NASA

brought to you by

OR REFERENCE

CORE

NASA-111-0370 19840020043

Technical Memorandum 85789

AVSCOM Technical Memorandum 84-B-1

VIBRA—An Interactive Computer Program for Steady-State 150 BE FREE POOR THE BOOM Vibration Response Analysis of Linear Damped Structures

JULY 1984

1984

LANGLEY REFEARCH CENTER LIBRARY, MASA HAMPION, VIRGINIA

NASA Technical Memorandum 85789

AVSCOM Technical Memorandum 84-B-1

VIBRA—An Interactive Computer Program for Steady-State Vibration Response Analysis of Linear Damped Structures

Lynn M. Bowman Structures Laboratory USAAVSCOM Research and Technology Laboratories Langley Research Center Hampton, Virginia

National Aeronautics and Space Administration

Scientific and Technical Information Branch

¢ .

•

.

CONTENTS

INTRODUCTION	1
SYMBOLS	1
METHOD OF ANALYSIS	2
PROGRAM ORGANIZATION	5 5
Program Flow	5
APPLICATIONS Case 1 - Constrained Viscously Damped System	6 6
Case 2 - Unconstrained Structurally Damped Helicopter Tail Boom	6
CONCLUDING REMARKS	7
APPENDIX A - INPUT DATA DESCRIPTION	8
VIBRA Input File / Data and Format Requirements	8
Title card	8
Control Cara	0
Natural frequency group	9
Generalized mass group	10
Damping group	10
Force vector group	10
Force coordinate group	10
Response coordinate group	11
VIBRA Interactive input	11
Contents of NAMELIST VPLOT	11
NAMELIST rules	13
Blank Common Length	13
APPENDIX B - SAMPLE INTERACTIVE SESSION	14
APPENDIX B - TABLES	16
APPENDIX B - FIGURES	23
APPENDIX C - COMPUTER REQUIREMENTS	30
Memory Allocation and Auxiliary Storage Files	30
Graphics Subroutines	30
LaRC NOS PLOT-10 Subroutines	31
APPENDIX C - TABLES	34
REFERENCES	43
TABLES	44
FIGURES	54

·

INTRODUCTION

Steady-state vibration response analyses are commonly used in evaluating the dynamic behavior of structures subjected to cyclic external forces. An undocumented vibration response analysis based on modal superposition was developed about 10 years ago. The analysis calculates the acceleration response at any selected point on a structure for specified vibratory loading; the program provides tabular output of modal accelerations and acceleration response with optional paper plots.

In using the program, it became obvious that several improvements were desirable; thus, an effort was undertaken to expand the program's capability, to decrease "turnaround time," and to make the program easier to use. The mathematical equations used in the original program were retained, but a new program logic that would use less memory storage was developed. The new program operates interactively for rapid evaluation and plotting of structural response to vibratory loads. Options are also provided to control both the printed and the interactive graphic output.

The purpose of this report is to document the improved version of this computer program. The theoretical background, program description, and application are presented along with user instructions and a sample interactive computer session. The program can use results from any vibration analysis that has output in the form of generalized masses, eigenvalues, and eigenvectors. For instance, the program can be used as a postprocessor with finite-element codes such as NASTRAN[®] (ref. 1), or it can use measured modal data (as discussed in ref. 2). This computer program, named VIBRA (vibration response analysis), is available through COSMIC¹ as LAR-13291.

SYMBOLS

- A modal acceleration, g/lb
- $[D(\omega)]$ damping matrix, lb-sec/in.
- d(ω) generalized modal damping, lb-sec/in.
- $\{F(\omega)\}$ applied force vector, lb
- g acceleration of gravity (G in computer-generated tables and plots), in/sec²
- g_n structural damping coefficient (eq. (12))
- i imaginary operator
- j response coordinate
- [K] stiffness matrix, lb/in.
- k force coordinate

м	generalized mass, lb-sec ² /in.	
[M]	mass matrix, lb-sec ² /in.	
N	number of modes	
n	mode number index	
{q(ω)}	displacement response vector, in.	
; {q(ω)}	acceleration response vector, g units	
[Υ(ω)]	displacement mobility matrix, in/lb	
[Ϋ(ω)]	acceleration mobility matrix, g/lb	
[Ζ(ω)]	displacement impedance matrix, lb/in.	
[Ζ(ω)]	acceleration impedance matrix, lb/g	
ζ	critical damping ratio	
φ	normalized mode	
ψ	orthonormal mode, in ^{1/2} /1b ^{1/2} -sec	
ω	forcing frequency	
ω n	natural frequency of nth mode, Hz	
Superscripts:		
I	imaginary component of complex variable	
R	real component of complex variable	

T matrix transpose

Dots over a symbol define parameters in terms of acceleration.

METHOD OF ANALYSIS

The matrix equations of motion describing the dynamic behavior of linear, proportionally damped structures can be written in the frequency domain (ref. 2) by assuming simple harmonic motion:

$$(-\omega^{2}[M] + i\omega[D(\omega)] + [K]) \{q(\omega)\} = \{F(\omega)\}$$
(1)

where [M] and [K] are real and symmetrical mass and stiffness matrices, and the symmetrical matrix $[D(\omega)]$ represents a general form of damping. The terms on the left side of equation (1) define the displacement impedance matrix $[Z(\omega)]$ such that

$$[Z(\omega)] \{q(\omega)\} = \{F(\omega)\}$$
⁽²⁾

Similarly, the acceleration impedance $[Z(\omega)]$ is defined as the matrix coefficients of accelerations, and equation (2) becomes

$$[\ddot{Z}(\omega)]\{\ddot{q}(\omega)\} = \{F(\omega)\}$$
(3)

The acclerations are obtained from equation (3) by

$$\{\ddot{\mathbf{q}}(\omega)\} = [\ddot{\mathbf{Y}}(\omega)]\{\mathbf{F}(\omega)\}$$
(4)

where

$$[\ddot{\mathbf{Y}}(\omega)] \equiv [\ddot{\mathbf{Z}}(\omega)]^{-1}$$

The variables \ddot{q} and \ddot{Y} are not differentiated with respect to time but are intended to define responses in terms of acceleration. The variables in equation (4) are, in general, complex valued and frequency dependent. The matrix $[\ddot{Y}(\omega)]$ defined as acceleration mobility, is a transfer function which relates input excitations $\{F(\omega)\}$ to output accelerations $\{\ddot{q}(\omega)\}$. Acceleration responses are used in this formulation because test measurements are generally obtained from acceleration transducers. However, the acceleration mobility \ddot{Y} can be related to the displacement mobility Y in the frequency domain by

$$\ddot{\mathbf{Y}}(\boldsymbol{\omega}) = -\boldsymbol{\omega}^2 \mathbf{Y}(\boldsymbol{\omega}) \tag{5}$$

Physically, the (jk)th element in the acceleration mobility matrix \ddot{Y}_{jk} defines the response at j due to a force or moment at k. The acceleration mobility is composed of real and imaginary components, where $\ddot{Y}_{jk} = \ddot{Y}_{jk}^R + \ddot{Y}_{jk}^I$, and can be expressed in terms of modal parameters:

$$\ddot{Y}_{jk}^{R} = -\sum_{n=1}^{N} A_{jkn} \frac{(\omega/\omega_{n})^{2} \left[1 - (\omega/\omega_{n})^{2}\right]}{\left[1 - (\omega/\omega_{n})^{2}\right]^{2} + d_{n}(\omega)^{2}}$$
(6)

$$\ddot{\mathbf{Y}}_{jk}^{I} = \sum_{n=1}^{N} \mathbf{A}_{jkn} \frac{(\omega/\omega_{n})^{2} d_{n}(\omega)}{\left[1 - (\omega/\omega_{n})^{2}\right]^{2} + d_{n}(\omega)^{2}}$$
(7)

where ω is the natural frequency of the nth normal mode and A_{jkn} is the (jk)th modal acceleration of the nth normal mode defined by

$$A_{jkn} = \frac{\phi_{jn}\phi_{kn}}{M_n}$$
(8)

The orthogonal modal vector $\{\phi\}$ and mass matrix [M] are combined to calculate the generalized mass M_n in equation (8) by

$$\{\phi\}_{n}^{T} [M]\{\phi\}_{n} = M_{n}$$
(9)

If the modal vector is scaled such that

$$\{\phi\}_{n}^{\mathrm{T}} [\mathsf{M}]\{\phi\}_{n} = 1.0 \tag{10}$$

then the modal vector is the orthonormal modal vector $\{\psi\}_n$, and

$$A_{jkn} = \phi_{jn}\phi_{kn}$$
(11)

Reference 2 includes a complete derivation of the modal superposition equations described in equations (6) and (7). The modal damping d (ω) can be defined as structural or viscous. For structural damping

$$d_{n}(\omega) \equiv g_{n}$$
(12)

and for viscous damping

$$d_{n}(\omega) \equiv 2\zeta \frac{\omega}{\omega_{n}}$$
(13)

٠

where ζ is the critical damping ratio.

In principle, the number of modes N is infinite; in practice, only a finite number of modes are necessary over a specified frequency range. For unconstrained structures, N includes both rigid-body and elastic modes. These modal parameters can be derived from either test or analysis, as appropriate.

PROGRAM ORGANIZATION

Program Description

The VIBRA program (vibration response analysis) uses equations (6) and (7) to develop the acceleration mobilities and equations (8) and (11) to form the modal accelerations. The structural responses are determined for known force excitations using equation (4). Therefore the structure to be analyzed must be described by a consistent set of eigenvectors, eigenvalues, and generalized mass data. These modal data may be obtained from any natural vibration analysis or from ground vibration measurements of the structure. Only the modal data at the selected response and applied vibratory load points are required to calculate the forced response of the structure.

Program Flow

A flow chart of the VIBRA program is shown in figure 1 with prepared input data read from file 7. As shown in the figure, the program reads in a title card, a control card, natural frequencies ω , damping coefficients ζ , generalized mass M_n , and one or more force vector setsⁿ {F(ω)} followed by the modal coordinates $\{\phi_{n=1,N}\}_k$ at the respective load point k. The complex valued force vector $\{F(\omega)\}$ defines the magnitude and direction, while the modal coordinates $\{\phi_{n=1,N}\}$ at the applied load point k define the location of the force vector. Next, one set of modal coordinates $\{\phi_{n=1,N}\}_{j}$ at the response point j is read from input file 7. The program calculates one response point at a time. The modal accelerations, acceleration mobilities, and acceleration responses are calculated for this response Then, print options are available to output these results either on the terpoint. minal screen or output file 8, or both. Next, VIBRA produces a plot which displays the acceleration response \ddot{q} versus forcing frequency ω in four component plots consisting of (1) real acceleration versus ω , (2) imaginary acceleration versus ω , (3) amplitude versus ω , and (4) phase angle versus ω . After reviewing the plot, the user has the option to plot any of the component plots separately on the screen or continue execution. At this point the user specifies a value for the NAMELIST VPLOT parameter NPLOT to indicate the next desired operation.

Figure 1 shows the program logic determined by the value specified for NPLOT. A positive value of 1, 2, 3, 4, or 5 for NPLOT causes the program to display the plot and then continue with the next desired program operation. For a negative value, -2, -3, -4, or -5, no plot is created but the program continues with the next desired operation. A value of NPLOT = 1 instructs the program to read another NAMELIST VPLOT. A value of NPLOT = +2 or -2 causes the program to apply the next force set, if there is more than one input, to the present response case. A value of NPLOT = +3 or -3 instructs the next response group to be read from input file 7. If the previous response case was calculated using other than the first force vector set, the first force vector set will be used again when the next response case is read. A value of NPLOT = +4 or -4 causes the program to read a title card for a new problem. To exit the program, a value of NPLOT = +5 or -5 must be used.

Appendix A contains detailed information on the data and format requirements for the prepared input file 7. The type of interactive input required by VIBRA and a description of the namelist parameters are provided also. To demonstrate the flow and graphics capability of the program, an example problem is solved in an interactive session provided in appendix B. Also included in appendix B is a brief description of the example problem's modal data and how the data are arranged in file 7.

5

Appendix C contains information on computer memory requirements, auxiliary storage files, and graphics subroutines.

APPLICATIONS

Applications are presented for a constrained viscously damped system (case 1) and an unconstrained structurally damped helicopter tail boom (case 2). These applications were selected to demonstrate the versatility of the VIBRA program.

Case 1 - Constrained Viscously Damped System

Case 1 demonstrates two methods of applying forces to a system. The modal data, given in table I, are for the constrained system with no damping. However, the damping terms may be included when calculating response because of the modal superposition principle.

Case 1A, as shown in figure 2(a), is the constrained system with a unit force applied at node 1 with response to be calculated at node 1 (the driving point) and at node 5 (a transfer point), assuming 2.5 percent viscous damping for all modes. Table II shows the VIBRA input data file 7. The problem title and the control parameters given in line 2 of table II are described in table III. The force has a frequency ranging from 0 to 50 Hz with an increment of 1 Hz. Acceleration responses for nodes 1 and 5 are given in tables IV and V, while the corresponding plots are shown in figures 3 and 4.

Case 1B, as shown in figure 2(b), has multiple forces applied at nodes 1, 2, and 3, assuming variable viscous damping. Tables VI and VII describe the force vector sets and damping data, respectively. The force vectors are composed of real and imaginary parts with different magnitudes and directions. Both vector sets have a 20-Hz forcing frequency. Because the responses are calculated for only one frequency, no plots can be generated. The input data file for case 1B is given in table VIII, with the problem title and control parameters description shown in table IX. Responses are calculated at all locations for both vector sets. Tables X and XI show the modal acceleration matrix, acceleration mobility, and acceleration response for nodes 1 and 2. Table XII gives the acceleration response for nodes 3, 4, and 5.

Case 2 - Unconstrained Structurally Damped Helicopter Tail Boom

Undamped modal data for the helicopter tail boom shown in figure 5 were obtained from a finite-element analysis and reformatted for input to VIBRA. The assumed damping terms are included in the input file. As figure 5 shows, a unit force is applied at the end of the tail boom (node location 193) and the response is calculated near the midsection (node 109). Table XIII shows the input data file 7. Only modal data at the load and response node locations are required. Data are input for a total of 12 orthonormal modes of which the first 6 are rigid-body modes. The forcing frequency ranges from 75 to 300 Hz with a frequency increment of 1 Hz. Since the modes are orthonormal, the generalized mass has a value of 1.0 for all modes. The assumed structural damping coefficients are input on line 10 of table XIII, with values ranging from 1.5 to 1.6 percent. The problem title and control parameter description are given in table XIV. A plot of node 109 response is shown in figure 6; the real acceleration component is examined further in figures 7 and 8 by using the zoom feature. The zoom feature, described in appendix B, allows the user to define a portion of a plot to be expanded. Figure 8 shows a flattened peak around 212 Hz. This effect is due to not calculating response exactly at the natural frequency. In view of these results, care must be taken when determining the frequency increment. The imaginary component of the acceleration response is shown in figure 9, and the amplitude response is shown in figure 10.

