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The Stirling engine is an external com-
ABSTRACT bustion engine that offers the advantages of

The Stirling Engine is under investiga- high fuel economy, low emissions, low noise,
tion jointly by the Department of Energy and and low vibrations compared to current in-

ternal combustion automotive engines. ANASA Lewis as an alternative to the internal
combustion engine for automotive applica- schematic representation of a prototype auto-
tions. The Stirling Engine is an external motive Stirling engine is shown in Fig. i.
combustion engine that offers the advantage The most critical component from a materials
of high fuel economy, low emissions, low viewpoint is the heater head consisting of
noise, and low vibrations compared to current the cylinders, heater tubes, and regenerator
internal combustion automotive engines. The housing. The gase_s hydrogen working fluid
most critical component from a materials is passed through a series of small thin-
viewpoint is the heater head consisting of wall tubes (4.5 mmo.d. x 3 mm i.d.) which
the cylinders, heating tubes, and regenerator are required for efficient heat transfer from
housing. Materials requirements for the the combustion gases to the working fluid.
heater head include compatibility with hydro- The hot hydrogen expands in the cylinder to
gen, resistance to hydrogen permeation, high drive a piston which actmtes the drive
temperature oxidation/corrosion resistance system. At the opposite end of the tubes is
and high temperature creep-rupture and a regenerator, which absorbs heat from the
fatigue properties. A continuing supporting hydrogen working fluid, followed by a cooler
materi_ s research and technology program has which permits contraction of the hydrogen.
identified the wrought alloys CG-27 and This process of heating and cooling the
12RN72 and the cast alloys XF-818 and NASAUT working fluid and extracting work forms the
4G-AI as candidate replacements for the Stirling cycle. A goal of the Automotive

Stirling Engine Program is to achieve a 30%cobalt containing alloys used in current pro-
totype engines. Based on the materials increase in fuel economy over internal com-

bustion engines of similar size and vintage.research program in support of the automotive
To meet this goal, a working fluid of hydro-Stirling engine it is concluded that manu-

facture of the engine is feasible from low gen at a max. pressure of 15 MPa and a tem-
cost iron-base alloys rather than the cobalt perature of 820° C is required. Materials
alloys used in prototype engines. This paper requirements for the heater head include
will present results of research that led to compatibility with hydrogen, resistance to
this conclusion, hydrogen permeation, high temperature
THE STIRLING ENGINE is under investigation oxidation/corrosion resistance resulting from
jointly by the Department of Energy (DOE) and combustion products of the fuel (diesel fuel,
the National Aeronautics and Space Adminis- gasoline, coal derivatives, alcohol, etc.),
tration (NASA) as an alternative to the in- high temperature creep-rupture and fatigue
ternal combustion engine for automotive properties that will permit operation for at
applications. The work described in this least 3500 hrs under conditions of cyclic
paper was conducted as a part of the sup- hydrogen pressure (vehicle speed is con-
porting research and technology activities trolled by working fluid pressure), and
under the DOE/NASAStirling Engine Highway cyclic temperature changes resulting from
Vehicle Systems program as outlined by intermittent engine starting and stopping.
Brogan (ref. I). Current prototype engines use a cast cobalt

base alloy HS-31 for the cylinders and
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regenerator housings and N-155, a wrought effect of long time aging on 760° C stress
iron-base alloy with 20% cobalt, for the versus rupture-life for N-155, CG-27, and
heater tubes. Because of limited avail- 12RN72. Generally a 10 to 15_ loss in
ability of cobalt and its high cost, cobalt rupture-stress was noted after aging in
free iron-base alloys are required for the either the H2 or Ar, and is not considered
heater |lead. to be a large enough loss to affect the 3500

This paper presents experimental results hr design criteria. It is concluded that the
of research efforts aimed at meeting the aging cycle itself has a deleterious effect
materi_ s requirements of the automotive on rupture strength since similar losses were
Stirling engine. Special emphasis is placed noted with each environment.
on the heater head cylinder and regenerator The design criteria requires the allow-
housing material HS-31, the heater tube mate- able stress level for 3500 hrs rupture life
rial, N-155, and potential low-cost sub- at specific temperatures. There are many
stitutes, different methods (ref. 6) of analysis of

