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ABSTRACT 

FINITE ELEMENT THERMAL-STRUCTURAL ANALYSIS OF 
CABLE-STIFFENED SPACE STRUCTURES 

Finite element thermal-structural analyses of cable-stiffened space 

structures are presented. A computational scheme for calculation of 

prestresses in the cable-stiffened structures is also described. The 

determination of thermal loads on orbiting space structures due to en-

vironmental heating is described briefly. Three finite element struc-
: 

tural analysis techniques are presented for the analysis of prestressed 

structures. Linear, stress stiffening and large displacement analysi s 

techniques are investigated. 

The three techniques are employed for analysis of prestressed cable 

structures at different prestress levels. The analyses produce similar 

results at small prestress but at higher prestress differences between 

the results become significant. For the cable-stiffened structures 

studied, the linear analysis technique may not provide acceptable 

results. The stress stiffening analysis technique may yield results of 

acceptable accuracy depending on the prestress. The large displacement 

analysis technique produces accurate results over a wide range of pre-

stress and is recommended as a g~neral analysis technique for thermal­

structural analysis of cable-stiffened space structures • 

. .. 
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Chapter 1

INTRODUCTION

1.1 Bac kground

Past and proposed future flights of space shuttles have brought the

world into the era of space transportation. In the near future, large

space structures will be placed in earth orbits. Two basic classes of
!

orbiting large space structures proposed for communications, earth ob-

serv at ion and remote sen sing are 1arge antennas tlnd space platforms.

*Figure 1, [1] , snows an artist's depiction of a large antenna in earth

orbit.

To assure satisfactory performance of orbiting structures, analvses

of structural integrity and stab)lity are required. These analyses

i~clude prediction of structural deformations introduced by cyclic heat­

ing on the structure during the orbit. The deformations must be ke~t

within design allowable tolerances to assure satisfactory structural

performance. Due to the large size of these structures, ground testing

is not possible, and thus reliable analyses are required to predict

structural deformations accurately•

. To increase the structural stability and to provide additional

stiffn~ss to the structural system, the concept of prestressed,

*The numL.'s in brackets indicate references .

1
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Fig. 1 An artist's depiction of a large antenna in earth orbit [1].
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cabl es and membranes have been proposed for some designs [1-3]. Pre­

stressed structures, such as the hoop column antenna, shown in Fig. 2, 

[1], can provide ease of deployment while maintaining low mass and 

stability. Cable-stiffened space structures are difficult to analyze 

because: (1) all members have prestresses, (2) cables cannot take com­

pressive forces, and (3) large deformations may be experienced. For 

large structures with cables, it is possible that displacenents may be 

large due to on-orbit loads. This introduces nonlinear effects which 

should be considered for the structural analysis to predict deformations 

accurately. 

PI"ediction of structural deformations depends primari lyon the 

accuracy of the heating, thermal and structural analyses techniques 

adopted. Finite element methods are used extensively for such thermal 

and structural problems [4]. Finite element methods are used extensive­

ly for linear type structural analysis with codes such as NASTRAN and 

ANSYS. These codes have limited capability for structural analysis of 

cable-stiffened structures with member prestress. The ANSYS finite 

element structural analysis program uses a "stress-stiffening technique" 

for prestressed structures. Many existing finitp. element codes do not 

have capability for the determination of prestress for the structural 

analysis of cable-stiffened structures. 

1.2 Literature Review 

To predict the displacements caused by on-orbit heat loads, three 

steps are required: (1) calculation of n~at loads, (2) calculation of 
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• • " Fig. 2 A cable-stiffened hoop column antenna [1]. 
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temperatures, and (3) calculation of displacements and stresses due to 

the tenperature distribution in the structure. These tasks have been 

the subject of recent research. 

Mahaney and Strode [5] present a clear description of the heat load 

calculation on orbiting structures. The calculation of structural temp­

eratures at different points in the orbit is a transient problem often 

based on simplifying assumptions. Arduini [6] presents a discussion of 

the accuracy of thermal analyses by citing uncertainties in calculation 

of view factors, menber to member shadowing, member to member radiation 

exchange, and conductivity calcul ation of composite materiah~ 

Chambers, Jensen and Coyner [7] describe a thermal analysis approach 

consisting of the MIDAS/TRASYS programs in which solar shadowing includ­

ing umbra-penumbra effects and circumferential gradients in element 

temperatures are considered. 

Thermal-structural analysis of space structures without prestresses 

in members has been discussed in many papers. Reference [8] presents an 

integrated finite element thermal structural analysis technique to pre­

dict deformation and stresses. In reference [5] a tetrahedral truss has 

been analyzed for on-orbit heating, and it has ~een shown that defor­

mation of the structure is significant. Bowles and Tenney [9] discuss 

the thermal expansion of the composite materials proposed for 1 arge 

space structures and sho~; that thermal loads have significant effects on 

the structural deforma~ion. 

Cables are proposed for many space structures including the Hoop 

Column Antenna [1], Stdyed Col:"'''TIn [2], ~chanically Scanned Deployable 
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Antenna (MSOA) [3], Cable Boom System [10], Lunar JIIlchored Satell ite 

[ll], Geosynchronous Tidal Web [12], and Space Elevators [13]. Str'uc­

tural analyses of some of the above space structures that have preten­

sioned cable elements have been presented in references [I, 3]. Ther­

mal-structural analysis of the MSDA [3] is performed using NASTRAN, and 

ANSYS is used for analysis of the antenna mesh using the stress stiffen­

ing technique. The effect of prestresses in the structure on the struc­

tural analysis has not been investigated. 

Conaway [14] presents a comparison between linear and geometrically 

nonlinear finite element structural analysis of some simple structures 

and shows that nonlinear behavior should be taken into consideration in 

structural analysis. 

Classical cable structures are considered in a book by Irvine [15]. 

Analytical solutions of cable structures are given including deflection 

of a catenary due to thermal loading. Baro~ and Venkatesan [16] present 

analyses of geometrically nonlinear structures composed of elastic mem­

bers capable of resisting axial forces only. Cable prestresses have not 

been included in this analysis. Cable-stiffened space structuras are 

different from classical cable structures because: (1) gravitj loads 

are negligible in space, (2) they have negligible mechanical loads, and 

(3) cables have pretensions. 

1. 3 Objectives 

The literature review has indicated that little information is 

available on the thermal-structural behavior of orbiting prestressed , 

\I 
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structures. The present work concentrates on the investigation of three 

finite element structural analysis techniques and the effect of pre­

stress on the accuracy of the techniques. To predict the structura1 

deformations of cable-stiffened structures and to compare the different 

structural analysis techniques, the following specific objectives are 

considered: 

1. Development of a computational technique to perfonn the pre­

stress analysis of a space structure, 

2. Development of alternative thermal-structural analysis tech­

niques for cable-stiffened orbiting space structures, and 

3. Evaluation and identification of the most suitable analysis for 

cable-stiffened large space structures. 

To meet the objectives mentioned above, finite element methods are 

used to perform the various analyses. Chapter 2 describes heating and 

thermal analyses. The prestress analysis is presented in Chapter 3. 

Chapters 4, 5, and 6 describe three approaches for performing the ther­

mal-structural analysis for cable-stiffened structures. Chapter 7 veri­

fies the structural analyses techniques by analyzing two simple problems 

for which analytical solutions are known. Typical results of thermal­

structural analysis of a two-dimensional pretensioned cable system and 

three-dimensional hoop column antenna are presented in Chapter 8. Based 

on ,these analyses, the three structural analyses techniques are discuss­

ed and evaluated. Appendices A and B contain finite element matrices 

for the two nonlinear structural analysis techniques. 
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Chapter 2 

HEATING AND THERMAL ANALYSES 

During orbit, structural deformations and thermal stresses are 

produced due to environmental heating. To perform the structural ana­

lysis, the structural temperature distribution is needed to compute the 

thermally equivalent nodal forces. The structural temperature distri­

bution can be computed if the environmental heating 1s known. The com­

putational approach used for heating and thermal analyses are explained 

in this chapter. The computational approach 1s highlighted herein, 

further details are presented 1n [5]. 

