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CALCULATION OF UNSTEADY AERODYNAMICS FOR
FOUR AGARD STANDARD AEROELASTIC CONFIGURATIONS

Samuel R. Bland and David A. Seidel
NASA Langley Research Center
Hampton, VA 23665
INTRODUCTION

Methods for calculating transonic flow over oscillating airfoils have
come into routine use in the recent past. These methods typically employ
finite-difference methods to solve the nonlinear, mixed flow equations and
require extensive computer resources. In order to conserve the resources
needed to evaluate and compére competing methods,vthe AGARD Structures and
Materials Panel established a Working Group on “Standard Configurations for
Aeroelastic Applications of Transonic Unsteady Aerodynamics" at its Fall 1977
meeting. The Working Group published test cases for seven two-dimensionai
dirfoils (ref. 1) in 1979 and for five three-dimensional wings (ref. 2) in
1982. This paper presents calculations for four of these airfoils and for one
of the wings. A limited discussion of these results is included.

The analytic results reported herein employ the time-marching solution of
the finite-difference equations for transonic small disturbance potential
flow. The two-dimensional code used is called XTRAN2L (ref. 3) and the
three-dimensional code is XTRAN3S (ref. 4). The alternating-direction-
implicit solution algorithms used in these codes are derivatives of the
aldgorithm introduced in the LTRAN2 code (ref. 5). A1l of the AGARD cases for
the NACA 64A006, NACA 64A010, and NLR 7301 airfoils are included. Comparisons
with experimental data from reference 6 are made for all cases for which data
were available. In addition, calculations for six of the MBB-A3 airfoil cases.
and for three of the three-dimensional rectangular wing cases are reported.

A1l calculations were made with the inviscid versions of the codes.
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SYMBOLS
abbreviation for case, as in C3

pressure coefficient
critical pressure coefficient

normalized unsteady pressure coefficient; first harmonic of
Cp divided by oscillation amplitude

normalized unsteady lifting pressure coefficient

airfoil chord, m

steady 1ift coefficient

first harmonic 1ift coefficient due to pitch, per radian
first harmonic 1ift coefficient due to plunge

first harmonic 1ift coefficient due to flap rotation, per
radian

first harmonic pitching moment coefficient due to pitch, per
radian ’

first harmonic pitching moment coefficient due to plunge

first harmonic pitching moment coefficient due to flap
rotation, per radian

first harmonic hinge moment coefficient due to pitch, per
radian

first harmonic hinge moment coefficient due to flap
rotation, per radian

oscillation frequency, Hz

plunge displacement in z-direction, m
plunge amplitude, m

reduced frequency, wc/2V

free stream Mach number

Reynolds number, Vc/v

time, s



) free stream velocity, m/s

X streamwise coordinate relative to leading edge, m
Xq pitch axis location relative to leading edge, m
X§ _ flap axis location relative to leading edge, m

y coordinate normal to x and z, positive to right, m
z coordinate normal to free stream, positive up, m
a angle of attack, deg

oy mean o, deg

g dynamic pitch angle, deg

§ flap angle, deg

Sm mean §, deg

8o dynamic flap angle, deg

n fraction of semi-span

v kinematic viscosity, m/s

w angular frequency, 2nf, rad/s

A1l angles are positive for trailing edge down. Moments are positive nose up.
Pitching moments are taken about the quarter chord in all cases except for the
NLR 7301 airfoil, for which they are about the pitch axis which is located at
40 percent chord. Hinge moments are taken about the hinge axis which is
located at three-quarters chord in all cases.

ANALYTICAL METHODS

The analytical methods used herein involve solution of the transonic
small disturbance (TSD) potential equation. The equation is solved on a
rectangular spatial grid by marching the solution in time. The complete small
disturbance equation, including all time derivative terms, is employed.

The two-dimensional solutions reported employ the XTRANZL code a§
described in reference 3. This code is a modification of the LTRANZ2-NLR code
(ref. 7). The XTRAN2L code uses the alternating-direction-implicit (ADI)
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method of Rizzetta and Chin (ref. 8) to advance the solution in time.
Engquist-Osher monotone spatial differencing (ref. 9) is used to provide a
robust solution that avoids expansion shocks. The nonreflecting boundary
conditions of Kwak (ref. 10) have been extended to the full frequency equation
by Whitlow (ref. 3) and are used in the code. The code may be used to obtain
solutions for transient or harmonic motions. For the cases shown herein, the
harmonic option was used with the solution being marched in time for several
cycles of harmonic motion until the unwanted transients had décayed.
Typically, between 1000 and 2000 time steps were employed. An 80 x 61 grid in
the x;z space was used. The grid used was carefully chosen as described in
reference 11.

