.87
STIFFENING
ANALYSIS
NONLINEAR -.3831 6.658 11.78
ANALYSIS

*Fl

is pretension in member one (see Fig. 20).
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Three-dimensional prestressed hoop culumn antenna.
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views in Figs. 25 and 26. Tables 4 and 5 provide member cross-sectional
areas and material properties. The finite element model consists of 123
nodes and 387 elements. The hoop and colunn are represented by rod
elements, and cables are represented by cable elements. In addition,
192 fictitious cable elements were added for structure stability. The
fictitious cable elements have very low (10 N/m?) modulus of elasticity
compared to the other elements of the structure (10!! N/m) and ‘have
zero coefficient of thermal expansion.

The structure is in a geosynchronous orbit oriented as spown in
Fig. 27 with the antenna surface pointing towards the earth. ¥The analy-
sis of the three-dimensional prestressed hoop column antenna is perform-
ed similar to the simplified two-dimensional pretensioned cable system
described in the previous section. The heating analysis and thermal
analysis are performed at different orbital positions up to orbital
angle of 200 degrees. A temperature variation from 310 K to 90 K‘is

observed for a typical member during passage through the earth shadow.

8.2.1 Prestress Analysis

The structure's geometric symmetry is used in the prestress ana-
lysis. Symmetrical elements and nodes are identified and grouped in
element and nodal groups. Six member forces are specified for the -
structure, and the prestress program is used to compute other member
forces and stresses. These computed stresses are used as the member
prestresses in the structural analysis. The fictitidus elements have no
‘prestresses. Figure 28 shows member prestresses and forces in a typical

section of the structure,
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Fig. 25 Front section of the hoop column antenna.
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Fig. 26 Top view of the finite element model of the prestressed hoop
column antenna.
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Table 4

Hoop Column Antenna Cross-Sectional
Areas and Materials

STRUCTURAL AREA (n? ) MATERIAL
MEMBER x 106
CENTRAL COLUMN 237.6 ’ GRAPHITE
(HOLLOW TUBE) EPOXY-1
HOOP 266.0 GRAPHITE
(HOLLOW TUBE) EPOXY-2
OUTER SUPPORT CABLE, 27.3 QUARTZ
COLUMN TO HOOP
(+ Z SIDE)
OUTER SUPPORT CABLE, 4.63 _ GRAPHITE
COLUMN TO HOOP EPOXY-1
(- Z SIDE)
RADIAL CABLE, 7.49 GRAPHITE
RING TO RING EPOXY-1
SUPPORT CABLE 1.15 GRAPHITE
COLUMN TO RING ’ EPOXY-1
RING CABLE 0.297 GRAPHITE
EPOXY-1
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Material Properties of Hoop Column Antenna

Table §
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GRAPHITE GRAPHITE QUARTZ
EPOXY-1 EPOXY-2
Modulus of elasticity 12.30 7.30 5.25
x1040 N/m?
Coefficient of thermal -7.2 7.2 5.4
expansion
x 1077 /K
Density 1. 60 1.93 1.74
x103 kg/m3
Specific heat 879.2 879.2 840.0
Joul e/kg-K '
Emissivity 0.84 0.84 0.93
Absorbtivity 0.916 0.916 0.916
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Fig. 27 Orientation of prestressed hoop column antenna in earth
orbit.

ey el A s "~ e . —— - - . PR




77

13

OF POOR Quarry

ELEMENT | FORCE |PRESTRESS

NO. (N) (MPa)

1 121.7 16.2

2 134.1 17.8

3 154.2 20.5

4 189.1 25.2

5 452.0 60.2

6 37.1 32.0

7 22.2 19.1

8 33.2 28.6 /|

9 26.2 | 226.5

10 140.0 30.2

11 407.5 14.8

12 -5968.4 | -25.1 @ \\\\\\\\\\
13 -6681.1 | -28.1 H

14 -3291.3 | -12.3

15 25.0 84.0

16 ©20.0 67.2

17 15.0 | 50.4

18 10.0 33.6

Fig. 28 Member prestresses for prestressed hoop column antenna.
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8.2.2 Structural Analysis

Using temperatures and prestresses, the linear, stress stiffening»
and nonlinear analyses are performed to compute nodal deflections and
member stresses at different orbital positions. The three analyses
predict similar patterns of nodal displacements and member stresses.

The results of the nonl inear analysis is presented in the figures.
Deflection comparisons for the analysis are presented in tabular form in
the next section. The hoop and antenna of the structure are in compres-
sion at all times during the orbit. Buckling of these menbers has not
been considered.