2.1 Heating Malysis 

The environmental heat sources applied to the space structure are 

solar heating, earth emitted heating and earth reflected solar heating. 

Earth emitted heating and earth reflected solar heating depend on alti­

tude and orientation of the structure. The total incident heat load q 

(per unit area) on the structure is given by 

q=q +q +q sea (2.1) 

where qs, qe and qa are the incident solar heating, incident 

earth emitted heating and earth reflected solar heating, respectively. 

8 
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The incident solar heating qs, is given by the product of the solar 

flux, surface absorbtivity for solar radiation (as) and cosine of angle 

(~) between the solar flux vector and the structure surface normal as 

follows: 

qs = 1390 (W/m2) as cos ~. (2.2) 

The earth emitted heating qe is a function of the Stefan­

Boltzmann constant (a), surface absorbtivity for earth radiation (ae), a 

view factor (F) and the tew.perature of the earth (Te), which is assumed 

to be constant at 289K: 

q =aa FTIt e e e' (2.3) 

The view factor F is defined as the fraction of total radiant energy 

leaving the earth that arrives at the structural surface. 

The earth reflected solar heating qa depends on the solar flux 

in earth orbit, solar albedo factor (AF), a view factor (F), the surface 

absorbtivity for solar radiation (a ) and orientation angle (6): s . 

qa = 1390 (W/m2) AF cose as F. (2.4) 

Tne solar albedo factor is defined as the fraction of solar radiation 

striking the earth that is reflected back into space. 

If the structure enters the earth's shadow during the orbit, the 

heating on the structure is greatly reduced due to the absence of solar 

( 

~ .. 
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heating. The duration of the shadowing depends upon the altitude of the 

orbit. Although the shadow portion of the orbit has two regions, name-

1 y, umbra and peOll11bra, the transit time through the penumbra is very 

small and can be neglected. The present study uses a geosynchronous 

orbit (GEO) which has an altitude of 42000 km. The heating on a member 

depends strongly on a member's orientation with respect to the solar 

vector and, consequently, may vary significantly froln member to member 

and with time during the orbit. The calculation of the structural heat 

load is performed at different orbital positions which may be specified. 

The results are used for the structural thermal analysis described in 

the following section. 

2.2 Thermal An alysi s 

Once the heat load on the structural member has been determined~ 

the structural temperature distribution at different orbital positions 

can be computed. Basic types of heat transfer for a typical space 

structure element are member conduction and surface radiation. The heat 

transfer problem also involves member to member heat radiation ex­

changes, shadowing of one member by another and temperature gradients 

along the length, through the thickness and around the circumfei~nce of 

a member. Member to member radiation exchangt~ are negligible [5] com­

p~red to incident and emitted radiation, so they are disregarded. Shad­

owing of one member by other members is very compl icated and expensive. 

It has not been determined if a detailed shadowing analysis is necessary 

to predict structural deformations accurately. For the current studies, 
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member to member shadowing will be disregarded. For simpl icity, temper­

ature gradients through the thickness of a member will be disregarded. 

This latter assumption is a very good approximation for the thin cables 

of graphite epoxy considered in this study. 

With these assumptions the governing differential equation fOl" a 

structural member is 

p c V :~ + C1 £ "r 1'+ - ix- [kA :) = as ~ q(t) (2.5) 

where the terms on the 1 eft hand side of the equat ion represent energy 

stored in the member by thermal capacitance and the temperature change 

of elenent with respect to time, the energy emitted due to radiation and 

heat transfer due to conduction. The right hand side.term is the inci­

dent heat load, which is a funtion of time. In the ;IDove E!quation p 

is density, cis specific heat, Vis the member voh~nc, C1 is the 

Stefan-Boltzmann constant, £ is surface ernissivitj, Ar ;s the 

element radiation area, k is the thermal conductivity, and A is the 

member cross sectional area. On the right hand side as is the sur­

face absorbtivity, Aq is the incident heating area, and q(t) is the 

incident heating rate per unit area. 

For a structure made from composite materials such as graphite 

epoxy, heat transfer from one member to another by conduction is small 

compared to structures made of metallic members such as aluminum due to 

the low thermal conductivity of composite materials. Thus for composite 
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materials the temperature is nearly uniform along the element length •

For this case Eq. (2.5) reduces to:

(2.6)

..
t...

. !'-A-
..

This differential equation is used to formulate an isothermal fi­

nite element. With this concept, element temperatures for each member

can be computed independently. Atypical equation is solved using the

Crank-Nicholson finite difference technique for transient time marching

and Newton-Raphson iteration at each time step. The temperature distri­

bution of the structure may be determined at each time step for the

entire orbit in this manner .
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Chapter 3 

PRESTRESS ANALYSIS 

Many proposed large space structures use prestressed elements such 

as cables and rods to provide stiffness and stability of the structural 

system. Reference [1] presents details of a cable stiffened hoop column 

antenna. For such structures before performing a structural analysis, a 

prestress analysis is required to determine the tensile (or compressive) 

forces and stresses in each member. The basic requirements for the 

prestress analysis are that the structure: (1) maintain the required 

geometry, and (2) be in static equilibrium. This chapter describes the 

theoretical development for the prestress analysis used in this study 

and presents an example of a simple analysis. 

3.1 Theoretical Development 

For a given geometry, the equilibrium equations for a truss-type 

structure at each joint are: 

IF x = 0 

IF = 0 
Y 

IF z = 0 

where Fx, Fy and Fz are member force components in Cartesian 

13 



r
t
I
I

, ... i ..f ~ ! ,e;:-4 'f:4 C,Af ·f $1_.. ~a J.

14
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coordinates. For a structure with n joints there are, therefore, 3n

equilibrium equations for the entire structure. For a truss-type struc­

ture with m members, there are m unknown member forces, Fi' i =
1, 2, ••m, and the above equations can be written in matrix form as:

(3n * m)

or

81m Fl 0
B2m F2 0

= 0

. . .
B(3n}m Fro 0

(m*l) (3n*1 )

[B]{F} = {OJ (3.l)

In the above equation, [6] contains direction cosines of the menbers,

and {F} in an unknown vector which contains element forces. The right­

hand side vector is a null vector.

Since some of the member forces are specified, the corresponding

columns in [B] matrix are multiplied by the specified forces and trans­

ferred to the right-hand side of the equation. Depending on the total

nunber of equations and total number of unknown member forces, either

additional forces are specified, or extra equations are discarded to

provide the number of equations equal to the number of unknowns. In

implementing this approach in the computer program, the equilibrium

equations are not written at fixed joints. For sone structures, if

equations are written at all free joints then the number of equations
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becomes more than the nUTIber of unknowns. For such problems, additional

joints are fixed in order to provide the number of equations equal to

the number of unknowns. If the total nur.ber of unknown member for~es is

more than the total number of equations then additional member forcp.~

need to be specified. This results in the follo~ing matrix equati~n~

[BM] {Pl = {Rl
jxj jxl jxl

(3.2)

.. ••-•

-

where j is the total nUTIber of unknown member forces to be determined.

[BM] is the modified form of the [B] matrix after imposing the known

member forces, {Pl is the unknown member force vector, and {Rl is

the load vector. Equation (3.2) is a linear set of simultaneous e~ua­

tions that can be solved directly for the unknown merr~er forces.

The number of unknowns shown in Eq. (3.2) can be reduced if the

structure has geometric symmetry. In this case, both lnembers and nodes

which are symmetric are first identified. The symmetrical elements

produce identical member forces and the symmetrical nodes generate

i dent iea" eqt:at ions. The use of s,)lTlmetry ."educes the nUTIber of equa­

tions to be solved.

An analysis of a structure with sJffimetry is performed by grouping

all identical members in one element group. This reduces the total

nunber of element groups. Similarly, the synmetrical nodes, which gen-

erate identical equations, are grouped in one nodal group. Equilibrium

equations are written for each nodal group.

The final linear simultaneous equations which contain forces for
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different element groups can then be solved using the procedures pre­

viously described. Equation (3.1) is written where the size of [8] is

given by (3 * nodal group)* (element group); and {F} is a vector con­

taining the total number of element group forces. To clarify these

procedures an example of a prestress analysis for a s.)Cllmetrical struc­

ture is presented in the next section.