The calculations for the rectangular wing were made with the XTRAN3S code
of reference 4. This code employs a time-accurate ADI algorithm to solve the
three-dimensional TSD equation. Nonlinear cross derivative terms are retained
to capture swept shocks. Five cycles of oscillation with a total of 2500 time
steps were used for each of the two cases reported. A 60 x 20 x 40 grid in
x-y-z was used (see ref. 11).

.For all calculations the NLR scaling as described in reference 12 was
used. Although both codes employed in the present study have some capability
for inc]uding quasi-steady boundary layer effects, this capability was not

used, and only inviscid results are given.

RESULTS AND DISCUSSION
Results are given for 42 of the 81 two-dimensional AGARD standard cases
described in reference 1. Note that the NACA 64A010 airfoil has the

coordinates of the section as tested at NASA Ames Research Center (given in



ref. 1) and haé a small amount of camber and is thicker than the symmetric
design section. In addition, six of the cases for the MBB-A3.airfoil are
reported. Tables 1-4 gfve the analytical test conditions for each of these:
cases with thé priority cases indicated by an aéterisk. The reduced frequency
k is based on semichord. Finally, two results are shown for the rectangular
wing of reference 2. These two results actually cover three of the standard
cases, since cases 3 and 4 (table 5) differ only in Reynolds number, which
could not be varied in the present inviscid analysis. The AGARD conditions
for this wing specify oscillation about two pitch axes; only pitching about
the quarter-chord axis is analyzed herein.
The modes of motion are described as follows. For pitch about a mean
angle of attack op, the total angle of attack is expressed as
a(t) = oy + ag sin wt
where w = 2kV/c. For plunge,
h(t) = hg sin wt
For control rotation, '
§(t) = 8y + 8y sin wt
For each of the configurations analyzed, the steady flow pressure

distribution is plotted. In addition, for each two-dimensional unsteady case,
four figures are grouped together on one page. These figures show: (a) the
mean pressure distribution over the airfoil chord during the last cycle of
harmonic motion, (b) the lifting pressure (lower minus upper), (c) the upper
surface pressure, and (d) lower surface pressure. The unsteady pressures
(b-d) are given as the real (in-phase) and imaginary (in-quadrature) parts of
the first harmonic component of the pressure computed from the last cycle of

the imposed simple harmonic motion using a fast Fourier transform analysis.



These first harmonic components are normalized by the nondimensional amplitude
of motion, i.e., angle of attack and flap rotation in radiéns or plunge
displacement in chords, as appropriate. Although the harmonic pressures
plotted on each page are shown to the same scale, there is some variation in
the scales between figures. 1In addition to the plotted pressure
distributions, the first harmonic force coefficients for the two-dimensional
cases are given in tables 6-9.

The AGARD rectangular wing has a full-span aspect ratio of four. The
analysis treats only the half span and imposes symmetry. The airfoil
section is a symmetric version of the NACA 64A010 two-dimensional AGARD
section and is defined in reference 2.

For the rectangular wing the steady, mean, and first harmonic pressure
distributions are shown for each of the computational chords used in the
analysis. Since this is a symmetric case, only upper surface pressures are

shown. The first harmonic force coefficients are given in table 10.

NACA 64A006 Airfoil

The analytic test cases for the NACA 64A006 airfoil all involve
oscillation of a flap with hinge axis located at three-quarter-chord about
zero mean angle and were chosen to match the experimental conditions of
reference 13. The variations include five Mach numbers, two frequencies, and
two oscillation amplitudes (table 1). The steady flow pressure distributions
for each Mach number are shown in figure 1. The unsteady results are shown in
figures 2-13. 1In general, the agreement between experiment and theory
improves with decreasing Mach number and increasing frequency. The calculated

1ift, moment, and hinge moment coefficients are given in table 6. There are



no experimental data for the two-degree flap oscillation amplitude; the
"experimental" data shown for these cases is actually the data for one-degree
amplitude.