Figure 29 shows the Z-displacement histories for two typical nodes
on the .autenna's surface. During orbit, points on.the antenna's surface
move toward 2nd away from the earth, i.e. * Z displacements take place.
A maximun Z deflection of 20 mm occurs at a node on the antenna's sur-
face nearest to the hoop in the earth's shadow. A significant displace-
ment of 15 mn occurs at the same node at 90 degrees orbital position.
The Z-deflections of the antenna surface at three orbital posifions are
shown in Fig, 30. Figure 31 shows the Z deflections of 4 panels at the
90 degree orbital position. Figure 32 shows displacement contours on
the antenna's surface. The figures show that antenna surfaces near the
hoop have maximum deflection. The displacements are not exactly axisym-
metric as they vary from panel A to D (Fig. 31). Displacements in the

central region of the antenna's surface are small. Stress variation for

a typical element is +8 percent from a prestress value of 60 MPa.
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Fig. 29 Displacement histories for two typical nodes on the prestressed
hoop column antenna.
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Fig. 32 Approximate displacement contours on antenna surface for

hoop colunn antenna at 90 degrees orbital position.
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8.2.3 Comparative Deformations

The linear, stress stiffening and nonlinear structural analyses
are performed at three typical prestress levels. Member number five
(see Fig. 28) has a force of 226 N for prestress level one, 452 N for
prestress level two and 4520 N for prestress level three. The third
prestreés level is a hypothetical prestress levei assuned for evaluation
of the three structural analysis techniques. At this prestress some of
the members may exceed (2sian allowable stresses in tension or compre s-
sion, Deflections of a node (number two, Fig. 28) at these prestress
Tevels for the structural analysis techniques are given in Table 6 at 0,
90, and 187 degrees orbital positions.

For all three prestress levels, the linear analysis overestimates
the deflection compared to the stress stiffening and nonlinear analyses.
With increasing prestress, the linear analysis results remain almost
unchanged, but the stress stiffening and nonlinear analysis results
change significantly predicting relatively small deflections at higher
prestress. In other words; the three analyses produce similar results
at small prestress levels, but at higher prestresses the differences
between the results from the three techniques becomes greater. For
_ instance, at the zero degree orbital position and at prestress level
three, the linear and stress stiffening analysis predict 82 percent and
23 percent higher displacements than the nonlinear analysis,

At NASA design prestresses (level two), results from the three ana-
lysis techniques differ significaﬁtly. The linear analysis predicts 11
percent, 20.7 percent, and 22.7 percent more deflection than the non-

Tinear analysis at the three orbital positions. The stress stiffening
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Prestressed Hoop Column Antenna (Fig. 28)
Z-Deflection Comparison (mm)
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ORBITAL 0 90 187
POSITION
(DEGREES) |

PRESTRESS LEVEL ONE (Fy = 226.0 N)
LINEAR 11.62 -11.40 -24.03
ANALYSIS
STRESS 11.31 -10.40 -21.68
STIFFENING
ANALYSIS
HONL INEAR 10.98 -10.37 -21.66
ANALYSIS

PRESTRESS LEVEL TWO (F; = 452.0 N)
LINEAR 11.62 -11.40 -24.03
ANALYSIS
STRESS 11.01 - %.49 -19.60
STIFFENING '
ANALYSIS
NONLINEAR 10.45 - 9.44 -19.58
ANALYSIS

PRESTRESS LEVEL THREE (Fs = 4520.0 N)
LINEAR 11.65 -11.37 -24.00
ANALYSIS
STRESS 7.89 - 2.15 - 2.97
STIFFENING
ANALYSIS
NONLINEAR 6.39 - 2.25 - 2.90
ANALYSTS

*Fs

js pretension in member five (see Fig. 28).
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analysis predicts 5 percent, 0.5 percent, and 0.1 percent more deflec-
tion than the nonlinear analysis at these positions. These results show
that at the NASA design prestresses, a stress stiffening analysis can be
used instead of a ncnlinear analysis to predict deflections with
acceptable accuracy.

Comparison of CPU times gives a ratio of 1:11:16 for linear, stress
stiffening, and nonlinear analysis, respectively. Although the linear
analysis is efficient in computer time, the results of this analysis may
not have acceptable accuracy. The hon\inear analysis takes more com-
puter time but tﬁe results are always accurate and can be used with
confidence for all prestress levels. A stress stiffening analysis is
not as expensive as a nonlinear analysis and can give, depending on *'e
prestress, results of acceptable accuracy. Considering these facts the
use of the stress stiffening method can be reccmmended for structural
analysis of the hocp column antenna at NASA design prestresses. The

nonlinear analysis method is recommended as a more general (and more

expensive) technique for all prestress levels,
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Chapter 9

CONCLUDING REMARKS

Finite element thermal-structural analysis of cable-stiffened space
structures is presented. Heating and thermal analysis for orbiting
space structures is first discussed, Determination of cable prestresses
js then described. Analysis of structural deformations and stresses are
performed using small displacement 1inear, stress stiffening, and large
displacement nonlinear techniques.