3.2 Ex~ple

Figure 3 shows a planar two-dimensional structure with six nodes

and five members. Nodes 1, 2, 5 and 6 are fixed where nodes 3 and 4 are

free. S~netry may be used in solving for the member forces. To main­

tain the structure in the geometry shown, the forces in members 1 and 5

are identical and similar with the forces in members 2 and 4. Members 1

and 5 are grouped in element group two. Member 3 is placed in element

group three. Nodes 3 and 4 which are free nodes generate identical

equations. Thus nodes 3 and 4 are kept in nodal group one. Nodes 1, 2,

5 and 6 are grouped in nodal group two. At thi s point, there are two

equations corresponding to nodal group one, and three unknowns corre­

sponding to each element group.

The equilibrium equations obtained from node 3 from nodal group one

are,

and
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Fig. 3 A two-dimensional symmetric structure for prestress analysis.
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where Fl , F2 , F3 are forces for element groups 1, 2 and 3 respec­

tively. These can be written in matrix form as, 

[

-COS6 1 

sin6 1 

If F3 is specified then the above matrix equation reduces to, 

[

-cose 1 

S ina 1 

With two equations, the unknowns forces Fl and F2 for element groups 

1 and 2 can be solved. Therefore, all the element forces can be obtain­

ed. Once the forces in each member have been determined, the stresses 

are computed. 

Fi gure 4 shows a flowchClrt of the prestress analysis p,·ogran. 

Nodal coordinates, element connections and symmetry data are read first. 

The program calculates the total nunber of unknowns and total number of 

equations. If the specified forces are not sufficient, the program 

prints a message in the output file and stops. Equation (3.2) is 

formulated directly and unknown forces are solved. The progr&n 

calculates and writes the member stresses on the output file, which are 

used for the structural analysis as member prestresses • 

l+ 
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READ NODAL DATA, ELEMENT
CONNECTIONS, SYMMETRY DATA
AND SPECIFIED FORCES

SET UP MATRIX EQUATION

(3.2) IN TERMS OF SPECIFIED

FORCES

SOLVE MATRIX
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OUTPUT FILE
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Fig. 4 Flowchart of the prestress analysis program .
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Chapter 4 

SMALL DEFLECTION STRUCTURAL ANALYSIS 

The objectives of the stru~tural analysis are to predict deforma­

tions and stresses for the structure during the orbit. The methods for 

calculating the thermal loads on the structure and prestresses in 

different members are given in Chapters 2 and 3. Figure 5 shows the 

thermal-structural analysis procedure for prestressed structures. In 

this chapter small deflection structural analysis using the finite 

element method is described. 

4.1 Theory 

To derive the structural finite element equations for a one-dimen­

s'ional rod or cable element, a variational principle is employed [4]. 

Basic equations required to derive finite element equations are explain­

ed in this section. 

4.1.1 Stress-Strain Relation 

The stress-strain relation for a member with prestress and thermal 

strain is shown in Fig. 6 and ;s given by, 

a = E (£ :> £ ) + a (4.1) 
0 0 

20 
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Fig. 5 Thermal-structural analysis procedure.
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where ° is the element stress, E is the modulus of elasticity, £ 

is the total strain, £0 is the thermal strain and 00 is the ele­

ment prestress. 

4.1.2 Elastic Strain Energy 

The elastic strain energy of the element is given by the integral 

of the area under the stress-strain curve over the volume of an element, 

L L 
U = 1 f A(o-ao) (£-£0) dx + f A 00 £ dx 

2 • • 

where A is the cross-sectional area and L is the ele~ent length. 

Using the stress-strain relation, Eq. (4.1), the strain energy becomes, 

L L 
U = AE J (£2-k;2 - 2 £ £0) dx + A f 00 £dx (4.2) 

2. 0 • 

4.1.3 Strain-Displacement Relation 

Figure 7 shows a one-dimensional rod or cable element in Cartesian 

global XVZ coordinates. The element lies on the local X axis. For 

small deflection theory, the strain-displacement relation is given by, 

(4.3) 
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Fig. 7 One-dimensional finite element in local and global coordinates.



-.....",.,..." .... ,-.. 

• I 

25 

where UI' u2 are the element nodal displacements in local coordi­

nates. 

4.2 El ement Equations 

4.2.1 Element Potential Energy 

The potential energy is the sum of the elastic strain rnergy and 

potential energy due to external loads. 

'If = U +V 

where 'If denotes the total potential energy, U is the elastic strain 

energy, and V is the potential energy due to external loads. If PI 

and P2 are forces acting on node 1 and 2, respectively, then 

Substituting £ from Eq. (4.3), the total potential energy 'If 

becomes, 

AE U2-u l 2 L AE L 2 
'If = - (-) ! dx + -' f £0 dx 

2 L 2 • 

U2 -UI 
- AE ( __ ) 

L 

2 L U2-Ul L 
f eo·dx + A (-) f aodx 
• L. 

(4.4) 

I 
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For a one-dimensional element &0 is the thermal strain given by, 

(4.5) 

where a is the coefficient of thennal expansion, T(ll) is the element 

temperature distribution, and T; is the initial temperature at the 

given prestress. 

4.2.2 Potential Energy Minimization 

To derive th~ element equation, the potential energy ( Eq. (4.4») is 

minimized with respect to the nodal displacenents u1 and u2 : 

or 

~ = 0 and ~= 0 

AE L f EO dx + A ao + Pl L • 

AE AE L 
- (-ul +U2) = - f &0 dx - A 00 + P2 
L L • 

The above two equations can be written in matrix form as, 

AE [1 
L -1 

_ AE --
L 

(4.6) 
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For an isothermal element with constant temperature T, the thermal 

strain is, 

£0 = a (T-T;) (4.7) 

and the above element equations reduce to, 

AE ( 1 
L -1 

(4.8) 

4.3 Analysis Procedure 

For a thermal-structural analysis of an orbiting space structure, 

the heating analysis and the thermal analysis are first performed to 

determine the temperature distribution in the structure. The prestress 

analysis is performed to compute element prestresses. Using the temper­

atures and prestresses, element Eqs. (4.8) are formulated and element 

matrix transformations from local to global coordinates are made. The 

element equations are then assembled to yield the system equations. 

Boundary conditions are imposed. Six boundary conditions are specified 

to constrain the structure from rigid body motion. The unknown nodal 

displacements are then solved, and element stresses are computed using 

Eqs. (4.1) and (4.3). 

As the structure moves to another ori..ital position, the heatir.g 

loads are recomputed, and the structural analysis is repeated. Such a 

sequence of comput3tions is called a quasi-static analysis since dyna~ic 

.1 
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effects are neglected. A computational flowchart for the small deflec­

tion analysis is shown in Fig. 8. 
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START

READ NODAL, ELEMENT AND
MATERIAL PROPERTY DATA

... E
-READ INITIAL TEMPERATURE

ORBITAL POSITION LOOP

READ ELEMENT TEMPERATURES

-FORM ELEMENT MATRICES, EQUATIOl! (4.8)
-TRANSFORM ELEMENT MATRICES TO GLOBAL COORDINATES
·ASSEMBLE ELEMENT EQUATIONS

APPLY BOUNDARY CONDITIONS

.SOLVE FOR NODAL DISPLACEMENTS
·COMPUTE ELEMENT STRESSES

WRITE STRESSES AND DISPLACEMENTS
ON OUTPUT FILE

STOP

Fig. 8 Flowchart of small deflection structure analysis technique for
orbiting structures. '
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Chapter 5

STRESS STIFFENING STRUCTURAL ANALYSIS

The small deflection (linear) structural analysis technique was de­

scribed il' Chapter 4 for cabl e-stiffened space structures. The assump­

tion of small deflections was made in the strain-displacement relation.

Since cables show nonlinear behavior as described in [15]. the large

deflection relation between strain and displacement must be used for the

structural analysis of cable-stiffened large space structures. Using

the large deflection relation between strain and displacements. the

derivation of finite element equations in terms of displacements results

in a nOlil inear set of equations. The resulting stiffness matrix and

right-hand side force vector contain displacements. prestress and ther­

mal strain terms. Two solution algorithms for these nonlinear finite

element equations are considered. The two techniques are stress stiff­

ening described in this chapter and large deflection (nonlinear) tech­

nique described in Chapter 6. In the stress stiffening technique. only

two iterations are performed whereas in the large deflection techniq~e

Newton-Raphson iteration is used until convergence is achieved.