The steady flow comparisons (fig. 1) are excellent at subcritical Mach
numbers, but deteriorate as the shock wave‘develops. This discrepancy is at
least partially attributable to wind tunnel interference (ref. 6, p. 1-1).

The mean pressure distributions for one cycle of flap oscillation are given in
part (a) of figures 2-13. In general the mean pressures are very similar to
the steady pressures. The effect of variations in frequency and amplitude of
oscillation may be illustrated by comparing figures 9(a), 10(a), and 11(a),
all at M = 0.875. These are the priority cases (C8-10) for this airfoil.
Figures 9(a) and 10(a) show the effect of increasing the flap oscillation
amplitude from oné to two degrees at the lower frequency (k = 0.059). As
expected the shock oscillates over a larger distance at the larger amplitude.
(The experimental data are both for ay = 10). The effect of frequency is
111ustrated by comparing figure 9(a) (k = 0.059) to figure 11(a) (k = 0.235).
At the higher frequency the calculated shock motion is less, as indicated by
the steeper pressure rise; however, the experimental pressure rises for these
two cases are similar. |

Results for the first harmonics of the unsteady pressure distributions
are shown in parts (b)-(d) of figures 2-13. Figures 2 and 3 illustrate the
better agreement between theory and experiment that occurs at higher
frequency. For this subcritical case (M = 0.8), a single pressure peak occurs
at the flap axis location (x/c = 0.75). At M = 0.825, a bulge develops in the

calculated pressure distribution (figs. 4-6) near the airfoil midchord due to



the development of a very weak shock wave during the unsteady motion. As
expected, this effect is more pronounced at lower frequency (see figs. 4 and
6) and atllarger oscillation amplitude (see figs. 4 and 5). As the Mach
number increases, the shock pulse moves aft and interacts with the pressure
pulse at the hinge location. The agreement with experiment deteriorates
because of the discrepancy in shock location mentioned earlier. A comparison
of figures 9 and 11 (M = 0.875) illustrates the effect. In the experiment,
the shock peak (near x/c = 0.55) and hinge peak (x/c = 0.75) are easily
diétinguished. In the calculation the two peaks have merged into one at the
lower frequency (fig. 9) but can be identified at the higher frequency (fig.
11). This result is not surprising since the shock excuréion is expected to
decrease as frequénqy increases.

The calculated reéu]ts at M = 0.96 (figures 12-13) are qualitatively
different from the experimental data. The potential flow code has placed the
shock wave at the trailing edge in contrast to the experimental value of about
x/c =VO.88 (see fig; 1(e)). The shock and hinge peaks can be distinguished in
the experimental results in figure 12. Both theory and experiment show very

small unsteady pressures ahead of the flap.

NACA 64A010 Airfoil v
The AGARD cases for the NACA 64A010 airfoil are listed in table 2. The
cases are for the model tested at the NASA Ames Research Center for which
experimental data are reported in reference 14. The test caseé are at
essentially two Mach numbers, M = 0.5 and 0.8, two Reynolds numbers, and

several frequencies and amplitudes of pitch oscillation about the




quarter-chord. This airfoil possesses a very small amount of camber and
surface waviness, as is evident in the steady pressure distributions shown in
figure 14. Figures 14(a)-(b) are for the low Mach number cases (Cl1-2) at two
Reyho]ds numbers and agreement is excellent. Figures 14(c)-(e) are for the
higher Mach number with part (d) giving a low Reynolds number result (for the
experiment). The agreement in shock location and strength for these cases is
quite good with the experiment for the lower Reynolds number case, figure
14(e), showing a slightly weaker and more forward located shock.

The unsteady results are shown in figures 15-24 and table 7. At M = 0.5
(figs. 15-16) the agreement is excellent with perhaps better agreement
obtained at the higher Reynolds number (fig. 16). The remaining results are
at M = 0.8. The priority cases 6 and 10 (figs. 20 and 24) were chosen to
illustrate Reynolds number effects. However, the slight differences in Mach
number, amplitude, and frequency may mask this comparison.