A continuing supporting materials re- creep-rupture parameters which consider both
search and technology program at NASA Lewis, stress and temperature. A temperature-
Mechanical Technology, Inc., United Techno- compensated analysis based on the Orowan-
logies Research Center, and United Stirling Sherby-Dorn method was selected for this
AB has identified the wrought alloys CG-27 study to determine the desired stress
and 12RN72 and the cast alloys XF-818 and values. The relationship has the form:
NASAUT4G-AI as candidate replacements for
the cobalt containing alloys N-155 and HS-31, In t r = In k + n In o + Q/RT (2)
respectively. Nominal composition of these
candidate Stirling engine heater-head mate- where Q is the apparent activation energy for
rials is given in Table I. The selection of creep, R the universal gas constant, (8.314
these alloys was aided by concurrent investi- J/K mol) and T is test temperature, K.
gations of the creep-rupture behavior, cyclic Using multiple linear regression analy-
fatigue failure, cyclic oxidation/corrosion sis, apparent activation energies for creep
resistance and hydrogen permeability. All of were determined along with the various mate-
these properties are necessary since loss of rial constants. The 3500 hr rupture-life
hydrogen results in loss of the engine power stress of the candidate tube alloys was cal-
system, culated over the temperature range 700° to

Table II lists the manufacturers recom- 900° C and is depicted in Fig. 6. The pre-
mended heat treatment and when possible the sent design criteria for the heater-head tube
ASM recommended heat treatment. Figures 2 materials in the unaged condition consist of
and 3 depicts the resultant microstructure of a rupture life of 3500 hrs at 870° C and at a
these materials in their heat treated con- stress of 28 MPa. At the current design max-
dition, imum heater tube temperature of 870 ° C,

Creep-rupture tests in air and high pres- Fig. 6 shows that the unaged CG-27 alloy has
sure (15 MPa) hydrogen on the unaged N-155, a 3500 hr rupture stress of 45 MPa when
C_ 27, and the 12RN72 alloys show (figs. 4(a) tested in air. It is also shown that when
and (b)) that at 760° and 815° C, and CG-27 tested in 15 MPa H2 the rupture strength is
alloy has superior stress-rupture properties increased to 63 MPa. This implies that CG-27
than either the N-155 or 12RN72 alloys has a growth potential to approximately
(refs. 2 to 5). Base line data derived from 920° C with the present design concept.
the creep-rupture tests on the unaged alloys While the 12RN72 alloy does not meet the pre-
tested in air and 15 MPa hydrogen was deter- sent high temperature stress-rupture cri-
mined to be reliable by subjecting it to a teria, it will be shown that it has qualities
simple power relationship correlational highly desirable for possible lower tempera-
analyses of the form: ture designs.

Creep-rupture generally has never been
In t r = In k + n In o (I) observed as a major failure mode for proto-

type Stirling engine components manufactured
where t r is rupture life in hours, In k is from heavy wall castings. Fatigue has been
a constant, n is the exponential stress con- identified as the major failure mode in the
stant, and o is the applied stress. At cylinder head manifold of engines, (ref. 7).
760° C, the stresses for a 3500 hr rupture In 3500 hrs of engine operation, the engine
life in hydrogen are 170, i00, and 60 MPa, experiences approximately 5xi0 ° cycles of
for CG-27, N-155, and 12RN72, respectively, high-cycle pressure variations about the mean
At 815° C, the corresponding stresses for a pressure. Growth of fatigue cracks and sub-
3500 hr rupture life in hydrogen are 105, 70, sequent hydrogen leakage has lead to cylinder
and 40 MPa, respectively. Long term aging, housing failures. The fatigue design crite-
3500 hrs at 760° C, in either low pressure ria for the cylinder and regenerator housing
(30 to 60 kPa) flowing argon or hydrogen did requires a safety factor of two in the stress
not drastically reduce the creep-rupture range produced by the number of pressure
strength of these alloys. Figure 5 shows the