Stress stiffening refers to changes in element stiffness due to

element initial stress. This effect is also called geometric or initial

stress stiffening. The change in element stiffness is due to the

30



.. 

. .,.. 

31 

presence of prestress and/or thermal strain terms in the stiffness 

matrix in contrast to the small deflection analysis where the stiffness 

matrix is an array of constants depending only on material properties 

and element geometry. The stress stiffening structural analysis is used 

because it normally provides a more accurate result than the linear 

analysis for cable-stiffened structures. A brief description of stress 

stiffening is given in [17]. In this chapter, a derivation of finite 

element equations for the stress stiffening analysis is first presented. 

A solution method for solving the unknown nodal displacements for an 

orbiting structure is then described. 

5.1 Theory 

The finite element equations for a stress stiffening structural 

analysis is derived using energy methods similar to the procedures for 

the linear analysis described in Chapter 4. 

Figure 9 shows a rod or a cable element in global Cartesian XVZ 

coordinates. The strain-nodal displacements relation for large deflec­

tions is giver. by [18], 

or 
,.. . 

where 

U2 -Ui 1 
£ =-+-

L 2 

V2 -vi 2 1 w2 -Wi 2 
(-) +- (-) 

L 2 L 

£ = e + .1:.. 82 +.-!. 11'2 
2 2 

(5.1) 

are noaal displacements in the 

elements local xyz directiolls at nodes 1 and 2, respectively, and e 

'--
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Fig. 9 One dimensional rod or cable element. in local and global
coordinates.
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denotes axial strain; e and 1/1 are rotations in the local x-y and x-z 

planes: 

U2-Ul 
e'"-

l 

V2 -VI 
e = 

l 

W2 -Wi 
1/1 = 

L 

5.2 Element Equations 

5.2.1 Element Potential Energy 

(5.2a) 

(S.2b) 

(S.2c) 

The total potential energy is the sum of the elastic strain energy 

and the potential energy due to external forces. By substituting Eq. 

(5.1) into the elastic strain energy, Eq. (4.2), the total potential 

energy becomes, 

L ° 
1f = AEL e2 + AEL (e _ -! ! Eodx + .-Q.) e2 +....!. elt] 

2 2 L E 4 

AEL 1 L °0 1 AE 
+ - [(e - - £ EO dx + --) 1/12 + - wit) + -.le2 1/1 2 

2 L E 4 4 
L 

- AEe ! EO 

L 2 
dx + A 00 L e + AE [ EO dx 

2 

(5.3) 

\.. .. 
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5.2.2 Potential Energl Minimization 

Element equations are derived by performing minimization of the 

total potential energy. Eq. (5.3). with respect to·the no1al dis-

placementcornponents ul. vl' wl' ~, V2 , and w2. As an example, 

minimization of the total potential energy with respect to ul is, 

or 

= 0 

AE 
L 

AE 1jI AE L 
- - - w2 = - - L EO dx + A 00 + Pl 

L 2 L 

For six nodal displacement components, the element equations are; 

[K(u)] {u} = {F} + {F} + {p} 
EO 00 

(5.4) 

(5.5) 

where [K(u)] is the stiffness matrix which depends on the unknown 

nodal displ acements, {u} is the unknown nodll displ acement vector, 

{F) , {F} and {p} are the el ement force vectors due to thermal 
,.. EO 00 

strain, prestress and the external applied forces. respectively. Oe-

;J tails of these element matrices are shown in Appendix A • .. 
... -

--
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5.3 Analysis Procedure 

The finite element Eqs. (5.5) are nonlinear because the element 

stiffness matrix depends on the unknown nodal displacements. To solve 

these nonlinear equations an iterative technique is used. The stress 

stiffening method uses two iterations, [17]. For the first iteration, 

all nodal displacement components which appear in the element stiffness 

matrix are zero. Nodal displacement components computed in the first 

iteration are then used as the approximate solution for the second iter­

ation which gives the stress stiffening result. 

The stiffness matrix and load vectors are computed at each iter­

ation. These element matrices are transformed from local to global 

coordinates, and the system equations are established. Appropriate 

boundary conditions are then imposed, and the unknown nodal displace­

ments are computed. The first iteration nodal displacements are used as 

initial displacements to compute final displacements in the second iter-

ation. 

For the analysis of an orbiting space structure, the heating, ther­

mal and prestress analysis are first performed. Displacements at the 

first orbital position are computed based on the given element temper­

atures, prestresses and initial temperatures. With these computed nodal 

displacements, the deformed structure is obtained and is used as the 

Jn~tial structural geometry to compute the structural deformatio~ for 

the second orbital position. Prestresses and initial temperatures for 

each element are updated. At the second orbital position, the pre-

stresses are the values of the final stresses of the first orbital 

position. Initial temperatures take the values of applied element 

~ .. 
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temperatures of the first orbital position. Similar computations are 

performed at each specified orbital position. A flowchart showing the 

stress stiffening structural analysis for an orbiting structure is given 

in Fig. 10. 

.- . ---------. -- ._. -------- ---- -------
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I
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'COMPUTE ELEMENT STRESSES
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·WRITE NODAL DISPLACEMENTS

+
'SET PRESTRESSES E~UAL TO STRESSES
.UPDATE INITIAL TE PERATURES
·UPDATE GEOMETRY

I
+

STOP

fig. 10 flowchart of the stress stiffening structural analysis
for an orbiting space structure.



Chapter 6 

LARGE DEFLECTION STRUCTURAL ANALYSIS 

It was stated in Chapter 5 that the assunption of the large deflec­

tion relation between strain and displacement results in nonlinear 

finite element equations. One solution algorithm was described in Chap­

ter 5. The second algorithm, the large deflection (nonlinear) technique 

is presented in this chapter. large deflection structural analysis is 

normally used whenever the displacements are large enough such that the 

stiffness matrix based on the initial geometry does not represent the 

actual deformed structure. Ref~rence [18] discusses theory and solution 

methods for large deflection analysis of structures due to simple load­

ings. Large deflection analysis provides high solution accuracy com­

pared to the small deflection and the stress stiffening analysis for 

cable-stiffened structures, where each structural member is prestressed. 

Further explanation is presented in [17, 18]. The element equations 

obtained from large deflection analysis depend on nodal disp1acements 

leading to a non1 inear set of system equations. This chapter describes 

the solution method for the nonlinear equations. An analysis procedure ,... 

for solving nodal displacements of the orbiting structure due to thermal 

loads is then explained. 

38 
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6.1 Theory 

The derivation of the finite element equation for large deflection 

structural analysis follows the procedures given in Chapter 5. The 

element equations are the same as Eqs. (5.5). 

The element Eqs. (5.5) can be written in the form, 

= 1, 6 (6.1) 

where e is the axial strain; e and ~ are the rotations in local ~-

y and x-z planes, respectively. In large deflection structural 

analysis, the Newton-Raphson iteration method is used to solve the above 

nonlinear equations. Aoplication of the Newton-Raphson method to 

Eqs. (6.1) results in the following. matrix equation, [19], 

[J] {flu} = {R} (6.2) 

where [J] is the Jacobian matrix and {R} is the residual load vec-

tor. The coefficients in the Jacobian matrix are given by, 

-- (6.3) 

where uj , j = 1,6 are the element nodal displacement components. The 

residual load vector is, 

( 
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(6.4) 

6.2 Element Equations 

To derive the element Eqs. (6.2), Eqs. (6.1) is first written. As 

an ex~"ple, the first equation of Eqs. (6.1) is, 

'" AE wl --
2 L 

l 
+ ~ [ £0 dx - A 00 - Pl = 0 

l 

AE 6 AE '" . 
U2. - - - V2 - - - W2 

L 2 L 2 

Using Eq. (6.3), the coefficients in the Jacobian matrix are, 

J l1 
= afl = AE 

aUl l 

Jl2 
at 1 AE 6 

=-=-'-
aVl L 2 

Jl3 
af 1 AE 

= -=-' '" aWl l 2 

J14 

af 1 
=-= AE 

aU2 l 

. ....... 