The oscillation amplitude effect fs illustrated by comparing figures 19,
22, 23 for approximately a5 = 1.0, 0.5, and 2.0 degrees, respectively, and
at k = 0.101. In each case, the agreement with experiment is good. The
amplitude effect is well illustrated by the theory. Away from the shock, the
plotted normalized pressures (i.e., divided by oscillation amplitude) are
essentially the same. (Note the different scale in figure 22). However, for
small amplitude, the shock pulse is narrower (less shock motion) and higher
(because of the amplitude normalization).

Cases 3-7 (figs. 17-21) illustrate the frequency effect, with k varying
from about 0.025 to 0.3. The systematic decrease in calculated shock pulse
width with increasing frequency is evident, with agreement of the theory and

experiment perhaps being somewhat better at the intermediate frequencies.



MBB-A3 Airfoil
Anaiytica] results only are presented for six of the cases for the MBB-A3
aiffoi] in figures 25-31. These six cases (see table 3) are all at M = 0.765
and op = 1.5 degrees. There are cases for airfoil pitch oscillation about

the quarter chord and for plunge oscillation, each at three frequencies,

7k = 0.1, 0.3, and 0.9. The unsteady 1ift and moment coefficients are

tabulated in table 8.

The steady pressure distribution is shown in figure 25. In choosing the
cases for this airfoil, the conditions were specifiedvto be the supercritical
design point (M = 0.765, ap = 1.59, ¢4 = 0.519) given in reference 1.

This choice was based on the experimental data shown for this design condition
(taken from fig.’8.2 of ref. 15) which show a typical supercritical flow
without a discernible shock wave. In the experiment the region of
supercrit{cal flow terminates at about x/c = 0.53. In contrast, the present
calculation for this point shows a strong shock located at about x/c = 0.66
with cg = 0.700. Transonic small disturbance theory typically predicts a
shock that is too strong and located too far aft on the airfoil and is
éensitive to the transonic scaling (ref. 12) used.

It may be noted that potential theory is now known to predict nonunique
results in certain cases with moderately strong shocks (ref. 16). For
conditions near the region of nonuniqueness, the potential theory can also be
seriously in error. Calculations for this airfoil with the TSD code used
herein were sensitive to time step and initial conditions.

The unsteady pressure distributions for the MBB-A3 airfoil are given in
figures 26-31. The effect of varying frequency from k = 0.1 to 0.9 may be

seen by comparing figures 26-28 for pitch and figures 29-31 for plunge. For
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pitch increasing frequency leads to a_decreasing magnitude of the shock
pulse. For plunge, the most obvious effect is the increasing overall pressure
level with frequency. ‘This increase is consistent with piston theory which

predicts forces proportional to frequency.

NLR 7301 Airfoil
The test cases for the thick supercritical NLR 7301 airfoil are listed in
table}4. Three mean flow conditions were analyzed: a subcritical condition
at M = 0.5 (cases 1-2 and 10); a supercritical case with shock at M = 0.7,

2.00 (cases 3-5 and 11); and the design point at M = 0.721,

1]

om

op = -0.190 (cases 6-9 and 12-14). Cases 1-9 are for pitch oscillation

about an.axis located at 40 percent chord and include variations in frequency
and amplitude of motion. Cases 10-14 are for oscillation of a flap located at
three-quartérfchord.with variation in frequency included at the design point.
The experimental‘data are taken from chapter 4 of reference 6. These data are
from tests at NLR (ref. 17) and were chosen for comparison instead of those
from the NASA Ames Research Center (chapter 5 of reference 6) because the
mpdel‘natched the design airfoil more closely, and data were available for

. both upper and lower surfaces. The calculated harmonic forces are given in
table 9. ‘

The experimental data for the pitéh cases and the flap cases were
obtained on two different models (ref. 6). The steady flow pressure
distributions for the three mean flow conditions are shown in figure 32. At
the subcritical condition (fig. 32(a)—(b)) the upper surface pressures are in
good agreement, but the pressures on the lower surface show a discrepancy in

level. It would not be surprising if small disturbance theory were inadequate

for this 16.5 percent thick, blunt-nosed airfoil. The comparison for the case
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with a strong shock (fig. 32(c)-(d)) is poor, with the calculation giving too
strohg a shbck, located too far aft. This discrepancy may be attributed, at

- least in pért, to a breakdown of potential theory (as discussed in the
préceding section of this report). In any case, it is certain that this
comparison could be "improved" by performing the calculation at a lower steady
angle of attack. The comparison of the steady pressure distributions at the
design point (fig. 32(e)-(f)) is also poor. There are two‘weak shocks at
about x/c = 0.25 and 0.60. 1In addition, there is a sharp pressure riée near
the leading edge. "One may anticipate that these features will lead to several
shock pressure pulses in the unsteady results described below.