CONCLUDING REMARKS

An interactive computer program (VIBRA) for calculating steady-state frequency response of linear, proportionally damped structures has been described. The program uses a modal superposition approach to calculate the structural response. The response is calculated as a function of frequency and in terms of acceleration. The program has interactive graphics capabilities to display the acceleration response versus forcing frequency. The interactive capability enables rapid evaluation of the structural response. Sample problems consisting of several simple systems and a complex system demonstrate program versatility.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 May 29, 1984

APPENDIX A

INPUT DATA DESCRIPTION

VIBRA Input File 7 Data and Format Requirements

The input consists of prepared data on file 7 and interactive input from a keyboard. VIBRA reads the input data file 7 using list-directed read statements. Therefore, all numerical data can be entered on a card image in any column. The only requirement is that the data must be separated by blanks or commas. A blank space cannot be used for a zero. As shown in tables II, VIII, and XIII, a typical input file consists of

- 1. A card containing the problem title
- 2. A control card specifying parameters
- 3. Natural frequency group
- 4. Generalized mass group
- 5. Damping group
- 6. Force vector group(s)
- 7. Force coordinate group(s)
- 8. Response coordinate group(s)

A data group is defined by a single title card with information identifying the group, followed by one or more cards containing the data values. The data values are entered in free-field format. Except for the force vector group, where only a maximum of six groups may be input, there is no limit on the number of force and response coordinate groups that can be input for one problem. Also, there is no limit on the number of problems that can be on the same input file. The description and format for the data file are given in the following eight sections.

Title card. - A single card contains the problem title.

FORTRAN variable name

Description

TITLE Heading information for printout

<u>Control card.</u> - Each of the 10 parameters listed on the control card must be specified and entered in the following order:

FORTRAN variable name	Description
NZ	Number of rigid body modes
NM	Total number of modes (rigid + elastic)
MNORM	Type of mode: 1 orthonormal modes (one term input) 0 normal modes (NM terms input)

FORTRAN variable names	Description
MDAMP	Type of modal damping: 1 viscous damping 0 structural damping
NZETA	Variable damping control: 1 damping is the same for all modes (one term input) 0 damping varies for each mode (NM terms are input)
NFS	Number of force vector groups (maximum of 6)
NF	Number of forces applied to structure (if NF > 1, then only one frequency point will be calculated using the WSTRT value)
WSTRT	Starting frequency point, Hz
WSTOP	Ending frequency point, Hz
DELW	Frequency step
Natural_fre	quency group The natural frequency group is

FORTRAN

Card	variable name	Description
1	WLABEL	Group title card
2+	WN, Hz	Natural frequency for nth mode

Note: There should be NM terms input.

Generalized mass group.- The generalized mass group is

Card	FORTRAN variable name	Description
1	MLABEL	Group title card
2+	M, lb-sec ² /in.	Generalized mass for nth mode

Note: If MNORM = 1, one mass term is input (orthonormal modes); If MNORM = 0, NM terms are input.

Damping group. - The damping group is

Card	FORTRAN variable name	Description
1	GLABEL	Group title card
2+	G	Modal damping coefficient (for viscous damping, enter ζ; for structural damping enter 2ζ)

Note: If NZETA = 1, one damping term is input (damping same for all modes); if NZETA = 0, NM terms are input.

Force vector group .- The force vector group is

Card	FORTRAN variable name	Description
1	FLABEL	Group title card
2+	F, lb	Complex force vector, (F ^R ,F ^I)

Note: There should be NFS force vector groups and NF forces for each vector group. The order in which each force is entered also determines the order that the force coordinate groups are input. The vector group forms the magnitudes and directions of the forces applied to the structure. A maximum of six force vector groups may be input.

Force coordinate group. - The force coordinate group is

Card	FORTRAN variable name	Description
1	PLABEL	Group title card
2+	PHI	Force modal coordinate for nth mode

Note: There should be NF force coordinate groups and NM terms for each group. The force coordinate groups must follow the same input order as the force vectors. The force coordinate defines the location where the vectors are applied. When more than one force coordinate group is entered, only one frequency point is calculated for the response.

APPENDIX A

Response coordinate group.- The response coordinate group is

Card	FORTRAN variable name	Description
1	RLABEL	Group title card
2+	PHIBAR	Response modal coordinate for nth mode

Note: There should be NM terms input for each group. There can be as many groups as desired, the only limit being the total number of degrees of freedom of the structure. To calculate the response at the driving point, input the particular force coordinate group as a response group also.

VIBRA Interactive Input

Input from the interactive terminal keyboard is prompted by the program. Keyboard input includes pressing the carriage return key to advance to the next program section, answering questions with the character Y or N for yes or no, specifying print options for the output of results, and entering NAMELIST VPLOT data. In specifying print options, the program provides a screen menu with input instructions. NAMELIST VPLOT is used to specify program flow and plot options. In the first part of this section, the NAMELIST parameters and their default values are described; in the second part, NAMELIST rules are given.

Contents of NAMELIST VPLOT. - Descriptions of the NAMELIST parameters and their default values are as follows:

QREAL

1 Plot real acceleration versus forcing frequency 0 No plot (default)

QIMAG

1 Plot imaginary acceleration versus forcing frequency 0 No plot (default)

AMPL

1 Plot acceleration amplitude versus forcing frequency 0 No plot (default)

PHASE

1 Plot phase angle versus forcing frequency 0 No plot (default)

USCALE 1 Input minimum and maximum values for X- and Y-axes 0 Automatic program scaling of plot axes (default)
If USCALE = 1, the following parameters must be selected and specified to change the default values:
XMIN is minimum value for X-axis (forcing frequency value); default, 0.0
XMAX is maximum value for X-axis (forcing frequency value); default, 10.0
YMIN is minimum value for Y-axis (response value); default, 0.0
YMAX is maximum value for Y-axis (response value); default, 10.0
The following parameters may be specified:
<pre>JLINE Selects number of data points to be plotted: n plot every nth point 1 (default)</pre>
XDIV Number of minor tick mark divisions for X-axis (default, 10.0)
YDIV Number of minor tick mark divisions for Y-axis (default, 10.0)
LTYPE Type of line for plotting: -1 no line 0 solid (default) 1 long dash 2 dash 3 dot dash 4 dot
ISYM Symbol type: 0 no symbol (default) 1 circle 3 triangle 4 square 5 star 6 diamond 7 plus sign
<pre>1Size Multiplicative factor for symbol size: 1 small symbols (default) 2 medium symbols 3 large symbols</pre>

12

NPLOT Control loop parameter:

1	plot response then read another NAMELIST VPLOT
2	plot response then apply next force vector set
3	plot response then read another response group
4	plot response then read another problem
5	plot response then exit the program (default)
-2	no plot but apply next force vector set

no plot but apply next force vector set
no plot but read another response group
no plot but read another problem
no plot and exit the program

Note: Figure 1 shows how the NPLOT parameter controls looping within the program. Also, all previous responses must have been calculated to position the input file for reading another problem title.

NAMELIST rules.- The following NAMELIST rules apply to most FORTRAN systems:

1. A NAMELIST begins in column 2 with a dollar sign, e.g.,

2. NAMELIST parameters are separated by commas.

3. NAMELISTS end with a blank and then a dollar sign, no final comma, e.g.,

\$VPLOT QREAL=1,NPLOT=+2 \$

4. If more than one line is used to enter a namelist, then that line must end with a comma, e.g.,

\$VPLOT QREAL=1,NPLOT=2,USCALE=1, XMIN=0.0,XMAX=45.0,YMIN=0.0,YMAX=5.0 \$

Blank Common Length

VIBRA uses the control card parameters to determine the location of program variables within the blank common array ZZZ, which has a set length of 5000 decimal memory locations. The number of required memory locations for a problem can be determined from

BCL = 5*(1+NM) + NF*(NM+2*NFS+4) + (5*IFN) + 6

where

IFN = (WSTOP - WSTRT)/DELW + 1

which is the number of forcing frequency step points.

APPENDIX B

SAMPLE INTERACTIVE SESSION

In the sample interactive session, responses are calculated at mass 1 and mass 2 of the unconstrained spring mass system shown in figure B1 for a unit force applied at mass 3. The force has a frequency ranging from 0 Hz to 20 Hz in 0.5-Hz increments. Modal data for the system, obtained from a simple vibration analysis program, are shown in table BI. The system has one rigid-body and two elastic normal modes.

The input data file 7 for this program is given in table BII. The natural frequencies and generalized masses from table BI are input in modal order as shown in table BII, lines 4 and 6, respectively. The complex force, table BII, line 10, has a real component term only. In order to apply the force at mass 3, the modal amplitudes at mass 3 are entered as the force coordinates, as shown in line 12 of table BII. Similarly, to evaluate the responses at mass 1 and mass 2, modal amplitudes at those points are entered in line 14 and line 16, respectively. If the response at mass 3 was desired, the corresponding modal amplitudes would have to be reentered as response coordinates also.

After the input file 7 is prepared, the user is ready to execute VIBRA on an interactive graphics terminal. This section describes a typical interactive session using the input file 7 for the spring mass system, table BII. For each new problem the first screen page contains a title and descriptive table of control parameters, as shown in table BIII. VIBRA pauses after each screen page to allow for viewing and obtaining a hard copy. When the terminal bell rings, the program temporarily stops execution until the return key is pressed. Pressing the return key erases the screen and causes VIBRA to continue to the next program operation.

After VIBRA calculates a response case, a print menu is displayed. As shown in table BIV, option 2 is selected for the first three questions. This causes the modal accelerations, acceleration mobilities, and response tables to be output to auxiliary file 8. The next two questions control print output. In this example, 50 lines of output per page for file 8, using a print step of 1, were selected. A print step of 1 causes every frequency point to be printed. Upon completion of the print menu, VIBRA pauses until the carriage return is pressed.

Next, a preview plot of the response components is given automatically, as shown in figure B2. VIBRA pauses upon completion of the plot until the carriage return key is pressed, which causes VIBRA to prompt for NAMELIST VPLOT input. As table BV shows, the real acceleration component plot is selected by setting the QREAL parameter equal to 1. The NPLOT parameter is defined to be a positive 3. This means the selected component will be plotted and then another response will be calculated using the same force vector set as the previous group. After the grid question in table BV is answered, VIBRA immediately erases the screen, and the response is plotted in figure B3 with a question at the bottom of the screen to zoom in on the graph. The zoom option enables the user to examine any portion of a response plot on an expanded The user defines the scale by entering two position coordinates, upper left scale. and lower right. Figure B3 shows that the zoom option is selected. Cursor cross hairs appear on the screen and are moved by using the terminal thumbwheels. The two position coordinates are entered one at a time. The coordinates are input by positioning the cross hairs at the desired point, pressing any key (followed by a carriage return), and waiting for the terminal bell to ring. The cross hairs disappear momentarily until the coordinate is received; then the terminal bell rings. After

the coordinates are entered, VIBRA draws a box around the portion of the plot to be expanded, and then pauses. After the carriage return key is pressed, the boxed portion shown in figure B4 is then replotted as shown in figure B5.

Because NPLOT = 3 was specified, the next response will be calculated at mass 2. As shown in table BVI, the modal accelerations, acceleration mobility, and acceleration response for mass 2 are output to file 8. The program loop continues, as shown by figure B6, table BVII, and figure B7, until the NPLOT parameter is equal to a positive or a negative 5; this causes the program to terminate. Table BVIII shows the contents of file 8, which was saved after finishing the interactive session.

Mode	Frequency, Hz	Generalized mass			
1	0.0	10.0	1.0	1.0	1.0
2	7.749	1.179	1.0	.051649	157615
3	15.442	2.514	3615	1.0	234066

TABLE BI .- MODAL DATA FOR UNCONSTRAINED SPRING MASS

TABLE BII.- INPUT DATA FILE 7 FOR SPRING MASS SYSTEM

SPRING MASS SYSTEM 1 3 0 1 1 1 1 0.0 20.0 0.5 NATURAL FREQUENCY 0.0 7.749 15.442 GENERALIZED MASS 10.0 1.179 2.514 DAMPING 0.0 FORCE AT MASS 3 (1.0, 0.0)MASS 3 - FORCE COORDINATE 1.0 -.157615 -.234066 MASS 1 - RESPONSE COORDINATE 1.0 1.0 -.3615 MASS 2 - RESPONSE COORDINATE 1.0 0.051649 1.0

TABLE BIII.- CONTROL PARAMETER DESCRIPTION FOR SPRING MASS SYSTEM

SPRING MASS SYSTEM

CONTROL PARAMETERS SET

1Z	-	1 #RIGID BODY MODES#	
NIM .	-	3 XMODES TOTALX	
NORH	-	0 XNORMAL MODESX	
DAMP		1 XUISCOUS DAMPINGX	
ZETA	-	1 XDAMPING IS CONSTANTX	
NFS .		1 *FORCE VECTOR SETS*	
NF		1 *FORCE COORDINATES *	
JSTRT		.0 *STARTING FREQUENCY (HZ) *	
USTOP		20.0 *STOPPING FREQUENCY (HZ) *	
DELU		.500 #FREQUENCY STEP#	
		BLANK COMMON STORAGE ZZZ REQUIRES	279 LOCATIONS

.

NOW COMPUTING FORCED RESPONSE

APPENDIX B

TABLE BIV. - PRINT MENU FOR MASS 1 RESPONSE

TABLE BV.- NAMELIST VPLOT INPUT FROM TERMINAL KEYBOARD FOR MASS 1 RESPONSE PLOT

ENTER SUPLOT NAMELIST:

? SVPLOT GREAL=1,NPLOT=3 \$

NEED GRIDS? (Y/N) ? N

APPENDIX B

TABLE BVI .- PRINT MENU FOR MASS 2 RESPONSE

SPRING MASS SYSTEM APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE FOR THE NEXT 3 QUESTIONS ENTER 1 OF THE FOLLOWING PRINT OPTIONS: OPTIONS 2 ? ACCELERATION MOBILITIES? (DEFAULT 3) 3 S RESPONSE TABLE? (DEFAULT 3) ? 2 ENTER NUMBER OF LINES PER PAGE FOR TAPE8 (DEFAULT 40) ? 50 ENTER PRINT STEP (DEFAULT 1) ? 1

TABLE BVII. - NAMELIST VPLOT INPUT MASS 2 RESPONSE PLOT

ENTER SUPLOT NAMELIST:

? SUPLOT GREAL=1, ISYM-1, NPLOT=5 \$

NEED GRIDS? (Y/N) 7 N

TABLE BVIII.- FILE 8 SAMPLE OUTPUT OF SPRING MASS SYSTEM RESPONSES

********* V I B R A ********* INPUT DATA CARD IMAGE FILE CARD 1 SPRING MASS SYSTEM 2 1 3 0 1 1 1 1 0.0 20.0 0.5 3 NATURAL FREQUENCY 0.0 7.749 15.442 4 5 6 GENERALIZED MASS 10.0 1.179 2.514 DAMPING 7 8 0.0 FORCE AT MASS 3 9 10 (1.0,0.0) MASS 3 - FORCE COORDINATE 1.0 -.157615 -.234066 MASS 1 - RESPONSE COORDINATE 11 12 13 1.0 1.0 -.3615 MASS 2 - RESPONSE COORDINATE 14 15 1.0 0.051649 1.0 16

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 1 - RESPONSE COORDINATE

MODAL ACCELERATION MATRIX A(NF,NM) .1000E+00 -.1337E+00 .3366E-01

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 1 - RESPONSE COORDINATE

ACCI	ELERATIO	ON MOBILITY	Y(NR,NF)	
N	FREO	YR	YI	
ា	0.000	1000E+00	0 .	
5	500	10055+00	0	
2	.500	.10036+00	0.	
3	1.000	.10216+00	U.	
4	1.500	.1049E+00	0.	
5	2.000	.1090E+00	0.	
6	2.500	.1146E+00	0.	
7	3,000	1222E+00	0.	
Ŕ	3 500	1324E+00	0	
6	4 000	14618+00	0	
, ,	4.000	.14015+00	0.	
10	4.500	.1649E+00	0.	
11	5.000	.1914E+00	0.	
12	5.500	.2308E+00	0.	
13	6.000	.2942E+00	0.	
14	6.500	.4101E+00	0.	
15	7 000	6843E+00	0	
16	7.500	20708-01	0	
17	7.500	- 20705+01	0	
1/	0.000	20776+01	0.	
18	8.500	/061E+00	0.	
19	9.000	4341E+00	0.	
20	9.500	~.3200E+00	0.	
21	10.000	2589E+00	0.	
22	10.500	2225E+00	0.	
23	11 000	-2001E+00	0	
24	11 500	- 106000+00	0	
24	11.500	10005400	0.	
25	12.000	1806E+00	0.	
26	12,500	1811E+00	0.	
27	13.000	1893E+00	0.	
28	13.500	2085E+00	0.	
29	14.000	2481E+00	0.	
30	14.500	3380E+00	0.	
31	15.000	6452E+00	0.	
32	15 500	4428F+01	n in the second s	
22	15.500	41658.00	0	
22	16.000	.41056+00	0.	
34	16.500	.19965+00	0.	
35	17.000	.1237E+00	0.	
36	17.500	.8575E-01	0.	
37	18.000	.6338E-01	0.	
38	18.500	.4885E-01	0.	
39	19.000	3879E-01	0.	
40	19 500	3150E-01	n.	
11	19.000	- JE JUE-01	0	
4 I	20.000	.20046-01	U.	