/ 
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J1S 
af! AE e =_=_e 
av2 L 2 

Jl 6 
af! AE 

= -=-- $ 

aW2 L 2 

and the corresponding residual from Eq. (6.4) 

Rl = AEe + AE (:2. + ~) + A 00 
2 2 

AE - -
L 
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is, 

Similarly, other coefficients in the Jacobian matrix and residual load 

vector can be derived, and the element equations can then be written in 

the form, 

{ { R} + {R} + {R} + {In e d, + {R} } m 
£0 . Go e ,v p 

(6.5) 

where [J]m is the Jacobian matrix, {llU}m+! is the vector of nodal 

displacement increments, and the superscript m denotes the mth iter­

ation. The right-hand side of the above equation contains residual load 

vectors associated with the thermal strain, element prestress, axial 

strain, rotational strain and external loads, respectively. The compo-

nents of the Jacobian matrix and the residual load vectors are given in 

Appendix B. Once the nodal displacement increment is obtained, the new 

~ displacement vector ;s computed from, -.. 
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(6.6)

Convergence criteria used is given as,

IflU .1
~ < tolerance
Iui I

(6.7)

where i denotes a typical displacement component. The convergence

tolerance typically used herein is 10-2 •

6.3 An a1ys is Proc.edure

Element Jacobian matrices and residual load-vectors are computed at

each iteration. Initial nodal displacements are set to zero at the

first iteration. Element Jacobian matrices obtained in local coordin-

ates are then transformed to global coordinates and then system equa­

tions are established. Appropriate boundary conditions are then impos­

ed, and the unknown nodal displacement increments are computed. At each

iteration the displacements are updated using Eqs. (6.6). The iteration

process is terminated when convergence criteria 9iv~n by Eqs. (6.7) are

met.

For the analysis of an orbiting space structure, the heating,

thermal, and prestress analyses are first perfonmed. Displacements at

the first orbital position are calculated based on the given element

temperatures, prestresses and initial temperatures using the nonlinear

analysis method discussed earlier. With these cOlTlputed nodal displace-
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(

ments, the deformed structure is obtained and is used as the initial

st"uctural geometry to compute the structural deformation for the second

orbital position. Prestresses and initial temperatures are updated at

each orbital position as discussed in Chapter 5. Nodal displacements

and element ~t~~sses are computed similarly at each specified orbital

position. A flowchart showing the large deflection structural analysis

for an orbiting structure is shown in Fig. 11.
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.WRITE NODAL DISPLACEMENTS u

·SET PRESTRESSES EQUAL TO STRESSES
·SET INITIAL TEMPERATURES FOR NEXT

ORBITAL POSITION EQUAL TO CURRENT
TE~lPERATURES

.UPDATE GEOMETRY

STOP

Fig. 11 Flowchart of large deflection structural analysis
for an orbiting space structure.
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Chapter 7 

VERIFICATION OF STRUCTURAL ANALYSIS METHODS 

In the preceding chapters, three structural analysis techniques 

were described. The accuracy of the small deflection, stress stiffening 

and large deflection analyses are verified in this chapter neglecting 

prestress effects. Two problems with known analytical solutions are 

used to veri.fy the analyses. A nonl inear rod-spring system is analyzed 

first, and results from the thr~e analysis techniques are compared with , 
I 

an analytical solution. A large displacement nonlinear analysis of an 

elastic cable is perfonned next, and results are compared with an ana-

lytical solution. 

7.1 Nonl inear Rod-Spring System 

Figure 12 shows t:le nonl ;near rod spring system. Node 1 is hinged, 

node 3 is fixed, and node 2 can move only in the vertical direction. 

For an applied vertical force P, the verti~al displacement u at node 

2 can be computed from the exact relation [20], 

P = ku + AE (l sin9-u) [ ______ L ______ -1] 

l (l sin9)2 + (l sine-u)2 . 
(7.1 ) 
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where k is the spring constant, A, E and L are the cross-sectional 

area, the modulus of elasticity and the length of the rod, respective­

ly; e is the angle between the rod and the horizontal plane shown in 

Fig. 12 • 

Using the small deflection (linear), stress stiffening and large 

displacement (nonlinear) analyses, the displacement u is computed for 

different values of the applied force P. Results obtained using these 

analyses are compared with the ana1ytical solution in Fig. 13. 

For very small deflection (less than 0.25 in~hes). the displacement 

solution obtained from the linear, stress stiffening, and nonlinear ana-
! 

lyses are close together. For larger deflectlonsthe three analyses 

show a wide difference in results. The nonlinear analysis provides very 

accurate displacement predictions for different loads, but the stress 

stiffening and linear analyses compare poorly with the analytical solu­

tion. The solution of the nonlinear rod-spring system verifies the 

nonlinear analysis technique and shows that linear analysis and stress 

stiffening analysis should not be used for such problems. 

7.2 Symmetric Elastic Cable 

A sjfll11etrical elastic (al uninum) cable is sho'Nl'l in Fig. 14. The 

shape of the cable under its own weight neglecting the cable extension 

represents a catenary. Dimensions and material properties of the cable 

are given in Table 1. The cable is loaded by its own weight and is 

subjected to a rise in temperature of 200·F. The analytical solution 

-
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Fig. 13 Comparative displacement for nonlinear rod-spring system
using three analysis techniques.,.
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Table 1

Dimensions and Material Properties of
an Elastic Cable

GE()t1ETRY AND
MATER IAL PROPERTY VALUES

SPAN 6000 in.

SAG 600 ; n.
I
I

LENGTH 6157 in•

SPECIF IC WEIGHT •11 lb/in. 3

WEIGHT/UNIT LENGTH .25 lb/in.

CROSS-SECTIONAL AREA 2.5 1n. 2

MODULUS OF ELASTICITY 10.0 x loG psi

COEFFIC lENT OF .,. 13.0 x 10-6 iF
THERMAL EXPANSION

50
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for the displacen~nt due to the cable's own weight and temperature 

increase is given in [15]. This analytical solution is obtained by 

first computing the undeformed shape of the i~extensible cable by 

using, 

Z(X) = ~ [cosh (mgt) - cosh mg (~- X)] (7.2) 
mg 2H H 2 

S(X) = ~ [sinh (mgt) _ sinh mg (_t.. - X)] (7.3) 
mg 2H H 2 

where His the max imum hori zontal component of force in the cabl e 

which is computed from l 

sinh(~gt} 
2H 

mglo --
2H 

(7.4) 

where mg is the weight of the cable per unit length; X, Z and S 

are the horizontal distance, vertical distance and cable length, respec­

tively, (Fig. 14). The length of the undeformed cable is lo, and t is 

the span. 

The vertical defl ection, incl ud ing extension, due to the combined 

loading of the cable's weight and the~temperature increase 6T, with 

respect to the undeformed shape Z(X), Eq. (7.2) is, 

w = (7.5 ) 
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where h is the positive root of, 

3 2 2 2 - ). - ). -h - (2 + 6 + -) h + (1 + 26 + -) h - 6 = 0 (7.6) 
24 12 

where 

6 = a 16TI It/ (H lei E A) 

).2 = (m:)2 * I. / (H le/E A) 

It = I. [1 + (mgt) / 12) 
H ! 

le = I. [1 + 8 (_2/) 
I. 

a is the coefficient of thermal expansion, and d is the diameter of 

the cable. 

The finite element solution of the cable problem is obtained us·jng 

the nonlinear structural analysis technique. The geometric symmetry of 

the problem is used where only half of the cable is modeled for the 

analysis. The finite element model includes 25 cable elements and 26 

nodes. The nonlinear technique using Newton-Raphson iteration method 

(Chap. 6), converges in five interations. 

The vertical defl ections for the analytical and finite element 

solution are compared in Fig. 15. The nonlinear finite element solution 

provides very accurate results with a maximum difference of 0.05 

percent. 

The results of these two problems verify that the large deflection 

( 
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(nonlinear) finite element analysis can be used to analyze cable deflec­

tion accurately. The linear and stress stiffening analyses techniques

may not provide results of comparable accuracy for such nonlinear prob­

lems.