The unsteady results for all of the AGARD cases for this airfoil are
shown in figures 33-46. Because of the differences between the calculated and
meésured steady flow fields, the unsteady comparison is poor. Several obser-
vations on the calculated results may be made, however.

The unsteady results at M = 0.5 are shown for pitch at two frequencies in
figures 33-34 and for flap oscillation at the lower frequency in figure 42.
The mean pressure comparison for the pitch cases (figs. 33(a) and 34(a)) is
very similar to that for the steady flow (fig. 32(a)). The calculated mean
preésure for the flap case (fig. 42(a)) is very similar to the calculated mean
pressure for the pitch cases (figs. 33(a) and 34(a)). In contrast, the
experimental.nean_pressure for the flap case is significantly different from
the corresponding pressure for the pitch cases. In each of these three cases,
however, the calculated first harmonic pressure distributions agree well with
the experimental data. |

Figures 38, 40, and 41 illustrate the effect of pitch frequency at the

design point. Several shock peaks occur. At the lowest frequency (fig. 38)
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three peaks are present at x/c = 0.20, 0.45, and 0.60, whereas at the highest
freduenqy (fig. 41) only two peaks are discernable at x/c = 0.25 and 0.65. As
usual, the peaks are narrowest at the highest frequency. The same comparison
for flap oscillation frequency is given in figures 44-46 with the additional
complication of the hinge peak at x/c = 0.75. The effect of oscillation mode
can be examined by comparing these six figures (figs. 38, 40-41, and 44-46) in
pairs. In each case, the calculated mean pressures (figure part (a)) appear
the same for both modes at the same frequency whereas the experimental values
can be significantly different for the two modes of oscillation (see figs. 38
and 44, for example). This difference in the experimental mean values is a
reflection of the difference in the steady flow pressures (fig. 32(e)-(f)) for

the two models.

Rectangular Wing

The conditions for which the AGARD rectangular wing was analyzed are
given in table S. The symmetric airfoil section (given in ref. 2) is constant
over the span and was defined to be an average of the upper and lower surface
coordinates for the 64A010 airfoil (given in ref. 1). The two distinct cases
are for wing pitch about the quarter chord at M = 0.8 with two frequencies of
oéci]lation, k = 0.20 and 0.45. The steady flow pressure diStributions'at the
span locations used in the analysis are shown in figure 47 for this flow at
apm = 0. There is a shock near midchord at the root which weakens outboard.
The pressures at the root may be compared with those for similar conditions on
the NACA 64A010 airfoil shown in figure 14(c).

The unsteady pressure distributions are shown in figures 48-49 fof the
two frequencies. Since this is a symmetric case, only the upper surface
values are given. The results for k = 0.2 may be compared with the

two-dimensional airfoil results for similar conditions. The mean pressure
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distribution (fig. 48(a)) at the root chord is quite similar to that for the
airfoil (fig. 20(a)). The real parts of the harmonic upper surface pressures
(figs. 20(c) and 48(b)) are also similar. The imaginary parts, however, are
somewhat different. For the airfoil, the real and imaginary parts have
simiiar shape, but differ in sign. For the wing, the imaginary part of the
pressure (fig. 48(c)) shows only a single, veny.broad peak and not the
double-peak "doublet" shape of the two-dimensional result (fig.- 20(c)). The
frequency effect for the rectangular wing is illustrated by comparing figures
48 and 49. In contrast with the two-dimensional airfoil results, the
calculated shock pulse appears wider at the higher frequency. The overall

1ift and moment coefficients for the wing are given in table 10.