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 1 - RESPONSE COORDINATE

FORCING FREQUENCY	REAL ACCEL	IMAG ACCEL	AMPLITUDE	PHASE ANG	REAL ACCEL	IMAG ACCEL	AMPLITUDE	
(HERTZ)	(IN/SEC2)	(IN/SEC2)	(IN/SEC2)	(DEGREES)	(G)	(G)	(G)	
.0000	.1000E+00	.0000E+00	,1000E+00	.0000E+00	.2588E-03	.0000E+00	.2588E-03	
.5000	.1005E+00	.0000E+00	.1005E+00	.0000E+00	.2602E-03	.0000E+00	.2602E-03	
1,0000	.1021E+00	-0000E+00	.1021E+00	.0000E+00	-2643E-03	.0000E+00	.2643E-03	
1,5000	.1049E+00	.0000E+00	.1049E+00	.0000E+00	.2714E-03	.0000E+00	2714E-03	
2.0000	1090E+00	.0000E+00	.1090E+00	.0000E+00	2820E-03	.0000E+00	2820E-03	
2,5000	1146E+00	.0000E+00	.1146E+00	.0000E+00	2966E-03	.0000E+00	2966E-03	
3,0000	.1222E+00	.0000E+00	.1222E+00	.0000E+00	.3164E-03	.0000E+00	.3164E-03	
3,5000	1324E+00	.0000E+00	.1324E+00	.0000E+00	.3428E-03	.0000E+00	.3428E-03	
4.0000	.1461E+00	.0000E+00	.1461E+00	.0000E+00	3782E-03	.0000E+00	-3782E-03	
4.5000	.1649E+00	.0000E+00	.1649E+00	.0000E+00	4268E-03	.0000E+00	4268E-03	
5.0000	.1914E+00	.0000E+00	.1914E+00	.0000E+00	.4954E-03	.0000E+00	4954E-03	
5,5000	-2308E+00	.0000E+00	.2308E+00	.0000E+00	.5974E-03	.0000E+00	.5974E-03	PP
6.0000	.2942E+00	.0000E+00	.2942E+00	.0000E+00	.7613E-03	.0000E+00	.7613E-03	Ř
6,5000	4101E+00	.0000E+00	.4101E+00	.0000E+00	.1061E-02	.0000E+00	.1061E-02	E
7.0000	6843E+00	.0000E+00	.6843E+00	.0000E+00	.1771E-02	.0000E+00	.1771E-02	g
7.5000	2070E+01	.0000E+00	2070E+01	.0000E+00	.5357E-02	.0000E+00	.5357E-02	X
8,0000	2077E+01	.0000E+00	.2077E+01	.1800E+03	5375E-02	.0000E+00	.5375E-02	-
8,5000	7061E+00	.0000E+00	.706]E+00	.1800E+03	1827E-02	.0000E+00	.1827E-02	ω
9,0000	4341E+00	.0000E+00	.4341E+00	.1800E+03	1123E-02	.0000E+00	.1123E-02	
9,5000	3200E+00	.0000E+00	.3200E+00	.1800E+03	8281E-03	.0000E+00	.8281E-03	
10.0000	2589E+00	.0000E+00	.2589E+00	.1800E+03	6701E-03	.0000E+00	.6701E-03	
10,5000	2225E+00	.0000E+00	.2225E+00	.1800E+03	5759E-03	.0000E+00	.5759E-03	
11.0000	-2001E+00	.0000E+00	.2001E+00	.1800E+03	5177E-03	.0000E+00	.5177E-03	
11,5000	1868E+00	.0000E+00	.1868E+00	.1800E+03	4834E-03	.0000E+00	4834E-03	
12.0000	1806E+00	.0000E+00	.1806E+00	.1800E+03	4674E-03	.0000E+00	.4674E-03	
12,5000	1811E+00	.0000E+00	.1811E+00	.1800E+03	-4687E-03	.0000E+00	.4687E-03	
13.0000	1893E+00	.0000E+00	.1893E+00	.1800E+03	4898E-03	.0000E+00	.4898E-03	
13,5000	2085E+00	.0000E+00	.2085E+00	.1800E+03	5396E-03	.0000E+00	.5396E-03	
14.0000	2481E+00	.0000E+00	.2481E+00	.1800E+03	6421E-03	.0000E+00	.6421E-03	
14.5000	3380E+00	.0000E+00	.3380E+00	.1800E+03	8748E-03	.0000E+00	.8748E-03	
15.0000	6452E+00	.0000E+00	.6452E+00	.1800E+03	1670E-02	.0000E+00	.1670E-02	
15.5000	.4428E+01	.0000E+00	.4428E+01	.0000E+00	.1146E-01	.0000E+00	.1146E-01	
16,0000	.4165E+00	.0000E+00	.4165E+00	.0000E+00	.1078E-02	.0000E+00	.1078E-02	
16.5000	.1996E+00	.0000E+00	.1996E+00	.0000E+00	.5166E-03	.0000E+00	.5166E-03	
17.0000	.1237E+00	.0000E+00	.1237E+00	.0000E+00	.3201E-03	.0000E+00	.3201E-03	
17.5000	.8575E-01	.0000E+00	.8575E-01	.0000E+00	.2219E-03	.0000E+00	.2219E-03	
18,0000	.6338E-01	.0000E+00	.6338E-01	.0000E+00	.1640E-03	.0000E+00	.1640E-03	
18,5000	.4885E-01	.0000E+00	.4885E-01	.0000E+00	.1264E-03	.0000E+00	.1264E-03	
19.0000	.3879E-01	.0000E+00	.3879E-01	.0000E+00	.1004E-03	.0000E+00	.1004E-03	
19,5000	.3150E-01	.0000E+00	.3150E-01	.0000E+00	.8153E-04	.0000E+00	.8153E-04	
20.0000	.2604E-01	.0000E+00	.2604E-01	.0000E+00	.6739E-04	.0000E+00	.6739E-04	

TABLE BVIII. - Continued

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE

MODAL ACCELERATION MATRIX A(NF,NM) .1000E+00 -.6905E-02 -.9311E-01

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE

ACCELERATION MOBILITY Y(NR, NF)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	FREQ	YR	YI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.000	.1000E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	.500	.1001E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1.000	.1005E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.500	.1012E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2.000	.1021E+00	0.
7 3.000 $.1049E+00$ $0.$ 8 3.500 $.1068E+00$ $0.$ 9 4.000 $.1092E+00$ $0.$ 10 4.500 $.1122E+00$ $0.$ 11 5.000 $.1205E+00$ $0.$ 12 5.500 $.1205E+00$ $0.$ 13 6.000 $.1269E+00$ $0.$ 14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39<	6	2.500	.1033E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3.000	.1049E+00	0.
9 4.000 $.1092E+00$ $0.$ 10 4.500 $.1122E+00$ $0.$ 11 5.000 $.1128E+00$ $0.$ 12 5.500 $.1205E+00$ $0.$ 13 6.000 $.1269E+00$ $0.$ 14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 <td>8</td> <td>3.500</td> <td>.1068E+00</td> <td>0.</td>	8	3.500	.1068E+00	0.
10 4.500 $.1122E+00$ $0.$ 11 5.000 $.1205E+00$ $0.$ 12 5.500 $.1205E+00$ $0.$ 13 6.000 $.1269E+00$ $0.$ 14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1387E+00$ $0.$	9	4.000	.1092E+00	0.
11 5.000 .1158E+000.12 5.500 .1205E+000.13 6.000 .1269E+000.14 6.500 .1364E+000.15 7.000 .1547E+000.16 7.500 .2310E+000.17 8.000 .2237E-010.18 8.500 .9959E-010.19 9.000 .1212E+000.20 9.500 .1361E+000.2110.000.1500E+000.2210.500.1649E+000.2311.000.1822E+000.2411.500.2033E+000.2512.000.2301E+000.2612.500.2658E+000.2713.000.3158E+000.2813.500.3916E+000.3014.500.7844E+000.3115.000.1647E+010.3215.5001237E+020.3316.0001268E+010.3416.5006589E+000.3517.0004411E+000.3617.5002154E+000.3919.0001826E+000.3919.0001579E+000.4120.0001387E+000.	10	4.500	.1122E+00	0.
12 5.500 $.1205E+00$ $0.$ 13 6.000 $.1269E+00$ $0.$ 14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 39 19.000 $1579E+00$ $0.$	11	5.000	.1158E+00	0.
13 6.000 $.1269E+00$ $0.$ 14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	12	5.500	.1205E+00	0.
14 6.500 $.1364E+00$ $0.$ 15 7.000 $.1547E+00$ $0.$ 16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	13	6.000	.1269E+00	0.
157.000 $.1547E+00$ 0.16 7.500 $.2310E+00$ 0.17 8.000 $.2237E-01$ 0.18 8.500 $.9959E-01$ 0.19 9.000 $.1212E+00$ 0.20 9.500 $.1361E+00$ 0.21 10.000 $.1500E+00$ 0.22 10.500 $.1649E+00$ 0.23 11.000 $.1822E+00$ 0.24 11.500 $.2033E+00$ 0.25 12.000 $.2301E+00$ 0.26 12.500 $.2658E+00$ 0.27 13.000 $.3158E+00$ 0.28 13.500 $.3916E+00$ 0.29 14.000 $.5199E+00$ 0.30 14.500 $.7844E+00$ 0.31 15.000 $.1647E+01$ 0.32 15.500 $1237E+02$ 0.33 16.000 $1268E+01$ 0.34 16.500 $6589E+00$ 0.35 17.000 $4411E+00$ 0.36 17.500 $2154E+00$ 0.37 18.000 $2154E+00$ 0.39 19.000 $1826E+00$ 0.40 19.500 $1579E+00$ 0.41 20.000 $1387E+00$ 0.	14	6.500	.1364E+00	0.
16 7.500 $.2310E+00$ $0.$ 17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 23 11.000 $.2331E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	15	7.000	.1547E+00	0.
17 8.000 $.2237E-01$ $0.$ 18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	16	7.500	.2310E+00	0.
18 8.500 $.9959E-01$ $0.$ 19 9.000 $.1212E+00$ $0.$ 20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	17	8.000	.2237E-01	0.
199.000 $.1212E+00$ 0.209.500 $.1361E+00$ 0.21 10.000 $.1500E+00$ 0.22 10.500 $.1649E+00$ 0.23 11.000 $.1822E+00$ 0.24 11.500 $.2033E+00$ 0.25 12.000 $.2301E+00$ 0.26 12.500 $.2658E+00$ 0.27 13.000 $.3158E+00$ 0.28 13.500 $.3916E+00$ 0.29 14.000 $.5199E+00$ 0.30 14.500 $.7844E+00$ 0.31 15.000 $.1647E+01$ 0.32 15.500 $1237E+02$ 0.33 16.000 $1268E+01$ 0.34 16.500 $6589E+00$ 0.35 17.000 $4411E+00$ 0.36 17.500 $3292E+00$ 0.37 18.000 $2611E+00$ 0.39 19.000 $1826E+00$ 0.40 19.500 $1579E+00$ 0.41 20.000 $1387E+00$ 0.	18	8.500	.9959E-01	0.
20 9.500 $.1361E+00$ $0.$ 21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	19	9.000	.1212E+00	0.
21 10.000 $.1500E+00$ $0.$ 22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	20	9.500	.1361E+00	0.
22 10.500 $.1649E+00$ $0.$ 23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	21	10.000	.1500E+00	0.
23 11.000 $.1822E+00$ $0.$ 24 11.500 $.2033E+00$ $0.$ 25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	22	10.500	.1649E+00	0.
24 11.500 $2033E+00$ $0.$ 25 12.000 $2301E+00$ $0.$ 26 12.500 $2658E+00$ $0.$ 27 13.000 $3158E+00$ $0.$ 28 13.500 $3916E+00$ $0.$ 29 14.000 $5199E+00$ $0.$ 29 14.000 $5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	23	11.000	.1822E+00	0.
25 12.000 $.2301E+00$ $0.$ 26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2611E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$	24	11.500	.2033E+00	0.
26 12.500 $.2658E+00$ $0.$ 27 13.000 $.3158E+00$ $0.$ 28 13.500 $.3916E+00$ $0.$ 29 14.000 $.5199E+00$ $0.$ 30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $2611E+00$ $0.$ 37 18.000 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	25	12.000	.2301E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	12.500	.2658E+00	0.
28 13.500 $.3916E+00$ 0.29 14.000 $.5199E+00$ 0.30 14.500 $.7844E+00$ 0.31 15.000 $.1647E+01$ 0.32 15.500 $1237E+02$ 0.33 16.000 $1268E+01$ 0.34 16.500 $6589E+00$ 0.35 17.000 $4411E+00$ 0.36 17.500 $2611E+00$ 0.37 18.000 $2154E+00$ 0.39 19.000 $1826E+00$ 0.40 19.500 $1579E+00$ 0.41 20.000 $1387E+00$ 0.	27	13.000	.3158E+00	0.
29 14.000 $.5199E+00$ 0.30 14.500 $.7844E+00$ 0.31 15.000 $.1647E+01$ 0.32 15.500 $1237E+02$ 0.33 16.000 $1268E+01$ 0.34 16.500 $6589E+00$ 0.35 17.000 $4411E+00$ 0.36 17.500 $3292E+00$ 0.37 18.000 $2611E+00$ 0.38 18.500 $2154E+00$ 0.39 19.000 $1826E+00$ 0.40 19.500 $1579E+00$ 0.41 20.000 $1387E+00$ 0.	28	13.500	.3916E+00	0.
30 14.500 $.7844E+00$ $0.$ 31 15.000 $.1647E+01$ $0.$ 32 15.500 $1237E+02$ $0.$ 33 16.000 $1268E+01$ $0.$ 34 16.500 $6589E+00$ $0.$ 35 17.000 $4411E+00$ $0.$ 36 17.500 $3292E+00$ $0.$ 37 18.000 $2611E+00$ $0.$ 38 18.500 $2154E+00$ $0.$ 39 19.000 $1826E+00$ $0.$ 40 19.500 $1579E+00$ $0.$ 41 20.000 $1387E+00$ $0.$	29	14.000	.5199E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	14.500	./844E+00	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	15.000	-104/E+01	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	16 000	- 1269E+01	0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	16 500	- 6580F+01	0.
36 17.500 3292E+00 0. 37 18.000 2611E+00 0. 38 18.500 2154E+00 0. 39 19.000 1826E+00 0. 40 19.500 1579E+00 0. 41 20.000 1387E+00 0.	35	17,000	-4411F+00	0
37 18.000 2611E+00 0. 38 18.500 2154E+00 0. 39 19.000 1826E+00 0. 40 19.500 1579E+00 0. 41 20.000 1387E+00 0.	36	17 500	- 3202F+00	0
38 18.500 2154E+00 0. 39 19.000 1826E+00 0. 40 19.500 1579E+00 0. 41 20.000 1387E+00 0.	37	18,000	-2611E+00	0
39 19.000 1826E+00 0. 40 19.500 1579E+00 0. 41 20.000 1387E+00 0.	38	18,500	2154E+00	õ.
40 19.5001579E+00 0. 41 20.0001387E+00 0.	39	19,000	1826E+00	0.
41 20.0001387E+00 0.	40	19,500	-1579E+00	õ.
	41	20.000	1387E+00	0.