The two problems analyzed did not consider prestress effects that

characterize cable applications in large space structures. In the next

chapter, cable-stiffened orbiting structures will be analyzed. The

three analysis methods will be evaluated for these applications includ­

i ng prestress effects. I,



Olapter 8

THERMAL-STRUCTURAL ANALYSIS OF CABLE-STIFFENED
OR~ITING SPACE STRUCTURES

This chapter is devoted to the analysis of cable-stiffened orbiting

space structures. Small deflection (linear), stress stiffening and

large deflection (nonlinear) analyses procedures were described in

Chapters 4, 5, and 6, respectively. Chapter 7 demonstrates for two

structures without prestress, that the nonlinear analysis provides more

accurate displacements than the stress stiffening and the linear

analysis procedures. It was also verified that the nonlinear analysis

pr1wides very accurate di spl acements for a thermal load.

Thermal-structural analysis of prestressed cable-stiffened space

structures is described in this chapter. Comparative analyses for two

typical cable-stiffened structures are presented. The analyses were

performed us~ng linear, stress s~iffening and nonlinear technlques, and

the results are compared in tables and figures. The analyses are

performed at different structural prestress levels to study the effect

of prestress.

8.1 Simplified Two-Dimensional Pretensioned Cable System

A simpl ified two-dimensional pretensioned cable system is shown in
;;l

Fig. 16.
II-.#-..•
...,

The cables which fo~ the parabolic shape are called radial

55
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NODE 1 2 3 4 5

X 3.37 10.1 23.8 38.0 52.7
I

Y -9~6 -9.4 -8.9 -6.8 -3.7

(DIMENSIONS ARE IN METERS)

I
....---------- 122.01------------1

...

Fig. 16 Simplified two-dimensional pretensioned cable system.
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.. cables, and the cables which support these are called the support

cables. All cables are made of graphite epoxy, where the material prop­

erties are given in Table 2. The fil1ite element model of the structur£:

consists of 21 elements and 13 nodes.

8.1.1 .!:!.eat i n9 and Thermal Anal ys is

The cable system is asslmed to be in a geosynchronous earth-facing

orbit as sholfm in Fig. 17. Heating histories for hlo typical structural

members are shown in Fig. ~8. The member incident heating is maximum
I
I

when the member is perpendicular to the solar vector. The membel'

heating drops when the member is either parallel to the solar vector or

in the earth's shadow. The heating rate varies from 1200 w/ffil to 10

W/II~ for a typical member during the orbit.

Member heat loads are used to compute member temperatures in the

thermal analysis. Isothermal elements are used because members are made

of graphite epoxy which have very low thermal conductivity. Figure 19

shows temperature histories of two typical members. The temperature

histories follow the patterns of the member heating histories because

the members change orientation slowly with respect to the solar flux.

The member's low mass and high surface emissivity along with the slow

change in heating produce member temperatures very close to the radi­

ation equil ibrium tempel'atures throughout the orbit. When the structure

enters the earth's shadow, member temperatures drop suddenly and ap-

proach much lower radiation equilibrium temperatures. ~hen the struc-

ture leaves the earth's shadow, member temperatures rlse abruptly due to
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Table 2

Properties of Simplified Two-Dimensional
Pretens ioned Cable System

Rad i a1 cab1e 3.09 mm

di aneter

Support cable 1.21 mm

dianeter

Modul us of 1. 23 x lOll N/m2

el ast icity

Coeffic ient of 5.40 x 10-7 11K

thermal expansion

Density 1650.0 kg/m3

Specific heat 879.2 J/kg-K

Emmissivity 0.84

Absorbtivity 0.916

- ~..•.. -"
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Fig. 17 Orientation of simplified pretensioned cable system in 
geosynchronous orbit. 
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Fig. 18 Heating histories of typical members of simplified
pretens;oned cable system.
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the abrupt chanqe of heat load. The range of member temperatures during 

an entire orbit is from 320 K to 90 K. The member temperatures at the 

different orbital positions are used in the structural analysis to co~ 

pute displacements and stresses. 

8.1.2 Prestress Analysis 

Element prestresses are computed using the prestress analysis pro­

cedure described in Chapter 3. Geometric symmetry of the structure is 

used, and a tensile force of 452 N is specified for element number one 

(see Fig. 20). The prestress program is then used to compute the other 
\ 

element forces and stresses. Figure 20 shows the computed forces and: 

prestresses for each member of the symmetric structure. 

8.1.3 Structural Analysis 

Linear, stress stiffening and nonlinear analyses are used for com­

putation of structural deformations and cable stresses. Element temper­

atures and element prestresses calculated earlier are used as input data 

in these analyses. Initial member temperatures of 294 K are assumed. 

Analyses are performed at orbital positions for the orbit as described 

in the analysis procedures in Chapters 4, 5, and 6. lhe three analyses 

predict similar patterns of nodal displacements and member stresses. 

Only the results of the nonlinear analysis is presented in the figures. 

Deflection comparisons for the three analyses are presented in tabular 

form in the next section. 

Figure 21 shows the displ acelOent histories of two typical nodes. 

The nodal displacement history for a typical node follows the temper-
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ELEMENT FORCE PRESTRESS
NO. (N) (MPa)

1 452.0 60.2

2 173.3 23.1

3 150.2 20.0

4 134.6 17.9

5 134.1 17.8

6 133.6 17.8

7 284.5 245.4

8 25.8 22.2

9 21. 5 18.5

10 1.0 0.9

11 4.0 3.4

Fig. 20 Member prestre~ses for symmetric simplified pretensioned
cable system.

,.
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Fig. 21 Displacement histories for two typical nodes on simplified
pretensioned cable system.
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ature histories of the connected elements (not shown). Figure 22 shows 

the stress histories for two typical members. The stress variation 

during the orbit is small compared to the prestress level of the member. 

For a typical member, the stress variation is 11 percent from its pre­

stress value. The maximum stress change occurs during passage throuqh 

the earth's shadow. 

Greatly exaqgp.rated deformed shapes of the structure at the 0, 90, 

and 130 degrees orbital positions are shown in Fig. 23. The deformed 

shape of the structure is in equilibrium and members are in tension. 

The deflection of the parabolic surface is not symmetric because the 
! , 

symmetrical elements have unequal thermal loads at different orbital 

positions. Maximum displacements are in the Z direction. At the 90 

degrees orbital position, a maximum displacement of 1l.S mm (shown in 

Fig. 23) occurs at the node nearest to t~e support. A maximum Z­

displacement of 20mm occurs at the same node during passage through the 

earth shadow. 

8.1.4 Comparative Deformations 

To compare the three structural analysis methods, the thermal­

structural analysis is performed at three prestress levels using the 

linear, stress stiffening and nonlinear analysis techniques. The first 

prestress level is determined by specifying a force of 45.2 N for member 

number one (see Fig. 20). Similarly, the second and the third prestress 

levels are determined by specifying forces of 452 Nand 4520 N, respec­

tively. The second prestress level is close to the design prestress 

. . 
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Fig. 22 Stress histories for two typical members of the simplified
pretensioned cable system.
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used by NASA for structures such as the hoop column antenna [1]. The 

third prestress level is a hypothetical prestress level assumed for 

evaluation of the three structural analysis techniques. At this pre­

stress some of the members may exceed design allowable stresses in ten-

sion. 

Comparative deflections for node five (see Fig. 16) obtained from 

the three analysis techniques at the orbital positions of 0, 90, and 187 

degrees are shown in Table 3. For these prestress levels, the 1 inear 

analysis overestimates the deflection compared to the stress stiffening , 
! 

and nonlinear analysis. With increasing prestress, the linear analysis 

results remain almost unchanged, but the stress stiffening and nonlinear 

analysis results vary Significantly. The latter tl'lO analyses predict 

relatively small d.eflections at higher prestress. 

For the second prestress level at the 90 degrees orbital position, 

the linear and stress stiffening analyses predict 15 percent and 0.31 

percent higher displacements than the nonlinear analysis, respectively. 

As prestress increases, the error in the linear analysis increase and 

results are ~ot acceptable. The errors in the stress stiffening analy­

sis increase also but renain within acceptable levels. The stress 

stiffening analysis can be used at NASA design values of prestresses 

with small error. 