CONCLUSIONS

Calculations using the XTRAN2L all-frequency, transonic small disturbance
potential flow code have been made for about half of the AGARD two-dimensional
standard configuratiohs. A1l of the cases for the NACA 64A006, NACA 64A010,
and NLRu7301 airfoils are included with comparison with experiment in most
cases. Six of the cases for the MBB-A3 airfoil are included. Calculations
using the XTRAN3S code were made for the AGARD rectangular wing at two
frequencies. The following general conclusions may be drawn from the

two-dimensional airfoil results:

1.  For the conventional NACA 64A006 and 64A010 airfoils, agreement
between calculated and experimental pressure distributions is reasonable
except at the highest Mach number (0.96) analyzed. Agreement between the
unsteady pressures is excellent at subcritical conditions and deteriorates

with increasing Mach number as the shock develops and moves aft.
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2. For the thick, blunt supercritical NLR 7301 airfoil the agreement is
poor for flows with shocks. For subcritical flow, however, even thbugh thé
agreement between calculated and measured steady pressure distributions is
poor, the.unsteady pressures agfee quite well.

3. For cases in which the steady flow agreement is good, the unsteady
flow results are also good, with better agreement at higher frequency.

‘4. The effect of increasing oscillation amplitude is to increase the
unsteady shock motionland to broaden the shock pulse in the harmonic pressure
distributions.

5. The effect of increasing oscillation frequency is to narrow the shock
pulse. |

Results for the rectangular wing show a‘somewhat broadgr shock pulse at
the higher frequency, is contrast with the two-dimensional airfoil

predictions.
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Table 1. - NACA 64A006 Airfoil, test cases
| Case M § - f k

0
1 0.800 1 30 0.064
2 0.800 1 120 0.254
3 0.85 1 30 0.062
4 0.85 2 30 0.062
5 0.85 1 120 0.248
6 0.80 1 30 0.060
7 0.80 1 120 0.242
8* 0.876 1 30 0.059
9% 0.875 2 30 0.059
10 0.875 1 120 0.235
11 0.960 1 30 0.054
12 0.960 -1 120 0.217
Note: L Gm = 0, XG/C = 0.75

Table 2. - NACA 64A010 Airfoil, test cases

Case M Rex107® ay £k
1 0.490 2.5 0.96 10.4 0.100
2 0.502 10.0 1.02 10.8 0.100
3 0.796 12.5 1.03 4.2 0.025
4 0.796 12.5 1.02 8.6 0.051
5 0.796 12.5 1.02 17.2 0.101
6% 0.796 12.5 1.01 34.4 0.202
7 0.796 12.5 0.99 51.5 0.303
8 0.796 12.5 0.51 17.1 0.101
9 0.797 12.5 2.00 17.2 0.101
10* 0.802 3.4 0.94 33.2 0.200
Note: o =0, x /c = 0.25

3
Q
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Table 3. - MBB-A3 Airfoil, test cases

Case M « % ho/c k
3* 0.765 1.5 0.5 0 0.1
4 0.765 1.5 0.5 0 0.3
5 0.765 1.5 0.5 0 0.9
11 0.765 1.5 0 0.01 0.1
12 0.765 1.5 0  0.01 0.3
13 0.765 1.5 0 0.01 0.9

Note: xa/c = 0.25

Table 4. - NLR 7301 Airfoil, test cases

Case M @ @, 60 f k
1 0.500 0.40 0.5 O 30 0.098
2 0.500 0.40 0.5 0 80 0.263
3 0.700 2.00 0.5 O 30 0.072
4 0.700 2.00 1.0 O 30 0.072
-5 0.700 2,00 0.5 O 80 0.192
6 0.721 -0.19 0.5 0 30 0.068
7 0.721 <0.19 1.0 O 30 0.068
8* 0.721 -0.19 0.5 O 80 0.181
9 0.721 -0.19 0.5 0 200 0.453
10 0.500 0.40 0 1 30 0.098
11 0.700 2,00 0 1 30 0.072
12 0.721 -0.19 0 1 30 0.068
13* 0.721 -0.19 0 1 80 0.181
14 0.721 -0.19 0 1 200 0.453

Note: xa/c = 0.4, x6/c =0.75, 6§ =20

Table 5. - Rectangular Wing, test cases

Case M ReXlO'6 a k

3* 0.8 3.4 1 0.20
4*x 0.8 12.5 1 0.20
6* 0.8 3.4 1 0.45

Note: &, = 0, xa/c =.0.25
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| Table 6. - NACA 64A006 Airfoil, harmonic forces