TABLE BVIII. - Concluded

SPRING MASS SYSTEM

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE

FORCING FREOUENCY	REAL ACCEL	IMAG ACCEL	AMPLITUDE	PHASE ANG	REAL ACCEL	IMAG ACCEL	AMPLITUDE
(HERTZ)	(IN/SEC2)	(IN/SEC2)	(IN/SEC2)	(DEGREES)	(G)	(G)	(G)
0000	10008+00	00005+00	10005400	00005+00	2588F-03	000000+00	25888-03
5000	10015+00	00005+00	10015+00	00005+00	2591F-03	0000E+00	2591E-03
1 0000	10055+00	00005+00	10055+00	00005+00	26015-03	0000E+00	2601E-03
1 5000	10125+00	.0000000000	10125+00	00005+00	26195-03	0000E+00	2618F-03
2 0000	10215+00	.00008+00	.1012E+00	.0000E+00	26428-03	00002100	26125-03
2.0000	·1021E+00	.0000E+00	.1021E+00	.00005+00	26748-03	00005+00	2674F-03
2.5000	.10332+00	.0000E+00	.1033E+00	.00005+00	.20/4E-03	.0000E+00	• 20/4E-03
3.0000	.1049E+00	.0000E+00	.10496+00	.00005+00	-2/146-03	.0000E+00	.2/14E-03
3.5000	.10682+00	.0000E+00	.10085+00	.000000+00	.2/04E-03	.0000E+00	.2/04E-03
4.0000	.1092E+00	.0000E+00	.10926+00	.000000+000	.2826E-03	.0000E+00	· 2020E~03
4.5000	.1122E+00	.0000E+00	.11226+00	.00008+00	.2903E-03	.0000E+00	.29036-03
5.0000	.11586+00	.0000E+00	.1158E+00	.0000E+00	.29986-03	.0000E+00	.29986-03
5.5000	.1205E+00	.0000E+00	.1205E+00	.UUUUE+UU	.31198-03	.0000E+00	.31196-03
6.0000	.1269E+00	.0000E+00	.1269E+00	.0000E+00	.3284E-03	.0000E+00	.3284E-03
6.5000	.1364E+00	.0000E+00	.1364E+00	.0000E+00	.3531E-03	.0000E+00	.3531E-03
7.0000	.1547E+00	.0000E+00	.1547E+00	.0000E+00	.4004E-03	.0000E+00	.4004E-03
7.5000	.2310E+00	.0000E+00	.2310E+00	.0000E+00	.5979E-03	.0000E+00	.5979E-03
8.0000	.2237E-01	.0000E+00	.2237E-01	.0000E+00	.5789E-04	.0000E+00	.5789E-04
8.5000	.9959E-01	.0000E+00	.9959E-01	.0000E+00	.2577E-03	.0000E+00	.2577E-03
9.0000	.1212E+00	.0000E+00	.1212E+00	.0000E+00	.3137E-03	.0000E+00	.3137E-03
9.5000	.1361E+00	.0000E+00	.1361E+00	.0000E+00	.3521E-03	.0000E+00	.3521E-03
10.0000	.1500E+00	.0000E+00	.1500E+00	.0000E+00	.3881E-03	.0000E+00	.3881E-03
10.5000	.1649E+00	.0000E+00	.1649E+00	.0000E+00	.4268E-03	.0000E+00	.4268E-03
11.0000	.1822E+00	.0000E+00	.1822E+00	.0000E+00	.4716E-03	.0000E+00	.4716E-03
11.5000	.2033E+00	.0000E+00	.2033E+00	.0000E+00	.5261E-03	.0000E+00	.5261E-03
12.0000	.2301E+00	.0000E+00	.2301E+00	.0000E+00	.5955E-03	.0000E+00	.5955E-03
12.5000	.2658E+00	.0000E+00	.2658E+00	.0000E+00	.6878E-03	.0000E+00	.6878E-03
13.0000	.3158E+00	.0000E+00	.3158E+00	.0000E+00	.8174E-03	.0000E+00	.8174E-03
13.5000	.3916E+00	.0000E+00	.3916E+00	.0000E+00	.1013E-02	.0000E+00	.1013E-02
14.0000	.5199E+00	.0000E+00	.5199E+00	.0000E+00	.1345E-02	.0000E+00	.1345E-02
14.5000	.7844E+00	.0000E+00	.7844E+00	.0000E+00	.2030E-02	.0000E+00	.2030E-02
15.0000	.1647E+01	.0000E+00	.1647E+01	.0000E+00	.4264E-02	.0000E+00	.4264E-02
15.5000	1237E+02	.0000E+00	.1237E+02	.1800E+03	3202E-01	.0000E+00	.3202E-01
16.0000	1268E+01	.0000E+00	.1268E+01	.1800E+03	3280E-02	.0000E+00	.3280E-02
16.5000	6589E+00	.0000E+00	.6589E+00	.1800E+03	1705E-02	.0000E+00	.1705E-02
17.0000	4411E+00	.0000E+00	.4411E+00	.1800E+03	1141E-02	.0000E+00	.1141E-02
17,5000	3292E+00	.0000E+00	.3292E+00	.1800E+03	8519E-03	.0000E+00	.8519E-03
18.0000	2611E+00	.0000E+00	.2611E+00	.1800E+03	6758E-03	.0000E+00	.6758E-03
18,5000	2154E+00	.0000E+00	.2154E+00	.1800E+03	5574E-03	.0000E+00	.5574E-03
19.0000	1826E+00	.0000E+00	.1826E+00	.1800E+03	4725E-03	.0000E+00	.4725E-03
19.5000	1579E+00	.0000E+00	.1579E+00	.1800E+03	4086E-03	.0000E+00	.4086E-03
20,0000	1387E+00	.0000E+00	.1387E+00	.1800E+03	3589E-03	.0000E+00	.3589E-03

Figure B1.- Unconstrained spring mass system.

Figure B2.- Acceleration response components at mass 1.

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 1 - RESPONSE COORDINATE

Figure B3.- Real acceleration response at mass 1.

25

Figure B4.- Box defined by using the zoom option.

Figure B5.- Expanded plot from boxed portion shown in figure B4.

Figure B6.- Acceleration response components at mass 2.

APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE

Figure B7.- Real acceleration response at mass 2.

29

APPENDIX C

COMPUTER REQUIREMENTS

The program VIBRA (vibration response analysis) is written in FORTRAN V for the Control Data Corporation 6600 series of computers and implemented under the NASA/LaRC Network Operating System.

Memory Allocation and Auxiliary Storage Files

VIBRA uses dynamic storage allocation for memory management of various size problems. All the arrays are packed into an array in blank common called ZZZ in the main program. The length of the blank common is set by a statement within the program. The amount of blank common memory required for a particular problem is determined by the total number of frequency points, number of natural modes, force vector sets, and force coordinate groups. The last section in appendix A contains information for estimating the length of the blank common ZZZ array. If there is insufficient blank common memory for a problem, VIBRA terminates with an error message stating the present length of array ZZZ, the problem size, and the additional amount of memory required.

In addition to using blank common, several auxiliary files are used during program execution for temporary storage and recall of intermediate calculations. Three temporary storage files, 11, 12, and 13, are suitable for saving after program execution, in addition to output file 8. Table CI gives a description of the program auxiliary files. The use of files 5, 6, 7, and 8 is demonstrated in appendix B, with input requirements for file 5 and file 7 described in appendix A. As listed in table CI, files 11, 12, and 13 contain modal acceleration, acceleration mobility, and acceleration response matrices, respectively. These files also contain index information that will enable the user to read them directly into another computer program. The format and a sample content of these files are given in tables CII to CVII.

Graphics Subroutines

VIBRA uses 37 subroutines from the PLOT-10 graphics package, which consists of the Terminal Control System (TCS), described in reference 3, and the Advanced Graphing II (AG-II), described in reference 4. Because of the LaRC Network Operating System (NOS) configuration, several TCS subroutines have been modified. The purpose of the modifications is to make the subroutines run more efficiently on the LaRC NOS. However, substitutions can be made, using equivalent TCS subroutines, to produce the same functions as the LaRC modified subroutines. The LaRC NOS modified PLOT-10 routines (ref. 5) deal with FORTRAN input/output while in graphics mode and with the file output buffer. Also, one AG-II subroutine, called LINE, was renamed ZLINE to avoid a conflict with one of the LaRC graphics system subroutines. Another LaRC NOS graphics modification involves the placement of a common block, named JTB, in the main program. This common block passes parameters to the NOS PLOT-10 system which controls the PLOT-10 vector file and the output buffer file before PLOT-10 input/output. The way these items are handled may be different, depending upon the version of PLOT-10 subroutines available on various computer systems.
Tables CVIII to CX provide lists of all the graphic subroutines used and their locations within VIBRA. The last section gives a detailed description of the LaRC modified PLOT-10 subroutines and the TCS subprograms called by them.

LaRC NOS PLOT-10 Subroutines

FORTRAN subroutines have been written for the LaRC NOS system and use a few subroutines from the TCS package. (See ref. 5.) The purpose, usage, method, and subprograms used by these NOS subroutines are described in this section. Also, a brief description of the JTB common block used in the main program is given.

Subroutine EPAUSE

Purpose: To execute a frame advance

Usage: CALL EPAUSE

Method: Terminate a plot frame and go to the next frame. A call to EPAUSE causes the following:

- 1. Flushes the plot vector file buffer(s)
- 2. Rings the terminal bell
- 3. Pauses
- 4. Continues execution when user presses return key
- 5. Does an immediate screen erasure

Subprograms used: TSEND, ERASE, BELL

Subroutine TPAUSE

Purpose: To dump the plot vector file buffer and pause for a user prompt

Usage: CALL TPAUSE

Method: Flush the plot vector file buffer to the terminal and pause. A call to TPAUSE causes the following:

- 1. Flushes the plot vector file buffer(s)
- 2. Rings the terminal bell
- 3. Pauses
- 4. Continues execution when user presses return key

Subprograms used: TSEND, BELL

Subroutine NOTX

Purpose: To display horizontal alphanumeric labels

Usage: CALL NOTX (IX, IY, LENCHR, ISTR), where

IX, IY Starting position of label in screen coordinates

LENCHR Number of characters in label (maximum of 100 characters)

ISTR Character array name in which string is stored

Method: The PLOT-10 label routines (HLABEL, VLABEL, AND NOTAT) require labels to be stored as one character per word, ASCII decimal code. This is an inefficient way to store labels under NOS. NOTX allows user to store labels as 10 characters per word, left-justified display code. The labels are converted from display code to ASCII and are displayed by the PLOT-10 NOTAT routine.

Subprograms used: KAM2AS, NOTAT

Subroutine NOTY

Purpose: To display vertical alphanumeric labels

Usage: CALL NOTY (IX, IY, LENCHR, ISTR), where

IX, IY Starting position of label in screen coordinates

LENCHR Number of characters in label (maximum of 100)

ISTR Character array name in which string is stored

Method: Same as NOTX

Subprograms used: KAM2AS, NOTAT

Subroutine DRASE

Purpose: To erase FORTRAN output from the Tektronix screen

Usage: CALL DRASE

Method: DRASE should be used (instead of ERASE OR NEWPAG) on NOS to erase FORTRAN output from the screen. This subroutine does not write an erase to the mass storage plot vector file.

Subprograms used: None

JTB Common Block

The JTB common block is located in the main program only. Default values have been taken from all the common block parameters except for JREQ.

Purpose: To control the plot vector file and output buffer

- Usage: COMMON/JTB/NFR, JREQ, IBAUD, HDR, IJO, TFAC, NFLUSH, IJTB(3)
 - NFR = 0 (default)
 Pause after a call to NFRAM and EPAUSE.
 Execution continues when user presses return key.
 - JREQ = 2
 PLOT-10 vector file is assigned to terminal and also written
 to file SAVPVF for saving.
 - IBAUD = 120 (default)
 Terminal baud rate in characters/second
 - HDR Used internally
 - IJO Used internally
 - TFAC = (4014 terminal length)/1024
 - NFLUSH = 0 (default) Flush the user's output file buffer before PLOT-10 input/output
 - IJTB(3) Reserved for future use

TABLE CI.- PROGRAM AUXILIARY FILES

File	Function			
5	Input from keyboard			
6	Output to terminal screen			
7	Input data file			
8	Output (results given in tabular form)			
11	Modal acceleration matrices			
12	Acceleration mobility matrices			
13	Acceleration response matrices			

TABLE CII.- AUXILIARY FILE 11 FORMAT

Card image (a)	Variable Description		Format
1	NP	Number of problems	(13)
2	NR NF NM	Number of responses Number of forces Number of modes	(314)
3	РТ	Problem title card	(A80)
4	FVT	Force vector title	(880)
5	RCT	Response coordinate title	(A80)
6	MAT	Modal acceleration heading	(880)
7	A(NR,NF,NM)	Modal acceleration matrix	10(1X,E10.4)

^aIf there is more than one problem being solved, FILE 11 will contain card images 2 to 7 sequentially repeated NP times. Therefore, card image 1, which contains the NP variable, defines the outer loop index. The index variables on card image 2 set up the inner loop for reading NR groups of modal acceleration matrices calculated for one problem.

TABLE CIII.- FILE 11 CONTENTS FROM SAMPLE PROBLEM IN APPENDIX B

1 2 1 3 SPRING MASS SYSTEM APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 1 - RESPONSE COORDINATE MODAL ACCELERATION MATRIX A(NF,NM) .1000E+00 -.1337E+00 .3366E-01 SPRING MASS SYSTEM APPLIED FORCE VECTOR: FORCE AT MASS 3 RESPONSE LOCATION: MASS 2 - RESPONSE COORDINATE MODAL ACCELERATION MATRIX A(NF,NM) .1000E+00 -.6905E-02 -.9311E-01

.