8.2 Three-Dimensional Prestressed Ibop Colunn Antenna 

A three-dimensional hoop column antenna is shown in Fig. 24. 

Dimensions of the finite el ernent .lodel are ShO\'tll on the front and top 

.,.. 
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Table 3

Simplified Pretensioned Cable System
(Fig. 16) Z-Deflection Comparison (mm)

69

(

e·

ORBITAL 0 90 187
POSITION
(DEGREES)

PRESTRESS LEVEL ONE (Ft = 45.2 N)

LINEAR -.6590 13.40 22.97
ANALYSIS

STRESS -.6592 12.90 22180
STIFFENING
ANALYSIS

NONLINEAR -.6536 13.10 22.80
ANALYSIS

PRESTRESS LEVEL TWO (F1 = 452.0 N)

LINEAR -.6578 13.40 22.97
ANALYSIS

STRESS -.6332 11.69 20.98
STIFFENING
ANALYSIS

NONLINEAR -.6097 11.66 20.95
ANALYSIS

PRESTRESS LEVEL THREE (F1 =4520.0 N)

LINEAR I -.6461 13.41 22.98
ANALYSIS I

STRESS -.4769 6.738 11.87
STIFFENING
ANALYSIS

NONLINEAR -.3831 6.658 11.78
ANALYSIS

is pretension in member one (see Fig. 20).

.,..
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Fig. 24 Three-dimensional prestressed hoop column antenna. 
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views in Figs. 25 and 26. Tables 4 and' 5 provide member cross-sectional 

areas and material properties. The finite element model consists of 123 

nodes and 387 elenents. The hoop and colunn are represented by rod 

elements, and cables are represented by cable elements. In addition, 

192 fictitious cable elements were added for structure stabil ity. The 

f'ictitious cable elements have very low (106 N/rn2) modulus of elasticity 

compared to the other elements of the structure (lOll N/m2) and have 

zero coefficient of thermal expansion. 

The structure is ina geosynchronous orbi t oriented a$ s~own in 

Fig. 27 with the antenna surfa~e pointing towards t~e eart.h. The analy­

sis of the three-dimensional prestressed hoop collJlTln antenna is ;>erform­

ed simil ar to the simpl i fied two-dimensional pretensioned cable system 

described in the previous section. The heating analysis ana thermal 

analysis are performed at different orbital positions up to orbital 

angle of 200 degrees. A temperature variation from 310 K to 90 K is 

observed for a typical member during passage through the earth shadow. 

8.2.1 Prestress Analysis 

The structure's geometric symmetry is used in the pr~stress ana­

lysis. Symmetrical elements and nodes are identified and grouped in 

element and nodal groups. Six member forces are specified for the .,. 

structure, and the prestress program is used to compute other menber 

forces ~nd stresses. These computed stresses are used as the member 

prestresses in the structural analysis. 111e fictitious elements have no 

prestresses. Figure 28 shows member prestresses and forces in a typical 

section of the structure. 

( 



a 10.0 m
b 23.8 m
c 38.0 m
d 52.7 m
e 3.56 m
f 6.88 m
9 8.89 m
h 9.40 m
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OUTER SUPPORT CABLE
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Fig. 25 Front section of the hoop column antenna .
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Fig. 26 Top view of tile finite element model of the prestressed hoop
column antenna.
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Table 4

Hoop Column Antenna Cross-Sectional
Areas and Materials

STRUCTURAL AREA (nf ) MATERIAL
MEMBER x 10..6

CENTRAL COLUMN 237.6 GRAPHITE
(HOLLGI TUBE) EPOXY-l

HOOP 266.0 GRAPHITE
(HOLLOW TUBE) EPOXY-2

OUTER SUPPORT CABLE, 27.3 QUARTZ
COLLMN TO HOOP
(+ Z SIDE)

OUTER SUPPORT CABLE, 4.63 GRAPHITE
COLLMN TO HOOP EPOXY-l
(- Z SIDE)

RADIAL CABLE, 7.49 GRAPHITE
RING TO RING EPOXY-l

SUPPORT CABLE 1.15 GRAPHITE
COLUMN TO RING EPOXY-l

RING CABLE 0.297 GRAPHITE
EPOXY-!

>-.----
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Tab 1e 5

Material Properties of Hoop Column Antenna

GRAPHITE GRAPH ITE QUARTZ

EPOXY-l EPOXY-2

~~dulus of elasticity 12.30 7.30 5.25

xlQ10 N/nt

Coeffic ient of thennal -7.2 7.2 5.4

expansion

x 10-7 /K

Density 1. 60 1. 93 1. 74

xl03 kg/m3

Spec ific heat 879.2 879.2 840.0

Joul e/kg-K

Emi ss iv ity 0.84 0.84 0.93

Absorbtivity 0.916 0.916 0.916

... ~~ • ~ .. ~. • - ~ -" \ ~ # ~. , .. •
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Fig. 27 Orientation of prestressed hoop column antenna in earth 
orbit. 
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ELEMENT FORCE PRESTRESS
NO. (N) (MPa)

1 121. 7 16.2

2 134.1 17.8

3 154.2 20.5

4 189.1 25.2

5 452.0 60.2

6 37.1 32.0

7 22.2 19.1

8 33.2 28.6

9 26.2 226.5
10 140.0 30.2

11 407.5 14.8

12 -5968.4 -25.1
2 ~13 -6681.1 -28.1

14 -3291. 3 -12.3

15 25.0 84.0

16 20.0 67.2

17 15.0 50.4

18 10.0 33.6

·.

Fig. 28 Member prestresses for prestressed hoop column antenna.
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8.2.2 Structural Analysis 

Using temperatures and prestresses, the linear, stress stiffening 

and nonlinear analyses are performed to compute nodal deflections and 

menber stresses at different orbital positions. The three analyses 

predict similar patterns of nodal displacements and member stresses. 
, 

The results of the nonlinear analysis is presented in the figures. 

Deflection comparisons for the analysis are presented in tabular form in 

the next section. The hoop and antenna of the structure are in compres­

sion at all times during the orbit. Buckling of these menbers has not 

been considered. 

Figure 29 shows the Z-displacement histories for two typical nodes 

on the .. tltenna's surface. During orbit, points on the antenna's surface 

move toward !nd away from the earth, i.e. ± Z displ acenents take pl ace. 

A maximum Z deflection of 20 mm occurs at a node on the antenna's sur-

face nearest to the hoop in the earth's shadow. A significant displace­

ment of 15 ml11 occurs at the same node at 90 degrees orbital position. 

The Z-def~ections of the antenna surface at three orbital positions are 

shown in Fig. 30. Figure 31 shows the Z deflections of 4 panels at the 

90 degree orbital position. Figure 32 shows displacement contours on 

the antenna's surface. The figures show that antenna surfaces near the 

hoop have maximum deflection. The displacements are not exactly axisyn­

metric as they vary from panel A to D (Fig. 31). Displacements in the 

central region of the antenna's surface are small ~ Stress variation for 

a typical element is ±8 percent from a prestress value of 60 MPa. 
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8.2.3 Comparative Deformations 

The linear, stress stiffening and nonlinear structural analyses 

are performed at three typical prestress levels. Member number five 

(see Fig. 28) has a force of 226 N for prestress level one, 452 N for 

prestress level two and 4520 N for prestress level three. The third 

prestress level is a hypothetical prestress level assumed for evaluation 

of the three structural analysis techniques. At this prestress some of 

the members may exceed ,;~1sic:1O allowable stresses in tension or compres­

sion. Deflections of a node (number hO, Fig. 28) at these pl"estress 

levels for the structural analysis techniques are given in Table 6 at 0, 

90, and 187 degrees orbital positions. 

For all three prestress levels, the linear analysis overestimates 

the deflection compared to the stress stiffening and nonlinear analyses. 

With increasing prestress, the linear analysis results remain almost 

unchanged, but the stress stiffening and nonl inear analysis results 

change significantly predicting relatively small deflections at higher 

prestress. In other words, the three analyses produce similar results 

at small prestress levels, but at higher prestresses the differences 

between the results from the three techniques becomes greater. For 

instance, at the zero degree orbital position and at prestress level 

three, the linear and stress stiffening analysis predict 82 percent and 

23 percent higher displacements than the nonlinear analysis. 