Case Real
1 4.793
2 2.546
3 4.986
4 5.006
5 2.336
6 5.148
7 1.672
8* 3.568

9% 3.493
10* 1.699
11  1.555

12 1.537

c

Ls

Imag

-2.053
-1.744
-2.459
-2.520
~-1.968
-3.434
-1.891
-5.687
-5.726
-1.372

0.025
-0.004

c

Real

-1.248
-1.368
-1.383
"1 0405

-1.526

~1.703
-1.460
-2.079
-2.062
-0.902
-0.963
-0.956

Ms

Imag

-0.052
0.024
-0.043
-0.036
0.172
0.103
0.685
1.655
1.835
0.644
"00 013
0.004

%h

Real

-0.082
-0.082
-0.083
-0.082
-0.087
-0.080
-0.100
-0.072
-0.111
-0.111
-0.190
-0.188

$

Imag

-0.003
-0.024
-0.005
~-0.005
-0.026
-0.013
-0.030
-0.071

0.010
-0.024
-00 002

0.001

Table 7. - NACA 64A010 Airfoil, harmonic forces

C

Case Real

i
*

5.767
5.802
12.552
9.836
7.342
-5.635
4,942
7.370
7.247
5.496

L
o

Imag

-0.561
-0.581
-4.202
-4.092
"‘3'0 446

-2.157

-1.341
-3.384
-3.713
-2.421

Real

-0.052
-0.054
-0; 903
-0.709
-0.600
-0.648
-0.793
-0.583
-0.674
-0.744

cm
a

Imag

-0.186
-0.189

0.169

0.039
-0.160
-0.472
-0.631
-0.195
-0.014
'0. 310
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o

C

Table 8. - MBB-A3 Airfoil, harmonic forces

% m,
Case Real Imag Real Imag
3* 6.460 -5.352 -0.835 0.909
4 4,362 -0.954 -0.346 -~0.233
5 4.791 2.136 -0.847 -1.686

c c

*h M
Case Real Imag Real Imag
11 -1.173 -1.147 0.228 0.144
12 ‘10135 '20203 00092 00108
13 0.131 -6.690 -1.011 1.156

Table 9. - NLR 7301 Airfoil, harmonic forces

Case

OO~ WN

Real

5.860
4.771
8.280
8.067

- 4.697

8.535
8.604
6.104
4.808

Real

3.537
4.022
4.989
3.139
1.830

a
Imag

-0.792

0.045
-8.584
-8.867
-3.547
-2.839
-3.048
-1.948
-0.555

Imag

-0.787
-4.348
-2.164
-2.038
-1.056

Real

-0.842
0.684
*0.320
~0.343
0.152
1.364
1.272
0.758
-0.112

Real

-00238
-0.873
-0.412
-0.867
-0.747

cm
a

Imag

-00311
-0.504
0.751
0.935
0.232
-0. 860
-0.842
-1.122
-1.078

Imag

-0.190
0.399
-0.478
-0.382
0.068

Real

-0.030
-0.024
. 0.028

0.025
-0.025
-0.022
-0.020
-0.021
-0.021

Real

'0‘061
-0.046
‘00057
-0.059
-0.072

h

a
Imag

-0.009
'0.032
-0.121
-0.124
-0.087
-0.011
-0.013
'0.030
-0.079

Imag

-0.005
-0.059
-0.009

-0.022
-0.043
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" Table 10. - Rectangular Wing, harmonic forces

cz ' Cm
[+ 3 a

Case Real | Imag Real Imag

3/4* 4.578 0.119 -0.105 -0.648
6* 4.224 0.266 -0.709 -0.967
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Figure 18.- Unsteady pressure distribution for NACA 64A010 Airfoil.
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Figure 22 .- Unsteady pressure distribution for NACA 64A010 Airfoil.
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Figure 25.- Steady pressure distribution for MBB~A3 Airfoil.
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Figure 33.- Unsteady pressure distribution for NLR 7301 Airfoil.

Case 1, M = 0.500, «a,

= 0.5, k = 0.098.
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Figure 3k.- Unsteady pressure distribution for NLR 7301 Airfoil.
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Figure 35.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 3, M = 0.700, a, = 2.0, ap = 0.5, k = 0.072.
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Figure 36,- Unsteady pressure distribution for NLR 7301 Airfoil.