Card image	Variable	Description	Format	
1	NP	Number of problems	(13)	
2	A NR NF NM	Number of responses Number of forces Number of modes	(314)	
3	IFN	Number of frequency steps	(13)	
4	PT	Problem title card	(880)	
5	FVT	Force vector title	(880)	
6	RCT	Response coordinate title	(A80)	
7	AMT1	Acceleration mobility title	(A80)	
8	АМТ2	Mobility heading	(A80)	
9	NSTEP W(NR,NSTEP) YDD(NR,NSTEP,NF)	Frequency step number Forcing frequency Acceleration mobility matrix	(1X, I3, 1X, F8.3, 12(1X,E10.4))	

TABLE CIV. - AUXILIARY FILE 12 FORMAT

^aIf there is more than one problem being solved, FILE 12 will contain card images 2 to 9 sequentially repeated NP times. Therefore, card image 1, which contains the NP variable, defines the outer loop index. The index variables on card image 2 set up the inner loop for reading NR groups of modal acceleration mobilities calculated for one problem. TABLE CV.- FILE 12 CONTENTS FROM SAMPLE PROBLEM IN APPENDIX B

12	1	
41 . S	PRING MASS SYSTEM	
AP RE	PLIED FORCE VECTOR: FORCE AT MASS 3 SPONSE LOCATION: MASS 1 - RESPONSE CO	OORDINATE
N	FREQ YR YI	
2	.500 .1005E+00 0.	
4	1.500 .1049E+00 0.	
6	2.500 .1146E+00 0.	
8	3.500 .1222E+00 0. 3.500 .1324E+00 0.	
10	4.000 .1461E+00 0. 4.500 .1649E+00 0.	
11 12	5.000 .1914E+00 0. 5.500 .2308E+00 0.	
13	6.000 .2942E+00 0. 6.500 .4101E+00 0.	
16	7.500 .6843E+00 0. 7.500 .2070E+01 0.	
18	8.5007061E+00 0.	
20	$9.5003200 \pm 00 0.$	
22	10.500225E+00 0.	
24	11.5001868E+00 0.	
25 26 27	12.5001811E+00 0.	
28	13.5002085E+00 0.	
30	14.5003380E+00 0. 15.000 - 6452E+00 0	
32 33	15.500 .4428E+01 0. 16.000 .4165E+00 0	
34 35	16.500 .1996E+00 0. 17.000 .1237E+00 0.	
36 37	17.500 .8575E-01 0. 18.000 .6338E-01 0.	
38 39	18.500 .4885E-01 0. 19.000 .3879E-01 0.	
40		
41	19.500 .3150E-01 0. 20.000 .2604E-01 0.	
41 41 51	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM	
41 41 API RES	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FONSE LOCATION: MASS 2 - RESPONSE CO	ORDINATE
41 41 AP RES ACO N	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FPONSE LOCATION: MASS 2 - RESPONSE CO SELERATION MOBILITY Y(NR,NF) FREQ YR YI	ORDINATE
41 41 API RES ACO N 1 2	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR 0.000 .1000E+00 0. .500 .1001E+00 0.	ORDINATE
41 41 AP RES ACO N 1 2 3 4	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PRING MASS SYSTEM PRING PUECTOR: FORCE AT MASS 3 SPONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .100E+00 0. .500 .1001E+00 0. 1.500 .1012E+00 0.	ORDINATE
41 41 82 82 80 80 80 80 80 80 80 80 80 80 80 80 80	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FPONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. .500 .1001E+00 0. 1.000 .1021E+00 0. 2.500 .1031E+00 0. 2.500 .1031E+00 0.	ORDINATE
41 41 APF RES ACCO N 1 2 3 4 5 6 7 8	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 SPONSE LOCATION: MASS 2 - RESPONSE CO SELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1049E+00 0. 3.500 .1068E+00 0. 3.500 .1068E+00 0.	ORDINATE
41 41 APP RES ACC N 1 2 3 4 5 6 7 8 9 10	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO DELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1005E+00 0. 1.500 .1012E+00 0. 2.000 .1031E+00 0. 3.000 .1034E+00 0. 3.500 .1049E+00 0. 3.500 .1058E+00 0. 4.500 .1122E+00 0.	ORDINATE
41 41 53 RES ACC N 1 2 3 4 5 6 7 8 9 10 11 11	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1012E+00 0. 2.500 .1031E+00 0. 3.000 .1049E+00 0. 3.500 .1049E+00 0. 4.500 .1122E+00 0. 5.000 .1158E+00 0. 5.000 .125E+00 0. 5.000 .125E+00 0.	ORDINATE
41 41 S APP RE: ACC N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FPONSE LOCATION: MASS 2 - RESPONSE CO SELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.000 .1005E+00 0. 1.000 .1012E+00 0. 2.000 .1012E+00 0. 2.500 .1033E+00 0. 3.500 .1049E+00 0. 3.500 .1068E+00 0. 4.500 .1158E+00 0. 5.000 .1158E+00 0. 5.000 .1265E+00 0. 6.500 .1364E+00 0. 5.000 .1265E+00 0. 5.000 .155E+00 0	ORDINATE
41 41 API RE: ACC N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CC SELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1021E+00 0. 3.500 .1033E+00 0. 3.500 .1049E+00 0. 3.500 .1049E+00 0. 4.500 .1122E+00 0. 5.500 .1125E+00 0. 5.500 .1125E+00 0. 5.500 .1265E+00 0. 5.500 .1364E+00 0. 5.500 .1364E+00 0. 7.500 .2310E+00 0. 7.500 .2310E+00 0. 5.000 .1547E+00 0. 5.000 .2548E+00 0. 5.000 .	ORDINATE
41 41 89 80 80 80 80 80 80 80 80 80 80 80 80 80	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO DELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1021E+00 0. 3.000 .1033E+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 3.000 .1122E+00 0. 4.500 .1122E+00 0. 5.500 .1158E+00 0. 5.500 .1205E+00 0. 6.500 .1269E+00 0. 6.500 .1264E+00 0. 7.000 .1547E+00 0. 7.500 .21310E+00 0. 8.500 .9959E-01 0. 8.500 .9959E-01 0. 8.000 .1242E+00 0.	ORDINATE
41 41 AP: RES: ACC N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 20 20 20 20 20 20 20 20 20	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1012E+00 0. 2.500 .1038+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 4.500 .1158E+00 0. 5.500 .1226E+00 0. 5.500 .1269E+00 0. 5.500 .1269E+00 0. 5.500 .1364E+00 0. 5.500 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .1212E+00 0. 9.500 .1361E+00 0.	ORDINATE
41 41 AP: RESE ACCO N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO SELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1021E+00 0. 3.000 .1049E+00 0. 3.500 .1068E+00 0. 3.500 .1122E+00 0. 4.500 .1125E+00 0. 5.500 .1125E+00 0. 5.500 .1125E+00 0. 5.500 .1126E+00 0. 5.500 .1136E+00 0. 8.500 .2237E-01 0. 8.500 .126E+00 0. 9.500 .1361E+00 0. 10.000 .1500E+00 0. 10.000 .1649E+00 0. 10.000 .1827E+00 0.	ORDINATE
41 41 41 41 41 41 45 45 67 78 99 10 11 12 13 14 15 16 17 18 19 21 223 24 25	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO SELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1012E+00 0. 3.000 .1049E+00 0. 3.500 .1038E+00 0. 3.500 .1058E+00 0. 4.500 .1122E+00 0. 5.500 .1158E+00 0. 5.500 .1255E+00 0. 6.500 .1364E+00 0. 7.500 .2310E+00 0. 8.500 .9959E-01 0. 8.500 .9959E-01 0. 8.500 .1361E+00 0. 10.500 .1649E+00 0. 10.500 .1649E+00 0. 10.000 .1547E+00 0. 10.000 .1262E+00 0. 11.500 .233E+00 0. 11.500 .233E+00 0. 12.000 .233E+00 0.	ORDINATE
41 41 APE RRACO N 1 2 3 4 5 5 6 7 8 9 10 11 12 13 4 5 5 6 7 8 9 10 11 12 13 4 15 16 17 18 9 20 21 22 23 24 25 26 27	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYGTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1001E+00 0. 2.000 .1021E+00 0. 2.000 .1021E+00 0. 3.000 .1038+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 3.000 .1122E+00 0. 5.000 .1158E+00 0. 5.000 .1158E+00 0. 5.000 .1269E+00 0. 5.500 .1364E+00 0. 5.500 .2331E+00 0. 8.000 .2237E-01 0. 8.000 .1249E+00 0. 10.000 .1547E+00 0. 10.000 .1249E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 12.000 .2311E+00 0. 12.000 .2331E+00 0. 12.000 .2331E+00 0. 12.000 .3158E+00 0. 13.000 .3158E+00 0.	ORDINATE
41 41 APE RACC N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 20 21 22 23 24 25 26 27 28 29	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYGTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1021E+00 0. 2.500 .103E+00 0. 3.000 .1038E+00 0. 3.000 .1049E+00 0. 4.500 .1158E+00 0. 5.500 .1158E+00 0. 5.500 .1364E+00 0. 5.500 .1364E+00 0. 5.500 .1364E+00 0. 5.500 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .2237E-01 0. 8.000 .2237E+00 0. 10.000 .1212E+00 0. 10.500 .1649E+00 0. 10.500 .1649E+00 0. 11.500 .2033E+00 0. 11.500 .2031E+00 0. 12.500 .2031E+00 0. 12.500 .2031E+00 0. 12.500 .2658E+00 0. 13.000 .1158E+00 0. 14.000 .2658E+00 0. 13.000 .3194E+00 0. 14.000 .3194E+00 0. 14.000 .5195E+00 0. 13.500 .3194E+00 0. 14.000 .5195E+00 0. 14.000 .5195E+00 0.	ORDINATE
41 41 41 41 41 41 41 41 41 41	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1012E+00 0. 2.500 .1012E+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 3.500 .102E+00 0. 4.500 .1158E+00 0. 5.500 .1258E+00 0. 5.500 .1258E+00 0. 6.000 .1269E+00 0. 5.500 .2310E+00 0. 8.500 .2310E+00 0. 8.500 .1212E+00 0. 8.500 .1212E+00 0. 8.500 .1237E-01 0. 8.500 .1269E+00 0. 11.000 .1500E+00 0. 11.500 .2033E+00 0. 11.500 .2033E+00 0. 11.500 .2033E+00 0. 11.500 .2033E+00 0. 11.500 .2033E+00 0. 12.500 .1358E+00 0. 13.500 .1358E+00 0. 13.500 .1358E+00 0. 13.500 .1358E+00 0. 13.500 .1358E+00 0. 13.500 .134E+00 0. 13.500 .2558E+00 0. 13.500 .1358E+00 0. 13.500 .1358E+00 0. 14.500 .7844E+00 0. 14.500 .7844E+00 0. 15.500 .1647E+01 0.	ORDINATE
41 41 41 41 41 41 41 41 41 41	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.000 .1021E+00 0. 3.500 .1021E+00 0. 3.500 .1021E+00 0. 3.500 .1022E+00 0. 4.500 .1122E+00 0. 5.500 .1158E+00 0. 5.500 .1256E+00 0. 6.500 .1254E+00 0. 5.500 .225E+00 0. 6.500 .225E+01 0. 8.500 .9959E-01 0. 8.500 .2237E-01 0. 8.500 .164E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 11.500 .3158E+00 0. 13.500 .3158E+00 0. 13.500 .3158E+00 0. 14.500 .7844E+00 0. 15.500 .1237E+02 0. 14.500 .7237E+02 0. 15.500 .1237E+02 0. 15.500 .1257E+02 0	ORDINATE
41 41 41 41 41 52 7 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 21 22 23 24 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 25 26 27 28 29 30 31 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 23 24 25 26 27 28 20 31 32 33 33 35 55 25 25 26 27 28 20 31 23 35 35 35 35 35 35 35 35 35 3	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYGTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1001E+00 0. 2.000 .1021E+00 0. 2.000 .1021E+00 0. 2.000 .1024E+00 0. 3.000 .1038+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 4.500 .1122E+00 0. 5.000 .1158E+00 0. 5.000 .1269E+00 0. 5.500 .3164E+00 0. 5.500 .3164E+00 0. 5.500 .3164E+00 0. 5.500 .1364E+00 0. 5.500 .1364E+00 0. 5.500 .1364E+00 0. 7.000 .1547E+00 0. 7.000 .1249E+00 0. 8.500 .9959E-01 0. 8.500 .9959E-01 0. 9.500 .1364E+00 0. 10.000 .1500E+00 0. 11.500 .2331E+00 0. 11.500 .2331E+00 0. 12.000 .3158E+00 0. 13.500 .3164E+00 0. 14.500 .7844E+00 0. 15.500 .1237E+00 0. 15.500 .1245E+00 0. 15.500 .2458E+00 0. 15.500 .1245E+00 0. 15.500 .2458E+00 0. 1	ORDINATE
41 41 41 41 51 56 78 90 10 12 14 15 17 18 20 22 24 25 26 27 28 30 32 33 45 56 78 90 10 12 22 24 25 26 27 28 29 30 32 33 35 37 37 37 37 37 37 37 37 37 37	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASE SYGTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION : MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1000E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1021E+00 0. 2.500 .103E+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 3.000 .1026E+00 0. 4.500 .1158E+00 0. 5.500 .1364E+00 0. 7.500 .2237E-01 0. 8.500 .9959E-01 0. 9.000 .1212E+00 0. 10.000 .1500E+00 0. 11.500 .3156E+00 0. 11.500 .3156E+00 0. 12.500 .3164E+00 0. 12.500 .3156E+00 0. 13.500 .3156E+00 0. 14.500 .744E+00 0. 15.500 .1237E+02 0. 14.000 .5193E+00 0. 15.500 .1237E+02 0. 15.500 .3164E+00 0. 13.000 .3158E+00 0. 14.000 .5199E+00 0. 15.500 .2337E+00 0. 15.500 .2337E+00 0. 15.500 .2337E+00 0. 15.500 .2337E+00 0. 15.500 .3158E+00 0. 15.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 17.500 .2337E+00 0. 16.500 .2337E+00 0. 16.500 .2337E+00 0.	ORDINATE
41 41 APESCO N 1 2 3 4 5 6 7 8 9 11 12 14 15 17 8 9 11 12 23 4 5 6 7 8 9 11 12 23 24 25 27 29 30 13 23 34 35 6 7 8 9 11 12 23 24 25 27 29 30 13 23 34 35 6 7 8 9 10 11 12 23 24 25 27 29 30 31 32 33 34 35 37 8 9 10 11 12 23 24 25 27 29 30 31 32 33 34 35 37 8 9 10 11 12 22 24 25 27 29 30 13 23 34 35 37 8 9 10 11 12 27 27 27 29 30 13 23 34 35 37 8 9 10 11 12 27 27 27 29 30 13 23 34 35 37 8 37 8 9 10 11 12 27 27 27 29 30 13 23 34 35 37 8 9 10 11 12 27 27 27 29 30 13 23 34 35 37 8 8 37 8 8 8 1 8 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	19.500 .3150E-01 0. 20.000 .2604E-01 0. PRING MASS SYSTEM PLIED FORCE VECTOR: FORCE AT MASS 3 FFONSE LOCATION: MASS 2 - RESPONSE CO ELERATION MOBILITY Y(NR,NF) FREQ YR YI 0.000 .1001E+00 0. 1.500 .1001E+00 0. 1.500 .1012E+00 0. 2.500 .1012E+00 0. 2.500 .1038+00 0. 3.000 .1049E+00 0. 3.000 .1049E+00 0. 4.500 .1158E+00 0. 5.500 .1205E+00 0. 5.500 .1269E+00 0. 6.500 .1269E+00 0. 5.500 .2237E-01 0. 8.500 .9959E-01 0. 8.000 .2237E-01 0. 8.000 .1212E+00 0. 11.500 .1361E+00 0. 12.500 .1361E+00 0. 12.500 .1361E+00 0. 11.500 .1649E+00 0. 11.500 .1649E+00 0. 12.500 .1391E+00 0. 12.500 .1391E+00 0. 12.500 .1391E+00 0. 12.500 .1391E+00 0. 13.500 .3916E+00 0. 13.500 .2658E+00 0. 13.500 .2658E+00 0. 13.500 .2237E-01 0. 14.000 .1247E+01 0. 15.000 .1247E+01 0. 15.000 .2277E-01 0. 15.000 .1247E+00 0. 13.500 .3916E+00 0. 14.000 .2277E+01 0. 15.000 .1277E+01 0. 15.000 .1277E+01 0. 15.000 .2277E+01 0. 15.000 .1277E+01 0. 15.000 .1277E+01 0. 15.000 .2277E+01 0. 15.000 .2277E+01 0. 15.000 .2277E+01 0. 15.000 .1277E+01 0. 15.000 .1277E+00 0. 14.000 .1277E+00 0. 14.000 .1277E+00 0. 15.000 .1277E+00 0. 15.000 .1277E+00 0. 14.000 .1277E+00 0. 15.000 .1277E+00 0. 15.000 .1277E+00 0. 14.000 .1277E+00 0. 15.000 .277E+00 0. 15.000 .277E+00 0. 15.000 .277E+00 0. 15.000 .277E+00 0.	ORDINATE

Card image (a)	Variable	Description	Format
1	NP	Number of problems	(13)
2	NR	Number of responses	(13)
3	IFN	Number of frequency steps	(13)
4	PT	Problem title	(A80)
5	FVT	Force vector title	(A80)
6	RCT	Response coordinate title	(A80)
7	ART	Acceleration response heading	(A80)
8	<pre>{ NSTEP W(NR,NSTEP) QDD(NR,NSTEP)</pre>	Frequency step number Forcing frequency Complex acceleration response	(1X, I3, 1X, F8.3, 2(1X,E10.4))

TABLE CVI. - AUXILIARY FILE 13 FORMAT

^aIf there is more than one problem being solved, FILE 13 will contain card images 2 to 8 sequentially repeated NP times. Therefore, card image 1, which contains the NP variable, defines the outer loop index. The index variables on card image 2 set up the inner loop for reading NR groups of acceleration response tables calculated for one problem.