cycles in 3500 hrs. The present design cri- at 775° C. Since the results of the NASAUT
teria for the heater-head cast cylinder heads 4G-A1 are considered preliminary its pro-
and regenerator housings consists of a rup- jected high stress value of 155 MPa will be
ture life of 3500 hrs at 775° C and a stress verified both in air and hydrogen along with
of 120 MPa. When a safety factor of two is its high temperature growth potential.
applied, the design criteria fatigue stress The oxidation/corrosion resistance of
amplitude is set at a maximum of 240 MPa at candidate Stirling engine heater head tube
775 C. Figure 7(a)oShOWS the results of alloys was determined under conditions that
fatigue tests at 800 C for HS-31, XF-818, are to be encountered in automotive appli-
and the new developmental alloy NASAUT4G-A1. cations of the Stirling engine, (ref. 11).
Presently, at 800 ° C, neither the HS-31 nor Duplicate sheet specimens were evaluated
the XF-818 alloy meet the fatigue design under cyclic conditions at 820 ° C for 3500
criteria in either air or 15 MPa hydrogen, hrs in a Stirling engine materials simulator
The XF-818, HS-31, and NASAUT4G-A1 high rig. The specimens were heated for five hour
cycle fatigue tests were conducted on smooth cycles in the combustion flame of the diesel-
specimens at 800° C, however, the NASAUT fuel fired rig. The three heater head tube
4G-A1 alloy was tested at an R ratio, omin/ alloys N-155, CG-27, and 12RN72 exhibited
omax., of 0.1 at 20 Hz while the XF-818 and differing oxidation behavior, as can be seen
HS-31 were tested at an R ratio of -1.0 by the specific weight change data in Fig.
(fully reversed) (refs. 8 to i0). These i0. Alloy CG-27 did not exhibit any signi-
fatigue tests show that the approximate ficant spallin_ during the 3500 hrs of
fatigue-limit (>107 cycles) stress ampli- testing at 820- C, oxidizing by parabolic
tudes are XF-818:110 MPa, HS-31:186 MPa, and weight gain throughout the entire test. In
NASAUT4G-A1:250 MPa. Figure 7(b) shows the contrast, N-155 and 12 RN72 both spalled
results of strain controlled fatigue test at after 1500 hrs into the test with alloy
800° C on the HS-31, XF-818, and NASAUT4G-A1 12RN72 having a net weight loss at the end
alloys. The NASAUT4G-A1 alloy is able to of the test. This behavior is characteristic
endure about 2.5 times the creep-fatigue of high temperature cyclic oxidation.
strain of XF-818 and about 1.5 times that of Oxidation/corrosion data were fitted by
HS-31. Whether or not the NASAUT4G-A1 alloy least squares as described by Barrett
will meet the fatigue strength criterion will (ref. 12) to the parlinear Eq. (3).
have to wait for further evaluation at appro-
priate test conditions. W 1/2 1/2

Although it has been identified that the _: kI t - k2t • SEE (3)

creep-rupture life of the cast component is where W/A is specific weight change, t is
not their limiting design criteria, an as-
sessment of their rupture life is necessary, time, k I is an oxide growth constant com-
A creep-rupture test program similar to that parable to parabolic oxidation scaling con-
for the tube materials was conducted on the stant, k 2 is an oxide spalling constant,
cast alloys. Creep-rupture tests in air and and SEE is the standard error of estimate.
hydrogen on the unaged, aged, and following a An oxidation attack parameter Ka (ref. 12)
simulated vacuum braze cycle of one hour at was derived from Eq. (3) and is defined in
1150° C were conducted on HS-31 and XF-818. Eq. (4):
The NASAUT4G-A1 was not available for
extensive creep-rupture testing. Figure 8 Ka = (kl I!2 + lOk2 ) (4)
shows the results of creep-rupture tests at
760° C for HS-31 and XF-818 in the unaged and In certain cases, as for CG-27 where scale
braze cycled condition both for air and 15 spalling is insignificant, the k2 term will
MPa hydrogen (refs. 3 to 5) Creep-rupture drop out of Eq. (4) giving the pure parabolic• oxidation/corrosion case. Oxidation/
testing in 15 MPa hydrogen had no apparent
effect on the rupture-life of HS-31 and corrosion attack parameters, Ka are shownin Fig. ii for the three alloys, where lower
XF-818 regardless of heat treatment. Again values of Ka are indicative of better
we see, as with tube alloys, that the test oxidation resistance• The resulting oxide
environment has very little effect on the attack parameter, Ka = 0.026 for CG-27,
rupture-lives and that the heat treatment or quantitatively characterizes the oxidation
aging cycle perdominates. In the case of behavior of this alloy and based on prior
HS-31 and XF-818, the simulated braze cycle cyclic oxidation experience, CG-27 is con-resulted in approximately a lO%decrease in
strength. Using the temperature-compensated sidered to have excellent oxidation resist-ance. The Ka value of 0.II for 12RN72
Orowan-Sherby-Dorn relationship, and the suggests that this alloy has good oxidation
results of a linear-multiple regression on resistance under the conditions anticipated
available NASAUT4G-A1 rupture data, a 3500 for the automotive Stirling engine•
hr rupture life design curve was constructed Photomicrographs of the alloy specimens
as shown in Fig. 9. All three cast alloys after testing are shown in Fig. 12. Alloy
meet the static stress-rupture engine design N-155 exhibits an adherent oxide scale on the
criteria of 120 MPa for 3500 hr rupture life specimen surface with a slight depletion zone