Case 4, M = 0.700, a,, = 2.0, a; = 1.0, k = 0.072.
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Figure 38.- Unsteady press'ure distribution for NLR 7301 Airfoil.
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Figure 39 .- Unsteady pressure distribution for NLR 7301 Airfoil.
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Figure L40.~ Unsteady pressure distribution for NLR 7301 Airfoil.

"Case 8, M = 0.721, a,,
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Figure 41.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 9, M = 0.721, a,, = -0.19, a5 = 0.5, k = 0.453.

66



Calculated upper

—— —— — —Calculated lower
(o] Experimental upper
a Experimental lower

2.0 F

1.5

x/c .
(a) Mean.

Calculated real

— — — —Calculated imag
0 Experimentol real
O Experimental imag
3o
20

ol

-10

J
[ ¥
(=
b

(c) Upper surface.

Calcuioted real

— - — — Calculated imag
o) Experimental real
w] Experimental imag

_20 .
-30 | | ] ] |
0 .2 .4 .8 .8 1.0
x/c
(b) Lifting.
Calculated real
—— — —— —Calculated imag
e} Experimental real
(=] Experimental imog

sor

200~

10

<7

) S O-Sr-0-6-0-0€ X0 -

0 TAVATSATE AR i Sh A
- CET SRR - s .-

-10F

'
o
=)

Y
b

(d) Lower surface.

Figure L42- Unsteady pressure distribution for NLR 7301 Airfoll.

Case 10, M = 0.500, a,

0.4,

6o = 1.0, k = 0.098.



2.0

Calculated upper

~=— — — —Calculated lower
o Experimental upper
o Experimental lower

(a) Mean.

Calculated redl

—— —— — —Calculated imag
o] Experimental real
=] Experimental imag

x/c .

(¢) Upper surface.

Case 11, M =

68

2.0, 8, =

Calculated real
— — — — Calculated imag

o] Experimental real
a Experimental imag

(b) Lifting.

Calculated reaol

—— — — —Calculated imag
0 Experimental real
o Experimental imag
o[
20—
o
¢
P 8.0, N
o iy ..n’-.--ljuu’-r
-10p—
-201
-30 q | { 1 B
0 2 .4 .8 8 1.0
x/c

(d) Lower surface.

Figure L3.— Unsteady pressure distribution for NLR 7301 Airfoil.
0.700, a,

1.0, k = 0.072.



Calculated upper

—— ~— — —Calculated lower
o Experimental upper
a Experimental lower

x/c .
(a) Mean.

Calculated real

-— — — —Calculated imag
o Experimental real
a Experimental imag

15

-18 | 1 ] i J
. 4

.8 .8 1.0

(c) Upper surface.

15

10

Calculated real

~— — — —Calculated imag
0 Experimental real
o Experimental imag

(b) Lifting.

Calculated real
~— = — —-Calculated imag

(d) Lower surface.

Figure L4 .- Unsteady pressure distribution for NLR 7301 Airfoil.

Case 12, M = 0.721, a,

-0.19, 8, = 1.0, k = 0.068.

0 Experimental real
o Experimental imag
— (o}
O
n.00000
@ma—:ru—a'u O
i ] 1 ] ]
0 .2 .4 .8 8 1.0
x/c



, Calculated upper
— ~— — —Calculated lower

2.0

1.5~

-1.0 1 ] | L !
0 2 4 .8 8 1.0
x/c
(a) Mean.

Colculoted real
e —— — Colculated imag
18]
10—
A
Sp— /
A\ U
: S
-5
-10F
-15 1 | ' ' |
0 2 .4 .8 .8 1.0
x/c

(c) Upper surface.

Calculoted real
——— e e —— Calculated imag

—

15
10+
-
5——
AC,
0
-5}
~10h-
-15 L 1 | ' I
0 .2 4 -6 8 1.0
x/c
(b) Lifting.
Calculated rea!
- —= —= — Calculated imag
15[
10—
T
Cs
0 et
-8y
10}~ |
-15 I 1 L | | ’
0 2 4 .8 8 1.0
x/c

(d) Lower. surface.

Figure 45.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 13, M = 0.721, a, = -0.19, 6, = 1.0, k = 0.181,
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Figure 47.- Rectangular Wing, steady flow, M = 0.8,
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(c) Imaginary upper pressure.

Figure 49.- Concluded.
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