TABLE CVII.- FILE 13 CONTENTS FROM SAMPLE PROBLEM IN APPENDIX B

1 2 41					
SPI APPI RESI	RING MAS LIED FOF PONSE LO FREO	SS SYSTEM CE VECTOR: CATION: M/	FORCE	AT MASS 3 RESPONSE COORDINATE	
1 2 3	0.000 .500 1.000	.1000E+00 .1005E+00 .1021E+00	0. 0. 0.		
4 5 6 7	1.500 2.000 2.500	.1049E+00 .1090E+00 .1146E+00	0. 0. 0.		
, 8 9 10	3.500 4.000 4.500	.1324E+00 .1461E+00 .1649E+00	0. 0. 0.		
11 12 13	5.000 5.500 6.000	.1914E+00 .2308E+00 .2942E+00	0. 0. 0.		
14 15 16 17	6.500 7.000 7.500 8.000	.4101E+00 .6843E+00 .2070E+01	0. 0. 0.		
18 19 20	8.500 9.000 9.500	7061E+00 4341E+00 3200E+00	0. 0. 0.		
21 22 23 24	10.000 10.500 11.000	2589E+00 2225E+00 2001E+00 1868E+00	0. 0. 0.		
25 26 27	12.000 12.500 13.000	1806E+00 1811E+00 1893E+00	0. 0. 0.		
28 29 30 31	13.500 14.000 14.500 15.000	~.2085E+00 ~.2481E+00 ~.3380E+00 ~.6452E+00	0. 0. 0.		
32 33 34	15.500 16.000 16.500	.4428E+01 .4165E+00 .1996E+00	0. 0. 0.		
35 36 37 38	17.000 17.500 18.000 18.500	.1237E+00 .8575E-01 .6338E-01 .4885E-01	0. 0. 0.		
39	19.000	.3879E-01	0.		
40	19.500 20.000	.3150E-01 .2604E-01	0. 0.		
40 41 41 APPI RES	19.500 20.000 RING MAS LIED FOR PONSE LO	.3150E-01 .2604E-01 SS SYSTEM RCE VECTOR: DCATION: MA	0. 0. FORCE	AT MASS 3 RESPONSE COORDINATE	
40 41 41 APPI RES N 1 2	19.500 20.000 RING MAS LIED FOI PONSE LO FREQ 0.000 .500	.3150E-01 .2604E-01 SS SYSTEM RCE VECTOR: DCATION: M/ QR .1000E+00 .1001E+00	0. 0. FORCE ASS 2 - QI 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 APP RES N 1 2 3 4 5 6	19.500 20.000 RING MAS LIED FOI PONSE LO FREQ 0.000 .500 1.500 2.000 2.500	.3150E-01 .2604E-01 SS SYSTEM RCE VECTOR: M/ OR .1000E+00 .1005E+00 .1012E+00 .1021E+00 .1033E+00	0. 0. FORCE ASS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 3PPI RES: N 1 2 3 4 5 6 7 8 9	19.500 20.000 RING MAS LIED FOI PONSE LC FREQ 0.000 500 1.000 1.500 2.000 2.500 3.500 4.000	.3150E-01 .2604E-01 SS SYSTEM SCE VECTOR: DCATION: MJ QR .1001E+00 .1012E+00 .1012E+00 .1032E+00 .1049E+00 .1049E+00 .1058E+00 .1052E+00	0. 0. FORCE SS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 APP: RES: N 1 2 3 4 5 6 7 8 9 10 11 12 13	19.500 20.000 RING MAG LIED FONSE LC FREQ 0.000 1.500 2.500 3.000 3.000 3.000 5.000 5.000 5.000 5.000	.3150E-01 .2604E-01 SS SYSTEM SCE VECTOR: DCATION: MJ QR .1001E+00 .1001E+00 .1012E+00 .1032E+00 .1032E+00 .1158E+00 .125E+00 .125E+00 .125E+00	0. 0. FORCE ASS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 SPP RES: N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	19.500 20.000 RING MAS LIED FONSE L FREQ 0.000 1.000 2.500 3.500 3.500 4.500 5.500 6.000 6.500 7.500 6.000 7.500	.3150E-01 .2604E-01 SS SYSTEM SCE VECTOR: DCATION: MJ QR .1000E+00 .1001E+00 .1012E+00 .1012E+00 .1033E+00 .1038E+00 .125E+00 .125E+00 .1265E+00 .1265E+00 .1265E+00 .1364E+00 .1364E+00 .230E+0	0. 0. FORCE ASS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 SPP: RES: N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	19.500 20.000 20.000 FING MAS LIED FONSE LI FREQ 0.000 1.000 2.500 3.500 2.500 3.500 5.500 6.000 5.500 6.000 5.500 6.500 7.500 8.500 8.500 9.500	.3150E-01 .2604E-01 SS SYSTEM SCE VECTOR: DCATION: MJ OR .1000E+00 .1001E+00 .1001E+00 .1012E+00 .1012E+00 .1038E+00 .1058E+00 .1258E+00 .1258E+00 .1265E+00 .1364E+00 .2310E+00 .2310E+00 .1361E+00	0. 0. FORCE ASS 2 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 <i>SP</i> [] RES: 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 20 22 23 24	19.500 20.000 20.000 LIED FOI PONSE LI FREQ 0.500 1.000 2.500 3.500 3.500 3.500 3.500 5.500 5.500 5.500 5.500 5.500 6.000 6.500 7.500 8.000 9.000 9.500 10.500 10.500	.3150E-01 .2604E-01 SS SYSTEM SCATION: MJ OR .1000E+00 .1005E+00 .1012E+00 .1032E+00 .1032E+00 .1049E+00 .1049E+00 .1049E+00 .1225E+00 .1225E+00 .1256E+00 .2310E+00 .2310E+00 .2310E+00 .1361E+00 .1649E+00 .1649E+00 .1649E+00 .1649E+00 .1649E+00 .1649E+00 .1649E+00 .1649E+00	0. 0. FORCE ASS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 8PP: RES: N 1 2 3 4 5 6 6 7 8 9 10 11 2 13 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 22 22 23 24 25 22 22 22 22 22 27 27	19.500 20.000 RING MAS LIED FOID FONSE LI FREQ 0.000 1.000 1.000 2.500 1.000 2.500 3.500 5.000 5.000 6.500 6.500 6.500 6.500 8.500 9.000 9.500 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.500 11.500 12.500	.3150E-01 .2604E-01 .2604E-01 SS SYSTEM SCC VECTOR: DCATION: MJ OR .1000E+00 .1001E+00 .1012E+00 .1012E+00 .1033E+00 .1033E+00 .1058E+00 .1258E+00 .1269E+00 .1364E+00 .1364E+00 .1581E+00 .2301E+00 .2312E+00	0. 0. 0. FORCE ASS 2 - QI 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 SPI RES: N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 9 10 11 12 23 24 22 23 24 22 23 22 24 22 22 22 23 20 20 20 20 20 20 20 20 20 20 20 20 20	19.500 20.000 RING MAS LIED FOID FONSE LI FREQ 0.000 1.000 1.500 2.500 1.000 2.500 3.500 4.500 5.000 6.000 6.000 8.500 9.000 9.500 10.000 11.000 11.500 11.000 11.500 1.500 1	.3150E-01 .2604E-01 .2604E-01 .55 SYSTEM SCC VECTOR: DCATION: MJ OR .1000E+00 .1005E+00 .1012E+00 .102E+00 .103E+00 .103E+00 .103E+00 .105E+00 .115E+00 .125E+00 .126E+00 .126E+00 .150E+00 .150E+00 .2310E+00 .2310E+00 .2310E+00 .2310E+00 .3158E+00 .3158E+00 .3158E+00 .316E+00 .5199E+00 .5199E+00 .5199E+00 .2642E+01 .5196E+00 .5199E+00 .5199E+00 .2642E+01 .5196E+00 .5199E+00 .5199E+00 .2642E+01 .5196E+00 .5199E+00 .2642E+01 .5196E+00 .5199E+00 .2642E+01 .2642E+01 .5196E+00 .5199E+00 .2642E+01	0. 0. 0. FORCE ASS 2 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 8PP: RES: N 1 2 3 4 5 6 7 8 9 10 11 12 23 4 5 6 7 8 9 10 11 12 23 24 5 26 27 8 22 22 24 22 22 24 22 22 22 22 22 22 22	19.500 20.000 RING MAS LIED FOID FONSE LIED FOID 1.000 1.500 2.500 3.500 4.500 5.500 6.000 5.500 6.000 7.000 8.500 7.000 9.000 9.000 9.000 9.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500 11.000 11.500	.3150E-01 .2604E-01 .2604E-01 .55 SYSTEM SCE VECTOR: DCATION: MJ QR .1000E+00 .1001E+00 .1012E+00 .1012E+00 .1032E+00 .1032E+00 .1052E+00 .1252E+00 .1252E+00 .1262E+00 .1364E+00 .1262E+00 .1364E+00 .1262E+00 .150E+00 .150E+00 .1515E+00	0. 0. FORCE ASS 2 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	
40 41 41 8PP: RES: N 1 2 3 4 5 6 7 8 9 10 11 12 23 4 5 6 7 8 9 10 11 12 22 23 24 25 26 27 8 29 00 11 12 22 22 24 22 22 24 22 23 33 34 33 33 33 33 33 33 33 33 33 33 33	19.500 20.000 RING MA3 LIED FONSE L FREQ 0.000 1.000 1.000 2.000 2.000 2.000 4.500 3.500 5.000 5.000 5.000 5.000 7.000 0.000 0.500 10.000 10.000 10.000 10.000 10.000 11.000 11.000 11.500 12.500 12.500 12.500 10.000 11.500 12.500 13.500 14.500 14.500 15.500 14.500 15.500 10.000 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500 10.000 10.500	.3150E-01 .2604E-01 .2604E-01 .55 SYSTEM SCE VECTOR: DCATION: MJ QR .1001E+00 .1012E+00 .1012E+00 .1012E+00 .1032E+00 .1032E+00 .1032E+00 .1152E+00 .1252E+00 .1252E+00 .1262E+00 .1364E+00 .1364E+00 .1364E+00 .1361E+00 .1361E+00 .13158E+00 .2032E+00 .2032E+00 .13158E+00 .2032E+00 .2032E+00 .2032E+00 .2032E+00 .2032E+00 .2032E+00 .2032E+00 .2032E+00 .21358E+00 .24127E+02 .212	0. 0. 0. FORCE ASS 2 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AT MASS 3 RESPONSE COORDINATE	

TABLE CVIII.- PLOT-10 GRAPHICS SUBROUTINES USED IN VIBRA

......

TCS subroutines	AG-II subroutines
ANMODE	BINITT
CHRSIZ	CHECK
DRAWA	DLIMX
ERASE	DLIMY
FINITT	DSPLAY
INITT	FRAME
MOVABS	NPTS
MOVEA	SIZES
TERM	SLIMX
TSEND	SLIMY
VCURSR	STEPS
	SYMBL
LaRC subroutines	XFRM
	XMFRM
EPAUSE	XMTCS
TPAUSE	XNEAT
NOTX	YFRM
NOTY	YMFRM
DRASE	YMTCS
	YNEAT
	ZLINE (ZLINE is actually LINE in AG-II)

•

TABLE CIX. - PLOT-10 SUBROUTINE LOCATION WITHIN VIBRA

PLOT-10 subroutine	Location in VIBRA subroutines
ANMODE	MAIN GRAFIT QUAD4 ALABELS
BINITT	MAIN TKSET OUAD4 ORPV OIPV AMPV PHPV
CHECK	GRAFIT ORPV OTPV AMPV PHPV ZOOM
CHRSIZ	MAIN TKSET ORPV OTPV AMPV PHDV
DLIMX	GRAFIT ZOOM
DLIMY	GRAFIT ZOOM
DRASE ^a	MAIN PAUSE
DRAWA	ZOOM
DSPLAY	GRAFIT ORPV OIPV AMPV PHPV ZOOM
EPAUSE ^a	MAIN GRAFIT OUAD4 ALABELS
ERASE	TKSET QUAD4
FINITT	~ MAIN
FRAME	TKSET
INITT	MAIN
MOVABS	MAIN GRAFIT OUAD4 ALABELS
MOVEA	ZOOM
NOTX ^a	ORPV OIPV AMPV PHPV ALABELS
NOTY ^a	ORPV OIPV AMPV PHPV ALABELS
NPTS	GRAFIT ORPV OIPV AMPV PHPV ZOOM
SIZES	TKSET
SLIMX	TKSET QRPV QIPV AMPV PHPV
SLIMY	TKSET QRPV QIPV AMPV PHPV
STEPS	TKSET
SYMBL	TKSET QUAD4
TERM	MAIN TKSET QUAD4
TPAUSE ^a	PAUSE
TSEND	GRAFIT QUAD4 ALABELS
VCURSR	ZOOM
XFRM	TKSET
XMFRM	TKSET
XMTCS	TKSET
XNEAT	TKSET QUAD4
YFRM	TKSET
YMFRM	TKSET
YMTCS	TKSET
YNEAT	TKSET QUAD4
ZLINE ^D	TKSET QUAD4

^aLaRC NOS PLOT-10 subroutine. ^bNOS modified name; AG-II name is LINE.

VIBRA subroutine	PLOT-10 subroutines
MAIN	ANMODE BINITT CHRSIZ DRASE ^A EPAUSE ^A FINITT INITT MOVABS TERM
PAUSE	TPAUSE DRASE ^a
GRAFIT	ANMODE CHECK DLIMX DLIMY DSPLAY EPAUSE ^A FRAME MOVABS NPTS SLIMX SLIMY TSEND
TKSET	BINITT CHRSIZ ERASE SIZES STEPS SYMBL TERM XFRM XMFRM XMTCS XNEAT YFRM YMFRM YMTCS YNEAT ZLINE ^D
QUAD4	ANMODE BINITT CHRSIZ ERASE MOVABS SYMBL TERM TSEND XNEAT YNEAT ZLINE ^D
QRPV QIPV AMPV PHPV	BINITT CHECK DSPLAY NOTX ^a NOTY ^a NPTS SLIMX SLIMY
ZOOM	CHECK DLIMX DLIMY DRAWA DSPLAY EPAUSE ^A NPTS FRAME MOVEA VCURSR XNEAT YNEAT
ALABELS	ANMODE MOVEABS NOTX ^a NOTY ^a TSEND

TABLE CX.- VIBRA SUBROUTINES THAT USE PLOT-10 SUBROUTINES

^aLaRC NOS PLOT-10 subroutine. ^bNOS modified name; AG-II name is LINE.