To analyze a cable-stiffened space structure, the structural sur-
face heating history is fir;t computed, The thermal analysis is then
performed to compute the structural temperature distribution, A pre-
stress analysis is also performed to detarmine the structural prestress-
es. The structural temperature distribution and prestresses are used in
the structural analysis for computation of deformations and stresses.

To verify the three techniques used in the structural analysis, two
examples with analytical solutions are employed, A nonlinear rod-spring
system subjected to an external force is first used to assess the accu-
racy of the three finite element structural analyses. The linear anaiy-
sis yields a fair resu1t.for small deflections. Better accuracy is
obtained by using the stress stiffening analysis while the most accurate
solution is produced by the large displacement analysis. A cable loaded

by its own weight and subjected to a uniform temperature change is used

to further verify the accuracy of the large displacement analysis.

C~a> 86
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The thermal-structural analysis of a prestressed two-dimensional
cable system and a three-dimensional hoop colunn antenna are performed.
The variation of member stress due to thermal effects during the orbit
is small compared to the member prestress. The effect of member pre-
stress levels on the accuracy of the analysis techniques is evaluated
using comparisons of structural deformations. Finite element analyses
for three prestress levels were performed. At low prestresses, the
three analysis predict similar deformations. With increasing prestress
level, deformations obtained from the linear an2lysis remain almost
unchanged, whereas a large change in deformations is predicted by the
stress stiffening and large disglacenent analyses. Although the linear
analysis is efficient,in comphtér time, the results may not have accept-
abie accuracy., The 1§rge displacement analysis takes more computer
time, but the results are always accurate and can be used with confi-
dence for all prestress levels. A stress stiffening analysis is not as
expensive as a large displacement analysis and it can give, depending on
the prestress, results of acceptable accuracy. The stress stiffening
method can be recommended for structural analysis of the hoop colunn
antenna at NASA design prestresses.

The 1argevdisp1acement analysis technique is recommended as a gen-
eral (and more expensive) technique for all prestress levels. The re-
sults have shown that accuracy in predicting the deformation and stress
for cable stiffened structures strongly depends on the prestress. The

large displacement analysis technigue produced accurate results over a

wide range of prestress and is recommended as a general analysis
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approach for thermal-structural analysis of cable-stiffened space struc-

tures,
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APPENDIX A

FINITE ELEMENT MATRICES FOR STRESS STIFFENING STRUCTURAL ANALYSIS

The finite element eduations shown in Egs. (5.5) for the stress

stiffening structural analysis have the form,

v H 3

Vi
BEwylwl = Ak (1) | 0 0 (A1)
L Uy 1 -1 i

V2 0 0

[L/] ’ 0 0

where [K] 1is a synmetric matrix in which the coefficients are,

Kip = Kpy = Kyy =1
- 0
Kip = Kps = K5 = =
2
Ki3 = -Kijg = Kug = v
: 2
% 62
Kpo = Kps =RKog =& [a (T-T,) + —+ 2 (A.2
2 25 = Rss = 2 | =3 ] )
= - — 8
K23 = -Kag = Ksg = 2
4
1 “ . y2
Ry = Kog = Keg = & [a (T-Tj) + —+ &5
36 = Ree = 2 ( ol ]
.
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2
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K3y = =

1
blgmle

The first term on the right-hand side of the above equation denotes
the element nodal force vector associated with the thermal load. Iso-
thermal elements were used in the thermal analysis so the element temp-

erature T 1s constant for the olement.
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APPENDIX 8 e

FINITE ELEMENT MATRICES FOR LARGE DEFLECTION STRUCTURAL ANALYSIS

Components of the element matrices shown in Eqs. (6.5) are presented

here. The element equations can be written in the form,

Auy -1 . € Ry Py
=31 Jaw| = Ak (T-T) Ol + As o +JrR;t + Jo | (B.1)
1 i 0 3
Avy ‘ 0 0 Rs 0

where components of symmetric matrix [J] are given by
Gy = - = U =1
12 = =15 = dys = -0y = 0

Jiz = -dig = dy = ~d34 =¥

% 3 2

Y22 = wdps = Ugs = e -a (T-Ty) + —+ g2 + 4 (8.2)
2 2 2

a3 = =dz6 = Jsg = 6y

- % .3 62

Jig = Jeg =[e-a (T-T,) 4+ —+2_ ;2 + 55

33 66 = [ i E 2 VY 2]

The fourth vector on the right-hand side of the above equation is asso-
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ciated with the rotational strain and the components are given by,

. 2 2
RI:-R“BP_—*’L
2 2 .

3 g2
8 4 8

9
Ry = -~ Rg = [e-a (T-T,) +—] 6+
> L 2 2

° 3 2
R3="RG=[e‘G(T-Ti)+—o—]w+L+_w_9__
E 2 2

Thermal strain terms in the above equations have been replaced by

Eq. (4.7). Isothermal elements were used in the thermal analysis so the

element temperature T 1is ccnstant for the element.
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