beneath the oxide scale. Alloy CG-27 also since it contains the least amount of the
exhibited an adherent oxide scale on the sur- strategic metal chromium (13) of the alloys
face. Further examination of the alloy by investigated, and is free of the strategic
electron microprobe techniques revealed that metal cobalt. This is compared to the 20
internal oxidation of aluminum occurred, and chromium and 20 cobalt contents in the N-155
that a thin aluminum rich oxide layer existed alloy used in current prototype engines. The
next to the metal substrate, suggesting that CG-27 alloy has been selected as the tube
aluminum plays a major role in the excellent material for current design automotive Stir-
oxidation behavior of this alloy. A rela- ling engines. Also, the cast alloy XF-818
tively large depletion zone characterized is currently being used in these engines.
alloy 12RN72. Electron microprobe results Its castability, weldability, and creep
showed the oxide scale to be rich in chromium strength make it attractive for this use.
and iron, pulse grain boundary penetration of However, fatigue resistance is in question,
oxygen to form chromium and titanium oxides, and continued research on the experimental
Based on the analysis of the oxidation weight NASAUT4G-A1 alloy is in progress. It is
change data, X-ray, metallographic, and recommended that these advanced iron-base
electron microprobe analyses of tested speci- alloys be used in future applications of the
mens, CG-27 is considered the leading candi- Stirling engine where high temperature, high
date heater head tube alloy, pressures, and cyclic conditions are planned

Containment of the hydrogen working fluid such as in stationary solar applications for
during operation of the Stirling engine at domestic power systems.
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TABLE I. - NOMINAL COMPOSITIONOF CANDIDATE STIRLING ENGINE HEATER-HEADALLOYS

Alloy Fe Cr Ni Co Mn Si Mo ICb/Ta W A1 Ti C Other
i

N-155 30 21 20 20 1.5 0.5 3.0 i 2.5 0.15 O.15N
CG-27 38 13 _38 .... .I .i 5.5 .6 --- 1.5 2.5 .05 .OIB
12RN72 52 19 25 i--- 1.8 .4 1.4 .5 .I .OI5N

HS-31 1.5 25 10 54.5 0.5 0.5 7.5 0.5
XF-818 55 18 18 .1 0.3 7.5 0.4 .2 O.6B
NASAUT4G-A1 64.5 15 ........ 15 1.0 2 1.0 1,5

TABLEII. - HEATTREATMENTOF CANDIDATESTIRLING

ENGINEHEATER-HEADALLOYS

Alloy Heat Treatment ("unaged" condition)

CG-27 Sol'n. ann. 1150° C/10 min in vac/

fast furnace cool. Age _60° C/
16 hr in vac/cool to 650 C/hold
24 hr/fast furnace cool.

12RN72 Sol'n. ann. 1175° C/15 min in vac/
water quench.

N-155 (AMS-5532B) Sol'n. ann. 1176° C/
rapid air cool or water quench.

HS-31 Anneal 730° C/50 hr in vac/fast
furnace cool.

XF-818 None specified (as-cast).

NASAUT4G-A1 650° C/IO0 hr in air/air cool.
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Figure1. - Schematicrepresentationof automotiveStirling engine.
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(a) N-155. (b) CG-'17.

Figure 2. - As heat-treated microstructures of heater head tube alloys.



(c) 12 RN 72.

Figure 2. - Concluded.



(a) HS-31. (bl XF-818.

Figure 3. - As heat-treated microstructures of cylinder/regenerator housing alloys.



(c) NASAUT 4G-AI.

Figure 3. - Concluded.
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(a) N-155. (b) CG-27

Figure 12. - Photomicrographs of 3500 hour oxidation/corrosion heater head tube speci mens showi ng oxide scales and depletion zones.



(c) 12RN72.

Figure 12. - Concluded.
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