Г

REFERENCES

- 1. The NASTRAN[®] Theoretical Manual. NASA SP-221(06), 1981.
- 2. Flannelly, W. G.; Fabunmi, J. A.; and Nagy, E. J.: Analytical Testing. NASA CR-3429, 1981.
- 3. PLOT-10 Terminal Control System User's Manual. Doc. No. 062-1474-00, Tektronix, Inc., c.1974 (Reprinted Dec. 1976).
- 4. PLOT-10 Advanced Graphing II User's Manual. Doc. No. 062-1530-00, Tektronix, Inc., c.1973 (Reprinted Dec. 1976).
- 5. Computer Programing Manual. Volume IV Special Capabilities. NASA Langley Research Center, Apr. 30, 1980.

Mode	Frequency, Hz	Generalized mass	Mode shape				
1	6.01	4.48	1.0	0.857	0.694	0.470	0.302
2	14.05	1.84	-1.0	221	.298	.373	•273
3	22.13	6.87	1.0	.934	547	.944	.926
4	27.51	2.87	503	1.0	489	.233	.317
5	42.47	2.24	.00362	0221	.0829	536	1.0

TABLE I.- MODAL DATA FOR UNDAMPED SYSTEM FOR CASE 1

~

TEST CASE 1A FOR VIBRA ---CONSTRAINED SYSTEM---05011110.050.01. NATURAL FREQUENCY (HZ) 6.01 14.05 22.13 27.51 42.47 GENERALIZED MASS 4.48 1.84 6.87 2.87 2.24 VISCOUS DAMPING .025 FORCE AT NODE 1 (1.0, 0.0)NODE 1 MODE SHAPE FOR FORCE AT NODE 1 1.00 -1.00 1.00 -.503 .00362 RESPONSE AT NODE 1 1.00 -1.00 1.00 -.503 .00362 RESPONSE AT NODE 5 .302 .273 .926 .317 1.00

TABLE III .- CONTROL PARAMETER DESCRIPTION FOR CASE 1A

TEST CASE 1A FOR UIBRA ---- CONSTRAINED SYSTEM----

CONTROL PARAMETERS SET

NZ NM MNORM MDAMP NZETA	•	9 #RIGID BODY MODES# 5 #MODES TOTAL# 9 #NORMAL MODES# 1 #VISCOUS DAMPING# 1 #DAMPING IS CONSTANT#	
NFS NF USTRT USTOP DELU		1 *FORCE VECTOR SETS* 1 *FORCE COORDINATES* .0 *STARTING FREQUENCY (HZ) * 50.0 *STOPPING FREQUENCY (HZ) *	
DELO	-	BLANK COMMON STORAGE ZZZ REQUIRES	351 LOCATIONS

45

TEST CASE 1A FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: FORCE AT NODE 1 RESPONSE LOCATION: RESPONSE AT NODE 1

FORCING FREQUENCY (CYCLES/SEC)	REAL ACCEL (IN/SEC2)	IMAG ACCEL (IN/SEC2)	AMPLITUDE (IN/SEC2)	PHASE ANG (DEGREES)	REAL ACCEL (G)	IMAG ACCEL (G)	AMPLITUDE (G)
0.0000	0.	0.	0.	0.	0.	0.	0.
1,0000	9537E-02	.6516E-04	.9537E-02	.1796E+03	2468E-04	.1686E-06	.2468E-04
2.0000	4069E-01	.6088E-03	.4070E-01	.1791E+03	1053E-03	.1575E-05	.1053E-03
3,0000	1037E+00	.2775E-02	.1038E+00	.1785E+03	2685E-03	.7181E-05	.2686E-03
4.0000	2316E+00	.1137E-01	2319E+00	.1772E+03	5994E-03	.2942E-04	.6001E-03
5 0000	-5824F+00	6832E-01	5864E+00	.1733E+03	1507E-02	.1768E-03	.1518E-02
6 0000	4327E+00	4441E+01	4462E+01	9556E+02	1120E-02	.1149E-01	.1155E-01
7 0000	6256E+00	1414E+00	6414E+00	.1274E+02	.1619E-02	.3659E-03	.1660E-02
8 0000	21835+00	5541E-01	2253E+00	.1424E+02	.5650E-03	.1434E-03	.5830E-03
9 0000	- 1506F-01	4557E-01	4799E-01	1083E+03	3898E-04	.1179E-03	.1242E-03
10 0000	- 2572E+00	5778E-01	2636E+00	.1673E+03	6655E-03	.1495E-03	.6821E-03
11 0000	- 5988F+00	1005E+00	6071E+00	.1705E+03	1550E-02	.2601E-03	.1571E-02
12 0000	- 12135+01	2385E+00	1237E+01	1689E+03	3140E-02	.6174E-03	.3201E-02
13 0000	- 2749F+01	9549E+00	2910E+01	1608E+03	7114E-02	.2471E-02	.7531E-02
14 0000	-1368F+01	1063E+02	1072E+02	9733E+02	3540E-02	.2751E-01	.2773E-01
15 0000	3972E+01	1492E+01	4243E+01	.2059E+02	.1028E-01	.3862E-02	.1098E-01
16,0000	2346F+01	4589E+00	2391E+01	.1107E+02	.6072E-02	.1188E-02	.6187E-02
17 0000	16795+01	2472E+00	1697E+01	.8374E+01	.4345E-02	.6397E-03	.4392E-02
18 0000	12825+01	17975+00	1295E+01	.7981E+01	.3318E-02	.4652E-03	.3350E-02
19,0000	96175400	17188+00	9769E+00	1013E+02	.2489E-02	.4445E-03	.2528E-02
20 0000	.JOI/E+00	2365F+00	6480E+00	.2141E+02	.1561E-02	.6121E-03	.1677E-02
20.0000	20118-01	5860F+00	5867F+00	8725E+02	7275E-04	.1517E-02	.1518E-02
21.0000	.2011E-01	.J000E+00	28346+01	8279F+02	9204E-03	.7277E-02	.7335E-02
22.0000	· 33 30 ET 00	0695F+01	2481F+01	2297E+02	.5913E-02	.2507E-02	.6422E-02
23.0000	16705101	26202+00	17188+01	1219E+02	4346E-02	.9391E-03	.4446E-02
24.0000	10/96+01	- 3629E+00 2697E+00	1312F+01	1186E+02	.3323E-02	.6981E-03	.3396E-02
25.0000	.12045+01	.2037E+00	9802E+00	.2311E+02	2333E-02	.9958E-03	.2537E-02
28.0000	5957E+00	11035+01	1329E+01	6385E+02	1516E-02	.3087E-02	.3439E-02
27.0000	21 99 5+00	12655+01	2528E+01	-3002E+02	.5664E-02	.3273E-02	.6542E-02
28.0000	20078+01	30725+00	2046E+01	.1119E+02	.5195E-02	.1028E-02	.5296E-02
29.0000	17578+01	10648+00	17688+01	637 8E+01	4547E-02	.5082E-03	.4575E-02
21 0000	16092+01	12635+00	1613F+01	4492E+01	4162E-02	.3269E-03	.4175E-02
32.0000	15118+01	02145-01	1514E+01	3528E+01	3910E-02	.2410E-03	.3917E-02
22.0000	14412+01	74245-01	14435+01	29495+01	-3730E-02	.1921E-03	.3735E-02
24 0000	12005+01	6214E-01	13905+01	2562E+01	-3595E-02	.1608E-03	.3598E-02
34.0000	13495-01	5274E-01	13/95+01	2284E+01	.3487E-02	.1391E-03	.3490E-02
35.0000	.13405+01	.JJ746-01	1315E+01	2073E+01	3400E-02	.1231E-03	.3403E-02
30.0000	13145401	.4/556-01	12875+01	19068+01	3328E-02	1108E-03	.3330E-02
37.0000	12805+01	.42006-01	12635+01	.1771E+01	-3266E-02	.1010E-03	.3268E-02
38.0000	12022+01	.3503E-01	12425+01	1659E+01	-3214E-02	.9306E-04	.3215E-02
39.0000	.12426+01	.33906-01	12345+01	15635401	31685-02	8645F-04	3169E-02
40.0000	.1224E+01	.33416-01	12008+01	14925-01	31275-02	8089F-04	3129F-02
41.0000	.12086+01	.31205-01	11058401	14125+01	30925-02	76215-04	3093E-02
42.0000	.11936+01	.29456-01	1193E+01	1348F+01	3060E-02	.7201E-04	.3061E-02
43.0000	.11025701 11718401	2634F-01	1172E+01	1288E+01	.3032E-02	.6817E-04	.3033E-02
44.0000	116701	2034L-01	11628+01	12365+01	30068-02	6483E-04	3007E-02
45.0000	.11026401	**************************************	11538401	11905-01	20835-02	6188E-0A	2983E-02
46.0000	.11326+01	.23310-01	*TTOOPLOI	.II//ET-01	20618-02	59235-04	29628-02
47.0000	.11445+01	.22896-01	.11436701	.1140ETUI	.23015-02	5683F-0 <i>A</i>	29435-02
48.0000	.113/8+01	.21966-01	.113/6+01	.110/6+01	.23425-02	5464F-04	29258-02
49.0000	.11306+01	.21116-01	.11306+01	.10/18+01	.29246-02	- J404E-04	200.95-02
50.0000	.1124E+01	.2034E-01	.1124E+01	.103/E+01	.29086-02	.32045~04	.29005-02

TEST CASE 1A FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: FORCE AT NODE 1 RESPONSE LOCATION: RESPONSE AT NODE 5

FORCING FREQUENCY (CYCLES/SEC)	REAL ACCEL (IN/SEC2)	IMAG ACCEL (IN/SEC2)	AMPLITUDE (IN/SEC2)	PHASE ANG (DEGREES)	REAL ACCEL (G)	IMAG ACCEL (G)	AMPLITUDE (G)
0.0000	0.	0.	0.	0.	0.	0.	0.
1.0000	1367E-02	.1421E-04	.1367E-02	.1794E+03	3538E-05	-3678E-07	.3538E-05
2.0000	6142E-02	.1387E-03	.6143E-02	1787E+03	1589E-04	.3590E-06	.1590E-04
3.0000	1712E-01	.6773E-03	.1714E-01	.1777E+03	4431E-04	.1753E-05	4435E-04
4.0000	4370E-01	.3022E-02	4380E-01	1760E+03	1131E-03	7821E~05	.1134E-03
5.0000	1327E+00	.1974E-01	1342E+00	.1715E+03	3434E-03	5109E-04	3472E-03
6.0000	6414E-01	.1339E+01	.1341E+01	9274E+02	- 1660E-03	3466E-02	.3470E-02
7.0000	.2875E+00	.3939E-01	2902E+00	7799E+01	7442E-03	10195-03	75118-03
8.0000	2095E+00	.1059E-01	2097E+00	2895E+01	5421E-03	2741E-04	.5428E~03
9.0000	.2041E+00	.2243E-02	2041E+00	.6298E+00	-5281E-03	-5805E-05	.5281E~03
10.0000	.2306E+00	5171E-02	2307E+00	1284E+01	-59698-03	1338E~04	5970E-03
11,0000	2948E+00	1858E-01	2954E+00	- 3606E+01	7630E-03	- 480 8F~04	76458-03
12.0000	4371E+00	5681E-01	4408E+00	7406E+01	1131E-02	- 1470E-03	11415-02
13 0000	8307F+00	-2521E+00	86.81 E+00	-1688E+02	21505-02	- 65235-02	22475-02
14 0000	42535+00	- 28028+01	20235101	- 9163E+02	11015-02	- 74845-02	-224/6-02
15 0000	- 1066F±01	- 20/08+00	11278+01	- 1507E+02	- 27608-02	- 10222-02	-/J046-02
16.0000	- 66558+00	39496+00	.113/6+01	15976+03	27606-02	10226-02	.29436-02
10.0000	- 54178+00	10036+00	.0/42E+UU	1708E+03	1/22E-02	2804E-03	.1/456-02
18 0000	- 51995+00	- 7076E-01	.3434E+00	1/302+03	1402E-02	1090E~03	.14066-02
10.0000	51886+00	/2/06-02	.51886+00	17922+03	13436-02	1883E~04	.13436-02
20.0000	56856+00	.3158E-UI	.5693E+00	.1768E+03	14/1E-02	.81/4E~04	.14/3E-02
20.0000	-111224E+00	.11396+00	./3165+00	.1/09E+03	18692-02	.3000E-03	.1893E-02
21.0000	11126+01	.45172+00	.12002+01	.15/9E+03	28//E-02	.1169E~02	.31056-02
22.0000	0/862+00	.2516E+01	.2606E+01	.1051E+03	1/56E-02	.6511E~02	.6/43E-02
23.0000	•1241E+U1	.80082400	.14//2+01	.32846+02	.32116-02	.20736-02	.38226-02
24.0000	.8393E+00	.21286+00	.8658E+UU	.14236+02	.21/2E-02	.5506E~03	.2241E-02
25.0000	.090/2+00	.4996E-01	.7004E+00	.40906+01	.1808E-02	.1293E-03	.1813E-02
20.0000	-72/46+00	10532+00	./350E+00	82376+01	.1883E-02	2/25E-03	.1902E-02
27.0000	.79426+00	05485+00	.10296+01	39516+02	.20556-02	1695E~02	.2664E-02
28.0000	30646+00	/230E+00	.78526+00	1130E+03	/929E-03	18/1E-02	.2032E-02
29.0000	25786+00	190/E+00	.32076+00	~.1435E+03	66/2E-03	4936E-03	.8300E-03
30.0000	1499E+00	/399E-01	.16/2E+00	153/E+U3	3880E-03	1915E-03	.4326E-03
31.0000	9550E-01	3689E-01	.1024E+00	1589E+03	2471E-03	9547E-04	.2649E-03
32.0000	6598E-01	2123E-01	.6931E-01	1622E+03	1/08E-03	5495E-04	.1794E-03
33.0000	4857E-01	133/E-01	.5038E-01	1646E+03	1257E-03	3461E-04	.1304E-03
34.0000	3/6/E-UI	8932E-02	.3871E-01	1667E+03	9748E-04	2312E-04	.1002E-03
35.0000	3058E-01	61/8E-02	.31198-01	1686E+03	7913E-04	1599E-04	.8073E-04
36.0000	2592E-01	4307E-02	.2627E-01	1706E+03	6708E-04	1115E-04	.6800E-04
37.0000	2295E-01	2883E-02	.2313E-01	1728E+03	5940E-04	7461E-05	.5987E-04
38.0000	2133E-01	1591E-02	.2139E-01	1757E+03	5520E-04	4118E-05	.5535E-04
39.0000	2097E-01	5679E-04	.2097E-01	1798E+03	5427E-04	1470E-06	.5427E−04
40.0000	2207E-01	.2531E-02	.2222E-01	.1735E+03	5712E-04	.6550E-05	.5750E-04
41.0000	2464E-01	.8792E-02	.2616E-01	.1604E+03	6376E-04	.2275E-04	.6770E-04
42.0000	2070E-01	.2527E-01	.3267E-01	.1293E+03	5358E-04	.6539E-04	.8454E-04
43.0000	.5080E-02	.2505E-01	.2556E-01	.7853E+02	.1315E-04	.6482E-04	.6614E-04
44.0000	.8557E-02	.1008E-01	.1322E-01	.4968E+02	.2215E-04	.2609E-04	.3422E-04
45.0000	.5847E-02	.4446E-02	.7346E-02	.3725E+02	.1513E-04	.1151E-04	.1901E-04
46.0000	.3866E-02	.2286E-02	.4492E-02	.3060E+02	.1001E-04	.5917E-05	.1162E-04
47.0000	.2629E-02	.1296E-02	.2931E-02	.2624E+02	.6804E-05	.3354E-05	.7585E-05
48.0000	.1840E-02	.7773E-03	.1997E-02	.2290E+02	.4762E-05	.2012E-05	.5169E-05
49.0000	.1318E-02	.4792E-03	.1402E-02	.1998E+02	.3410E-05	.1240E-05	.3629E-05
50.0000	.9601E-03	.2961E-03	.1005E-02	.1714E+02	.2485E-05	.7663E-06	.2600E-05

~

W	Mass location	Force magnitude			
Vector set		Real	Imaginary		
1	1	100	-50		
	2	-50	-200		
	3	150	150		
2	1	50	-50		
	2	250	-100		
	3	-100	50		

TABLE VI.- FORCE VECTOR SETS FOR CASE 1B

TABLE VII.- MODAL DAMPING DATA FOR CASE 1B

Mode	Viscous damping,	ζ	
1	0.025		
2	.04		
3	.018		
4	.02		
5	•06		

.