At NASA design prestresses (level two), results from the three ana­

lysis techniques differ significantly. The linear analysis predicts 11 

percent, 20.7 percent, and 22.7 percent more deflection than the non­

linear analysis at the three orbital positions. The stress stiffening 
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Table 6

Prestressed Hoop Column Antenna (Fig. 28)
Z-Deflection Comparison (mm)

84
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,
j

ORBIlAL 0 90 187
POSITIO'"
(DEGREES)

PRESTRESS LEVEL ONE (F; = 226.0 N)

LINEAR 11.62 -11. 40 -24.03
ANALYSIS

STRESS 11.31 -10.40 -21.68
STIFFENING
ANALYSIS

tWNLINEAR 10.98 -10.37 -21.66
ANAL YS IS

PRESTRESS LEVEL TWO (Fs = 452.0 N)

LINEAR 11. 62 -11. 40 -24.03
ANALYSIS

STRESS 11.01 - ~,.49 -19.60
STIFFENING
ANALYSIS

t-

NONLINEAR 10.45 - 9.44 -19.58
ANALYSIS

I
PRESTRESS LEVEL THREE (~ = 4520.0 N)

LINEAR 11. 65 -11. 37 -24.00
ANALYSIS

STRESS 7.89 - 2.15 - 2.97
STIFFENING
ANALYSIS _.
NONLINEAR 6.39 - 2.25 - 2.90
ANALYSIS

*Fs ;s pretension in member five (see Fig. 28) •



• 

.. ; . 

.. 

" -: 
'. 

.. 

85 

analysis predicts 5 percent, 0.5 percent, and 0.1 percent more deflec­

tion than the nonlinear analysis at these positions. These results show 

that at the NASA design prestresses, a stress stiffening analysis can be 

used instead of a nonlinear analysis to predict deflections with 

acceptable accuracy. 

Comparison of CPU times gives a ratio of 1:11:16 for linear, stress 

stiffening, and nonlinear analysis, respectively. Although the linear 

analysis is efficient in computer time, the results of this analysis may 

not have acceptable accuracy. The nonlinear analysis takes more com­

puter time but the results are al~ays accurate and can be used with 

confidence for all prestress levels. A stress stiffening analysis is 

not as expensive as a nonl inear analysi s and can give, depending on t:',e 

prestress, results of acceptable accuracy. Considering these facts the 

use of the stress stiffening method can be recommended for structural 

analysis of the hoc~ column antenna at NASA design prestresses. The 

nonl inear ~nalysis meth0d is recommended as a more general (and more 

expensive) technique for all prestress levels. 
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Chapter 9 

CONCLUDiNG REMARKS 

Finite elenent thermal-structural analysis of cable-stiffened space 

structures 1s presented. Heating and thermal analysis for orbiting 

space structures 1s first discussed. Oete~;nation of cable prestresses 

is then described. Analysis of structural deformations and stresses are 

performed using small displacement 1 inear. stress stiffening t and large 

displacement nonlinear techniques. 

To analyze a cable-sti~ffened space structure t the structural sur­

face heating history is first computed. The thermal analysis is then 

performed to compute the structural temperature distribution. A pre­

stress analysis is also performed to det~rmine the structural prestress­

es. The structural temperature distribution and prestresses are used in 

the structural analysis for computation of deformations and stresses. 

To verify the three techniques used in the structural analysis t two 

examples with analytical solutions are employed. A nonlinear rod-spring 

system subjected to an ext~rnal for,e is first used to assess the accu-

racy of the three finite element structural analyses. The linear analy­

sis yields a fair result for small deflections. Better accuracy is 

obtained by using the stress stiffening analysis while the most accurate 

solution is produced by the large dl"splacement analysis. A cable loaded 

by its own weight and subjected to a uniform temperature change is used 

to further verify the accuracy of the 1 arge displacenent analysis. 
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The thermal-structural analysis of a prestressed two-dimensional 

cable system and a three-dimensional hoop column antenna are performed. 

The variation of member stress due to thermal effects during the orbit 

is small compar~d to the member prestress. The effect of member pre­

stress levels on the accuracy of the analysis techniques is evaluated 

~sing comparisons of structural deformations. Finite element analyses 

for three prestress levels were performed. At low prestresses, the 

three analysis predict similar deformations. With increasing prestress 

level, deformations obtained from the linear an~lysis remain almost 

unchanged. whereas a large change in deformations is predicted by the 

stress stiffening and large displacenent analyses. Although the linear 
\ 
! 

analysis is efficient in computer time, the results may not have accept­

able accuracy. The large displacement analysis takes more c~nputer 

time, but the results are always accurate and can be used with confi­

dence for all prestress levels. A stress stiffening analYSis is not as 

expensive as a large displacement analysis and it can give, depending on 

the prestress, results of acceptable accuracy. The stress stiffening 

method can be recommended for structural analysis of the hoop column 

antenna at NASA design prestresses. 

The large displacement analysis technique is recommended as a gen­

eral (and more expensive) technique for all prestress levels. The re­

sults have shown that accuracy in predicting the deformation and stress 

for cable stiffened structures strongly depends on the prestress. The 

large displacement analysis technique produced accurate results over a 

wide range of prestress and is recommended as a general analysis 
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approach for thermal-structural analysis of cable-stiffened space struc-

tures. 
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APPENDIX A

FINITE ELEMENT MATRICES FOR STRESS STIFFENING STRUCTURAL ANALYSIS

The finite elenent equations shown in Eqs. (5.5) for the stress

stiffening structural analysis have the form,

U1 -1 1
( ~1

AE !Xl V1 0 0
wI = AE'a (T-Ti ) 0 + "0 0 0 + ' 0 (A.i)

L u2 1 -1 t~2V2 0 0
w2 0 0

where [K"] is a symmetric matrix in which the coefficients are,

Kll
,. -K 11t ,. KItIt ,. 1

1<12 -1<15 ,. KitS
e

• =-
2

K13 -K16
- ljI= =Klt6 = -

2

K22 -K2S =Kss =!. [a
°0 e2

(A.2)= (T-Ti) + - + -]
2 E 2

K23 -K26
- eljl= =KS6 ,. .-

4

K33 -K36 ,. K66
1 [a

Cia ljI2
= ,. .- (T-Ti ) +-+-]

2 E 2
......
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The first tenn on the right-hand side of the above equation denotes 

the element nodal force vector associated with the thermal load. Iso­

thermal e1 ements were used in the thennal ana1ysi s so the element temp· 

erature T is constant for the olement. 
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APPENDIX B

FINITE ELEMENT MATRICES FOR LARGE DEFLECTION STRUCTURAL ANALYSIS

Components of the element matrices shown in Eqs. (6.5) are presented

here. The element equations can be written in the form,

AE [J]
L

t.Ul
t. Vl
t.Wl
t. u2
t. v2
t.W2

= AEa (T-T1)

-1
o
o
1
o
o

+ Peo

e
o
o

-e
o
o

(B.1)

(

where components of s~etric matrix [J] are given by

Jll = -Jllt =JItIt = 1

J12 = -J1S =JItS = -J21t =a

J13 = -J16 = Jlt6 = -J31t =."

'J22 -'J2S = 'JS5 =[e - a
°0 3

+~ (B.2)= (T- T.) + - + - e2
1 E 2 2

J23 = -J26 = JS6 = a."

J33 "J66 = [e - a (T-T.)
°0 3

.,,2 + a2
]= +-+-1 E 2 2

",'"'

The fourth vector on the right-hand side of the above equation is asso-
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ciated with the rotational strain and the components are given by, 

R; .. - Rit 
e2 ljI2 

.. - +-
2 2 

.. [e • a 
ao 

& + ~ + eljl2 R2 .. - Rs (T-T i ) +-J 
E 2 2 
ao ." + ~ + ."e2 

R3 .. - R6 .. [e - a (T-T.) +-J 
1 E 2 2 

Thermal strain terms in the above equations have been replaced by 

Eq. (4.7). Isothermal elements were used in the thermal analysis so the 

element temperature T is constant for the element • 
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