TABLE VIII. - INPUT DATA FILE 7 FOR CASE 1B

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---0 5 0 1 0 2 3 20.0 20.0 0. NATURAL FREQUENCY (HZ) 6.01 14.05 22.13 27.51 42.47 GENERALIZED MASS 4.48 1.84 6.87 2.87 2.24 VISCOUS DAMPING .025 .04 .018 .02 .06 *FORCE VECTOR SET 1* (100, -50) (-50, -200) (150, 150)*FORCE VECTOR SET 2* (50, -50) (250, -100) (-100, 50)NODE 1 MODE SHAPE FOR FORCE AT NODE 1 1.00 -1.00 1.00 -.503 .00362 NODE 2 MODE SHAPE FOR FORCE AT NODE 2 .857 -.221 -.934 1.00 -.0221 NODE 3 MODE SHAPE FOR FORCE AT NODE 3 .694 .298 -.547 -.489 .0829 RESPONSE AT NODE 1 1.00 -1.00 1.00 -.503 .00362 **RESPONSE AT NODE 2** .857 -.221 -.934 1.00 -.0221 RESPONSE AT NODE3 .298 -.547 -.489 .0829 .694 RESPONSE AT NODE 4 .470 .373 .944 .223 -.536 RESPONSE AT NODE 5 .302 .273 .926 .317 1.00

TABLE IX.- CONTROL PARAMETERS DESCRIPTION FOR CASE 1B

TEST CASE 1B FOR UIBRA ---CONSTRAINED SYSTEM---

CONTROL PARAMETERS SET

NZ NM MDAMP NZETA NFS NF USTRT USTOP DELU	* * * * * * * * *	0 *RIGID BODY MODES* 5 *MODES TOTAL* 0 *NORMAL MODES* 1 *VISCOUS DAMPING* 0 *DAMPING UARIES* 2 *FORCE VECTOR SETS* 3 *FORCE COORDINATES* 20.0 *STARTING FREQUENCY (HZ) * .000 *FREQUENCY STEP*	
		BLANK COMMON STORAGE ZZZ REQUIRES	79 LOCATIONS

NOU COMPUTING FORCED RESPONSE

TABLE X. - MODAL ACCELERATION, ACCELERATION MOBILITY, AND ACCELERATION RESPONSE AT 20 Hz FOR NODE 1

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 1 MODAL ACCELERATION MATRIX A(NF, NM) .2232E+00 .5435E+00 .1456E+00 .8816E-01 .5850E-05 .1913E+00 .1201E+00 -.1360E+00 -.1753E+00 -.3572E-04 .1549E+00 -.1620E+00 -.7962E-01 .8570E-01 .1340E-03 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 1 ACCELERATION MOBILITY Y(NR,NF) VΤ N FREO YR 1 20.000 .5778E+00 .2394E+00 .1228E+01 -.8692E-01 .1027E+00 -.8742E-01 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 1 IMAG ACCEL AMPLITUDE PHASE ANG REAL ACCEL AMPLITUDE IMAG ACCEL FORCING FREOUENCY REAL ACCEL (G) (G) (G) (IN/SEC2) (DEGREES) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) .6331E+00 -.6311E+00 .5046E-01 -.8543E+02 -.2439E+03 .2446E+03 .1950E+02 20.0000 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 1 MODAL ACCELERATION MATRIX A(NF, NM) .2232E+00 .5435E+00 .1456E+00 .8816E-01 .5850E-05 .1913E+00 .1201E+00 -.1360E+00 -.1753E+00 -.3572E-04 .1549E+00 -.1620E+00 -.7962E-01 .8570E-01 .1340E-03 TEST CASE 1B FOR VIBRA ----CONSTRAINED SYSTEM----APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 1 ACCELERATION MOBILITY Y(NR,NF) FREO YR ΥI Ν 20.000 .5778E+00 .2394E+00 .1228E+01 -.8692E-01 .1027E+00 -.8742E-01 1 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 1 AMPLITUDE IMAG ACCEL REAL ACCEL PHASE ANG AMPLITUDE FORCING FREQUENCY REAL ACCEL IMAG ACCEL (G) (G) (DEGREES) (G) (IN/SEC2) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) .9431E+00 -.3818E+00 .8623E+00 .3644E+03 -.2388E+02 .3332E+03 -.1475E+03

20.0000

TABLE XI.- MODAL ACCELERATION, ACCELERATION MOBILITY, AND ACCELERATION RESPONSE AT 20 Hz FOR NODE 2

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 2

MODAL ACCELERATION MATRIX A(NF,NM) .1913E+00 .1201E+00 -.1360E+00 -.1753E+00 -.3572E-04 .1639E+00 .2654E-01 .1270E+00 .3484E+00 .2180E-03 .1328E+00 -.3579E-01 .7437E-01 -.1704E+00 -.8179E-03

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM----

APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 2

ACCELERATION MOBILITY Y(NR,NF) N FREQ YR YI 1 20.000 .1228E+01 -.8692E-01 -.7060E+00 .1302E+00 -.5475E-01 .3997E-01

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 2

FORCING FREQUENCY	REAL ACCEL	IMAG ACCEL	AMPLITUDE	PHASE ANG (DEGREES)	REAL ACCEL	IMAG ACCEL	AMPLITUDE	
(CYCLES/SEC)	(IN/SEC2)	(IN/SEC2)	(IN/SEC2)		(G)	(G)	(G)	
20.0000	.1655E+03	.6239E+02	.1769E+03	.2065E+02	.4284E+00	.1615E+00	.457 9E+00	

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 2

MODAL ACCELERATION MATRIX A(NF,NM) .1913E+00 .1201E+00 -.1360E+00 -.1753E+00 -.3572E-04 .1639E+00 .2654E-01 .1270E+00 .3484E+00 .2180E-03 .1328E+00 -.3579E-01 .7437E-01 -.1704E+00 -.8179E-03

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 2

ACCELERATION MOBILITY Y(NR,NF) N FREQ YR YI 1 20.000 .1228E+01 -.8692E-01 -.7060E+00 .1302E+00 -.5475E-01 .3997E-01

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---

APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 2

FORCING FREQUENCY	REAL ACCEL	IMAG ACCEL	AMPLITUDE	PHASE ANG (DEGREES)	REAL ACCEL	IMAG ACCEL	AMPLITUDE	
(CYCLES/SEC)	(IN/SEC2)	(IN/SEC2)	(IN/SEC2)		(G)	(G)	(G)	
20.0000	1030E+03	.3067E+02	.1074E+03	.1634E+03	2665E+00	.7938E-01	.2780E+00	

TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE3 IMAG ACCEL AMPLITUDE FORCING FREQUENCY REAL ACCEL IMAG ACCEL AMPLITUDE PHASE ANG REAL ACCEL (IN/SEC2) (IN/SEC2) (IN/SEC2) (DEGREES) (G) (G) (G) (CYCLES/SEC) -.4118E-02 .2025E-01 .7824E+01 -.1017E+03 -.1982E-01 20.0000 -.1591E+01 -.7660E+01 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE3 IMAG ACCEL AMPLITUDE FORCING FREQUENCY REAL ACCEL IMAG ACCEL AMPLITUDE PHASE ANG REAL ACCEL (DEGREES) (G) (G) (IN/SEC2) (IN/SEC2) (IN/SEC2) (G) (CYCLES/SEC) .1362E-01 -.2692E+01 .5263E+01 -.1492E+03 -.1170E-01 -.6967E-02 20.0000 -.4523E+01 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 4 AMPLITUDE REAL ACCEL IMAG ACCEL PHASE ANG AMPLITUDE REAL ACCEL TMAG ACCEL FORCING FREQUENCY (G) (G) (DEGREES) (G) (IN/SEC2) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) .1233E+00 .9249E-01 -.8155E-01 .4765E+02 .1314E+03 -.3151E+02 .3574E+02 20.0000 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 4 AMPLITUDE IMAG ACCEL PHASE ANG REAL ACCEL TMAG ACCEL AMPLITUDE FORCING FREQUENCY REAL ACCEL (DEGREES) (G) (G) (G) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) (IN/SEC2) .4170E-01 .1205E-01 .4341E-01 .1612E+02 .1677E+02 .4658E+01 20,0000 .1611E+02 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 1* RESPONSE LOCATION: RESPONSE AT NODE 5 IMAG ACCEL AMPLITUDE REAL ACCEL AMPLITUDE PHASE ANG REAL ACCEL IMAG ACCEL FORCING FREQUENCY (G) (G) (DEGREES) (G) (IN/SEC2) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) .1093E+00 .8383E-01 -.7013E-01 .4223E+02 .1299E+03 .3239E+02 -.2710E+02 20.0000 TEST CASE 1B FOR VIBRA ---CONSTRAINED SYSTEM---APPLIED FORCE VECTOR: *FORCE VECTOR SET 2* RESPONSE LOCATION: RESPONSE AT NODE 5 IMAG ACCEL AMPLITUDE REAL ACCEL PHASE ANG AMPLITUDE REAL ACCEL IMAG ACCEL FORCING FREOUENCY (G) (G) (G) (DEGREES) (IN/SEC2) (IN/SEC2) (IN/SEC2) (CYCLES/SEC) .3968E-01 .1126E-01 .3805E-01 .1649E+02 .1533E+02 .1470E+02 .4352E+01

20,0000

OH58 TAILBOOM VIBRATION RESPONSE 6 12 7 0 0 1 1 75.00 300.00 1.00 NATURAL FREQUENCY (HZ) •99269222E-03 .10557244E-02 .11938288E-02 .14050625E-02 .15454463E-02 .18585053E-02.79266240E+02 .79623835E+02 .21336986E+03 .21621835E+03 .29678209E+03 .36830964E+03 GENERALIZED MASS 1.0 DAMPING 0 0 0 0 0 0 0.015 0.016 0.016 0.015 0.015 0.016 FORCE VECTOR 1.0 LBS DOWN AT NODE 193 (-1.0, 0.0)FORCE NODE 193 1 DIRECTION .30248530E+01 -.37951904E+01 .15550316E+01 .25379737E+01 .94151486E-01 -.36754599E+01 .52681421E+01 -.26225012E+01 -.48201405E+01.21011564E+01 -.14186734E+01 -.16998924E+00**RESPONSE NODE 109** 1 DIRECTION •99372428E+00 -.26372378E+01 -.17557607E+01 -.12423869E+00 -.86123459E-01 -.98439780E+00 -.38250634E+01 .19295327E+01 -.10978691E+01 .49953624E+00 .50664644E+00 .24562881E+01

TABLE XIII.- INPUT DATA FILE 7 FOR CASE 2

TABLE XIV .- CONTROL PARAMETER DESCRIPTION FOR CASE 2

OH58 TAILBOOM VIBRATION RESPONSE

NZ 6 #RIGID BODY MODES# 12 #MODES TOTAL# NM MNORM 1 *ORTHONORMAL MODES* 0 *STRUCTURAL DAMPING* -NDAMP 0 *DAMPING VARIES* 1 *FORCE VECTOR SETS* 1 *FORCE COORDINATES* 75.0 *STARTING FREQUENCY (HZ) * 300.0 *STOPPING FREQUENCY (HZ) * NZETA NFS NF -USTRT USTOP . DELU 1.000 *FREQUENCY STEP* BLANK COMMON STORAGE ZZZ REQUIRES 1443 LOCATIONS NOW COMPUTING FORCED RESPONSE

CONTROL PARAMETERS SET

Figure 1.- Flow chart of VIBRA program.

Figure 2.- Constrained system for case 1.

APPLIED FORCE VECTOR: FORCE AT NODE 1 RESPONSE LOCATION: RESPONSE AT NODE 1

Figure 3.- Acceleration response components at node 1 for case 1A.

Figure 4.- Acceleration response components at node 5 for case 1A.

Figure 5.- Helicopter tail boom finite-element model for case 2.

Figure 6.- Acceleration response components at node 109 for case 2.

Figure 7.- Real acceleration response at node 109.

Figure 8.- Expanded plot of real acceleration component from figure 7.

Figure 9.- Imaginary acceleration response at node 109.

Figure 10.- Amplitude response at node 109.

63

1.	Report No. NASA TM-85789 AVSCOM TM	84 - B-1	2. Governme	nt Accession	No. 3. Re	cipient's Catalog No.		
4.	Title and Subtitle VIBRA - AN INTERACTIVE	5. Re DY-STATE Ju	port Date 1y 1984					
	VIBRATION RESPONSE ANAL	CTURES 6. Per 5(forming Organization Code 15-42-23-09					
7. Author(s)						forming Organization Report No.		
Lynn M. Bowman								
9. Performing Organization Name and Address						rk Unit No.		
	Structures Laboratory USAAVSCOM Research and ' NASA Langley Research Co	Fechnolog enter	y Laborat	ories	11. Co	ntract or Grant No.		
L	Hampton, VA 23665				13. Ту	pe of Report and Period Covered		
12.	Sponsoring Agency Name and Address National Aeronautics and	l Space A	dministra	tion	Te	chnical Memorandum		
	Washington, DC 20546	-			14. Ar	ny Project No.		
	and U.S. Army Aviation Syste St. Louis. MO 63120	ems Comma	nd		11	1611102.H45		
15.	15. Supplementary Notes Lynn M. Bowman: Structures Laboratory, USAAVSCOM Research and Technology Laboratories.							
	Corrected Copy							
16.	Abstract							
An interactive steady-state frequency response computer program with graphics documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate responses. This method is applicabl to linear, proportionally damped structures in which the damping may be viscou or structural. A general description of the theoretical approach and program nization is presented. Example problems, user instructions, and a sample inte active session are given to demonstrate the program's capability in solving a variety of problems.						m with graphics is tructure using a hod is applicable ng may be viscous ach and program orga- nd a sample inter- ty in solving a		
17.	Key Words (Suggested by Author(s))			18 Distrikus	ion Statement			
Vibration					Unclassified - Unlimited			
	Frequency response				011			
Structural dynamics								
Modal analysis								
Ľ					Sul	oject Category 39		
19.	19. Security Classif. (of this report) 20. Security Classif. (of this page)			page)	21. No. of Pages	22. Price		
	Unclassified Unclassified			66	A04			
L						110-1		

·

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return